
Matrix Polynomials and their Lower
Rank Approximations

by

Joseph Haraldson

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Joseph Haraldson 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/225325236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Lihong Zhi
Professor,
Mathematics Mechanization Research Center Institute of Systems Science,
Academy of Mathematics and System Sciences Academia Sinica

Supervisor(s): Mark Giesbrecht
Professor, School of Computer Science, University of Waterloo
George Labahn
Professor, School of Computer Science, University of Waterloo

Internal-External Member: Stephen Vavasis
Professor, Dept. of Combinatorics and Optimization,
University of Waterloo

Other Member(s): Eric Schost
Associate Professor, School of Computer Science, University of Waterloo

Other Member(s): Yuying Li
Professor, School of Computer Science, University of Waterloo

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis is a wide ranging work on computing a “lower-rank” approximation of a
matrix polynomial using second-order non-linear optimization techniques. Two notions of
rank are investigated. The first is the rank as the number of linearly independent rows or
columns, which is the classical definition. The other notion considered is the lowest rank of
a matrix polynomial when evaluated at a complex number, or the McCoy rank. Together,
these two notions of rank allow one to compute a nearby matrix polynomial where the
structure of both the left and right kernels is prescribed, along with the structure of both
the infinite and finite eigenvalues. The computational theory of the calculus of matrix
polynomial valued functions is developed and used in optimization algorithms based on
second-order approximations. Special functions studied with a detailed error analysis are
the determinant and adjoint of matrix polynomials.

The unstructured and structured variants of matrix polynomials are studied in a very
general setting in the context of an equality constrained optimization problem. The most
general instances of these optimization problems are NP hard to approximate solutions to
in a global setting. In most instances we are able to prove that solutions to our optimiza-
tion problems exist (possibly at infinity) and discuss techniques in conjunction with an
implementation to compute local minimizers to the problem.

Most of the analysis of these problems is local and done through the Karush-Kuhn-
Tucker optimality conditions for constrained optimization problems. We show that most
formulations of the problems studied satisfy regularity conditions and admit Lagrange
multipliers. Furthermore, we show that under some formulations that the second-order
sufficient condition holds for instances of interest of the optimization problems in question.
When Lagrange multipliers do not exist, we discuss why, and if it is reasonable to do
so, how to regularize the problem. In several instances closed form expressions for the
derivatives of matrix polynomial valued functions are derived to assist in analysis of the
optimality conditions around a solution. From this analysis it is shown that variants of
Newton’s method will have a local rate of convergence that is quadratic with a suitable
initial guess for many problems.

The implementations are demonstrated on some examples from the literature and sev-
eral examples are cross-validated with different optimization formulations of the same
mathematical problem. We conclude with a special application of the theory developed in
this thesis is computing a nearby pair of differential polynomials with a non-trivial greatest
common divisor, a non-commutative symbolic-numeric computation problem. We formu-
late this problem as finding a nearby structured matrix polynomial that is rank deficient
in the classical sense.

iv

Acknowledgements

I would like to acknowledge the following for their investments in my research:

• The Natural Sciences and Engineering Research Council of Canada,

• The Government of the Province of Ontario,

• The National Science Foundation, United States of America,

• The National Security Agency, United States of America,

• David. R. Cheriton, and

• The University of Waterloo.

I would like to thank my supervisors Dr. Mark Giesbrecht and Dr. George Labahn and
the other members of my examination committee, Dr. Lihong Zhi, Dr. Stephen Vavasis,
Dr. Eric Schost and Dr. Yuying Li for their time and valuable feedback.

I would like to thank Dr. Guenter Krause from the University of Manitoba for providing
me the opportunity to discover my interests in mathematics and for providing me with an
opportunity to succeed. I would also like to thank Dr. Yang Zhang from the University of
Manitoba for giving me the opportunity to work on research problems as an undergraduate
student and an introduction to research in general. I would also like to thank Dr. Benqi
Guo from the University of Manitoba for introducing me to numerical analysis, despite my
reservations at the time where I insisted that I would “never need to use this”.

I would like to thank Weixi and the rest of my family.

There are many other people who were supportive and inspirational along this journey
who are not mentioned. I would like to mention all of them here and thank them for
everything.

v

Dedication

To the advancement of scientific knowledge.

