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Abstract. We study the parameterized complexity of a directed analog of the Full Degree
Spanning Tree problem where, given a digraph D and a nonnegative integer k, the goal is to
construct a spanning out-tree T of D such that at least k vertices in T have the same out-degree
as in D. We show that this problem is W[1]-hard even on the class of directed acyclic graphs.
In the dual version, called Reduced Degree Spanning Tree, one is required to construct
a spanning out-tree T such that at most k vertices in T have out-degrees that are different
from that in D. We show that this problem is fixed-parameter tractable and that it admits a
problem kernel with at most 8k vertices on strongly connected digraphs and O(k2) vertices on
general digraphs. We also give an algorithm for this problem on general digraphs with running
time O(5.942k · nO(1)), where n is the number of vertices in the input digraph.

1 Introduction

The Full Degree Spanning Tree problem asks, given a connected undirected graph G
and a nonnegative integer k as inputs, whether G has a spanning tree T in which at least k
vertices have the same degree in T as in G. This problem was first studied by Pothof and
Schut [22] in the context of water distribution networks where the goal is to determine the
flow in a network by installing a small number of flow-meters. It so happens that to measure
the flow in each pipe of the network, it is sufficient to find a spanning tree of the network and
install flow-meters at those vertices whose degree in the spanning tree is smaller than that in
the network. To find the optimal number of flow-meters (an expensive equipment), one needs
to find a spanning tree with the largest number of vertices of full degree.

This problem has attracted a lot of attention [4, 6, 19, 17, 16]. Bhatia et al. [4] studied
this problem from the point-of-view of approximation algorithms and gave a factor-Θ(

√
n)

algorithm for it, where n is the number of vertices in the input graph. They also showed that
this problem admits no factor O(n1/2−ǫ) approximation algorithm unless NP = co-R. For pla-
nar graphs, a polynomial-time approximation scheme (PTAS) was presented. Independently,
Broersma et al. [6] developed a PTAS for planar graphs and showed that this problem can be
solved in polynomial time in special classes of graphs such as bounded treewidth graphs and
co-comparability graphs. Guo et al. [17] studied the parameterized complexity of this problem
and showed it to be W [1]-hard. Gaspers et al. [16] give an O(1.9465n · nO(1)) algorithm for
the optimization version of this problem.

One can parameterize the d-FDST problem from the “other end” and ask whether a
graph G has spanning tree T in which at most k vertices have degrees different from that
in G. This problem has been studied under the name Vertex Feedback Edge Set and
is defined as follows. Given a connected undirected graph G = (V,E) and a nonnegative
integer k, find an edge subset E′ incident on at most k vertices such that G[E \E′] is acyclic.
Note that if there exists such an edge set E′, then there exists E′′ ⊆ E′ such that G[E \ E′′]
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is a spanning tree in which at most k vertices have degrees different from that in G. Khuller
et al. [19] show that this problem is MAX SNP-hard and describe a (2 + ǫ)-approximation
algorithm for it for any fixed ǫ > 0. Guo et al. [17] show that this problem is fixed-parameter
tractable by demonstrating a problem kernel with at most 4k vertices.

In this paper, we consider a natural generalization of these problems to directed graphs.
An oriented tree is a tree in the undirected sense each of whose edges has been assigned a
direction. We say that a subdigraph T of a directed graph D = (V,A) is an out-tree if it
is an oriented tree with exactly one vertex s of in-degree zero (called the root). An out-tree
that contains all vertices of D is an out-branching of D. Given a digraph D = (V,A) and
an out-tree T of D, we say that a vertex v ∈ V is of full degree if its out-degree in T is the
same as that in D; otherwise, v is said to be of reduced degree. We define the Directed Full
Degree Spanning Tree (d-FDST) problem as follows.

Input: Given a directed graph D = (V,A) and a nonnegative integer k.
Parameter: The integer k.
Question: Does there exist an out-branching of D in which at least k vertices are

of full degree?

We call the dual of this problem the Directed Reduced Degree Spanning Tree (d-
RDST) problem.

Input: Given a directed graph D = (V,A) and a nonnegative integer k.
Parameter: The integer k.
Question: Does there exist an out-branching of D in which at most k vertices are

of reduced degree?

Our Contribution. We study the parameterized complexity of the problems d-FDST and d-
RDST. We show that d-FDST is W [1]-hard even in the class of directed acyclic graphs (DAGs)
by a reduction from Independent Set. We show that d-RDST is fixed-parameter tractable
by exhibiting a problem kernel with at most O(k2) vertices. For strongly connected digraphs,
d-RDST admits a kernel with at most 8k vertices. We also design a branching algorithm for
the d-RDST problem with running time O(5.942k · nO(1)), where n is the number of vertices
in the input digraph.

Related Results. The Full Degree Spanning Tree problem is one of the many variants of
the generic Constrained Spanning Tree problem, where one is required to find a spanning
tree of a given (di)graph subject to certain constraints. This class of problems has been studied
intensely [1, 8, 10, 12, 15, 13, 18, 23].

In [12], the authors consider the problem Max Leaf Spanning Tree where one is re-
quired to find a spanning tree of an undirected graph with the maximum number of leaves.
When parameterized by the solution size, this problem admits a kernel with 3.75k vertices.
In the directed variant of this problem, one has to decide whether an input digraph D has
an out-branching with at least k leaves. This problem admits a kernel with O(k3) vertices,
provided the root of the out-branching is given as part of the input [13], and has an algorithm
with run-time O(3.72k ·nO(1)) [10]. Another such problem is Max Internal Spanning Tree,
where the objective is to find a spanning tree (or an out-branching, in case of digraphs) with



at least k internal vertices. For undirected graphs, a 3k-vertex kernel and an algorithm with
running time O(8k ·nO(1)) is known for this problem [15]. For directed graphs, an O(k2)-vertex
kernel due to [18] and an algorithm with running time O(40k · nO(1)) due to [8] is known.

Organization of the Paper. In Section 2 we define the relevant notions related to digraphs
and parameterized complexity. In Section 3 we show that d-FDST is W[1]-hard even when
the input digraph is restricted to be a DAG. In Section 4 we show that the d-RDST problem
is fixed-parameter tractable by demonstrating a kernel with at most O(k2) vertices. We first
demonstrate a kernel with 8k vertices for strongly connected digraphs and use the ideas therein
to develop the O(k2) kernel for general digraphs. In Section 5 we develop an algorithm for
the d-RDST problem with running time O(5.942k · nO(1)). Finally in Section 6, we end with
some concluding remarks and open questions.

2 Preliminaries

In this section we fix our notation and terminology. We first discuss terminology related to
digraphs and then provide the basic definitions from parameterized complexity needed in this
paper.

2.1 Digraphs: Basic Terminology

The notation and terminology that we follow are from [3]. Given a digraph D we let V (D)
and A(D) denote the vertex set and arc set, respectively, of D. If u, v ∈ V (D), we say that u
is an in-neighbour (out-neighbour) of v if (u, v) ∈ A(D) ((v, u) ∈ A(D)). The in-degree d−(u)
(out-degree d+(u)) of u is the number of in-neighbours (out-neighbours) of u. Given a sub-
set V ′ ⊆ V (D), we let D[V ′] denote the digraph induced on V ′. The underlying undirected
graph U(D) is the undirected graph obtained from D by disregarding the orientation of arcs
and deleting an edge for each pair of parallel edges in the resulting graph. The connectivity
components of D are the subdigraphs induced by the vertices of components of U(D).

