# Clique-width: When Hard Does Not Mean Impossible\*

Robert Ganian<sup>1</sup>, Petr Hliněný<sup>1</sup>, and Jan Obdržálek<sup>1</sup>

Masaryk University, Brno {ganian, hlineny, obdrzalek}@fi.muni.cz

#### **Abstract**

In recent years, the parameterized complexity approach has lead to the introduction of many new algorithms and frameworks on graphs and digraphs of bounded clique-width and, equivalently, rank-width. However, despite intensive work on the subject, there still exist well-established hard problems where neither a parameterized algorithm nor a theoretical obstacle to its existence are known. Our article is interested mainly in the digraph case, targeting the well-known Minimum Leaf Out-Branching (cf. also Minimum Leaf Spanning Tree) and Edge Disjoint Paths problems on digraphs of bounded clique-width with non-standard new approaches.

The first part of the article deals with the Minimum Leaf Out-Branching problem and introduces a novel XP-time algorithm wrt. clique-width. We remark that this problem is known to be W[2]-hard, and that our algorithm does not resemble any of the previously published attempts solving special cases of it such as the Hamiltonian Path. The second part then looks at the Edge Disjoint Paths problem (both on graphs and digraphs) from a different perspective rather surprisingly showing that this problem has a definition in the MSO<sub>1</sub> logic of graphs. The linear-time FPT algorithm wrt. clique-width then follows as a direct consequence.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases clique-width, bi-rank-width, minimum leaf out-branching, minimum leaf spanning tree, edge-disjoint paths

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.404

### Introduction

It is known that the majority of graph problems are NP-complete in general, so alternative approaches are necessary for tackling these problems. The utilization of parameterized algorithmics is one such very successful approach, where instead of focusing on the general class of all graphs we design algorithms on graphs with a bounded structural parameter (or "width"). This has strong practical motivation, since real-world applications generally work with specific classes of graphs as input.

"Polynomial runtime" parameterized algorithms are roughly divided into two groups. The more ideal case constitutes fixed-parameter tractable (FPT) algorithms, where the runtime is  $poly(n) \cdot f(k)$  (n being the input size and k the parameter). Unfortunately, not all combinations of problems and parameters allow FPT algorithms, and so in some cases it is necessary to settle for an XP algorithm – i.e. an algorithm with runtime  $poly(n)^{f(k)}$ . Notice that the exponent in XP algorithms increases with the parameter, but still the runtime remains polynomial for any fixed value of k.

<sup>\*</sup> This work was supported by the Czech research grants GAČR 201/09/J021 and 202/11/0196.

As for the parameters themselves, the one best known today is the tree-width of Robertson and Seymour [17] which has allowed for efficient solution of many NP-hard problems on all graphs having bounded tree-width. The drawback is that the class of graphs with bounded tree-width is quite restrictive. A lot of research since then has focused on obtaining a width measure which would be more general and still allow efficient algorithms for a wide range of NP-hard problems on graphs of bounded width. This has lead to the introduction of clique-width by Courcelle and Olariu [4] and, subsequently, of rank-width by Oum and Seymour [16]. Both of these width parameters are related in the sense that one is bounded if and only if the other is bounded. We refer to Section 2 for further details.

In this article, we provide polynomial algorithms for two well-established problems on digraphs of bounded clique-width/bi-rank-width.

- The first one is *Minimum Leaf Out-Branching*, a problem which generalizes the Hamiltonian Path problem and which is studied e.g. in [5]. The task is to find a spanning out-tree in a digraph that minimizes the number of leaves. Definition and more details are provided in Section 3. We remark that the undirected variant is known as Minimum Leaf Spanning Tree problem (e.g. [19]), and our results apply also to that.
- The second one is *Edge Disjoint Paths* problem, asking for pairwise edge-disjoint paths between a fixed number of terminal pairs. In this case the directed variant is much more difficult than the undirected one see details in Section 4.

Parameterized complexity status of Minimum Leaf Out-Branching remained unsolved in our previous work on digraphs of bounded bi-rank-width [9], resisting the dynamic programming approaches traditionally used e.g. for clique-width. The provided new Algorithm 12 in Section 3 solves the problem and is also straightforwardly applicable to undirected graphs.

▶ **Theorem 1** (Algorithm 12). The Minimum Leaf Out-Branching problem on a given digraph G of clique-width k (with arbitrary number of leaves) can be solved in XP time  $\mathcal{O}(n^{f(k)})$ , where  $f(k) \sim 2^{\mathcal{O}(k)}$  if a k-expression of G is given, and  $f(k) \sim 2^{\mathcal{O}(2^k)}$  otherwise.

The second part of the article shortly deals with the Edge Disjoint Paths problem with a fixed number of paths. Note that this was the only remaining open (directed) variant of Disjoint Paths with respect to parameterization by clique-width – see [9, 12, 15] for complexity results and/or algorithms for the other variants. We show in Section 4 that even the Edge Disjoint Paths problem may be described by an  $MSO_1$  formula. This is somehow surprising given the fact that  $MSO_1$  cannot speak about sets of edges, and our logical formula is definitely not a trivial restatement of the original problem. In the end we obtain, in connection with [3]:

▶ Theorem 2 (Theorem 17). Both the undirected and directed variant of the Edge Disjoint Paths problem with a fixed number of terminal pairs have a linear-time FPT algorithm on simple (di)graphs of bounded clique-width.

Theorem 2 can, moreover, be directly used as a subroutine in a new algorithm for the Edge Disjoint Paths problem on tournaments by Chudnovsky and Seymour [in preparation].

## Clique-width and rank-width

We use standard graph and digraph (directed graph) notation. All our graphs and digraphs are simple (i.e. do not contain loops or multiple edges) unless specified otherwise.

- 1. [i] is a nullary operator which represents a graph with a single vertex labelled i,
- 2.  $\eta_{i,j}$ , for  $i \neq j$ , is a unary operator which adds edges between all pairs of vertices where one is labelled i and the other is labelled j,
- 3.  $\rho_{i \to j}$  is a unary operator which changes the labels of all vertices labelled i to j, and
- **4.**  $\oplus$  is a binary operator which represents disjoint union of two k-labelled graphs.