vi

Table of Contents

List of Figures xiii

1 Introduction 1

1.1 A Non-Technical Overview . 1

1.1.1 Structured Matrix Polynomials . 1

1.1.2 Optimization Problems . 2

1.1.3 Stark Differences between Scalar and Polynomial Matrices 5

1.2 Partitioning of the Thesis . 6

1.2.1 Overview of Chapters . 8

2 Preliminaries 10

2.1 Domain of Computation and Basic Notions 10

2.2 Numerical Linear Algebra . 11

2.3 The Calculus of Vector and Matrix Valued Functions 15

2.4 Smooth Continuous Optimization . 17

2.4.1 Unconstrained Optimization . 20

2.4.2 Constrained Optimization . 20

2.5 Basic Results About Matrix Polynomials 24

2.6 Polynomial Approximate Greatest Common Divisor 31

2.6.1 Exact Polynomial Greatest Common Divisor 31

2.6.2 Approximate Greatest Common Divisor Problems 33

vii

3 Structured Lower Rank Approximations of Matrix Polynomials 36

3.1 Introduction . 36

3.1.1 Outline . 39

3.1.2 Previous research . 40

3.2 Approximate Kernel Computation . 44

3.2.1 Rank Computation . 45

3.2.2 Kernel Basis via Block Convolution 48

3.2.3 Initial Guesses for Optimization Algorithms 52

3.2.4 Summary of Rank Computing Techniques 53

3.3 Optimization Formulation Setup . 54

3.4 Rank Factorizations . 56

3.4.1 Embedded Rank Factorization . 56

3.4.2 Lagrange Multipliers and Optimality Conditions 59

3.4.3 The Hessian . 61

3.4.4 Implementation Notes . 63

3.5 Evaluated Rank Factorization . 64

3.5.1 Lagrange Multipliers and Optimality Conditions 65

3.5.2 The Hessian . 66

3.5.3 Implementation Notes . 67

3.6 Explicit Kernel Iterative Algorithm for Lower Rank Approximation 68

3.6.1 Minimal System of Equations . 68

3.6.2 Lagrange Multipliers and Optimality Conditions 70

3.6.3 The Jacobian . 74

3.6.4 The Hessian . 76

3.6.5 Implementation Notes . 77

3.7 Implementation and Examples . 78

3.7.1 Description of Algorithms . 78

viii

3.7.2 Linear and Affinely Structured Matrix Examples 81

3.7.3 Affine Structured Examples II . 84

3.7.4 Lower Rank Approximation of a 4× 4 Matrix Polynomial 85

3.8 Conclusion . 90

4 Matrix Polynomial Determinants, Adjoints, and their Derivatives 91

4.1 Introduction . 91

4.1.1 Outline . 93

4.2 Overview of Existing Results and Techniques 93

4.3 The First Derivative of the Determinant 95

4.3.1 First-Order Perturbation Bounds for the Matrix Polynomial Deter-
minant . 96

4.4 The First Derivative of the Adjoint . 97

4.4.1 Computing the First Derivative . 97

4.4.2 First-Order Perturbation Bounds for the Matrix Polynomial Adjoint 101

4.5 Floating Point Algorithms for Matrix Polynomial Adjoint 102

4.5.1 Exact Symbolic-Numeric Method 103

4.5.2 Floating Point Interpolation Method 103

4.5.3 Linear System Solving over R . 104

4.5.4 Automatic Differentiation . 105

4.5.5 QZ Decomposition . 105

4.6 Error Analysis of Matrix Polynomial Adjoint Computations 106

4.6.1 The Scalar Instance . 106

4.6.2 The Matrix Polynomial Instance . 111

4.7 Computing the First and Second Derivatives of the Determinant and Adjoint112

4.7.1 Polynomial-Time Symbolic Differentiation of the Matrix Polynomial
Determinant . 112

4.7.2 Polynomial Time Symbolic Differentiation of the Matrix Polynomial
Adjoint . 114

ix

4.8 Optimization Problems Involving the Determinant 115

4.8.1 Nearest Singular Matrix (Polynomial) Revisited 116

4.8.2 Nearest Matrix Polynomial with Prescribed Eigenvalue 118

4.9 Conclusion . 119

5 The Approximate Smith Normal Form 121

5.1 Introduction . 121

5.1.1 Outline . 123

5.2 Preliminaries . 124

5.2.1 Basic Results . 125

5.3 Nearest Rank Deficient Structured Generalized Sylvester Matrix 129

5.3.1 Bounds on the Distance to non-triviality 130

5.4 Approximate SNF via Optimization . 132

5.4.1 Constrained Optimization Formulation 132

5.4.2 Lagrange Multipliers and Optimality Conditions 132

5.4.3 An Implementation with Local Quadratic Convergence 133

5.4.4 Computational Challenges and Initial Guesses 138

5.4.5 Attaining Unattainable Solutions 138

5.5 Lower McCoy Rank Approximation . 139

5.5.1 Fast Low McCoy Rank via Optimization 140

5.5.2 Computing an Initial Guess . 142

5.5.3 Convergence and Prescribed Spectral Structure 142

5.5.4 About Global Optimization Methods 143

5.6 The Theory of Prescribed Spectral Structure 143

5.6.1 Stair Case Constraints . 145

5.6.2 A Direct Approach with Unimodular Multipliers 147

5.7 Prescribed Smith Normal Form . 151

5.7.1 Prescribed Infinite Spectral Structure 153

x

5.8 Implementation and Examples . 153

5.8.1 Nearest Interesting SNF and Lower McCoy Rank Approximation . 154

5.8.2 Prescribed Structural Supports . 155

5.9 Conclusion . 163

6 Approximate Greatest Common (Right) Divisors of Differential Opera-
tors 165

6.1 Introduction . 166

6.1.1 Outline . 166

6.2 Preliminaries . 167

6.3 Computing the GCRD via Linear Algebra 172

6.3.1 Linear Algebra over R . 175

6.3.2 Division Without Remainder . 175

6.4 Unconstrained Optimization Formulation of Approximate GCRD 176

6.4.1 Existence of Solutions . 178

6.4.2 Convergence of Newton Iteration and Conditioning 182

6.5 Approximate GCRD via Nearest Singular Matrix Polynomial 187

6.5.1 Why Consider Approximate GCRD via Nearest Rank Deficient Ma-
trix Polynomial? . 187

6.5.2 Equivalence of Problem Formulations 188

6.5.3 A Hybrid Algorithmic Approach . 189

6.6 Implementation of Approximate GCRD . 190

6.7 Conclusion . 192

7 Conclusion 194

7.1 Why the Forms of Smith and Kronecker? 194

7.2 Faster Algorithms . 196

7.3 Truly Global Convergence . 197

7.4 NP Hardness of Problems . 198

7.4.1 Nearest Singular Matrix Polynomial 198

7.4.2 Approximate Smith Normal Form and Related Problems 199

xi

References 200

xii

List of Figures

3.1 Overview of Rank Computation Techniques 53

xiii

Chapter 1

Introduction

1.1 A Non-Technical Overview

The general theme of this thesis will be discussing optimization problems in symbolic-
numeric computation pertaining to structured matrices, matrix polynomials and their ap-
plications in symbolic-numeric computation. The goals are to apply a rigorous mathemat-
ical analysis to the problems discussed, then exploit this mathematical analysis to obtain
robust numerical algorithms to approximate solutions using floating point arithmetic. The
algorithms discussed in detail have a local rate of convergence that is at least quadratic
under mild normalization assumptions. Other methods are discussed as well in the con-
text of a hybrid algorithm (one that alternates between different optimization methods),
but are not necessarily implemented. To understand the material presented in this thesis,
the reader should be familiar with the calculus of matrix or vector valued functions and
numerical linear algebra.

1.1.1 Structured Matrix Polynomials

A structured matrix polynomial is a matrix whose entries are polynomials, where those
polynomials have some underlying pattern or prescribed coefficient structure. Structured
scalar matrices are vacuously included in this definition. Our results are presented in the
monomial basis for univariate polynomials, although they can be generalized to other bases
with some effort.

