221 research outputs found

    Legendre Multi-Wavelets Direct Method for Linear Integro-Differential Equations

    Get PDF
    We use the continuous Legendre multi-wavelets on the interval [0, 1)to solve the linear integro-differential equation. To do so, we reduced the problem into a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. Comparison has been done with two other methods and it shows that the accuracy of these results are higher than the

    A efficient computational method for solving stochastic itô-volterra integral equations

    Get PDF
    In this paper, a new stochastic operational matrix for the Legendre wavelets is presented and a general procedure for forming this matrix is given. A computational method based on this stochastic operational matrix is proposed for solving stochastic Itô-Voltera integral equations. Convergence and error analysis of the Legendre wavelets basis are investigated. To reveal the accuracy and efficiency of the proposed method some numerical examples are included.Publisher's Versio

    Wavelet Collocation Method for Optimal Control Problems

    Get PDF

    Homotopy Analysis And Legendre Multi-Wavelets Methods For Solving Integral Equations

    Get PDF
    Due to the ability of function representation, hybrid functions and wavelets have a special position in research. In this thesis, we state elementary definitions, then we introduce hybrid functions and some wavelets such as Haar, Daubechies, Cheby- shev, sine-cosine and linear Legendre multi wavelets. The construction of most wavelets are based on stepwise functions and the comparison between two categories of wavelets will become easier if we have a common construction of them. The properties of the Floor function are used to and a function which is one on the interval [0; 1) and zero elsewhere. The suitable dilation and translation parameters lead us to get similar function corresponding to the interval [a; b). These functions and their combinations enable us to represent the stepwise functions as a function of floor function. We have applied this method on Haar wavelet, Sine-Cosine wavelet, Block - Pulse functions and Hybrid Fourier Block-Pulse functions to get the new representations of these functions. The main advantage of the wavelet technique for solving a problem is its ability to transform complex problems into a system of algebraic equations. We use the Legendre multi-wavelets on the interval [0; 1) to solve the linear integro-differential and Fredholm integral equations of the second kind. We also use collocation points and linear legendre multi wavelets to solve an integro-differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields. Illustrative examples are included to reveal the sufficiency of the technique. In linear integro-differential equations and Fredholm integral equations of the second kind cases, comparisons are done with CAS wavelets and differential transformation methods and it shows that the accuracy of these results are higher than them. Homotopy Analysis Method (HAM) is an analytic technique to solve the linear and nonlinear equations which can be used to obtain the numerical solution too. We extend the application of homotopy analysis method for solving Linear integro- differential equations and Fredholm and Volterra integral equations. We provide some numerical examples to demonstrate the validity and applicability of the technique. Numerical results showed the advantage of the HAM over the HPM, SCW, LLMW and CAS wavelets methods. For future studies, some problems are proposed at the end of this thesis

    Collocation method applied to unsteady flow of gas through a porous medium

    Full text link

    Accurate spectral solutions of first and second-order initial value problems by the ultraspherical wavelets-Gauss collocation method

    Get PDF
    In this paper, we present an ultraspherical wavelets-Gauss collocation method for obtaining direct solutions of first- and second-order nonlinear differential equations subject to homogenous and nonhomogeneous initial conditions. The properties of ultraspherical wavelets are used to reduce the differential equations with their initial conditions to systems of algebraic equations, which then must be solved by using suitable numerical solvers. The function approximations are spectral and have been chosen in such a way that make them easy to calculate the expansion coefficients of the thought-for solutions. Uniqueness and convergence of the proposed function approximation is discussed. Four illustrative numerical examples are considered and these results are comparing favorably with the analytic solutions and proving more accurate than those discussed by some other existing techniques in the literature
    corecore