Each k-expression t naturally corresponds to (generates) a k-labelled graph G which will be denoted for reference by G[t] = G. The clique-width of an undirected graph G is then the smallest k such that there exists a k-expression generating G. For digraphs clique-width is defined in just the same way, only the operator  $\eta_{i,j}$  is replaced by the operator  $\alpha_{i,j}$  which creates directed edges (arcs) from each vertex with label i to each vertex with label j. It is known [4] that every graph of clique-width k can be generated by an irredundand expression, i.e. an expression that applies the  $\eta_{i,j}$  /  $\alpha_{i,j}$  operator only in situations when there is no edge from a vertex of label i to one of label j.

It is quite natural to view a k-expression  $t_G$  corresponding to G as a tree T with nodes labelled by subterms of  $t_G$  ( $t_G$  being the root), together with a bijection between the leaves of the tree and vertices of G. In this setting the type of each node  $t \in V(T)$  is the top-level operator of t, and so we have four different node types.

▶ Example 4.  $\alpha_{1,2}(\rho_{1\to 2}(\alpha_{1,2}(\rho_{1\to 2}(\alpha_{1,2}([1]\oplus[2]))\oplus[1]))\oplus[1]))\oplus[1])$  is a 2-expression corresponding to a directed clique of size 4. See Fig. 1.

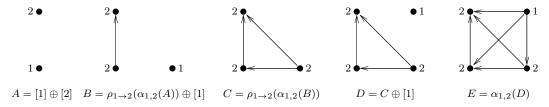


Figure 1 Construction of the directed clique of size 4

Closely related to clique-width is another structural parameter, called rank-width [16] (on undirected graphs) or bi-rank-width [14] (on digraphs). Due to space restrictions we only refer to [11] for their definitions. The relationship of these measures to the former is that they are bounded if and only if clique-width is bounded. However, a crucial advantage of rank-width is that it can be computed optimally by an FPT algorithm. To be more specific:

- ▶ Theorem 5 ([2, 16]).  $rwd(G) \le cwd(G) \le 2^{rwd(G)+1} 1$  for all graphs G.
- ▶ **Theorem 6** ([13, 14]). For every integer parameter k there is an  $O(n^3)$ -time FPT algorithm that, for a given n-vertex graph G, either finds a bi-rank-decomposition of G of width at most k, or confirms that the bi-rank-width of G is more than k.

Due to lack of space for comprehensible definitions and explanation of rank-width and their parse trees we stick with (perhaps better known) clique-width in this article. All the results, however, could be straightforwardly reformulated for (bi-)rank-width.

## 3 Minimum leaf out-branching

Let  $out_G(x)$  denote the out-degree of x in a digraph G, i.e. the number of edges having their tail in x. For an edge f and nonadjacent vertices x, y of a digraph G, we write G - f to denote the graph resulting by removal f from G, and G + (x, y) for the graph obtained by adding a new edge from x to y. A digraph T is an out-tree if T is an oriented tree with only one vertex of in-degree zero (called the root). The vertices of out-degree zero are called leaves of T. An out-forest is a digraph whose weakly connected components are out-trees.

▶ **Definition 7.** Let G be a digraph. We say that T is an *out-branching* of G if T is a spanning subdigraph of G, i.e. V(T) = V(G) and  $E(T) \subseteq E(G)$ , and T is an out-tree. The *Minimum Leaf Out-Branching problem* (or MINLOB for short) is the problem of deciding, for a digraph G and integer  $\ell$  on the input, whether G contains an out-branching with at most  $\ell$  leaves.

Notice that not every digraph has an out-branching. It is not hard to show that G has an out-branching if, and only if, there is a vertex  $v \in V(G)$  such that there is a directed path from v to any vertex of G. This is checkable in linear-time [1], but the MINLOB problem itself is NP-complete since it contains the Hamiltonian Path as a special case ( $\ell = 1$ ). It is also possible to analogically define the *Maximum Leaf Out-Branching problem* (MAXLOB), asking for an out-branching with at least  $\ell$  leaves, but this variant seems to have quite different (and rather easier) algorithmic behaviour than MINLOB.

The core contribution of our paper is to resolve one important question left open in [9]; what is the computational complexity of MinLOB when parameterized by the clique-width / bi-rank-width of the input graph? It follows by a reduction from Hamiltonian Path [7] that MinLOB is W[2]-hard with respect to clique-width (even with fixed  $\ell$ ), and so does not have an FPT algorithm unless the Exponential Time Hypothesis fails. The first XP algorithm for the undirected Hamiltonian Path parameterized by the clique-width was due to Espelage et al [6]. Another XP algorithm for  $\ell$ -MinLOB for every fixed  $\ell$  and parameterized by the bi-rank-width has been recently given in [11].

Our new XP algorithm for MinLOB parameterized by the clique-width does not resemble any of the aforementioned algorithms for the Hamiltonian Path and  $\ell$ -MinLOB problems. In fact, our new algorithm seems to be in a certain fundamental aspect (see Theorem 13 and Question 14) very different from the many other parameterized algorithms designed for graphs of bounded clique-width. We suggest that this difference may not be fully understood yet, and so it deserves further conceptual investigation, too.

#### 3.1 Out-branching and modules

We first show some basic properties of the problem as a prelude to the coming algorithm in the next section. Though these properties (cf. Definitions 8,9) are not directly used in Algorithm 12 and its proof, we consider them worth independent interest.

For a digraph G, a set  $M \subseteq V(G)$  is called a *module* if every vertex of M has the same inneighbourhood and out-neighbourhood (as every other in M) among the vertices not in M. Generalizing the module concept, we consider a k-labelled digraph  $(H, \gamma)$  such that  $H \subseteq G$ . We say that H is a *labelled-modular subdigraph* of G if  $\gamma^{-1}(i)$  is a module in G - E(H) for all  $i = 1, 2, \ldots, k$ . Note that H is not required to be an induced subdigraph of G.

In other words, H is a labelled-modular subdigraph of G if the existence of an edge in G - E(H) incident with some  $v \in V(H)$  "depends only on" the label of v. Notice that if s is a subexpression of a (irredundand) k-expression t, then the generated k-labelled digraph

408

G[s] is always a labelled-modular subdigraph of the whole G[t] (an analogical claim holds e.g. for bi-rank-decompositions).

Let G be a digraph,  $H \subseteq G$  its subgraph and  $F \subseteq H$  an out-forest. We call the pair  $(F,\mu)$  where  $\mu:V(H)\to\mathbb{N}$  an annotated out-forest. We say that the annotated out-forest  $(F,\mu)$  extends to an out-branching  $T\subseteq G$  if  $E(F)=E(T)\cap E(H)$ , and for all  $x\in V(H)$  we have  $\mu(x)=out_T(x)-out_F(x)$ . We are going to define an equivalence relation  $\approx_H$  on the set of all annotated out-forests of a k-labelled graph H, with the intended meaning to "capture all important information" about possible extendability of a particular annotated out-forest into an out-branching.