1

An example of a matrix polynomial with some notion of structure is

A =

 t+ 1 t3 t2 + 3
t2 + 3 t+ 1 t3

t3 t2 + 3 t+ 1

 ∈ R[t]3×3,

in which each column is a cyclic shift of the others. What is often desirable is to find a
nearby matrix Ã with the same column shift and degree structure as A that is either rank
deficient or has some prescribed spectral properties. These two problems are fundamental
in determining the radius of stability in control theory or finding a nearby “interesting”
system, as is commonly done in denoising applications.

The goal of my research is to pose several exact problems as a continuous optimiza-
tion problem and implement efficient and robust numerical optimization algorithms to
approximate solutions. In symbolic-numeric computation these tools can be applied on
approximate greatest common divisor problems of univariate, multivariate, Ore and matrix
polynomials, the approximate factorization of multivariate polynomials, finding a nearby
lower rank matrix polynomial (approximate kernel vector or approximate kernel computa-
tion), computing a nearby matrix polynomial with an interesting Smith or Smith McMil-
lan canonical form (approximate Smith normal form) and several related problems. All
of these problems have exact arithmetic analogs that are well understood, however there
is still room to improve our understanding in the context of floating point arithmetic, as
these exact techniques often do not generalize to floating point computation.

Ultimately, the work presented in this thesis leads to a method to compute a nearby
(structured) matrix polynomial whose companion linearization (or other suitable lineariza-
tion) has a Kronecker canonical form that is prescribed to be non-trivial in some meaningful
way. In other words, we seek to compute a matrix polynomial where the kernel, finite and
infinite eigenvalues have some prescribed structure.

1.1.2 Optimization Problems

This work is primarily a study of some optimization problems in symbolic-numeric com-
putation and not a study on optimization algorithms, although the theory of optimization
is a key ingredient.

Broadly speaking, there are three different types of approximation problems of interest
in symbolic-numeric computation and scientific computing. They are in decreasing order
of specificity

2

1. “find a nearest”,

2. “find something within a radius ε > 0 or an indication that something does not
exist”, and

3. “find something nearby”.

We assume “nearby” and “nearest” is taken to be with respect to a norm or distance metric
that is “reasonable” in the context of the problem.

Of these three families of problems, we focus on the third formulation, which is some-
times known as a soft approximation problem. The first two instances are known as hard
approximation problems, as they demand a certificate which is often difficult to produce.

The reason for the focus on the soft approximation problem, is that often soft approxi-
mations will solve the hard problem if the residual of the underlying problem is sufficiently
small. In this work we will characterize several instances of problems when a solution to
the soft approximation also yields a solution to one of the harder approximation problems.
More importantly, the “hard approximations” are difficult in general to solve for non-convex
problems in a reasonable amount of time, where as the “soft approximation” can often be
computed in a polynomial amount of work. By “solve” we generally mean “approximate
to some specified amount of precision” and not “compute an exact solution”. For some
problems this distinction is irrelevant, such as solving a system of linear equations (which
can be solved exactly or approximated to arbitrary precision in a polynomial amount of
time), but for others it is essential, such as computing a solution to a semidefinite program
(which can be quickly approximated to arbitrary precision but is difficult to solve exactly).

Several of the symbolic-numeric problems studied in this work are closely related to non-
negative matrix factorization, structured lower rank approximation, and weighted lower
rank approximation problems appearing in scientific computing, data science, computa-
tional statistics and machine learning. All of these problems are non-convex and NP-hard
to approximate solutions to under reasonable models of computation. These problems
generally seek a “soft approximation”, rather than a “hard approximation”. Popular ex-
isting techniques for these problems rely on descent based unconstrained optimization,
first-order optimization techniques, convex relaxations (least squares, convex envelopes,
semidefinite programming and several others), alternating directions, alternating optimiza-
tion algorithms and other related techniques. Given the considerable similarity between
these problems, we make use of several of these techniques when applicable in our problems
to obtain an initial guess for a Newton method.

3

Most of the optimization problems encountered in this thesis are of the general form

min
x∈Ω
‖f(x)‖ subject to h(x) = 0,

where ‖ · ‖, f(x) and h(x) are twice differentiable as a vector valued functions and Ω is a
subset of Euclidean space. Accordingly, we make extensive use of the tools of non-linear
optimization and design algorithms that exploit the specific structure of our problems
at hand. All of the optimization problems studied can be considered as a constrained
matrix polynomial problem. Some special problems such as approximate greatest common
(right/left) divisor, approximate factorization and approximate kernel computation can be
studied as an unconstrained problem (that is not related to penalty methods) of the form

min
x∈Ω
‖f(x)‖

or an inequality constrained problem of the form

min
x∈Ω
‖f(x)‖ subject to g(x) ≥ 0.

However, the constraint that g(x) ≥ 0 can be ignored in practice for our problems, as the
inequality constraint g(x) ≥ 0 translates into plain language as “find a solution that is
at-least as good as a trivial to compute feasible point”.

There is no such thing as a free lunch; the unconstrained variants often have irregular
(asymptotic) solutions or other particularities that can hinder computation of (local) so-
lutions. Approximate greatest common (right/left) divisor and approximate factorization
are two such examples where irregular solutions occur in the unconstrained version but not
in the matrix with equality constraints version. Another common problem is that the un-
constrained formulation of the problem could be larger or require additional computational
resources to compute derivatives. Such is the case in approximate kernel computation or
lower rank approximations when naively using a technique called variable projection. Vari-
able projection eliminates bilinear constraints in a bi-linearly constrained problem, so that
the original optimization problem is reduced to minimizing a (non-convex) multivariate
rational function (possibly subject to convex or non-convex constraints), that is possibly
several orders of magnitude larger than the input if done naively. It is important to un-
derstand when an unconstrained variant is the ideal choice, when matrix based algorithms
are clearly superior and when there is a comparable trade-off between the two and some
hybrid technique is superior than either technique alone.