A digraph is oriented if every pair of vertices has at most one arc between them. A
(v1, vs)-walk in D = (V,A) is a sequence v1, . . . , vs of vertices such that (vi, vi+1) ∈ A for
all 1 ≤ i ≤ s − 1. A dicycle is a walk v1, v2, . . . , vs such that s ≥ 3, the vertices v1, . . . , vs−1

are distinct and v1 = vs. A digraph with no dicycles is called a directed acyclic graph (DAG).
A digraph D is strongly connected if for every pair of distinct vertices u, v ∈ V (D), there
exists a (u, v)-walk and a (v, u)-walk. A strong component of a digraph is a maximal induced
subdigraph that is strongly connected. The strong component digraph SC(D) is the directed
acyclic graph obtained by contracting each strong component to a single vertex and deleting
any parallel arcs obtained in this process. A strong component S of a digraph D is a source
strong component if no vertex in S has an in-neighbour in V (D) \ V (S). The following is a
necessary and sufficient condition for a digraph to have an out-branching.

Proposition 1 ([3]) A digraph D has an out-branching if and only if D has a unique source
strong component.

One can obtain the strongly connected components of a digraph D in time O(n + m) [7],
where n = |V (D)| and m = |A(D)|. Each strong component can be stored as an n-bit vector
where the ith bit is a one if and only if vertex i is in the strong component. It is now easy to
see that one can verify in (n+m) time whether there exists a unique source strong component.



2.2 Parameterized Complexity

A parameterized problem is a subset of Σ∗×Z
≥0, where Σ is a finite alphabet and Z

≥0 is the
set of nonnegative numbers. An instance of a parameterized problem is therefore a pair (I, k),
where k is the parameter. In the framework of parameterized complexity, the running time of
an algorithm is viewed as a function of two quantities: the size of the problem instance and
the parameter. A parameterized problem is said to be fixed-parameter tractable (fpt) if there
exists an algorithm that takes as input (I, k) and decides whether it is a yes or no-instance
in time O(f(k) · |I|O(1)), where f is a function depending only on k. The class FPT consists
of all fixed parameter tractable problems.

Closely related to the notion of an FPT-algorithm is the concept of a kernel. A kernelization
of a parameterized problem Q is a polynomial-time many-one reduction from Q to Q that maps
a given instance (I, k) to an equivalent instance (I ′, k′) such that |I ′| ≤ g(k) and k′ ≤ h(k),
where g and h are two computable functions. The two instances are equivalent in the sense
that (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance. The function g is called the
size of the kernel. It is well-known that a parameterized problem has a kernelization if and only
if it is in FPT [11]. However even if an FPT-algorithm is known for an NP-complete problem,
it is the case that the size of the kernel obtained from it is exponential in the parameter.
Moreover an FPT-algorithm gives no clue as to the best possible kernel that can be obtained
for the problem. It is therefore of independent interest to consider kernelization algorithms
for parameterized problems.

A parameterized problem π1 is fixed-parameter reducible to a parameterized problem π2 if
there exist functions f, g : Z

≥0 → Z
≥0, Φ : Σ∗×Z

≥0 → Σ∗ and a polynomial p(·) such that for
any instance (I, k) of π1, (Φ(I, k), g(k)) is an instance of π2 computable in time f(k)·p(|I|) and
(I, k) ∈ π1 if and only if (Φ(I, k), g(k)) ∈ π2. Two parameterized problems are fixed-parameter
equivalent if they are fixed-parameter reducible to each other. The basic complexity class for
fixed-parameter intractability is W[1] as there is strong evidence that W-hard problems are
not fixed-parameter tractable. To show that a problem is W-hard, one needs to exhibit a
fixed-parameter reduction from a known W-hard problem to the problem at hand. For more
on parameterized complexity see [11, 14, 21].

3 The d-FDST Problem

We now show that d-FDST is W[1]-hard two important digraph classes: DAGs and strongly
connected digraphs. This is a modification of the reduction presented in [4] (Lemma 3.2).

Theorem 1. The d-FDST problem is W[1]-hard on directed acyclic graphs (DAGs) and
strongly connected digraphs. Also the d-RDST problem is NP-hard on strongly connected di-
graphs.

Proof. We show that k-Independent Set, which is known to be W[1]-complete [11], fixed-
parameter reduces to the d-FDST problem. Let (G, k) be an instance of the k-Independent
Set problem where we assume G to be a connected undirected graph on n vertices and m
edges. Construct a directed graph D as follows. The vertex set V (D) consists of n + m + 2
vertices: v1, . . . , vn, e1, . . . , em, a, x, where the vertices vi, for 1 ≤ i ≤ n, and ej , for 1 ≤ j ≤ m,
“correspond”, respectively, to the vertices and edges of G and a, x are two special vertices.
The digraph D can be viewed as a three-layer graph. Layer one consists of vertex a. Layer



two consists of the vertices x, v1, . . . , vn and vertex a has an out-arc to each vertex in layer
two. Layer three consists of the vertices e1, . . . , em and each ej , for 1 ≤ j ≤ m, has an out-arc
to vertex x. If e = {u, v} ∈ E(G) then the vertices u and v in layer two have an out-arc each
to vertex e in layer three. This completes the description of D. It is easy to verify that D is
a DAG.

a

x v1 u v vn

e1 e em

Fig. 1. The digraph D.

Observe that in any out-branching T of D every vertex (except the root) has exactly one
in-neighbor and that:

1. Vertices a, e1, . . . , em are the only vertices of D of in-degree zero and therefore the root of T
must be one of these. Moreover, if a preserves its out-degree in T then vertices e1, . . . , em

must be of reduced degree.
2. At most one vertex from among e1, . . . , em can preserve its out-degree in T because each

of them has an out-arc to x.
3. Vertex x preserves its out-degree in T because x is of out-degree zero.

We claim that G has an independent set of size k if and only if the digraph D has an
out-branching with k + 2 vertices of full degree. Suppose that G has a k-independent set on
the vertices vi1 , . . . , vik . Consider the subdigraph T ′ induced by the vertices a, vi1 , . . . , vik and
their out-neighbors. It is easy to verify that T ′ is actually an out-tree rooted at a in which
vertices a, x, vi1 , . . . , vik have full degree. For each edge e ∈ E(G) that is not incident to any
vertex in the k-independent set, arbitrarily choose one of its endpoints, say v, and add the
arc (v, e) to the out-tree T ′. This converts the out-tree T ′ into an out-branching T with at
least k + 2 vertices of full degree. Conversely suppose that D admits an out-branching T in
which at least k + 2 vertices preserve their out-degree. We consider two cases.