▶ **Definition 8** (Canonical equivalence). A pair of annotated out-forests  $(F_1, \mu_1)$  and  $(F_2, \mu_2)$  in a k-labelled digraph H is canonically equivalent, written as  $(F_1, \mu_1) \approx_H (F_2, \mu_2)$ , if, and only if, the following holds for each integer  $\ell$  and every digraph G such that H is a labelled-modular subdigraph of G:  $(F_1, \mu_1)$  can be extended to an out-branching of G with  $\leq \ell$  leaves if and only if  $(F_2, \mu_2)$  can be extended to an out-branching of G with  $\leq \ell$  leaves.

On the other hand, in Definition 9 we introduce simple "information about  $(F, \mu)$ " that is sufficient to determine its equivalence class within  $\approx_H$ . For every connected component (out-tree)  $T_0$  of F in H, including the isolated vertices of H not incident with any edge of F, the *shape* of  $T_0$  is the pair (a, B) where a is the H-label of the root of  $T_0$  and B is the set of all H-labels occurring at the vertices  $x \in V(T_0)$  such that  $\mu(x) > 0$  (active vertices).

- ▶ **Definition 9** (Out-forest signatures). The *signature* of a (spanning) annotated out-forest  $(F, \mu)$  in a k-labelled digraph H is a vector in  $\mathbb{N}^*$  consisting of
- the number of leaves x of F (incl. isolated vertices) such that  $\mu(x) = 0$ ,
- for every i = 1, ..., k, the sum of  $\mu(x)$  over all vertices  $x \in V(H)$  of the H-label i, and
- $\blacksquare$  for every possible shape, the number of out-trees of F having this shape.

Notice that the length of this vector depends only on k and not on the size of H.

▶ **Lemma 10.** Let  $(F_1, \mu_1)$  and  $(F_2, \mu_2)$  be a pair of annotated out-forests in a k-labelled digraph H. If the signatures of  $(F_1, \mu_1)$  and  $(F_2, \mu_2)$  are equal, then  $(F_1, \mu_1) \approx_H (F_2, \mu_2)$ .

Due to lack of space, we skip the proof of this lemma. The claim clearly suggests that an XP-time algorithm for MINLOB might exist since the information "carried by" the set of available signatures is of polynomial size. Unfortunately, even this strong claim is not strong enough to give such an algorithm (unlike in the finite Myhill–Nerode-type case, e.g. [8], or in many other XP solvable problems [11]) since we do not know how to process available signature vectors dynamically along a k-expression.

#### 3.2 A dynamic algorithm for MinLOB

In order to obtain an XP algorithm for the MinLOB problem, we introduce a "weaker" alternative to Definition 9. Recall that a vertex x of an annotated out-forest  $(F, \mu)$  is active if  $\mu(x) > 0$ . We now relax this notion to suit the coming algorithm.

Assume a k-expression t generating the digraph H=G[t], an annotated out-forest  $(F,\mu)$  in H, and a vertex  $v_q \in V(H)$  generated by the leaf q of t. We say that  $v_q$  is potentially active in H for the k-expression t if, for every node (subexpression) s of t on the path from q to the root, the annotated out-forest induced by  $(F,\mu)$  in  $G[s] \subseteq H$  contains an active vertex (possibly  $v_q$  itself) of the same G[s]-label as that of  $v_q$ . In particular, if a vertex x is active in  $(F,\mu)$ , then x is also potentially active for t. If there is no active vertex of label i

in  $(F, \mu)$ , then there is also no such potentially active vertex. It may, however, happen that there are many more potentially active vertices of  $(F, \mu)$  for t than the active ones.

For every connected component (out-tree)  $T_0$  of F in H, we define the *weak shape* of  $T_0$  as the pair (a, B) where a is the H-label of the root of  $T_0$  and B is the set of all H-labels occurring at the vertices  $x \in V(T_0)$  that are potentially active for the k-expression t.

- ▶ Definition 11 (Weak signature, cf. Definition 9). The weak signature of a spanning annotated out-forest  $(F, \mu)$  in the k-labelled digraph H = G[t] generated by a k-expression t is a vector  $\vec{w}$  in  $\mathbb{N}^c$  (with the appropriate length c) consisting of the sections
- wl, the number of leaves x of F (incl. isolated vertices) such that  $\mu(x) = 0$ ,
- wa(i) for every i = 1, ..., k, where wa(i) equals the sum of  $\mu(x)$  over all vertices x of the H-label i (informally, the "total multiplicity" of all active vertices of label i), and
- ws(a, B) for every possible weak shape (a, B), equal to the number of out-trees (weak components) of F having this weak shape (a, B) in H for the k-expression t.

The advantage of a weak signature over former signature is that weak signatures are easier to handle in dynamic programming on a k-expression of the input graph. Still, the situation is not as easy as if we could dynamically compute the set of all weak signatures of all possible annotated outforests in our graph—we can only compute a suitable superset of it via the following straightforward algorithm.