A related research area, but one we will not focus on, is optimization on matrix man-
ifolds. Optimization on matrix manifolds relies on attempting to perform calculus on a

4

matrix manifold. We choose not to discuss these techniques as they are not applicable to
all of our problems. Additionally, all manifolds are locally equivalent to Euclidean space,
which is our domain of computation. If we can prove our algorithms are “well behaved” in
Euclidean space via local analysis, then the manifold version must also be “well behaved”
via the local topological equivalence. So any insights derived in the version posed in Eu-
clidean space must also be insightful into the optimization as a manifold formulation of
the problem.

1.1.3 Stark Differences between Scalar and Polynomial Matrices

Naturally the methods we use for our problems are tuned specifically for the instance
at hand. We include a technical analysis to justify our choice of numerical and floating
point optimization algorithms. After careful consideration, most of the ideas in this thesis
converge rapidly towards second-order techniques with sufficient conditions for rapid local
convergence. Convex or other tractable relaxations are used extensively for initial guesses.
Matrix polynomials share many linear algebra properties with their scalar counterparts,
however there are some distinct computational challenges that are not analogous.

The output size of an instance of a problem can be an order of magnitude larger than
the input size, which is encountered in kernel computation, matrix polynomial least square
problems and determinant computations. The determinant of a matrix polynomial is not a
scalar, but instead the determinant is a vector of coefficients of a polynomial that depends
on the degree, dimension and “size” of the input. Indeed, if we consider

A =

t+ 1 3 t− 2
t− 1 t t+ 3
t 1 1

 ,

then det(A) = −t3 + 6t2 + 2 ∼= (2, 0, 6,−1)T ∈ R4×1. Furthermore, if we look at the
equation

Ax =

det(A)
0
0

 then x =

 −3
t2 + 2t+ 1
−t2 + t− 1

 .

A matrix polynomial is rank deficient if and only if it admits a “rank factorization”
analogous to the scalar matrix case, however the matrices appearing in the rank factoriza-
tion may have entries that are rational functions. Additionally, the “size” of the factors
can be substantially larger than the input size, even if there are no rational functions, as
the product of two matrices of high degree may have very low degree.

5

Most problems with matrix polynomials can be transformed into a larger scalar problem
with a Toeplitz-block structured matrix and several equality constraints. If the residual
of the optimization problem is zero, then classical linear algebra techniques such as QR
factorization or the singular value decomposition can be applied since the constraints are
trivially satisfied. In the approximate formulation of the problem with a possibly non-
zero residual, these equality constraints are not present in the classical, scalar analogs of
our problems. These constraints present a sizable hurdle to overcome when designing an
optimization algorithm with rapid local convergence.

Techniques similar to this are to approach problems in the context of evaluation and
interpolation. Instead of solving one large instance of a problem, we can solve several
smaller instances of a problem by evaluating a matrix polynomial at several points (such
as complex roots of unity uniformly distributed on the complex unit circle). The idea is
typical in both symbolic and numeric communities; evaluate, compute and interpolate to
obtain an answer to the instance of our problem. In some instances interpolation is clearly
the best choice. In other instances solving several small instances of a problem is more
expensive than solving one large problem, especially if there is some structure that allows
for fast arithmetic.

The derivatives of matrix polynomial valued functions behave in a similar way to the
degree zero (scalar) instance, however there is an extra dimension in the degree that com-
plicates computations. This extra dimension complicates estimating condition numbers of
matrix valued functions and computing derivatives of quantities necessary for optimization
algorithms relying on derivative information. For example, the gradient of the determinant
of a scalar matrix is a vector, but in the context of matrix polynomials the first derivative
of the determinant is a Jacobian matrix.

While there are many similarities between the scalar and polynomial matrix problems,
there are also significant differences that hinder one from applying existing optimization or
computational techniques verbatim without any special considerations. This work is not
exhaustive in adapting existing techniques in the instances of matrix polynomials, nor is
this intended. The intent is to study symbolic-numeric optimization problems with a focus
on matrix polynomials and develop algorithms tailor made for each specific problem.

1.2 Partitioning of the Thesis

The thesis is divided into four different parts. The first part consists of this introduction
and Chapter 2. The second part consists of Chapter 3. The third part consists of Chapter 4

6

and Chapter 5. The fourth part consists of Chapter 6. I am the primary author and main
contributor of all of the papers that the chapters in this thesis are based on.

All parts depend on the first part since it establishes common notation and some basic
results. The second and third parts are largely independent and can be read separately
without too much loss of continuity. The fourth part depends on the previous three in
some form for the ideas used.

The first part introduces some notation, terminology and basic results used throughout
the thesis. Some of the results are well-known, some are folklore and others may be new but
not entirely novel. The objective is to lay a solid foundation for better understanding the
ideas presented later in the thesis and how to perform arithmetic on matrix polynomials
in a numerically robust manner. For the most part, the notation and results here will be
consistent among each chapter.

The second part discusses the problems of computing a nearby singular matrix polyno-
mial and the more general problem of computing a nearby matrix polynomial of at most a
prescribed lower rank. Some of these results appear in the conference paper papers [38] and
the journal paper [37]. This work is a novel characterization of existing ideas and some new
ideas specific to the problem. The focus is on matrix polynomials of non-trivial degree,
however the ideas can be applied to scalar matrix polynomials with a prescribed affine
structure with some minor modifications. The ideas are manifested in a family of iterative
floating point local optimization algorithms with local quadratic convergence (subject to
some mild normalization assumptions) and a per-iteration cost that is polynomial in the
input size of the problem.

The third part discusses the problem of computing a nearby matrix polynomial with
a prescribed spectral structure. The work is based on the conference paper [39] and
manuscripts of [40, 52]. The minors of a matrix polynomial reveal the spectral structure
which leads to a largely theoretical analysis of the problem as a non-linearly structured
approximate greatest common divisor problem in the coefficients of the minors. The ap-
proximate greatest common divisor formulation is used to derive new insights into the
problem, in particular, the behavior of irregular and regular solutions (and how to detect
them). The ideas are expanded upon using linearization theory to prescribe the spectral
structure further and develop local iterative floating point optimization techniques with
a per-iteration cost that is polynomial in the input size of the problem and a rate of
convergence that is locally quadratic (subject to some mild normalization assumptions).
When combined, the second and third parts provide a hybrid algorithm that can compute
a nearby matrix pencil with a prescribed Kronecker canonical form, although this is not
discussed explicitly.