Case 1. Vertex a preserves its out-degree. Then no vertex from layer three preserves its out-
degree, as each of these vertices has an out-arc to x. Since x is the other vertex of full degree,
it must be that k vertices from among v1, . . . , vn preserve their out-degree. No pair from
among these k vertices form an edge in G, for otherwise, they would have an out-arc to the
same vertex e in layer three in T and this would contradict the assumption that T is an
out-branching. Hence these k vertices must be independent in G.



Case 2. Vertex a does not preserve its out-degree. By Observation 2, at most one vertex from
layer three can preserve its out-degree and, by Observation 3, x preserves its out-degree in
every out-branching. Hence at least k vertices from among the v1, . . . , vn preserve their out-
degree. These vertices from a k-independent set in G. This shows that d-FDST is W[1]-hard
on DAGs.

By modifying the above reduction from k-Independent Set, we show that d-FDST is
W[1]-hard on the class of strongly connected digraphs (and hence that the d-RDST problem
is NP-hard on this class of digraphs). Given an instance (G, k) of k-Independent Set, it
is no loss of generality to assume that G is a connected non-bipartite graph. Construct the
digraph D as above with just one modification: add the arc (x, a). It is easy to verify that the
resulting digraph is strongly connected. Then G has an independent set of size k if and only
if D admits an out-branching with k+2 vertices of full degree. Suppose G has a k-independent
set on the vertex set {vi1 , . . . , vik}. Since G is non-bipartite, there exists an edge ej both of
whose endpoints are in V (G) \ {vi1 , . . . , vik}. It is easy to see that there is an out-branching
with ej as root in which the vertices ej , x, vi1 , . . . , vik are of full degree. Conversely suppose
that D has an out-branching with k + 2 vertices of full degree. Between a and x, at most one
can preserve its out-degree and among a, e1, . . . , em at most one can preserve its out-degree.
Therefore at least k vertices from among v1, . . . , vn preserve their out-degree. These vertices
form an independent set in G. This shows that d-RDST is NP-hard on strongly connected
digraphs.

This completes the proof of the theorem. ⊓⊔

4 d-RDST: A Problem Kernel

In this section we show that d-RDST admits a problem-kernel with O(k2) vertices and is
therefore fixed-parameter tractable. We first consider the special case when the input digraph
is strongly connected and establish a kernel with 8k vertices for this case. This will give some
insight as to how to tackle the general case.

Observe that if (D, k) is a yes-instance of the d-RDST problem and T is a solution out-
branching (one in which at most k vertices are of reduced out-degree), then the subdigraph
of D induced by the vertices of full degree is a forest in the undirected sense and hence
has treewidth one (for more on treewidth, see [5, 20]). Therefore the underlying undirected
graph U(D) has treewidth at most k + 1. Moreover one can show that the property of having
an out-branching with at most k vertices of reduced out-degree is expressible in monadic
second-order logic [9]. One can now use the results of Arnborg et al. [2] to conclude that for
every fixed k the d-RDST problem can be decided in linear time. This shows that the d-RDST
problem is fixed-parameter tractable. However the running time dependence of this algorithm
on k is huge making it impractical. In what follows, we give an alternative algorithm with a
more well-behaved dependence on the parameter k.

4.1 A Linear Kernel for Strongly Connected Digraphs

We actually establish the 8k-vertex kernel for a more general class of digraphs, those in which
every vertex has out-degree at least one. Call this class of digraphs out-degree at least one
digraphs and denote it by D

+
1 . It is easy to see that strongly connected digraphs (SCDs) is



a subclass of D
+
1 . Since a digraph in D

+
1 can have vertices of in-degree zero, it follows that

SCDs form a proper subclass of D
+
1 .

A common technique to establish a kernel is to devise a set of reduction rules which when
applied to the input instance (in some specified sequence) produces the kernel. Recall that a
reduction rule for a parameterized problem Q is a polynomial-time algorithm that takes an
input (I, k) of Q and

1. either correctly decides the instance, or
2. outputs an “equivalent” instance (I ′, k′) of Q such that k′ ≤ k.

Two instances are equivalent if they are both yes-instances or both no-instances. An in-
stance (I, k) of a parameterized problem Q is reduced with respect to a set R of reduction
rules if the instance (D′, k′) output by any reduction rule in R is the original instance (D, k)
itself.

There are three simple reduction rules for the case where the input is an D
+
1 -digraph. We

assume that the input is (D, k).

Rule 1. If there exists u ∈ V (D) such that d−(u) ≥ k + 2 then return no; else return (D, k).
Rule 2. If there are k+1 vertices of out-degree at least k+1 then return no; else return (D, k).
Rule 3 (The Path Rule). Let x0, x1 . . . , xp−1, xp be a sequence of vertices in D such that

p ≥ 4 and for 0 ≤ i ≤ p − 1 we have d+(xi) = 1 and (xi, xi+1) ∈ A(D). Let Y0 be
the set of in-neighbours of x1, . . . , xp−1 and let Y := Y0 \ {x0, x1, . . . , xp−2}. Delete the
vertices x1, . . . , xp−1 and add two new vertices z1, z2 and the arcs (x0, z1), (z1, z2), (z2, xp).
If y ∈ Y has at least two out-neighbors in {x1, . . . , xp−1} then add arcs (y, z1), (y, z2). If y ∈
Y has exactly one out-neighbor in {x1, . . . , xp−1} then add the arc (y, z1). Return (D, k).
See Figure 2.

x0

x1

x2

xp−1

xp

y1

y2

x0

z1

z2

xp

y1

y2

Fig. 2. Illustrating the Path Rule: the left and right-hand sides show, respectively, the situation before and
after the transformation. Vertex y1 has two neighbors and vertex y2 just one neighbor in the set {x1, . . . , xp−1}.

It is easy to see that Rules 1 and 2 are indeed reduction rules for the d-RDST problem on
out-degree at least one digraphs. If a vertex v has in-degree at least k + 2 then at least k + 1



in-neighbors of u must be of reduced degree in any out-branching. This shows that Rule 1
is a reduction rule. If a vertex u has out-degree k + 1 and is of full degree in some out-
branching T then T has at least k+1 leaves. Since the input digraph is such that every vertex
has out-degree at least one, this means that in T there are at least k + 1 vertices of reduced
degree. This shows that any vertex of out-degree k + 1 must necessarily be of reduced degree
in any solution out-branching. Therefore if there are k + 1 such vertices the given instance is
a no-instance. This proves that Rule 2 is a reduction rule.

Lemma 1. Rule 3 is a reduction rule for the d-RDST problem.

Proof. It is sufficient to show that if (D′, k) is the instance obtained by one application of
Rule 3 to an instance (D, k), then D has an out-branching with at most k vertices of reduced
out-degree if and only if D′ has an out-branching with at most k vertices of reduced degree.

Suppose D′ has an out-branching T ′ with at most k vertices of reduced degree. There
are two cases to consider. In the first case, there are no arcs from Y to z1 or z2 in T ′. In
this case we may assume without loss of generality that the path x0 → z1 → z2 occurs as a
sub-path of T ′. For if x0 → z1 → z2 is not a subpath of T ′, then one of z1 or z2 has in-degree
zero in T ′. Hence it must be that either z1 or z2 is the root of T ′. If z1 is the root of T ′

then x0 is a leaf in T ′; if z2 is the root then z1 is a leaf. In either case, we can make x0

the root and maintain the path x0 → z1 → z2 without increasing the number of vertices of
reduced degree. In order to construct an out-branching T for D, replace x0 → z1 → z2 by the
path x0 → x1 → · · · → xp−1. Moreover if T ′ contains the arc (z2, xp) then, in constructing T ,
add the arc (xp−1, xp). Note that T has at most k vertices of reduced degree.

