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Due to the ability of function representation, hybrid functions and wavelets have a

special position in research. In this thesis, we state elementary definitions, then we

introduce hybrid functions and some wavelets such as Haar, Daubechies, Cheby-

shev, sine-cosine and linear Legendre multi wavelets. The construction of most

wavelets are based on stepwise functions and the comparison between two cate-

gories of wavelets will become easier if we have a common construction of them.

The properties of the Floor function are used to find a function which is one on the

interval [0, 1) and zero elsewhere. The suitable dilation and translation parameters

lead us to get similar function corresponding to the interval [a, b). These functions

and their combinations enable us to represent the stepwise functions as a function of

floor function. We have applied this method on Haar wavelet, Sine-Cosine wavelet,

Block - Pulse functions and Hybrid Fourier Block-Pulse functions to get the new

representations of these functions.

The main advantage of the wavelet technique for solving a problem is its ability

to transform complex problems into a system of algebraic equations. We use the
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Legendre multi-wavelets on the interval [0, 1) to solve the linear integro-differential

and Fredholm integral equations of the second kind. We also use collocation points

and linear legendre multi wavelets to solve an integro-differential equation which de-

scribes the charged particle motion for certain configurations of oscillating magnetic

fields. Illustrative examples are included to reveal the sufficiency of the technique.

In linear integro-differential equations and Fredholm integral equations of the second

kind cases, comparisons are done with CAS wavelets and differential transformation

methods and it shows that the accuracy of these results are higher than them.

Homotopy Analysis Method (HAM) is an analytic technique to solve the linear

and nonlinear equations which can be used to obtain the numerical solution too.

We extend the application of homotopy analysis method for solving Linear integro-

differential equations and Fredholm and Volterra integral equations. We provide

some numerical examples to demonstrate the validity and applicability of the tech-

nique. Numerical results showed the advantage of the HAM over the HPM, SCW,

LLMW and CAS wavelets methods. For future studies, some problems are proposed

at the end of this thesis.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

HOMOTOPY ANALYSIS AND LEGENDRE MULTI-WAVELETS

METHODS FOR SOLVING INTEGRAL EQUATIONS

Oleh

SAEED VAHDATI

Disember 2009

Pengerusi: Dr. Zulkifly Abbas, PhD

Fakulti: Institut Penyelidikan Matematik (INSPEM)

Fungsi hibrid dan wavelet adalah penting dalam penyelidikan perwakilan fungsi.

Tesis ini dimulakan dengan kenyataan takrifan asas sebelum memperkenalkan fungsi

hybrid dan wavelet seperti Haar, Daubechies, sin-cos dan wavelet berbilang linear

Legendre. Pembentukan kebanyakan wavelet adalah berasaskan kepada fungsi bi-

jaklangkah . Perbandingan antara dua kategori wavelet adalah lebih mudah dilak-

sanakan sekiranya berasaskan pembentukan yang seiras.

Sifat fungsi Floor telah digunakan untuk mendapatkan fungsi yang bernilai tunggal

pada sela [0, 1) dan sifar di luar sempadannya. Parameter kembangan dan ubahan

yang bersesuaian membawa kepada perolehan fungsi sepadanan sela [a, b). Fungsi

ini serta gabungannya membenarkan perwakilan fungsi bijaklangkah sebagai fungsi

kepada fungsi ”floor” . Kaedah ini telah digunakan ke atas wavelet Haar, sin-
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kos, fungsi denyut blok dan fungsi hybrid Fourier denyut blok untuk mendapatkan

perwakilan baru fungsi.

Faedah utama menggunakan kaedah wavelet untuk penyelesaian masalah ialah ke-

bolehanannya untuk mengubah masalah kompleks kepada satu system persamaan

algebra. Kaedah Legendre Wavelet Berbilang yang selanjar telah digunakan pada

sela [0, 1) untuk menyelesaikan persamaan pembza-kamiran dan persamaan kami-

ran Fredholm peringkat kedua. Titik kolokasi dan Legendre berbilang wavelet yang

linear juga telah digunakan untuk penyelesaiaan persamaan pembeza-kamiran men-

erangkan pergerakan zarah bercas dibawah pengaruh medan magnet. Contoh ki-

raan juga dipamirkan untuk membuktikan keupayaan kaedah tersebut. Kaedah

persamaan linear pembeza-kamiran dan persamaan kamiran Fredholm peringkat

kedua menununjukkan kejituan tinggi bila dibandingkan dengan kaedah lain.