7

The fourth and final part of the thesis discusses the approximate greatest common
(right) divisor of differential operators and is based on the journal paper [36] and consists
of some theoretical improvements to the theory presented in my Master’s thesis [51]. In the
instance of approximate greatest common (right) divisor we provide an equality constrained
matrix polynomial algorithm that is an analog of an unconstrained algorithm with local
quadratic convergence. The matrix version does not suffer from solutions occurring in
projective space, that are otherwise irregular, asymptotic or infinite.

1.2.1 Overview of Chapters

The following content is found in each chapter:

1. A basic review of optimization, matrix polynomials and numerical linear algebra is
covered in Chapter 2.

2. Computing a nearby reduced rank matrix polynomial in Chapter 3. This chapter is
a combination of the conference paper [38] and the journal paper [37]. The notions
of rank and kernel of a matrix polynomial are reviewed in the context of a floating
point setting and some techniques to compute “nearby” matrix polynomials of re-
duced rank are discussed. Some selected examples are provided that demonstrate our
implementation of an optimization algorithm based on Newton’s method to compute
a nearby matrix polynomial of reduced rank.

3. Studying the matrix polynomial determinant and the matrix polynomial (classical)
adjoint operator and their first two derivatives in Chapter 4. This chapter is based
on an unpublished manuscript of [52] and the introduction in the manuscript [40].
Optimization algorithms that use the spectral structure or prescribe the spectral
structure either directly or indirectly involve the determinant. Closely related to the
determinant is the adjoint operator which consists of all (n − 1) × (n − 1) minors
scaled by a factor of ±1. Understanding how to compute their derivatives efficiently
as well as the structure of the underlying problems is important for computing a
nearby matrix polynomial with a prescribed spectral structure.

4. Computing a nearby matrix polynomial with an interesting spectral structure is dis-
cussed in Chapter 5. This chapter is based on the conference paper [39] and a
manuscript of [40]. The Smith normal form reveals the finite spectral structure of a
matrix polynomial and the Smith McMillan form reveals the structure of eigenvalues

8

at infinity. We discuss how to compute a nearby matrix polynomial with an inter-
esting (i.e. non-trivial) Smith normal form. The ideas are generalized to a matrix
polynomial with a prescribed finite and infinite spectral structure and rely heavily of
the ideas of Chapter 4.

6. We revisit some symbolic-numeric problems relying on structured lower-rank approx-
imation in Chapter 6. We look at applying algorithms for lower-rank approximations
of matrix polynomials on the approximate greatest common (right) divisor of differ-
ential operators. The new results presented in this section are based on the paper
[36] and are new with respect to my previous work in my Master’s thesis [51]. The
focus is on a hybrid algorithm to more robustly compute a nearby rank deficient
differential Sylvester matrix which draws extensively on Chapter 3.

7. The thesis is concluded in Chapter 7 with a brief summary of what was accomplished
and what related open problems remain.

9

Chapter 2

Preliminaries

This chapter covers some basic concepts from numerical linear algebra, vector calculus,
continuous optimization and other areas of mathematics and computer science that are
useful throughout the thesis. The notation introduced in this chapter will for the most
part be consistent and unchanged throughout the thesis. The reader is not expected to
possess significant expertise in the areas discussed, but they should be familiar with the
concepts mentioned here, as they will be frequently used without explicit reference.

2.1 Domain of Computation and Basic Notions

Vectors will generally be lower-case letters and matrices will be upper-case letters. Scalar
matrices, i.e. degree zero matrix polynomials, will be written in italicized letters and
matrix polynomials will be written in script letters. Matrices will be indexed in a standard
notation of Aij is the entry of A in row i and column j. For matrix polynomials Aijk is
the kth coefficient of the entry in row i and column j. Vectors are indexed in the same
standard notation where bi is the ith entry of the vector b and vectors of polynomials are
indexed as bij is the jth coefficient of the ith entry of b. All vectors are implicitly assumed
to be column vectors unless explicitly stated.

A m× n matrix (polynomial) with entries over a ring R (R[t]) will be denoted as Rm×n

(R[t]m×n). We will generally take R = R in the case of scalar matrices. Another popular
choice of R is C, however we can handle these as a special case of R in our optimization
problems and so we only extend to C if necessary. We will generally assume that m = n,
i.e. the matrices are square unless stated otherwise. The theory we will discuss generalizes

10

in most instances to non-square matrices by padding a matrix with rows or columns of
zeros. The degree of a polynomial is the highest-order non-zero term and the degree of a
matrix polynomial is the largest degree of all the entries.

A matrix polynomial A ∈ R[t]m×n can be written as a t scaled sum of d + 1 scalar
matrices as

A =
d∑
j=0

tjAj, where Aj ∈ Rm×n,

although the choice of basis is largely irrelevant in our computations. The degree of a
polynomial or matrix polynomial is the highest-order non-zero term in t appearing.

Our notion of “cost” is in floating point operations or FLOPs over the ground field R.
We will not make use of “fast” algorithms unless mentioned, as we are primarily concerned
with stability rather than speed. To measure the number of FLOPs used we employ
standard asymptotic notation such as Ω(·), O(·) and Θ(·). We also sometimes employ “soft

Oh” notation, Õ(·), which is the usual “big Oh” notation with poly-logarithmic factors

suppressed, i.e. for some finite ` > 0, g(n) ∈ O(log`(n)f(n)) implies that g(n) ∈ Õ(f(n)).

2.2 Numerical Linear Algebra

In this section we will consider R = R and R = C exclusively.

Definition 2.2.1 (Identity Matrix). The identity matrix of dimension n×n is denoted as
In is a diagonal matrix whose diagonal entries are all 1. We will write In = I when the
dimension is implicitly clear.

Definition 2.2.2 (Vec Operator). We define the operator vec : R[t]→ R(d+1)×1 as follows:

p =
d∑
j=0

pjt
t ∈ R[t] 7→ vec(p) = (p0, p1, . . . , pd)

T ∈ R(d+1)×1

The vec operator vec(·) is extended to map R[t]m×n to a single vector in Rmn(d+1)×1 by
stacking columns of (padded) coefficient vectors on top of each other as follows:

A ∈ R[t]m×n 7→ vec(A) =

 vec(A11)
...

vec(Amn)

 ∈ Rmn(d+1)×1.