- ▶ Algorithm 12. Assume an input consisting of a k-expression t generating a k-labelled digraph G on n vertices. The following algorithm computes, in XP-time wrt. the parameter k, a set  $\mathcal{U}$  of vectors from  $\mathbb{N}^c$  (cf. Definition 11) such that  $\mathcal{U}$  includes all weak signatures of spanning annotated out-forests in G for t.
  - I. Input t (a k-expression); G = G[t].
  - II. At every leaf q = [i] of t (where  $i \in \{1, ..., k\}$ ), the graph G[q] is actually a single vertex  $v_q$  of label i. Let  $U_q$  be the set of weak signatures of the edge-less annotated out-forests  $(G[q], \mu_j)$  where  $\mu_j(v_q) = j$ , over  $0 \le j \le out_G(v_q)$ .
- III. At every internal node r of t, we compute in the leaves-to-root direction as follows.
  - $r=p\oplus q$ :  $U_r$  is the set, for all pairs  $\vec{c}\in U_p$ ,  $\vec{d}\in U_q$ , of their vector sums  $\vec{c}+\vec{d}$ .
  - $r = \rho_{i \to j}(q)$ : We initialize  $U_r = \emptyset$ . Then, for every  $\vec{c} \in U_q$ ,  $\vec{c} = (wl, \vec{wa}, \vec{ws})$  as in Definition 11, we compute;  $\vec{wa}' = \vec{wa}$  except that wa'(j) = wa(j) + wa(i) and wa'(i) = 0, and  $\vec{ws}'$  "shifting" the components of  $\vec{ws}$  according to the effect that relabeling  $i \to j$  has on all possible weak shapes. We add  $(wl, \vec{wa}', \vec{ws}')$  to  $U_r$ .
  - $r = \alpha_{i,j}(q)$ : We initialize  $U_r = U_q$ . Then we repeat the following procedure as long as  $U_r$  is changing:
    - Pick arbitrary  $\vec{c} \in U_r$ ,  $\vec{c} = (wl, \vec{wa}, \vec{ws})$  such that wa(i) > 0, and any weak shapes (a, B) and (b, C) such that  $i \in B$ , b = j, and ws(a, B) > 0, ws(j, C) > 0.
    - Let  $\vec{wa}' = \vec{wa}$  except that wa'(i) = wa(i) 1.
    - Let  $\vec{ws}' = \vec{ws}$  except that ws'(a, B) = ws(a, B) 1, ws'(j, C) = ws(j, C) 1, and  $ws'(a, B \cup C) = ws(a, B \cup C) + 1$ .
    - If wa'(i) = 0, then let the label i be subsequently "removed from" the label sets (of potentially active vertices) of all weak shapes indexing  $\vec{ws}'$ .
    - Finally, add  $(wl, \vec{wa'}, \vec{ws'})$  to  $U_r$ .
- IV. Output  $\mathcal{U} = U_t$ .

**Proof.** There are two steps in the proof.

Claim. The set  $\mathcal{U}$  contains, for every annotated out-forest  $(F, \mu)$  in G such that  $\mu(x) \leq out_G(x) - out_F(x)$ , the weak signature of  $(F, \mu)$  for t.

This is easily proved by leaves-to-root structural induction on t: The claim is trivial at the leaves. Considering a node  $r=p\oplus q$ , the weak signature of any annotated out-forest in G[r] that is obtained as a disjoint union of annotated out-forests in G[p], G[q] of weak signatures  $\vec{c}, \vec{d}$ , respectively, equals computed  $\vec{c} + \vec{d}$ . Analogically for  $r = \alpha_{i,j}(q)$ . Notice that none of those two operations change potential activity of vertices by definition.

Consider one iteration at a node  $r = \alpha_{i,j}(q)$ . Let  $(F + (u,v), \mu')$  be an annotated outforest in G[r] such that the weak signature  $\vec{c}$  of  $(F,\mu)$ ,  $\mu(u) = \mu'(u) + 1$ , has already been computed in previous iterations of  $U_r$  by the inductive assumption. Hence u of G[r]-label i is active in  $(F,\mu)$  and  $\vec{c}$  contains a weak shape (a,B) such that  $i \in B$ . Furthermore, since F + (u,v) is an outforest,  $\vec{c}$  contains a weak shape (b,C) such that b = j is the G[r]-label of v. Then the vector  $(wl, \vec{wa}', \vec{ws}')$  computed by the algorithm from  $\vec{c}$  is exactly the weak signature of  $(F + (u,v), \mu')$  by definition.

Claim. Algorithm 12 runs in XP time, i.e. in time  $\mathcal{O}(n^{f(k)})$  where  $f(k) \sim 2^{\mathcal{O}(k)}$ .

The runtime of the algorithm is clearly dominated (up to a constant multiple of the exponent) by the number of possible weak signature vectors of length c. It is  $c = 1 + k + k2^k$ . The value of each vector component may be a natural number up to n for wl,  $\vec{ws}$  and up to  $n^2$  for  $\vec{wa}$ . Hence the claim follows.

The importance of Algorithm 12 comes from the following crucial statement.

▶ Theorem 13. Suppose that the set  $\mathcal{U} = U_t$  computed in Algorithm 12 contains a weak signature vector  $\vec{w} = (wl, \vec{wa}, \vec{ws})$  such that  $wl = \ell$ ,  $\vec{wa} = \vec{0}$ , and  $\vec{ws}$  containing only one non-zero entry 1 (i.e.  $\vec{w}$  corresponds to a weak signature of an out-tree with  $\ell$  leaves and zero annotation). Then the graph G = G[t] contains an out-branching with  $\ell$  leaves.

Consequently, Algorithm 12 solves the Minimum Leaf Out-Branching problem – for a given G and arbitrary  $\ell$  – in XP-time wrt. the clique-width k of G (Theorem 1).

- **Proof.** Let  $\vec{c} \in U_s$  be a weak signature vector computed by Algorithm 12 on a subexpression s of the k-expression t. A derivation tree  $\delta$  of  $\vec{c}$  over t is a rooted tree which is a subdivision of that of s, and every node of  $\delta$  is labelled with one weak signature vector as follows:
- Each  $r \in V(s) \subseteq V(\delta)$  is labelled with some  $\vec{c_r} \in U_r$  such that the root of δ is labelled by  $\vec{c_r}$ , and for each edge  $(r,q) \in E(s)$  it holds that  $\vec{c_r}$  is computed from  $\vec{c_q}$  by Algorithm 12.
- Moreover,  $(r,q) \in E(\delta)$  unless r is of the form " $r = \alpha_{i,j}(q)$ ". If  $r = \alpha_{i,j}(q)$  and  $\vec{c}_r$  was created from  $\vec{c}_q$  by adding k edges, then (r,q) is replaced with an r-q-path  $(r_0 = r, r_1, \ldots, r_k = q)$  of length k in  $\delta$  such that  $\vec{c}_{r_\ell}$ ,  $0 \le \ell < k$ , is obtained from  $\vec{c}_{r_{\ell+1}}$  by one (productive) iteration of the " $r = \alpha_{i,j}(q)$ " step in III.

Typically, one vector  $\vec{c}$  can have many derivation trees.

Such a derivation tree  $\delta$  is realizable over t if there exists an annotated out-forest  $(F, \mu)$  in G[s] such that, for each node d of  $\delta$ , the corresponding subforest of  $(F, \mu)$  has weak signature equal to the label of d. Obviously not all vectors in  $U_s$  have realizable derivations, in general.