In the second case, there exists at least one vertex y ∈ Y with arcs to {z1, z2}. Suppose
that T ′ contains the arcs (y1, z1), (y2, z2), where y1 and y2 are (not necessarily distinct) vertices
in Y . Note that both x0 and z1 are of out-degree zero in T ′ and hence of reduced degree.
Observe that T ′ \{z1} is an out-branching for D′ \{z1} as z1 is a leaf in T ′. We transform T ′

into another out-branching for D′ by deleting the arc (y1, z1) and adding the arc (x0, z1). In
this new out-branching, x0 is of full degree and y1 is of reduced degree but the number of
vertices of reduced degree does not increase.

We can therefore assume without loss of generality that in T ′ there is exactly one vertex y ∈
Y with an out-arc to {z1, z2}. Suppose (y, z2) ∈ A(T ′). Then y must be of reduced degree as
whenever we have an arc (y, z2), we also have an arc (y, z1). In this case we transform T ′ by
deleting the arcs (y, z2), (x0, z1) and introducing the arcs (y, z1), (z1, z2). The resulting digraph
is an out-branching with at most k vertices of reduced degree as x0 now is of reduced degree
but z1 is of full degree. Therefore we are left to consider the case when y has an arc to z1

only. Let xs be the first out-neighbor of y in {x1, . . . , xp−1}. Delete z1, z2 and connect x0 to
the dipath x1 → · · · → xs−1 and y to the dipath xs → · · · → xp−1. Add the arc (xp−1, xp)
if (z2, xp) ∈ A(T ′). The resulting digraph is an out-branching for D with at most k vertices
of reduced degree.

To prove the converse, suppose that D has an out-branching T with at most k vertices of
reduced degree. Again there are two cases to consider.

Case 1. There are no arcs from Y to any xi, for 1 ≤ i ≤ p− 1, in T . There are two sub-cases
here. Either T contains the dipath x0 → x1 → · · · xp−1 → xp, in which case we can compress
it to the path (x0, z1, z2, xp) to obtain an out-branching T ′ for D′ with at most k vertices
of reduced degree. Otherwise one of the vertices x1, . . . , xp must be the root of T . If xp is



the root, then T contains the dipath x0 → x1 → · · · xp−1 and we replace it by (x0, z1, z2) to
obtain an out-branching T ′ of D′. If one of x1, . . . , xp−1 is the root, then delete x1, . . . , xp−1,
make z1 the root and add the arcs (z1, z2), (z2, xp). This transforms T into an out-branching
of D′ with at most k vertices of reduced degree.

Case 2. Now suppose that in T the vertices yi1, . . . , yis ∈ Y have out-neighbors in x1, . . . , xp−1.
Since T is an out-branching, the set of out-neighbors of yij and yil are disjoint for all j 6= l.
In T , the out-neighbors of yij in {x1, . . . , xp−1} can be ordered in the natural way accord-
ing to their position in the path x1 → · · · → xp−1. Let xqj

be the first out-neighbor of yij

among {x1, . . . , xp−1} in T . Transform T into a digraph T1 by deleting out-arcs such that
for 1 ≤ j ≤ s, the only out-neighbor of yij among {x1, . . . , xp−1} is xqj

. Sort the ver-
tices yi1, . . . , yis in increasing order based on the order of the vertices xqj

in the path x1 →
· · · → xp−1. Without loss of generality we assume that the sorted order is also yi1, . . . , yis .

Transform T1 yet again by connecting the vertices xi so that the resulting digraph (which
we continue to call T1) contains the paths:

– x0 → x1 → · · · → xq1−1;

– yij → xqj
→ · · · → xqj+1−1, for 1 ≤ j ≤ s− 1;

– yis → xqs → · · · → xp−1 · · ·.

Note that in T , the vertices xqj−1, for 1 ≤ j ≤ s, are of out-degree zero. Moreover the
last path yis → xqs → · · · in the sequence contains all vertices xqs , . . . , xp−1 but may or
may not contain the vertex xp. Observe that T1 is an out-tree and that the only vertices
y ∈ {yi1 , . . . , yis} whose out-degree is reduced in this transformation had at least two out-
neighbors among the vertices {x1, . . . , xp−1} in T . Hence for every yij whose out-degree is
reduced in transforming T to T1, there exists a distinct vertex in x1, . . . , xp−1 of out-degree
zero in T which is of full degree in T1. Thus the number of vertices of reduced degree does
not change in this transformation.

Now delete the arcs (yi1 , xq1), . . . , (yis−1 , xqs−1), and add (xq1−1, xq1), . . . , (xqs−1−1, xqs−1)
so that the resulting digraph T2 contains the path x0 → · · · → xqs−1. In this transformation,
the vertices which possibly have their out-degree reduced are yij , for 1 ≤ j ≤ s − 1, but an
equal number of vertices xqj−1, for 1 ≤ j ≤ s− 1, attain full degree. Therefore the number of
vertices of reduced out-degree in T2 is at most that in T1. To obtain an out-branching of D′

from T2, delete x1, . . . , xqs−1 , add the arcs (yis , z1), (z1, z2) and connect z2 to the out-neighbor
of xp−1, if any. Note that this transforms T2 into an out-branching of D′ with at most k
vertices of reduced degree.

This completes the proof of the lemma. ⊓⊔

It is easy to see that Rules 1 and 2 can be applied in O(n) time and that Rule 3 can be
applied in O(n + m) time. Note that Rule 3 is parameter independent, that is, an application
of the rule does not affect the parameter. Consequently, it makes sense to talk about a digraph
being reduced with respect to Rule 3 as distinct from an instance of d-RDST being reduced
with respect to Rule 3. Our kernelization algorithm consists in applying Rules 1 to 3 repeatedly
until the given instance is reduced.

We next describe a lemma that we repeatedly make use of in the sequel. Given a directed
graph D, we let Vi(D) ⊆ V (D) denote the set of vertices of out-degree i; V≥i(D) ⊆ V (D)
denotes the set of vertices of out-degree at least i.



Lemma 2. Let D be a directed graph reduced with respect to the Path Rule (Rule 3) and let T
be an out-branching of D with root r such that X is the set of vertices of reduced out-degree.
Then

|V (T )| ≤ 4|V0(T ) ∪ V≥2(T ) ∪X| ≤ 4(|V0(T )|+ |X ∪ V0(T )|).

Proof. If we view the out-branching T as an undirected graph, V0(T ) is the set of leaves
and V≥2(T ) is the set of vertices of degree at least three along with the root r, if d+

T (r) ≥ 2.
Thus V≥2(T ) has at most one vertex of total degree two and all other vertices are of total
degree at least three. It is a well-known fact that a tree with l leaves has at most l−1 internal
vertices of degree at least three. Since V≥2(T ) has at most one vertex of total degree two, we
have |V≥2(T )| ≤ |V0(T )|.