11

The process of devectorizing a vector into a vector of polynomials is implicitly defined
by this definition.

Definition 2.2.3 (Polynomial Vec Operator). The pvec operator maps R[t]m×n to a vector
R[t]mn×1 as

A ∈ R[t]m×n 7→ pvec(A) =

A11
...

Amn

 ∈ R[t]mn×1.

The pvec(·) operator acts like the usual vectorization operator over R[t]. We define the
vectorization of matrix polynomials in this somewhat non-standard way to facilitate the
computation of derivatives of matrix polynomial valued functions.

Definition 2.2.4 (Kronecker Product). The Kronecker product of A ∈ R[t]m×n and B ∈
R[t]k×` denoted as A ⊗ B is the mk × n` matrix over R[t] defined as

A ⊗ B =

A11B · · · A1nB
...

...
Am1B · · · AmnB

 ∈ R[t]mk×n`.

This definition of Kronecker product, sometimes referred to as the “outer product”,
also holds for scalar matrices (and vectors).

Lemma 2.2.5. For scalar matrices of compatible dimension A,X and B over R, we have

vec(AXB) = (BT ⊗ A) vec(X).

Likewise, for matrix polynomials A,X and B of compatible dimension over R[t], we have

pvec(AXB) = (BT ⊗A) pvec(X).

The Kronecker product can also be used to re-write matrix equations of the form
AX = B, for matrices A, B and X of compatible dimensions, to

vec(AX) = (XT ⊗ I) vec(A) = (I ⊗ A) vec(X) = vec(B).

Lemma 2.2.6 (see [83]). There exists a permutation matrix Km,` ∈ Zm`×m` called the
commutation matrix that satisfies for A ∈ Rm×n and B ∈ Rk×`

vec(A⊗B) = (In ⊗Km,` ⊗ Ik)(vec(A)⊗ vec(B)).

12

Of course the relationship holds for A ∈ R[t]m×n and B ∈ R[t]k×` with

pvec(A⊗B) = (In ⊗Km,` ⊗ Ik)(pvec(A)⊗ pvec(B)).

Importantly, we can compute Km,` as

Km,` =
∑̀
j=1

(eTj ⊗ Im ⊗ ej),

where ej ∈ Zn×1 is a column vector with jth component 1 and zero elsewhere. The commu-
tation matrix satisfies other useful properties, however we only need it to transform the vec
of Kronecker products into the Kronecker products of their vecs to perform differentiation
of matrix functions.

Definition 2.2.7 (Rank). The rank of A ∈ R[t]m×n with n ≤ m is the number of linearly
independent (over R[t]) rows or columns of A. The rank of A ∈ Rm×n is the number of
linearly independent (over R) rows or columns of A.

Definition 2.2.8 (SVD [47]). The Singular Value Decomposition (SVD) of A ∈ Cm×n

with n ≤ m is given by U∗ΣV , where U ∈ Cm×m and V ∈ Cn×n satisfy UU∗ = I, V V ∗ = I
where ∗ denotes the Hermitian (conjugate) transpose and Σ = diag(σ1, . . . , σn) ∈ Rm×n

is a diagonal matrix whose diagonal consists of non-negative entries that are the singular
values of A, ordered in descending order.

The distance to the nearest (unstructured) matrix of rank s < m is σs+1(A). If A
has only real entries, then U and V are orthogonal (contain only real entries) instead of
unitary, i.e. UUT = I and V V T = I.

Sometimes we will refer to a “thin” SVD, in which A ∈ Rm×n has rank s and we can
assume U ∈ Rs×m, V ∈ Rs×n and Σ ∈ Rs×s. The diagonal matrix Σ consists of the non-zero
singular values, where the matrices U and V have some rows removed corresponding to
singular values that are zero. Sometimes we will say that we “compress” A if we write A
as a factorization arising from a thin SVD.

Definition 2.2.9. The Moore-Penrose pseudo inverse of A ∈ Rm×n of rank s is denoted
as A+ and is defined as A+ = V ∗Σ+U, where Σ+ = diag(σ−1

1 , . . . , σ−1
s , 0, . . . , 0) ∈ Rn×m.

If s = n and m = n then A+ = A−1, which is the usual matrix inverse.

While working with matrix polynomials the inverse matrix also exists over R(t)n×n,
however the entries are rational functions. A pseudo-inverse can also be defined, but this
is not directly useful for us to do.

13

Definition 2.2.10 (QR Decomposition). Every matrix A ∈ Cm×n can be written as A =
QR where R ∈ Cm×n is upper triangular and Q ∈ Cm×m satisfies QQ∗ = I. To ensure
that the QR decomposition is unique1 we typically assume that the diagonal entries of R
are real and non-negative.

One can also define an analogous QL decomposition where L is lower triangular.

The QR decomposition and variations thereof are useful as a constructive and numer-
ically robust method to obtain reduced basis elements for certain problems.

Definition 2.2.11 (Definite Matrix). A matrix A ∈ Rn×n is positive (semi) definite if A is
symmetric and has all positive (non-negative) eigenvalues. Negative definiteness is defined
analogously.

We write A � 0 if A is positive definite and A � 0 if A is positive semidefinite.

The notion of definiteness also holds for complex valued matrices that are complex-
conjugate symmetric (Hermitian).

Definition 2.2.12 (Matrix Norms). For scalar matrices we frequently write ‖ · ‖2 for the
largest singular value, and σmin(·) for the smallest singular value. Our use of ‖ · ‖ for
degree zero matrices will be ‖ · ‖2 unless otherwise stated. The ‖ · ‖2 condition number of

A ∈ Rm×n with R ∈ {R,C} is denoted as κ2(A) = ‖A‖
σmin(A)

.

Definition 2.2.13 (Matrix Polynomial Norms). We define the norm of a polynomial as
the coefficient 2-norm, so for a ∈ C[t] of degree at most d, we define

‖a‖2 = ‖(a0, a1, . . . , ad)‖2 =

√∑
0≤j≤d

|aj|2.