Let  $\mathcal{V} \subseteq \mathcal{U}$  be the set of good vectors assumed in the statement of this theorem, i.e. of those vectors  $\vec{w} = (wl, \vec{wa}, \vec{ws}) \in \mathcal{U}$  such that  $wl = \ell$ ,  $\vec{wa} = \vec{0}$ , and  $\vec{ws}$  containing only one non-zero entry 1. Among all the good vectors  $\vec{w} \in \mathcal{V}$ , we select  $\vec{w_0}$  and a derivation tree  $\delta_0$  of  $\vec{w_0}$  such that there is a derivation tree  $\delta_1 \subseteq \delta_0$  which is realizable over t and  $\delta_1$  maximizes the number of edges of its realizing out-forest  $(F_1, \mu_1)$ . We aim to show, by means of contradiction, that  $\delta_1 = \delta_0$ . Then  $(F_1, \mu_1)$  would be a realization of whole  $\delta_0$  of weak signature  $\vec{w_0} \in \mathcal{V}$ , and hence  $F_1$  is an outbranching with  $\ell$  leaves by the definition of  $\mathcal{V}$ .

Let  $\delta_1 \subsetneq \delta_0$ . Analyzing Algorithm 12. III, one easily finds out that both the " $r = p \oplus q$ " and " $r = \rho_{i \to j}(q)$ " operations preserve realizability. Hence we have got a realizing out-forest  $(F_1, \mu_1)$  of  $\delta_1$  over t, its weak signature  $\vec{c}_1$ , and the label  $\vec{c}_2$  of the parent of the root of  $\delta_1$  in the derivation tree  $\delta_0$  such that:  $\vec{c}_2$  results from  $\vec{c}_1$  by one iteration of the " $r = \alpha_{i,j}(q)$ " step in III, but no single edge of G can be added to  $(F_1, \mu_1)$  to produce an out-forest of weak signature  $\vec{c}_2$ . In the rest of the proof we are going to construct another annotated out-forest with one more edge than  $(F_1, \mu_1)$  such that its weak signature is contained in the derivation tree of some good vector in  $\mathcal{V}$  (and this will be a contradiction to the assumptions).

We need a few more technical terms before proceeding with our proof.

- An out-branching of a weak signature vector  $\vec{c}$  is any out-tree  $\Gamma$  such that  $V(\Gamma)$  is the multiset of weak shapes respecting their multiplicities given by  $\vec{c}$ , i.e. every weak shape has the appropriate number of unique copies in  $V(\Gamma)$ . Informally, if  $\vec{c}$  were realizable by an out-forest F, then the vertices of  $\Gamma$  would be all the out-trees of F.
- Considering a weak signature  $\vec{c}$  labelling a node of a derivation tree  $\delta$ , we say that an out-branching  $\Gamma$  of  $\vec{c}$  is determined by  $\delta$  if the following holds for every pair  $x, y \in V(\Gamma)$ :  $(x,y) \in E(\Gamma)$  iff the computation run of Algorithm 12 associated with  $\delta$  contains a "directed sequence" of  $\alpha_{i,j}$  operations interconnecting the particular copies x to y.
- An out-branching  $\Gamma$  of a weak signature  $\vec{c}$  is *feasible* for t if there exists good  $\vec{d} \in \mathcal{V}$  such that a derivation tree  $\delta$  of  $\vec{d}$  contains the label  $\vec{c}$  and  $\Gamma$  is determined by  $\delta$ .

Informally, the out-branching  $\Gamma$  of  $\vec{c}$  outlines the "intended arrangement" of components of  $\vec{c}$  in a (potential) resulting out-branching of G.

In our case we have got an out-branching  $\Gamma_1$  of the aforementioned weak signature  $\vec{c}_1$  (of  $(F_1, \mu_1)$ ) determined by the derivation tree  $\delta_0$ . Let  $(x, y) \in E(\Gamma_1)$  be its edge such that x is a copy of the weak shape (a, B),  $i \in B$ , and y is a copy of the weak shape (j, C), and that  $\vec{c}_2$  results from  $\vec{c}_1$  in the iteration of the " $r = \alpha_{i,j}(q)$ " step (III) which picks the weak shapes (a, B) and (j, C) in  $\vec{c}_1$ . The digraph  $\Gamma_1 - (x, y)$  has two weak components; X containing x and Y containing y. Let  $F_1 = L_1 \cup L'_1$  be a partition of  $F_1$  such that  $L_1$  is formed by the out-trees corresponding to the vertices of X and  $L'_1$  is formed by those of Y, and, particularly, let  $T_x \subseteq L_1, T_y \subseteq L'_1$  be the out-trees corresponding to x, y of  $\Gamma_1$ . Hence the root  $v_1$  of  $T_y$  has  $F_1$ -label j and some potentially active vertex  $u_1$  in  $T_x$  has  $F_1$ -label i,

We may as well assume that  $\delta_1$ , its realization  $(F_1, \mu_1)$  and x, y are chosen – subject to optimality in the previous criteria – such that they minimize the distance from the root of  $\delta_1$  to one of its nodes  $d_2$  satisfying the following: In the annotated subforest  $(F_2, \mu_2)$  induced from  $(F_1, \mu_1)$  at the derivation node  $d_2$  and containing  $u_1$ , there exists a vertex  $u_2 \in V(F_2) \cap V(L_1)$  such that  $u_2$  is active in  $(F_2, \mu_2)$  and  $u_2$  has the same  $F_2$ -label as  $u_1$  (possibly  $u_2 = u_1$ ). This leads to two cases to be considered:

- i. The distance to our  $d_2$  is zero. Then there is an active vertex  $u_2 \in V(L_1)$  in  $(F_1, \mu_1)$  of the  $F_1$ -label i, and so  $(u_2, v_1)$  is an edge of G.
- ii. The distance to our  $d_2$  is non-zero. Then, in particular, all active vertices of  $(F_1, \mu_1)$  of the  $F_1$ -label i belong to  $L'_1$ .