Now consider the vertices of the out-branching T which have out-degree exactly one.
Define W := X ∪ V0(T ) ∪ V≥2(T ) and let P be the set of maximal dipaths in T such that for
any dipath P = x0 → x1 → · · · → xp in P we have that (1) d+

D(xi) = 1 for 0 ≤ i ≤ p − 1,
and (2) xp ∈ W . Observe that every vertex with out-degree exactly one in T is contained in
exactly one path in P. Also observe that the set of vertices of out-degree exactly one in T
not contained in W is precisely the set V1(T ) \X. Therefore |V1(T ) \X| ≤ ∑

P∈P(|P | − 1),
where |P | denotes the number of vertices in the path P . By Rule 3, any dipath P ∈ P has at
most four vertices and since the number of dipaths in P is at most |W |, we have

|V1(T ) \X| ≤ 3 · |P| ≤ 3 · |W | ≤ 3|X ∪ V0(T ) ∪ V≥2(T )|.

Since |V (T )| ≤ |V1(T ) \X|+ |X ∪ V0(T ) ∪ V≥2(T )|, we have

|V (T )| ≤ 4|V0(T ) ∪ V≥2(T ) ∪X| ≤ 4(|V0(T )|+ |V0(T ) ∪X|).

This completes the proof of the lemma. ⊓⊔

We can now bound the size of a yes-instance of the d-RDST problem on D
+
1 -digraphs

that have been reduced with respect to Rules 1 to 3.

Theorem 2. Let (D, k) be a yes-instance of the d-RDST problem on out-degree at least one
digraphs reduced with respect to Rules 1 to 3. Then |V (D)| ≤ 8k.

Proof. Since (D, k) is a yes-instance of the problem, let T be an out-branching of D and let X
be the set of vertices of reduced degree in T , where |X| ≤ k. Every vertex of D is of out-degree
at least one and hence V0 ⊆ X, where V0 is the set of leaves in T . Consequently |X ∪ V0| ≤ k
and |V0| ≤ k and by Lemma 2, we have |V (T )| ≤ 8k, as claimed. ⊓⊔

Observe that the crucial step in the proof above was to bound the number of leaves in the
solution out-branching. For D

+
1 -digraphs this is easy since every leaf is a vertex of reduced

degree. This is not the case with general digraphs which may have an arbitrary number of
vertices of out-degree zero, all of which are of full degree in any out-branching. In the next
subsection we present a set of reduction rules for the d-RDST problem in general digraphs
which help us bound the number of vertices of out-degree zero in terms of the parameter k.



4.2 An O(k2)-Vertex Kernel in General Digraphs

For general digraphs, we first consider an annotated version of the problem as this seems
to help in developing reduction rules. Eventually we will revert to the original unannotated
version. An instance of the annotated version consists of a triplet (D,X, k) where D and k
are, respectively, the input digraph and the parameter, and X is a subset of V (D) such that in
any out-branching with at most |X|+ k vertices of reduced degree, the vertices of X must be
of reduced degree. The question in this case is to decide whether D admits an out-branching
where the set of vertices of reduced degree is X ∪ S, where S ⊆ V (D) \X and |S| ≤ k. Call
such an out-branching a solution out-branching. To obtain a kernel for d-RDST, we apply the
reduction rules to an instance (D, k) after setting X = ∅.

Given an instance (D,X, k), we define the conflict set of a vertex u ∈ V (D) \X as

C(u) := {v ∈ V (D) \X : N+(u) ∩N+(v) 6= ∅}.

Clearly vertices of out-degree zero have an empty conflict set. If a vertex v has a non-empty
conflict set then in any out-branching either v has its degree reduced or every vertex in C(v)
has its degree reduced. Moreover if u ∈ C(v) then v ∈ C(u) and in this case we say that u
and v are in conflict. The conflict number of D is defined as c(D) :=

∑

v∈V (D)\X |C(v)|.
We assume that the input instance is (D,X, k) and the kernelization algorithm consists

in applying each reduction rule repeatedly, in the order given below, until no longer possible.
Therefore when we say that Rule i is indeed a reduction rule we assume that the input instance
is reduced with respect to the rules preceding it.

Rule 0. If u ∈ X and d+(u) = 1, delete the out-arc from u and return (D,X, k).

The vertices in X are of reduced degree in any solution out-branching. Thus if a vertex
in X has out-degree exactly one, this out-arc will never be part of a solution out-branching,
and deleting it will not change the solution structure.

Rule 1. If there exists u ∈ V (D) such that the number of in-neighbors of u in V (D) \X is
at least k + 2 then return no; else return (D,X, k).

In the last subsection, we already showed that this rule is indeed a reduction rule.

Rule 2. If u ∈ V (D) \ X and |C(u)| > k, set X ← X ∪ {u} and k ← k − 1. Furthermore
if d+(u) = 1 then delete the out-arc from u and return (D,X, k).

If the conflict set C(u) of u ∈ V (D) \X is of size at least k + 1 and if u is of full degree in
some out-branching T , then every vertex in C(u) must be of reduced degree in T . Therefore
if (D,X, k) is a yes-instance then u must have its degree reduced in every solution out-
branching. In addition, if u has out-degree exactly one, then this out-arc cannot be part of
any solution out-branching and can be deleted. This shows that Rule 2 is a reduction rule.

Rule 3. If c(D) > 2k2 then return no, else return (D,X, k).

Lemma 3. Rule 3 is a reduction rule for the d-RDST problem.



Proof. To see why Rule 3 qualifies to be a reduction rule, construct the conflict graph CD,X of
the instance (D,X, k) which is defined as follows. The vertex set V (CD,X) := V (D) \X and
two vertices in V (CD,X) have an edge between them if and only if they are in conflict. Since the
size of the conflict set of any vertex is at most k (as D is reduced with respect to Rule 2), the
degree of any vertex in CD,X is at most k. The key observation is that if T is any solution out-
branching of (D,X, k) in which the set of vertices of reduced degree is X∪S with S ⊆ V (D)\X,
then S forms a vertex cover of CD,X . Since we require that |S| ≤ k, the number of edges in CD,X

is at most k2. For a vertex v ∈ V (D) \X, let d′(v) be the number of neighbors of vertex v in
the conflict graph CD,X . Observe that c(D) :=

∑

v∈V (D)\X |C(v)| = ∑

v∈V (D)\X d′(v) ≤ 2k2.
The last inequality follows from the fact that sum of degrees of vertices in a graph is equal to
twice the number of edges. ⊓⊔

Rule 4. If u ∈ V (D) such that d+(u) = 0 and d−(u) = 1 then delete u from D and re-
turn (D,X, k).

It is easy to see that Rule 4 is a reduction rule: vertex u is of full degree in any solution
and it does not determine whether its parent is of full or reduced degree in a solution out-
branching and therefore can be deleted. To obtain a solution out-branching for D from a
solution T ′ for D \ v, simply add the arc between u and its parent in T ′.