Matrix polynomial norms are defined as a distributed norm over the coefficients, some
times referred to as the Frobenius norm. For A ∈ C[t]m×n we define ‖A‖F = ‖ vec(A)‖2.

The Frobenius norm is useful since it is easy to compute, translates from scalar to
polynomial matrices in the obvious way, and is twice differentiable. By equivalence of

1This will make the QR factorization unique when A has full rank. If A is rank deficient we can define
a “thin” QR decomposition that will be unique. In this work we are generally not concerned about the
uniqueness of QR factorizations, since we use the decomposition as an intermediate step, then re-scale the
resulting quantity.

14

norms in finite dimensional vector spaces, the theory developed will hold under minor
modifications for other twice continuously differentiable norms, and some metrics that
are twice differentiable almost everywhere. The choice to treat a matrix polynomial like
a vector instead of a collection of d + 1 scalar matrices is useful when studying matrix
polynomial valued functions as a vector valued mapping from Rn

2(d+1) → RN for some
N ≥ 1. We will later observe that ‖ · ‖F , naturally appears when looking at first and
second-order Taylor series approximations.

We emphasize that in the instances of matrix polynomials we treat them like a vector,
rather than a collection of d + 1 scalar matrices of dimension m × n. In a finite dimen-
sional vector space, all norms are equivalent up to a scaling factor (possibly depending on
the dimension of the space), so other choices are certainly valid but will generally not be
considered further. Additionally, all norms are convex, hence differentiable almost every-
where with respect to the Lebesgue measure. Accordingly, most results can be generalized
with the use of sub-gradients, a generalization of the gradient to non-smooth continuous
functions.

Other norms are possible, and some popular norms in the literature are the matrix
polynomial 2-norm defined as ‖A‖2 =

∥∥(A0 A1 · · · Ad
)∥∥

2
and the vector 1-norm

‖A‖1 = ‖ vec(A)‖1. We do not study other norms explicitly, but do make use of them
when it facilitates the presentation of results or in the proofs of technical results.

2.3 The Calculus of Vector and Matrix Valued Func-

tions

In this thesis we need to employ several results from the calculus of vector and matrix
valued functions. We generally treat matrix valued functions as a vector valued function
(where we apply the vec(·) operator to the matrix), thus the matrix analogs to these results
are defined implicitly through vectorization.

Definition 2.3.1 (Gradient). The gradient of f(x1, . . . , xm) = y with respect to (x1, . . . , xm)
where f : Rm → R, is the row vector

∇f =

(
∂y

∂x1

∂y

∂x2

· · · ∂y

∂xm

)
∈ R1×m.

Definition 2.3.2 (Jacobian). The Jacobian matrix of f(x1, . . . , xm) = (y1, . . . , yn) with

15

respect to (x1, . . . , xm) where f : Rm → Rn, is the n×m matrix

∇f = Jf =

∇y1

∇y2
...
∇yn

 ∈ Rn×m.

Some authors define the gradient and Jacobian as the transpose of what is presented
here, however the distinction is largely irrelevant so long as one is consistent. One notes
that the Jacobian is the generalization of the gradient to a vector valued function. It is
irrelevant under our mathematical view whether f and g are represented as row or column
vectors.

Definition 2.3.3 (Hessian Matrix). The Hessian of f(x1, . . . , xm) = y with respect to
(x1, . . . , xm) where f : Rm → R, is the real symmetric m×m matrix

∇2f = ∇ (∇f) ∈ Rm×m,

which is simply the Jacobian matrix of the gradient.

The Hessian can also be generalized to vector-valued functions, however we do not need
to make explicit use of this generalization and omit it from our discussion. The Hessian
matrix describes the local curvature of a function.

The Jacobian is the “best” first-order approximation2 of a vector-valued function
f : Rm → Rn, that is

f(x+ x0) ≈ f(x0) + Jf (x0)x.

The Jacobian matrix describes the instantaneous rate of change around the point x0 of
f . In the analysis of algorithms, the Jacobian can be used to define the condition number
of a matrix (polynomial) valued function when it has full rank. We can write (ignoring
higher-order terms)

J+
f (x)(f(x+ ∆x)− f(x)) ≈ ∆x,

where J+
f (x) is the Moore-Penrose pseudo inverse of the Jacobian matrix of f evaluated

at x.

For a function f : Rm → R, the Hessian matrix is the best second-order approximation
of f , that is

f(x+ x0) ≈ f(x0) +∇f(x0)x+
1

2
xT∇2f(x0)x.

2Note that the approximation is usually given as f(x) ≈ f(x0) + Jf (x0)(x− x0), although the shifted
variant is the one we use in this thesis.

16

2.4 Smooth Continuous Optimization

In this thesis we will need to study several optimization problems of the constrained and
unconstrained varieties. We first review some basic results about unconstrained optimiza-
tion, then generalize them to the constrained case. Most of these well known statements
can be found in [10, 89] or another book on optimization.

An unconstrained problem is simply a problem of the form

min
x∈Ω

f(x),

where f(x) : Rm → R is a function that is bounded below over a domain Ω ⊆ Rm. A
constrained problem is of the form

min
x∈Ω

f(x) subject to

{
h(x) = 0,

g(x) ≥ 0.

We assume that all functions f, g and h are at least twice differentiable, hence they are
“smooth” with local Lipschitz continuity. Most of the problems we deal with involve
multivariate polynomials which are locally Lipschitz.

Definition 2.4.1 (Open Neighborhood). We denote the open neighborhood around x of
radius ε as B(x; ε) = {z ∈ X : d(x, z) < ε}. Here d(·, ·) is a distance function defined over
a set X, typically a norm.

Definition 2.4.2 (Local Minimizer). A local minimizer of f(x) is a point x? where f(x) ≥
f(x?) for all x in some non-trivial open neighborhood around x?.

Definition 2.4.3 (Convexity). The set X is convex if for all x1, x2 ∈ X and γ ∈ [0, 1] we
have that γx1 + (1− γ)x2 ∈ X.

A function f : X → R is convex if

f(γx1 + (1− γ)x2) ≤ γf(x1) + (1− γ)f(x2).

We say that f is strictly convex if the above inequalities are strict whenever γ ∈ (0, 1) and
x1 6= x2.