Ad (i), we take the out-forest  $F'_1 = F_1 + (u_2, v_1) \subseteq G$ . Let  $\vec{c}'_1$  be the weak signature of the annotated out-forest  $(F'_1, \mu'_1)$  where  $\mu'_1(u_2) = \mu_1(u_2) - 1$  and  $\mu'_1(x) = \mu_1(x)$  otherwise, and  $\delta'_1$  the derivation tree of  $\vec{c}'_1$  realizing  $(F'_1, \mu'_1)$ . Let x' be the vertex of  $\Gamma_1$  corresponding to the out-tree of  $F_1$  containing  $u_2$ , let  $\Gamma'_1 = \Gamma_1 - (x, y) + (x', y)$ , and  $\Gamma''_1$  be obtained from  $\Gamma'_1$  by contracting (x', y). Clearly,  $\Gamma'_1$  is an out-branching of  $\vec{c}_1$  and feasibility of  $\Gamma_1$  naturally implies that also  $\Gamma'_1$  is feasible for t. Hence  $\Gamma''_1$  is a feasible out-branching of  $\vec{c}'_1$  for t. The derivation tree witnessing feasibility of  $\Gamma''_1$  (in place of  $\delta_0$ ), its subtree  $\delta'_1$  (in place of  $\delta_1$ ),

and the annotated out-forest  $(F'_1 = F_1 + (u_2, v_1), \mu'_1)$  contradict the optimality of our choice of  $\vec{w_0}$  and  $\delta_0$  above. The proof is finished in this case (i).

Ad (ii), let the  $F_2$ -label of  $u_1$  and  $u_2$  be i'. Let  $d_3$  be the parent node of  $d_2$  in  $\delta_1$  and  $(F_3, \mu_3)$  be induced from  $(F_1, \mu_1)$  at  $d_3$ . By the optimality of our choice of  $d_2$ , the operation (cf. III) taking place at  $d_3$  must be an iteration of  $\alpha_{i',j'}$  adding an edge from  $u_2$  (or  $u_2$  would still be active in  $(F_3, \mu_3)$ ). Let  $(u_2, v) \in E(F_3) \setminus E(F_2)$  be this added edge. Moreover, since  $u_1$  is still potentially active in  $(F_1, \mu_1)$ , there exists a vertex  $u_3 \in V(F_2) \cap V(L'_1)$  of  $F_2$ -label i' active in  $(F_3, \mu_3)$ , and  $(u_3, v) \in E(G)$ .

Let  $F_3' = F_2 + (u_3, v)$  and  $\mu_3' = \mu_3$  except that  $\mu_3'(u_2) = \mu_3(u_2) + 1$ ,  $\mu_3'(u_3) = \mu_3(u_3) - 1$ . The  $(F_3', \mu_3')$  is an annotated out-forest in which  $u_2$  is still active. Now, if  $u_3$  is active in  $(F_1, \mu_1)$ , then we set  $F'_1 = F_1 - (u_2, v) + (u_3, v)$  and  $\mu'_1$  accordingly. If  $u_3$  is not active in  $(F_1, \mu_1)$ , then we pick any edge  $(u_3, v') \in E(F_1) \setminus E(F_3)$  and subsequently define  $F'_1 =$  $F_1 - (u_2, v) + (u_3, v) - (u_3, v') + (u_2, v')$  and  $\mu'_1 = \mu_1$ . Again, it is routine to verify that  $F'_1$ is an out-forest in G in both cases. Let  $\vec{c}_1'$  be the weak signature of new  $(F_1', \mu_1')$  and  $\delta_1'$  the derivation tree of  $\vec{c}_1'$  realizing  $(F_1', \mu_1')$ .

Finally, we apply the computation run of the derivation tree  $\delta_0$  (starting up from the root of  $\delta_1$ ) onto the top of  $\delta'_1$ . In this way we obtain an out-branching  $\Gamma'_1$  of  $\vec{c}'_1$  that is an appropriate local modification of  $\Gamma_1$ . It follows from our choice of  $u_2, u_3$  and their out-edges that  $\Gamma'_1$  is also feasible for t. Now we have an alternative optimal choice of  $\vec{w}'_0 \in \mathcal{V}$  and  $\delta'_0$  which are witnessing feasibility of  $\Gamma'_1$ , and of  $(F'_1, \mu'_1)$  in place of  $(F_1, \mu_1)$ . This time, however,  $d_3$  with  $\delta'_1$  contradicts the optimality of our previous choice of  $d_2$  (the distance from the root of  $\delta'_1$  to  $d_3$  is smaller by one).

This contradiction closes case (ii), and so the proof is finished.

- ▶ Question 14. Seeing the complications in the proof of Theorem 13, one may naturally ask about a simpler solution of the problem. Say, cannot one come up with a better version of Definition 9 that, together with an appropriate modification of Lemma 10, would directly provide us with an XP algorithm? To be more formal, we ask whether there exists an equivalence relation  $\sim$  on the set of annotated out-forests in a k-labelled graph H such that
- $\sim$  refines  $\approx_H$  (Definition 8) for every particular H, and
- the set of nonempty classes of  $\sim$  for particular H can be computed dynamically over a k-expression of H in XP time.

### **Edge-disjoint paths**

▶ **Definition 15.** In the *Disjoint Paths problem*, an input is a graph (or digraph) G and k pairs of terminals  $(s_1, t_1), \ldots, (s_k, t_k)$ , where  $s_i, t_i \in V(G)$  for  $1 \leq i \leq k$ . The question is whether there exists a collection of k pairwise vertex-disjoint paths  $P_1, \ldots, P_k$  in G such that  $P_i$  connects  $s_i$  to  $t_i$ , i = 1, ..., k.

The Edge Disjoint Paths problem is defined analogously with requiring the paths  $P_1, \ldots, P_k$  to be only pairwise edge-disjoint.

While the undirected Disjoint Paths variants are FPT solvable when parameterized simply by the number of paths (terminal pairs) [18], the directed case is NP-complete already for two paths in general. Hence it makes sense to look for suitable additional parameterizations of this problem, e.g. by clique-width. Note, on the other hand, that the Disjoint Paths problem with the number of paths k on the input is para-NP-complete for graphs of bounded clique-width [12], and the Edge Disjoint Paths problem with k on the input is para-NP-complete even for graphs of tree-width two [15].

▶ **Definition 16.** The monadic second order logic of one-sorted adjacency graphs, commonly abbreviated as  $MSO_1$ , has variables for graph vertices (say x, y, z...) and for vertex sets (X, Y, Z...), common logic connectives and quantifiers, and a binary relational predicate edge. When dealing with directed graphs, we write arc instead of edge. Note that quantification over sets of edges is not possible (unlike in the more general  $MSO_2$  language).