Kaedah Analisis Homotopi adalah teknik analitik untuk penyelesaian persamaan

linear dan tidak linear secara berangka. Kaedah ini telah digunakan untuk penye-

lesaian persamaan pembeza-kamiran linear dan kamiran Fredholm dan Volterra.

Beberapa contoh berangka dalam tesis ditunjukan untuk mementusahkan teknik

ini dan kegunaannya. Akhir sekali, beberapa kerja lanjutan kepada tesis ini juga

dicadangkan untuk penambahbaikan teknik ini.
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CHAPTER 1

INTRODUCTION

1.1 Background

In the classic integral equations of the second kind we can solve integral equations

in some special cases, for example, when kernel is degenerate. But in most physical

phenomena we are concerned with equations that are not a special case, so we can

not obtain an exact solution for them. Therefore, it is necessary that we obtain an

approximate solution for these integral equations. In recent years, schoolers have

been considered functions such as: continuous orthogonal functions, piecewise con-

tinuous functions, orthogonal polynomials and Taylor polynomials. Functions and

polynomials can be classified as follows: The first class contains piecewise contin-

uous functions (for example Walsh, Block-Pulse and Haar functions). Orthogonal

functions belong to the second class, for example: Legendre, Chebyshev, Hermit

and Laguerre polynomials. The third class contains continuous orthogonal function

approximation using piecewise continuous functions, orthogonal polynomials and

Taylor polynomials has less accuracy so we use the orthogonal piecewise continuous

functions, say hybrid functions, and wavelets have been considered by schoolers.

Wavelet theory is a relatively new phenomena in applied mathematics. Its history

returns to the recent two decades. Schooler’s study such as Morlet, Arens, Fourgeau

and Giard (1982) and Grossmann (1984) yield to wavelet theory. It is impressive

that pay attention to this area has been increased, for a survey one can read [34].

Current success of the wavelet theory is related to two reasons, first we can consider

wavelet theory as a combination of engineering science, physics and pure mathe-



matics and on the other hand wavelets are relatively simple tools with various

applications. So far wavelets have been used in areas such as: signal analysis [34],

image processing [95], numerical solution of partial differential equations [16, 54],

integral equations [22, 42, 55], integro-differential equations [11]. As an orthogonal

system, wavelets have a special position in other systems of orthogonal functions.

The principle characterization of methods based on orthogonal functions is the

approximation of differential and integral operators using concept of operational

matrix. This is done as follows: first the solution of the system as an unknown

function is expanded in terms of orthogonal functions with unknown coefficients

then by operational matrix the equations that state behavior of the system are

appeared in a linear or non-linear system, where its solution is the solution of the

original system at various conditions.

For the first time, operational matrix of integration in Walsh domain was intro-

duced [30] and a method was determined for solving some linear and non-linear

differential systems and integral equations. In [20, 85], Walsh functions were used

to estimate and identify linear systems that are independent of time. Operational

matrix of integration for Block-Pulse functions was determined by the obtained

linear transform between Walsh and Block-Pulse functions[21].

In this area some studies fared on the computational error in the methods based

on operational matrix of integration in Walsh and Block-Pulse. The results showed

that representation of non-smooth functions in Walsh and Block-Pulse domain have

less accuracy [23].
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1.2 Motivation and problem statement

This section is concerned primarily with the numerical solution of what are called

Fredholm integral equations, but we begin by discussing the broader category of

integral equations in general. In classifying integral equations, we say, very roughly,

that those integral equations in which the integration domain varies with the inde-

pendent variable in the equation are Volterra integral equations; and those in which

the integration domain is fixed are Fredholm integral equations [10].

1.2.1 Volterra integral equations

The general form that is studied is

x(t) +

∫ t

a

k(t, s, x(s))ds = y(t), t ≥ a. (1.2.1)

The functions k(t, s, u) and y(t) are given, and x(t) is unknown. This is a nonlinear-

volterra integral equation, and it is in this form that the equation is most commonly

applied and solved. Such equations can be thought of as generalization of:

x′(t) = f(t, x(t)), t ≥ a, x(a) = x0, (1.2.2)

the initial value problem for ordinary differential equations. This equation is equiv-

alent to the integral equation:

x(t) = x0 +

∫ t

a

f(s, x(s))ds, t ≥ a,

which is a special case of (1.2.1).

For an introduction to the theory of Volterra integral equations, see Miller [83].

These integral equations are not studied in this section, and the reader is referred to

Brunner and Riele [19] and Linz [74]. Volterra integral equations are most commonly
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studied for functions x of one variable, as above, but there are examples of Volterra

integral equations for functions of more than one variable.

