165 research outputs found

    Positive Definite Solutions of the Nonlinear Matrix Equation X+AHXˉ1A=IX+A^{\mathrm{H}}\bar{X}^{-1}A=I

    Get PDF
    This paper is concerned with the positive definite solutions to the matrix equation X+AHXˉ1A=IX+A^{\mathrm{H}}\bar{X}^{-1}A=I where XX is the unknown and AA is a given complex matrix. By introducing and studying a matrix operator on complex matrices, it is shown that the existence of positive definite solutions of this class of nonlinear matrix equations is equivalent to the existence of positive definite solutions of the nonlinear matrix equation W+BTW1B=IW+B^{\mathrm{T}}W^{-1}B=I which has been extensively studied in the literature, where BB is a real matrix and is uniquely determined by A.A. It is also shown that if the considered nonlinear matrix equation has a positive definite solution, then it has the maximal and minimal solutions. Bounds of the positive definite solutions are also established in terms of matrix AA. Finally some sufficient conditions and necessary conditions for the existence of positive definite solutions of the equations are also proposed

    A Perturbation Scheme for Passivity Verification and Enforcement of Parameterized Macromodels

    Get PDF
    This paper presents an algorithm for checking and enforcing passivity of behavioral reduced-order macromodels of LTI systems, whose frequency-domain (scattering) responses depend on external parameters. Such models, which are typically extracted from sampled input-output responses obtained from numerical solution of first-principle physical models, usually expressed as Partial Differential Equations, prove extremely useful in design flows, since they allow optimization, what-if or sensitivity analyses, and design centering. Starting from an implicit parameterization of both poles and residues of the model, as resulting from well-known model identification schemes based on the Generalized Sanathanan-Koerner iteration, we construct a parameter-dependent Skew-Hamiltonian/Hamiltonian matrix pencil. The iterative extraction of purely imaginary eigenvalues ot fhe pencil, combined with an adaptive sampling scheme in the parameter space, is able to identify all regions in the frequency-parameter plane where local passivity violations occur. Then, a singular value perturbation scheme is setup to iteratively correct the model coefficients, until all local passivity violations are eliminated. The final result is a corrected model, which is uniformly passive throughout the parameter range. Several numerical examples denomstrate the effectiveness of the proposed approach.Comment: Submitted to the IEEE Transactions on Components, Packaging and Manufacturing Technology on 13-Apr-201

    Matrix Polynomials and their Lower Rank Approximations

    Get PDF
    This thesis is a wide ranging work on computing a “lower-rank” approximation of a matrix polynomial using second-order non-linear optimization techniques. Two notions of rank are investigated. The first is the rank as the number of linearly independent rows or columns, which is the classical definition. The other notion considered is the lowest rank of a matrix polynomial when evaluated at a complex number, or the McCoy rank. Together, these two notions of rank allow one to compute a nearby matrix polynomial where the structure of both the left and right kernels is prescribed, along with the structure of both the infinite and finite eigenvalues. The computational theory of the calculus of matrix polynomial valued functions is developed and used in optimization algorithms based on second-order approximations. Special functions studied with a detailed error analysis are the determinant and adjoint of matrix polynomials. The unstructured and structured variants of matrix polynomials are studied in a very general setting in the context of an equality constrained optimization problem. The most general instances of these optimization problems are NP hard to approximate solutions to in a global setting. In most instances we are able to prove that solutions to our optimization problems exist (possibly at infinity) and discuss techniques in conjunction with an implementation to compute local minimizers to the problem. Most of the analysis of these problems is local and done through the Karush-Kuhn-Tucker optimality conditions for constrained optimization problems. We show that most formulations of the problems studied satisfy regularity conditions and admit Lagrange multipliers. Furthermore, we show that under some formulations that the second-order sufficient condition holds for instances of interest of the optimization problems in question. When Lagrange multipliers do not exist, we discuss why, and if it is reasonable to do so, how to regularize the problem. In several instances closed form expressions for the derivatives of matrix polynomial valued functions are derived to assist in analysis of the optimality conditions around a solution. From this analysis it is shown that variants of Newton’s method will have a local rate of convergence that is quadratic with a suitable initial guess for many problems. The implementations are demonstrated on some examples from the literature and several examples are cross-validated with different optimization formulations of the same mathematical problem. We conclude with a special application of the theory developed in this thesis is computing a nearby pair of differential polynomials with a non-trivial greatest common divisor, a non-commutative symbolic-numeric computation problem. We formulate this problem as finding a nearby structured matrix polynomial that is rank deficient in the classical sense

    Flexible Differentiable Optimization via Model Transformations

    Full text link
    We introduce DiffOpt.jl, a Julia library to differentiate through the solution of optimization problems with respect to arbitrary parameters present in the objective and/or constraints. The library builds upon MathOptInterface, thus leveraging the rich ecosystem of solvers and composing well with modeling languages like JuMP. DiffOpt offers both forward and reverse differentiation modes, enabling multiple use cases from hyperparameter optimization to backpropagation and sensitivity analysis, bridging constrained optimization with end-to-end differentiable programming. DiffOpt is built on two known rules for differentiating quadratic programming and conic programming standard forms. However, thanks ability to differentiate through model transformation, the user is not limited to these forms and can differentiate with respect to the parameters of any model that can be reformulated into these standard forms. This notably includes programs mixing affine conic constraints and convex quadratic constraints or objective function

    Data-driven modeling and complexity reduction for nonlinear systems with stability guarantees

    Get PDF

    7. Minisymposium on Gauss-type Quadrature Rules: Theory and Applications

    Get PDF

    Approximation, analysis and control of large-scale systems - Theory and Applications

    Get PDF
    This work presents some contributions to the fields of approximation, analysis and control of large-scale systems. Consequently the Thesis consists of three parts. The first part covers approximation topics and includes several contributions to the area of model reduction. Firstly, model reduction by moment matching for linear and nonlinear time-delay systems, including neutral differential time-delay systems with discrete-delays and distributed delays, is considered. Secondly, a theoretical framework and a collection of techniques to obtain reduced order models by moment matching from input/output data for linear (time-delay) systems and nonlinear (time-delay) systems is presented. The theory developed is then validated with the introduction and use of a low complexity algorithm for the fast estimation of the moments of the NETS-NYPS benchmark interconnected power system. Then, the model reduction problem is solved when the class of input signals generated by a linear exogenous system which does not have an implicit (differential) form is considered. The work regarding the topic of approximation is concluded with a chapter covering the problem of model reduction for linear singular systems. The second part of the Thesis, which concerns the area of analysis, consists of two very different contributions. The first proposes a new "discontinuous phasor transform" which allows to analyze in closed-form the steady-state behavior of discontinuous power electronic devices. The second presents in a unified framework a class of theorems inspired by the Krasovskii-LaSalle invariance principle for the study of "liminf" convergence properties of solutions of dynamical systems. Finally, in the last part of the Thesis the problem of finite-horizon optimal control with input constraints is studied and a methodology to compute approximate solutions of the resulting partial differential equation is proposed.Open Acces
    corecore