To give examples of MSO<sub>1</sub>, we express that X is a dominating set in a graph G as  $\delta(X) \equiv \forall y \notin X \exists z \in X \ edge(z,y)$ , and that a digraph G is acyclic as  $\alpha \equiv \forall X \exists y \in X \ \forall z \in X \neg arc(z,y)$ . The MinLOB problem, on the other hand, is not expressible in MSO<sub>1</sub> (even with constant number of leaves) since neither the Hamiltonian Path is. Interestingly, the "dual" MaxLOB problem has an MSO<sub>1</sub> definition since, e.g. [10], a solution to MaxLOB is a complement to an out-connected dominating set in G.

Similarly, the (vertex) disjoint paths problem for a fixed k has a relatively easy description in  $MSO_1$ , e.g. [10]. For edge-disjoint paths with fixed k the situation is more complicated – the inability to handle sets of edges seems to prevent us from expressing that two paths (possibly sharing many vertices) are indeed edge disjoint. Yet, with a suitable trick we are able to express the existence of k directed pairwise edge-disjoint paths in  $MSO_1$ , and hence also to show membership in FPT when parameterized by clique-width or rank-width.

▶ Theorem 17. Let G be a digraph, and  $(s_1, t_1), \ldots, (s_k, t_k)$  be pairs of terminals in G. There exists an MSO<sub>1</sub> formula  $\pi_k$  such that  $G \models \pi_k(s_1, \ldots, s_k, t_1, \ldots, t_k)$  if, and only if, the corresponding directed k edge-disjoint paths problem in G has a solution.

**Proof.** We start with an informal sketch of our approach. The initial idea is to focus on such collections of pairwise edge-disjoint  $s_i$ - $t_i$  paths  $P_i$ ,  $1 \le i \le k$ , in G that lexicographically minimize the length vector  $(len(P_1), \ldots, len(P_k))$ . So each  $P_i$  is an induced path in the subgraph  $G - E(P_1 \cup \cdots \cup P_{i-1})$ . Then, by standard means, we "identify" each  $s_i$ - $t_i$  path  $P_i$  with its vertex set  $X_i$ , and express the existence of  $P_i$  as the nonexistence of a separation between  $s_i$ ,  $t_i$  inside  $X_i$  of  $G - E(P_1 \cup \cdots \cup P_{i-1})$ . The difficult part of this solution is to specify the edges  $E(P_i)$ ,  $1 \le j < i$ . Formally, let

$$\varrho(x, y, Z, r) \equiv \forall Y \left[ (x \in Y \land y \notin Y) \to \\ \exists z, z' \in Z \left( z \in Y \land z' \notin Y \land z \neq r \neq z' \land \operatorname{arc}(z, z') \right) \right]$$

$$(1)$$

be a formula stating that there exists a directed path from x to y on the vertices  $Z \setminus \{r\}$  (note that  $\{x,y\} \not\subseteq Z$  implies  $G \not\models \varrho(x,y,Z,r)$ ), and put

$$\mu(s, t, Z, u, v) \equiv \varrho(s, u, Z, v) \wedge \varrho(v, t, Z, u) \tag{2}$$

Claim. Let Z be a vertex subset of G such that  $s, t \in Z$  and the subgraph  $G[Z] \subseteq G$  induced on the vertices Z contains a directed s-t-path. Then the following three statements hold:

- (i) If  $G \models \mu(s, t, Z, u, v)$ , then  $\{s, t, u, v\} \subseteq Z$ .
- (ii) If  $G \models \neg \mu(s, t, Z, u, v)$ , then no s-t-path in G[Z] may contain the edge (u, v).
- (iii) Suppose Z is inclusion-minimal such that G[Z] contains a s-t-path P. Then such P is unique and E(P) is the set of those  $(u,v) \in E(G)$  such that  $G \models \mu(s,t,Z,u,v)$ .

For (i) the proof follows directly from the definition of  $\mu(s,t,Z,u,v)$ . To see that (ii) also holds, it is enough to note that every edge (u,v) of every s-t-path in G[Z] satisfies  $G \models \mu(s,t,Z,u,v)$  by (1). Finally to prove (iii) let us suppose that  $(u,v) \in E(G[Z]) \setminus E(P)$  (i.e., (u,v) points "backwards" on P due to minimality of Z). If in (2), for instance,  $G \models \varrho(s,u,Z,v)$ , then the corresponding s-u-path joined with the u-t-subpath of P would result

in an s-t-path in G[Z] avoiding v, a contradiction to minimality of Z. This finishes the proof of the claim.

Now, (iii) provides us with a criterion for identifying edges used by one particular s-t-path. To make use of it in a k path problem, we have to identify edges used by the first path  $P_1$  in G, then edges used by  $P_2$  in  $G - E(P_1)$ , then those used by  $P_3$  in  $G - E(P_1 \cup P_2)$ , etc. For that we use the following trick which "replaces" the atomic predicate arc in (1) with appropriate recursively defined (3) formulas  $\alpha_j$  where  $j = 1, \ldots, k$ . For simplicity, we write  $\widehat{s_j}$  as a shortcut for the list  $s_1, s_2, \ldots, s_j$ , and analogically for  $\widehat{t_j}, \widehat{X_j}$ .

$$\alpha_{1}(u,v) \equiv \operatorname{arc}(u,v), \qquad (3)$$

$$\alpha_{j+1}(u,v,\widehat{s_{j}},\widehat{t_{j}},\widehat{X_{j}}) \equiv \alpha_{j}(u,v,\widehat{s_{j-1}},\widehat{t_{j-1}},\widehat{X_{j-1}}) \wedge \neg \mu_{j}(s_{j},t_{j},X_{j},u,v,\widehat{s_{j-1}},\widehat{t_{j-1}},\widehat{X_{j-1}})$$

where  $\mu_j \equiv \varrho_j(s_j, u, X_j, v, \widehat{s_{j-1}}, \widehat{t_{j-1}}, \widehat{X_{j-1}}) \wedge \varrho_j(v, t_j, X_j, u, \widehat{s_{j-1}}, \widehat{t_{j-1}}, \widehat{X_{j-1}})$  analogically to (2), and  $\varrho_j$  is replacing the arc predicate in  $\varrho$  (1) simply as follows

$$\varrho_{j}(x, y, Z, r, \widehat{s_{j-1}}, \widehat{t_{j-1}}, \widehat{X_{j-1}}) \equiv \forall Y \left[ (x \in Y \land y \notin Y) \rightarrow \right.$$

$$\exists z, z' \in Z \left( z \in Y \land z' \notin Y \land z \neq r \neq z' \land \alpha_{j}(z, z', \widehat{s_{j-1}}, \widehat{t_{j-1}}, \widehat{X_{j-1}}) \right) \right].$$

$$(4)$$

Writing just  $\varrho'_{i}$  in place of previous  $\varrho_{j}$  "without r" (4), we obtain the solution

$$\pi_{k}(\widehat{s_{k}}, \widehat{t_{k}}) \equiv \exists \widehat{X_{k}} \ \varrho'_{1}(s_{1}, t_{1}, X_{1}) \wedge \varrho'_{2}(s_{2}, t_{2}, X_{2}, \widehat{s_{1}}, \widehat{t_{1}}, \widehat{X_{1}}) \wedge \cdots \wedge \varrho'_{k}(s_{k}, t_{k}, X_{k}, \widehat{s_{k-1}}, \widehat{t_{k-1}}, \widehat{X_{k-1}}).$$