Rule 5. Let u ∈ V (D) be of out-degree zero and let v1, . . . , vr be its in-neighbors, where r > 2.
Delete u and add

(

r
2

)

new vertices uij , where 1 ≤ i < j ≤ r; for a newly added vertex uij

add the arcs (vi, uij) and (vj , uij). Return (D,X, k).

Note that vertex u forces at least r−1 vertices from {v1, . . . , vr} to be of reduced degree in
any out-branching of D. This situation is captured by deleting u and introducing

(r
2

)

vertices
as described in the rule. These

(r
2

)

vertices then force at least r− 1 vertices from {v1, . . . , vr}
to be of reduced degree in any out-branching of the transformed graph. The upshot is that
each vertex of out-degree zero has in-degree exactly two.

Lemma 4. Rule 5 is a reduction rule for the d-RDST problem.

Proof. Let (D,X, k) and (D′,X, k) be the instances of d-RDST before and after one applica-
tion of Rule 5, respectively. We claim that (D,X, k) is a yes-instance if and only if (D′,X, k)
is a yes-instance.

Let T be an out-branching of D that certifies that (D,X, k) is a yes-instance. Then
at least r − 1 vertices from {v1, . . . , vr} are of reduced degree in T . Transform T into an
out-branching T ′ for (D′,X, k) as follows. Delete u from T and introduce the vertices uij

for 1 ≤ i < j ≤ r. If vi ∈ {v1, . . . , vr} was of full degree in T then in T ′ add the arcs (vi, upq)
for all 1 ≤ p < q ≤ r; otherwise add the arcs (v1, upq) for all 1 ≤ p < q ≤ r. The out-
branching T ′ certifies that (D′,X, k) is a yes-instance.

Conversely suppose that the out-branching T ′ certifies that (D′,X, k) is a yes-instance.
Again at least r− 1 vertices from {v1, . . . , vr} are of reduced degree in T ′. Transform T ′ into
an out-branching T for (D,X, k) as follows. Delete the vertices uij for 1 ≤ i < j ≤ r and
introduce vertex u. If vi ∈ {v1, . . . , vr} was of full degree in T ′, add the arc (vi, u) in T ;
otherwise add the arc (v1, u). Clearly T certifies that (D,X, k) is a yes-instance. ⊓⊔

Rule 6. If u, v ∈ V (D) \X have p > 1 common out-neighbors of out-degree zero, delete all
but one of them. Return (D,X, k).



Rule 7. If u ∈ V (D) is of out-degree zero such that at least one in-neighbor of u is in X,
delete u. Return (D,X, k).

By Rule 5, it is clear that if u, v ∈ V (D) \ X have at least two common out-neighbors
of out-degree zero then these out-neighbors have in-degree exactly two. It is intuitively clear
that these out-neighbors are equivalent in some sense and it suffices to preserve just one of
them. It is easy to show that the original instance has a solution out-branching if and only
if the instance obtained by one application of Rule 6 has a solution out-branching. As for
Rule 7, if u has two in-neighbors v and w and if v ∈ X, we can delete the arc (v, u) without
altering the solution structure. But then v is a private neighbor of w of out-degree zero and
hence can be deleted by Rule 4.

Rule 8 (The Path Rule). Let x0, x1 . . . , xp−1, xp be a sequence of vertices in D such that
p ≥ 4 and for 0 ≤ i ≤ p − 1 we have d+(xi) = 1 and (xi, xi+1) ∈ A(D). Let Y0 be
the set of in-neighbours of x1, . . . , xp−1 and let Y := Y0 \ {x0, x1, . . . , xp−2}. Delete the
vertices x1, . . . , xp−1 and add two new vertices z1, z2 and the arcs (x0, z1), (z1, z2), (z2, xp).
If y ∈ Y has at least two out-neighbors in {x1, . . . , xp−1} then add arcs (y, z1), (y, z2). If y ∈
Y has exactly one out-neighbor in {x1, . . . , xp−1} then add the arc (y, z1). Return (D,X, k).

This is Rule 3 from the previous subsection where it was shown to be a reduction rule for
the d-RDST problem (note that the proof of Lemma 1 did not use the fact that the input
was an out-degree at least one digraph). By Rule 0, no vertex on the path x0, x1, . . . , xp−1 is
in X and therefore the proof of Lemma 1 continues to hold for the annotated case as well.

It is easy to see that a single application of Rules 5 or 6 takes time O(n2); all other rules
take time O(n + m). We are now ready to bound the number of vertices of out-degree zero in
a reduced instance of the annotated problem.

Lemma 5. Let (D,X, k) be a yes-instance of the annotated d-RDST problem that is reduced
with respect to Rules 0 through 8 mentioned above. Then the number of vertices of out-degree
zero in D is at most k2.

Proof. Let u be a vertex of out-degree zero. By Rules 4 and 5, it must have exactly two
in-neighbors, say, x and y. By Rule 7, neither x nor y is in X and are therefore still in conflict
in the reduced graph. Hence, either x or y must be of reduced degree in any solution out-
branching. Furthermore any vertex not in X can have at most k out-neighbors of out-degree
zero since, by Rule 2, any vertex not in X is in conflict with at most k other vertices and, by
Rule 6, two vertices in conflict can have at most one common out-neighbor of out-degree zero.
Since (D,X, k) is assumed to be a yes-instance, at most k vertices can lose their out-degree
in any solution out-branching. Moreover, by Rule 4, any vertex of out-degree zero is an out-
neighbor of at least one vertex of reduced degree. Therefore the total number of vertices of
out-degree zero is at most k2. ⊓⊔

Lemma 6. Let (D, k) be a yes-instance of the d-RDST problem and suppose that (D1,X, k1)
is an instance of the annotated d-RDST problem reduced with respect to Rules 0 through 8 by
repeatedly applying them on (D, k), by initially setting X = ∅. Then |V (D1)| ≤ 8(k2 + k).

Proof. Since reduction rules map yes-instances to yes-instances and does not allow the pa-
rameter to increase, it is clear that (D1,X, k1) is a yes-instance of the annotated d-RDST



problem and that k1 + |X| ≤ k. Therefore let T1 be a solution out-branching of (D1,X, k1).
A leaf of T1 is either a vertex of out-degree zero in D1 or a vertex of reduced degree. By
Lemma 5, the total number of vertices of out-degree zero in D1 is at most k2

1 ≤ k2 and
since T1 is a solution out-branching, the total number of vertices of reduced degree is at
most k1 + |X| ≤ k. Thus the number of leaves of T1 is at most k2 + k and by Lemma 2 we
have |V (T1)| ≤ 4(k2 + k + k2 + k) = 8(k2 + k). ⊓⊔

We now show how to obtain a kernel for the original (unannotated) version of the problem.
Let (D, k) be an instance of the d-RDST problem and let (D′,X, k′) be the instance obtained
by applying reduction rules 0 through 8 on (D, k) until no longer possible, by initially set-
ting X = ∅. By Lemma 6, we know that if (D, k) is a yes-instance then |V (D′)| ≤ 8(k2 + k)
and that k′ + |X| = k. To get back an instance of the unannotated version, apply the follow-
ing transformation on (D′,X, k′). If X 6= ∅, add a directed path Y = y1, . . . , yk+2 to D′ and
for x ∈ X add the out-arc (x, yi) for 1 ≤ i ≤ k + 2. Call the resulting digraph D′′.