1.2.2 Fredholm integral equations

The general form of such integral equations is

λx(t)−
∫

D

k(t, s)x(s)ds = y(t), t ∈ D, λ 6= 0, (1.2.3)

with D a closed bounded set in Rm, for some m ≥ 1. The kernel function k(t, s) is

assumed to be absolutely integrable, and it is assumed to satisfy other properties

that are sufficient to imply the Fredholm Alternative Theorem [10]. For y 6= 0, we

have λ and y given, and we seek x; this is the nonhomogeneous problem. For y = 0,

Equation (1.2.3) becomes an eigenvalue problem, and we seek both the eigenvalue

λ and the eigenfunction x. The principal focus of the numerical methods presented

in the following sections is the numerical solution of (1.2.3) with y 6= 0.

1.2.3 Integro-differential equations

An integro-differential equation is an equation involving one (or more) unknown

functions x(t), together with both differential and integral operations on x. Such a

description covers a very broad class of functional relations and we restrict discussion

here to the simplest types of one-dimensional integro-differential equation, which

form a natural generalisation of Volterra and Fredholm integral equations. In par-

ticular we shall consider nonlinear first order ordinary Volterra integro-differential

equations of the form





x′(t) = g(t, x(t)) + λ

∫ s

a

k(t, s, x(s))ds,

x(a) = α,

(1.2.4)
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and linear first and second order ordinary Fredholm integro-differential equations of

the form




p(t)x′′(t) + q(t)x′(t) + r(t)x(t) + λ

∫ b

a

k(t, s)x(s)ds = g(t),

Cx(r) + Dx′(r) = e,

(1.2.5)

where

r = (r1, r2, . . . , rm)
T
, a ≤ ri ≤ b,

x(r) = (x(r1), x(r2), . . . , x(rm))
T
,

x′(r) = (x′(r1), x
′(r2), . . . , x

′(rm))
T
,

and where for a pth order problem, C, D are p×m matrices and e is a p×1 matrix.

In Equations (1.2.4) and (1.2.5) g, k, p, q are known functions and r, x(r) and

x′(r) are known vectors. Note the appearance in (1.2.4) and (1.2.5) of boundary

condition equations. These are necessary to help to prove that a unique solution

exists; the fact that such conditions are needed is evident by analogy with first order

initial value and second order boundary value problems (set λ = 0 in (1.2.4) and

(1.2.5)). It is the presence of these additional boundary conditions which makes

the treatment of integro-differential equations significantly different from that of

integral equations.

1.2.4 Degenerate kernel methods

Integral equation with a degenerate kernel function were introduced by Fredholm

Alternative Theorem [10]. The degenerate kernel method is a well-known classical

method for solving Fredholm integral equations of the second kind, and it is one of

easiest numerical methods to define and analyze.

General theory:
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Consider the integral equation (1.2.3). We assume throughout this and the following

sections that D is a closed bounded set. Generally, it is an m-dimensional set with

a piecewise smooth boundary; or it can be a piecewise smooth boundary itself. We

usually work in the space X = C(D) with ‖·‖∞, and occasionally in X = L2(D).

The integral operator K of (1.2.3) is assumed to be a compact operator on X into

X .

The kernel function k is to be approximated by a sequence of kernel functions:

kn(t, s) =
n∑

i=1

αi,n(t)βi,n(s), n ≥ 1, (1.2.6)

in such a way that the associated integral operators Kn satisfy:

lim
n→∞

‖K − Kn‖ = 0. (1.2.7)

Generally, we want this convergence to be rapid to obtain rapid convergence of xn

to x, where xn is the solution of the approximating equation:

λxn(t)−
∫

D

kn(t, s)xn(s)ds = y(t), t ∈ D. (1.2.8)

Theorem 1.2.1 Assume λ−K : X 1−1−→onto X , with X a Banach space and K bounded.

Further, assume {Kn} is a sequence of bounded linear operators with

lim
n→∞

‖K − Kn‖ = 0.

Then the operators (λ−Kn)−1 exist from X onto X for all sufficiently large n, say

n ≥ N , and

∥∥(λ−Kn)−1
∥∥ ≤ ‖(λ−K)−1‖

1− ‖(λ−K)−1‖ ‖(K −Kn)‖ , n ≥ N. (1.2.9)

For the equations (λ−K)x = y and (λ−Kn)xn = y, n ≥ N , we have

‖x− xn‖ ≤
∥∥(λ−Kn)−1

∥∥ ‖(Kx−Knx)‖ , n ≥ N. (1.2.10)
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