It remains to prove that  $G \models \pi_k(\widehat{s_k}, \widehat{t_k})$  if, and only if, there exist k edge-disjoint  $s_i$ — $t_i$  paths in G where  $i=1,\ldots,k$ . In one direction, suppose a particular choice of the vertex sets  $\widehat{X_k}$  satisfying  $\pi_k$  on G. According to (3) and (4) this assumption means that, for each  $i=1,\ldots,k$  by induction, there exists a directed  $s_i$ — $t_i$  path  $P_i$  on the vertices  $X_i$  such that  $P_i$  completely avoids (ii) edges potentially used by the paths  $P_1,\ldots,P_{i-1}$ . Hence such  $P_1,\ldots,P_k$  are pairwise edge-disjoint in G.

Conversely, among all collections of k pairwise edge-disjoint  $s_i-t_i$  paths  $P_i$  in G, we select one lexicographically minimizing the vector  $(len(P_1),\ldots,len(P_k))$ . Then, clearly, each  $X_i=V(P_i)$  for  $i=1,\ldots,k$  is inclusion-minimal inducing an  $s_i-t_i$  path in  $G-E(P_1\cup\cdots\cup P_{i-1})$ , and so the claim (iii) applies here. Hence, by induction on i, we conclude from (3) that  $G\models\alpha_{i+1}(u,v,\widehat{s_i},\widehat{t_i},\widehat{X_i})$  iff  $(u,v)\in E(G)\setminus E(P_1\cup\cdots\cup P_i)$ . And since  $P_{i+1}\subseteq G-E(P_1\cup\cdots\cup P_i)$ , it follows from (4) that our selected sets  $X_1,\ldots,X_k$  satisfy  $\pi_k(\widehat{s_k},\widehat{t_k})$  on G.

In connection with  $[3]^1$  we finally obtain:

- ▶ Corollary 18. Both the undirected and directed edge-disjoint paths problems with fixed k have a linear FPT algorithm on simple (di)graphs of bounded clique-width.
- ▶ Question 19. Notice that the  $MSO_1$  formula  $\pi_k$  constructed in the proof of Theorem 17 has quantifier alternation depth growing with k. Therefore the worst-case runtime estimate of Corollary 18 coming from [3] has a tower-exponential dependency on the parameter k. The question thus is whether an  $MSO_1$  description of the k edge-disjoint paths problem is possible with fixed quantifier alternation depth. (An ad-hoc estimate of the Myhill–Nerode congruence classes of the problem suggests this might be true.)

<sup>&</sup>lt;sup>1</sup> Note that [3] considered only undirected graphs, but the same results also hold for digraphs, cf. [14, 8].

#### References

- J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer Monographs in Mathematics. Springer, second edition, 2009.
- 2 D. Corneil and U. Rotics. On the relationship between cliquewidth and treewidth. *SIAM J. Comput.*, 34(4):825–847, 2005.
- 3 B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. *Theory Comput. Syst.*, 33(2):125–150, 2000.
- 4 B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. *Discrete Appl. Math.*, 101(1-3):77–114, 2000.
- 5 P. Dankelmann, G. Gutin, and E. Kim. On complexity of minimum leaf out-branching problem. *Discrete Appl. Math.*, 157(13):3000–3004, 2009.
- **6** W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In WG'01, volume 2204 of LNCS, pages 117–128. Springer, 2001.
- 7 F. Fomin, P. Golovach, D. Lokshtanov, and S. Saurab. Clique-width: On the price of generality. In *SODA'09*, pages 825–834. SIAM, 2009.
- 8 R. Ganian and P. Hliněný. On parse trees and Myhill–Nerode–type tools for handling graphs of bounded rank-width. *Discrete Appl. Math.*, 158:851–867, 2010.
- **9** R. Ganian, P. Hliněný, J. Kneis, A. Langer, J. Obdržálek, and P. Rossmanith. On digraph width measures in parametrized algorithmics. In *IWPEC'09*, volume 5917 of *LNCS*, pages 161–172. Springer, 2009.
- 10 R. Ganian, P. Hliněný, J. Kneis, A. Langer, J. Obdržálek, and P. Rossmanith. Digraph width measures in parametrized algorithmics. Submitted. Available from: http://www.fi.muni.cz/~hlineny/Research/papers/kenny-full.pdf, 2010.
- 11 R. Ganian, P. Hliněný, and J. Obdržálek. Unified approach to polynomial algorithms on graphs of bounded (bi-)rank-width. Submitted, 2010. 29 p.
- 12 F. Gurski and E. Wanke. Vertex disjoint paths on clique-width bounded graphs. *Theoret. Comput. Sci.*, 359(1-3):188–199, 2006.
- P. Hliněný and S. Oum. Finding branch-decomposition and rank-decomposition. SIAM J. Comput., 38:1012–1032, 2008.
- 14 M. Kanté. The rank-width of directed graphs. arXiv:0709.1433v3, March 2008.
- 15 T. Nishizeki, J. Vygen, and X. Zhou. The edge-disjoint path problem is NP-complete for series-parallel graphs. *Discrete Appl. Math.*, 115(1-3):177–186, 2001.
- 16 S. Oum and P. D. Seymour. Approximating clique-width and branch-width. *J. Combin. Theory Ser. B*, 96(4):514–528, 2006.
- 17 N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. *J. Algorithms*, 7(3):309–322, 1986.
- 18 N. Robertson and P. D. Seymour. Graph minors. XIII: The disjoint paths problem. *J. Comb. Theory Ser. B*, 63(1):65–110, 1995.
- 19 G. Salamon and G. Wiener. On finding spanning trees with few leaves. *Inform. Process. Lett.*, 105(5):164-169, 2008.