We claim that (D′,X, k′) has a solution out-branching T ′ with at most |X|+k′ vertices of
reduced degree and where all vertices in X have their degree reduced if and only if D′′ admits
an out-branching with at most k vertices of reduced degree. Suppose T ′ is a solution out-
branching for (D′,X, k′). To obtain a solution out-branching T ′′ of D′′ simply add the path Y
to T ′ and the out-arc (x1, y1). Clearly T ′′ has at most k′ + |X| vertices of reduced degree.
Conversely let T ′′ be a solution out-branching for D′′. First note that every vertex in X must
be of reduced degree in T ′′. For if x ∈ X is of full degree then k + 1 vertices y1, . . . , yk+1 are
of reduced degree, contradicting the fact that T ′′ has at most k vertices of reduced degree.
Therefore we may assume that, in T ′′, vertex x1 has an out-arc to the start vertex y1 of the
path y1, . . . , yk+2 which appears as is in the out-branching. That is, we may assume that the
vertices in the path Y are always of full degree in any out-branching and that there exists
at most k vertices in V (D′′) \ (V (Y ) ∪ X) of reduced degree in T ′′. To obtain a solution
out-branching T ′ for (D′,X, k′) simply delete the path Y from T ′′.

Since we add at most k + 2 vertices in this transformation, we have

Theorem 3. The d-RDST problem admits a problem kernel with at most 8k2+9k+2 vertices.

5 An Algorithm for the d-RDST Problem

In this section we describe a branching algorithm for d-RDST with running time O(5.942k ·
nO(1)). We first observe that in order to construct a solution out-branching of a given digraph,
it is sufficient to know which vertices will be of reduced degree.

Lemma 7. Let D = (V,A) be a digraph and let X be the set of vertices of reduced degree
in some out-branching of D. Given D and X, one can in polynomial time construct an out-
branching of D in which the vertices of reduced degree is a subset of X.

Proof. We describe an algorithm that constructs such an out-branching of D. Given D and X,
our algorithm first constructs a digraph D′ with vertex set V (D) in which

1. all vertices in V (D) \X are connected to their out-neighbors in D by solid arcs;

2. a vertex x ∈ X has a dotted out-arc to a vertex y if (x, y) ∈ A(D) and y has no solid
in-arc in D′.



We are guaranteed that there exists an out-branching of D′ in which all solid arcs are present
but in which one or more dotted arcs may be missing. Note that in D′, a vertex with a solid
in-arc has no other (solid or dotted) in-arcs.

Our algorithm now runs through all possible choices of the root of the proposed out-
branching. For each choice of root, it does a modified breadth-first search (BFS) starting at
the root. In the modified BFS-routine, when the algorithm visits a vertex v, it solidifies all
dotted out-arcs from v, if any. For each dotted arc (v,w) that it solidifies, it deletes all dotted
in-arcs to w. The algorithm then inserts the out-neighbors of v in the BFS-queue. If the BFS-
tree thus constructed includes all vertices of D′, the algorithm outputs this out-branching, or
else, moves on to the next choice of root.

Claim. Suppose that r is the root of an out-branching of D′ in which X is the set of vertices
of reduced degree. Then the above algorithm, on selecting r as root, succeeds in constructing
an out-branching in which the vertices of reduced degree is a subset of X.

In order to prove this claim, it is sufficient to show that in the BFS-tree T constructed by
the algorithm with r as root, every vertex of D′ is reachable from r. This suffices because the
algorithm ensures that every vertex in V (D′) \X is of full degree in T .

Therefore let v be a vertex not reachable from r such that the distance, in D′, from v to r
is the shortest among all vertices not reachable from r in T . Let r, v1, . . . , vl, v be a shortest
dipath from r to v in D′. By our choice of v, all vertices v1, . . . , vl are reachable from r
in T . Note that the arc (vl, v) must have been dotted and in fact all in-arcs to v were dotted
in D′. When the algorithm visited vl, the only reason it could not solidify the arc (vl, v) must
have been because v already had a solid in-arc into it and hence the arc (vl, v) had already
been deleted. Suppose that v has a solid in-arc from u. Then u must have already been visited
before vl at which time the dotted arc (u, v) was solidified. But this means that u, and hence v,
is reachable from r in the BFS-tree T , a contradiction. ⊓⊔

We now have an O(kO(k) ·nO(1)) algorithm for the d-RDST problem: Given (D, k), we first
obtain a kernel of size O(k2) using Theorem 3 and then run over all possible vertex-subsets X
of the kernel of size at most k to determine the set of vertices of reduced degree. Then using
Lemma 7, we verify whether one can indeed construct an out-branching in which the set of
vertices of reduced degree is X.

In the rest of this section, we give an improved algorithm with running time O(ck ·nO(1)),
for a constant c. Our algorithm (see Figure 3) is based on the simple observation that if two
vertices u and v of the input digraph D have a common out-neighbor then one of them must be
of reduced degree in any out-branching of D. The algorithm recurses on vertex-pairs that have
a common out-neighbor and, along each branch of the recursion tree, builds a set X of vertices
which would be the candidate vertices of reduced degree in the out-branching that it attempts
to construct. When there are no vertices to branch on, it reduces the instance (D,X, k) with
respect to the following rules.

Rule 1′. If u ∈ X and d+(u) = 1, delete the out-arc from u and return (D,X, k). (This is
Rule 0 from Section 4.2.)

Rule 2′. Let u ∈ V (D) be of out-degree zero and let v1, . . . , vr be its in-neighbors. If vi ∈ X
for all 1 ≤ i ≤ r, assign v1 as the parent of u and delete u. If there exists 1 ≤ i ≤ r such
that vi /∈ X then assign vi as the parent of u and delete u. Return (D,X, k).

Rule 3′. This is Rule 8 from Section 4.2.



RDST (D, X, k)
Input: A digraph D = (V, A); X ⊆ V , such that the vertices in X will be of reduced
degree in the out-branching that is being constructed; an integer parameter k. The
algorithm is initially called after setting X = ∅.
Output: An out-branching of D in which every vertex of X is of reduced degree and
with at most k vertices of reduced degree in total, if one exists, or no, signifying that
no such out-branching exists.

1. If k < 0 or |X| > k return no.
2. If no two vertices in V (D) \X have a common out-neighbor then

(a) Reduce (D, X, k) with respect to Rules 1′ through 5′.
(b) For each (k − |X|)-sized subset Y of V (D) \ X, check if there exists an

out-branching of D in which the vertex set of reduced degree is X ∪ Y . If
yes, then “expand” this out-branching to an out-branching for the original
instance and return the solution; else return no.

3. Let u, v ∈ V (D) \X be two vertices with a common out-neighbor then
(a) X ← X ∪ {u}; Z = Call RDST(D, X, k − 1).
(b) If Z 6= no then return Z.
(c) X ← X ∪ {v}; Return RDST(D, X, k − 1).

Fig. 3. Algorithm RDST.

