364 research outputs found

    Finding lower bounds on the complexity of secret sharing schemes by linear programming

    Get PDF
    Optimizing the maximum, or average, length of the shares in relation to the length of the secret for every given access structure is a difficult and long-standing open problem in cryptology. Most of the known lower bounds on these parameters have been obtained by implicitly or explicitly using that every secret sharing scheme defines a polymatroid related to the access structure. The best bounds that can be obtained by this combinatorial method can be determined by using linear programming, and this can be effectively done for access structures on a small number of participants. By applying this linear programming approach, we improve some of the known lower bounds for the access structures on five participants and the graph access structures on six participants for which these parameters were still undetermined. Nevertheless, the lower bounds that are obtained by this combinatorial method are not tight in general. For some access structures, they can be improved by adding to the linear program non-Shannon information inequalities as new constraints. We obtain in this way new separation results for some graph access structures on eight participants and for some ports of non-representable matroids. Finally, we prove that, for two access structures on five participants, the combinatorial lower bound cannot be attained by any linear secret sharing schemePeer ReviewedPostprint (author's final draft

    Tropical probability theory and an application to the entropic cone

    Get PDF
    In a series of articles, we have been developing a theory of tropical diagrams of probability spaces, expecting it to be useful for information optimization problems in information theory and artificial intelligence. In this article, we give a summary of our work so far and apply the theory to derive a dimension-reduction statement about the shape of the entropic cone.Comment: 18 pages, 1 figure, V2 - updated reference

    Cayley's hyperdeterminant, the principal minors of a symmetric matrix and the entropy region of 4 Gaussian random variables

    Get PDF
    It has recently been shown that there is a connection between Cayley's hypdeterminant and the principal minors of a symmetric matrix. With an eye towards characterizing the entropy region of jointly Gaussian random variables, we obtain three new results on the relationship between Gaussian random variables and the hyperdeterminant. The first is a new (determinant) formula for the 2×2×2 hyperdeterminant. The second is a new (transparent) proof of the fact that the principal minors of an ntimesn symmetric matrix satisfy the 2 × 2 × .... × 2 (n times) hyperdeterminant relations. The third is a minimal set of 5 equations that 15 real numbers must satisfy to be the principal minors of a 4×4 symmetric matrix

    Obstructions to determinantal representability

    Get PDF
    There has recently been ample interest in the question of which sets can be represented by linear matrix inequalities (LMIs). A necessary condition is that the set is rigidly convex, and it has been conjectured that rigid convexity is also sufficient. To this end Helton and Vinnikov conjectured that any real zero polynomial admits a determinantal representation with symmetric matrices. We disprove this conjecture. By relating the question of finding LMI representations to the problem of determining whether a polymatroid is representable over the complex numbers, we find a real zero polynomial such that no power of it admits a determinantal representation. The proof uses recent results of Wagner and Wei on matroids with the half-plane property, and the polymatroids associated to hyperbolic polynomials introduced by Gurvits.Comment: 10 pages. To appear in Advances in Mathematic

    Lattices with non-Shannon Inequalities

    Full text link
    We study the existence or absence of non-Shannon inequalities for variables that are related by functional dependencies. Although the power-set on four variables is the smallest Boolean lattice with non-Shannon inequalities there exist lattices with many more variables without non-Shannon inequalities. We search for conditions that ensures that no non-Shannon inequalities exist. It is demonstrated that 3-dimensional distributive lattices cannot have non-Shannon inequalities and planar modular lattices cannot have non-Shannon inequalities. The existence of non-Shannon inequalities is related to the question of whether a lattice is isomorphic to a lattice of subgroups of a group.Comment: Ten pages. Submitted to ISIT 2015. The appendix will not appear in the proceeding
    corecore