Rule 1′ is a reduction rule because a vertex of out-degree exactly one that is of re-
duced degree must necessarily lose its only out-arc. As for Rule 2′, we know that in the
instance (D,X, k) obtained after the algorithm finishes branching, no two vertices of V (D)\X
have a common out-neighbor and therefore at least r− 1 in-neighbors of u must be in X (and
of reduced degree). If all in-neighbors of u are of reduced degree, we arbitrarily fix one of them
as parent of u (so that we can construct an out-branching of the original instance later on)
and delete u. If exactly r− 1 in-neighbors of u are already of reduced degree, we choose that
in-neighbor not in X as the parent of u and delete u. Also note that when applying Rule 3′

to a path x0, x1, . . . , xp−1, xp, the vertices x0, x1, . . . , xp−1 are not in X, by Rule 1′. Therefore
if Y is the set of in-neighbors of x1, . . . , xp−1, excluding {x0, x1, . . . , xp−2}, then Y ⊆ X.

Observe the following:

1. By Rule 2′, no vertex in the reduced instance (D,X, k) has out-degree zero.

2. Every vertex in the subdigraph induced by V (D)\X has in-degree at most one and hence
each connectivity component (a connected component in the undirected sense) is either a
dicycle, or an out-tree or a dicycle which has out-trees rooted at its vertices. Thus each
connectivity component has at most one dicycle and if a component does have a dicycle
then it can be transformed into an out-branching by deleting an arc from the cycle. Such
a digraph is called a pseudo out-forest [24].

We now reduce the instance (D,X, k) with respect to the following two rules:

Rule 4′. If at least k + 1− |X| connectivity components of D[V \X] contain dicycles, then
return no; else return (D,X, k).

Rule 5′. If a connectivity component of D[V \X] is a dicycle C such that no vertex in V (C)
has an out-neighbor in X, pick a vertex u ∈ X with an arc to C and fix it as the “entry
point” to C; delete C and set k ← k − 1; return (D,X, k).



Rule 4′ is a reduction rule as every connectivity component that has a dicycle contains
at least one vertex that will be of reduced degree. If the number of such components is at
least k + 1− |X|, one cannot construct an out-branching with at most k vertices of reduced
degree where all vertices in X have their degree reduced. To see that Rule 5′ is a reduction
rule, first note that since C has no out-arcs, it cannot contain the root of the proposed out-
branching. Any path from the root to C must necessarily include a vertex from X and it does
not matter which arc out of X we use to get to C, since every vertex in X has its degree
reduced anyway. Moreover, in any out-branching, exactly one vertex of C must be of reduced
degree. Therefore if (D′,X ′, k′) is the instance obtained by one application of Rule 5′ to the
instance (D,X, k), then it is easy to see that these instances must be equivalent. Also note
that each application of Rule 1′ through 5′ takes time O(n + m).

Lemma 8. Let (D,X, k) be an instance of the d-RDST problem in which no two vertices
of V (D) \ X have a common out-neighbor, and reduced with respect to Rules 1′ through 5′.
Then |V (D) \X| ≤ 7|X|.

Proof. Let D′ be a digraph obtained from D by deleting all out-arcs from the vertices in X.
Therefore in D′, every vertex of X has out-degree zero and in-degree at most one. We show that
a connectivity component of D′ that has p vertices of X has at most 7p vertices of V (D′)\X.
This will prove the lemma.

If a connectivity component of D′ is an out-tree T ′, then every leaf of this out-tree is a
vertex of X. If T ′ has p leaves, then applying Lemma 2 to T ′, we have that |V (T ′)| ≤ 8p. Since
exactly p of these vertices are from X, the number of vertices of V (D′) \ X in the out-tree
is at most 7p. Therefore let R be a connectivity component of D′ containing a dicycle such
that |V (R) ∩X| = p. Then R has exactly one dicycle, say C. By Rule 5′, C has a vertex x
with an out-neighbor in V (R)\V (C), and therefore d+

R(x) ≥ 2. Let y be the out-neighbor of x
in C. Delete the arc (x, y) to obtain an out-branching T with root y. Note that the number
of leaves in T is the same as that in R. Moreover in transforming R to T , only one vertex
(namely x) loses its out-degree. By Lemma 2,

|V (T )| ≤ 4|x ∪ V0(T ) ∪ V≥2(T )| ≤ 4|V0(T )|+ 4|x ∪ V≥2(T )|,

and since |x∪V≥2(T )| ≤ 1+(|V0(T )|−1) = p, we have |V (T )| ≤ 8p. Consequently |V (R)\X| ≤
7p.

This completes the proof of the lemma. ⊓⊔

To construct an out-branching, it is sufficient to choose the remaining k − |X| vertices of
reduced degree from the vertices in V (D) \X. Setting |X| = c, the exponential term in the
running time of the algorithm is bounded above by the function

k
∑

c=0

2c ·
(

7c

k − c

)

≤ k · max
0≤c≤k

2c ·
(

7c

k − c

)

.

We will show that the function max0≤c≤k 2c ·
(

7c
k−c

)

is bounded above by (k + 1) · 5.942k .

Theorem 4. Given a digraph D and a nonnegative integer k, one can decide whether D
has an out-branching with at most k vertices of reduced degree, and if so, construct such an
out-branching in time O(5.942k · nO(1)).



Finally we prove the claimed upper-bound for the function max0≤c≤k 2c ·
(

7c
k−c

)

. We first
need a lemma.

Lemma 9. For nonnegative integers k ≤ n and any real x > 0,

(

n

k

)

≤ (1 + x)n

xk
.

Proof. Since

x−k(1 + x)k = x−k ·
n

∑

i=0

(

n

i

)

xi =

(

n

k

)

+ ∆,

where ∆ =
∑

0≤i≤n,i6=k

(n
i

)

xi−k ≥ 0, the result follows immediately. ⊓⊔

Lemma 10. For a nonnegative integer k, the function

h(k) = max
0≤c≤k

2c ·
(

7c

k − c

)

is bounded above by (k + 1) · 5.942k.

Proof. Using the bound in Lemma 9, we have that for any 0 ≤ c ≤ k and any x > 0,

2c ·
(

7c

k − c

)

≤ 2c · (1 + x)7c

xk−c
=

(

2x(1 + x)7
)c

xk
.

Since the above inequality holds for any x > 0, it holds, in particular, for the positive roots
of the equation 2x(1 + x)7 − 1 = 0. This equation has exactly one positive root and its value
is approximately 0.16830. Substituting this value, we obtain

2c ·
(

7c

k − c

)

≤ 1

0.16830k
≤ 5.942k ,

and since there are k + 1 such terms in h(k), the value of h(k) is at most (k + 1) · 5.942k . ⊓⊔

6 Concluding Remarks

We studied a natural generalization of the Full Degree Spanning Tree problem to
directed graphs. We showed that the d-FDST problem is W[1]-hard even on the class of
DAGs and that the d-RDST problem is fixed-parameter tractable. For the d-RDST prob-
lem, we obtained a kernel with at most 8k2 + 9k + 2 vertices and an algorithm with running
time O(5.942k · nO(1)). Natural open questions are to investigate whether d-RDST admits a
linear-vertex kernel and design algorithms with better running times.
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