For example, norms are convex functions since the triangle inequality implies convexity.
Open or closed neighborhoods are also convex sets.

17

Definition 2.4.4 (Rates of Convergence). We say that a sequence {x(k)}∞k=0 for x(k) ∈ X,
converges to x? at a rate of convergence that is linear if there exists c > 0 and β ∈ (0, 1)
such that for all k we have that

‖x(k) − x?‖ ≤ cβk.

This implies that

lim sup
k→∞

‖x(k+1) − x?‖
‖x(k) − x?‖

≤ β,

which is the usual quotient rate definition.

We say that the rate of convergence is p super linear (super linear of order p) if there
exists p > 1 such that

‖x(k) − x?‖2 ≤ cβp
k

.

We are particularly interested in quadratic convergence, which occurs when p = 2.

Likewise, this implies that p super linear convergence occurs when

lim sup
k→∞

‖x(k+1) − x?‖
‖x(k) − x?‖p

<∞.

In general, optimization methods that use only first-order information, that is infor-
mation from the first-order derivatives, generally obtain linear convergence. Methods that
use second-order information, i.e. second-order derIn ivative or curvature information, are
generally able to obtain super linear rates of convergence. A well-known method that
frequently has quadratic convergence is Newton’s method.

Definition 2.4.5 (Newton’s Method). A straightforward version of Newton’s method is
defined as solving F (x) = 0 for F : Rm → Rn by iteratively computing x(k+1) = x(k) + ∆x
where ∆x is defined from the linear system of equations

∇F (x(k))(∆x) = −F (x(k)).

In our application of Newton’s method we will generally assume that m = n, since it is
mostly used to solve for second-order optimality conditions, which satisfy this condition.
It should be noted that when m 6= n, then the iteration may not be well-defined.

Newton’s method generally has super-linear convergence under mild assumptions and
quadratic convergence when ∇F (x) has full rank and F (x) satisfies some local Lipschitz
continuity assumptions. One of the main topics of this thesis is how to obtain methods

18

with a local rate of convergence that is quadratic for several symbolic-numeric optimization
problems when the Jacobian matrix is rank deficient, as this condition is sufficient for fast
convergence, but certainly not necessary. Newton’s method is also a local technique, in
that the convergence rate is local and it may not converge to a solution if the initial point
x(0) is too far away from the solution.

Informally, “Newton’s method for optimization” relies on using “Newton’s method”
to solve for the gradient of some function vanishing. It is perhaps unsurprising, that
essentially any method that has quadratic convergence is asymptotically equivalent to
Newton’s method [87]. Indeed, there are many variants of “Newton’s method” and we will
consider several in this work. When we refer to a “Newton-like method” we mean a method
that is asymptotically “Newton’s method”.

A technique similar to Newton’s method is the Gauss-Newton method that attempts
to solve F (x) = 0 (in a least-squares sense) for F : Rm → Rn by iteratively computing
x(k+1) = x(k) + ∆x where ∆x is defined from the linear system of equations(

∇F (x(k))
)T ∇F (x(k))(∆x) = −

(
∇F (x(k))

)T
F (x(k)).

A regularized variant of Gauss-Newton (which is essentially Gauss-Newton with a trust-
region, sometimes referred to as Levenberg-Marquardt) solves the same problem with the
modified iteration[(

∇F (x(k))
)T ∇F (x(k)) + νkI

]
(∆x) = −

(
∇F (x(k))

)T
F (x(k)),

where νk ≥ 0 is a regularization parameter. The choice of νk is generally specific for each
problem. Our implementation uses a heuristic method to pick νk when F (x(k)) is far away
from zero and νk ≈ ‖F (x(k))‖2 when F (x(k)) ≈ 0 (see [32, 110]).

The advantage of Gauss-Newton and related variants is that they often have local
quadratic convergence (when F (x) = 0) under reasonable assumptions and can be “global-
ized” to converge to a stationary point of the merit function ‖F (x)‖2. In several instances
Newton’s method may not converge, where a Gauss-Newton method will. When the Ja-
cobian is rank deficient, the Gauss-Newton method and it’s variants may converge to a
stationary point of the merit function instead of F (x) = 0. The condition number of the
Gauss-Newton iteration is approximately κ2

2(∇F (x(k))) in the worst-case, which may limit
some of the instances in which Gauss-Newton like techniques can be applied using floating
point computation.

19

2.4.1 Unconstrained Optimization

We now discuss some basic results about unconstrained optimization problems of the form
minx∈Ω f(x) for some f(x) that is bounded below.

Lemma 2.4.6 (Necessary Conditions). Suppose that x? ∈ Ω is an interior point and a
local minimizer of f(x). Then

1. ∇f(x?) = 0 and

2. ∇2f(x?) � 0.

These conditions are necessary for x? to be a local minimizer of f(x), but they are not
sufficient. We refer to them as the first-order and second-order necessary conditions. The
first-order condition says is that in an infinitesimal neighborhood around f that f is no
longer changing and the second-order condition says that the curvature is “non-increasing”,
or that f(x?) is convex. When x? is not in the interior of Ω, then a solution occurs on the
boundary and these conditions do not necessarily describe such solutions. Fortunately, we
generally do not concern ourselves with such solutions, thus we will generally ignore them
without much loss of generality.

Lemma 2.4.7 (Sufficient Conditions). Suppose that x? ∈ Ω satisfies

1. ∇f(x?) = 0 and

2. ∇2f(x?) � 0,

then x? is a strict local minimizer of f(x).

What this condition says is that if the gradient of f vanishes and f is strictly convex
in some neighborhood of x?, then x? is a local minimizer. Note that the second-order
sufficient condition implies that solutions are locally isolated.

2.4.2 Constrained Optimization

We now discuss some basic results from constrained optimization. An inequality constraint
g(x) ≥ 0 is active if g(x) = 0 and inactive if g(x) 6= 0. In our work, our view is mostly
local and the inequality constraints that could be added to our problems are almost always

20

inactive. The problems we study in this work are almost all equality constrained, so we
ignore the conditions for inequality constrained problems, and instead focus on equality
constrained problems.

One notes that an inequality constrained problem is essentially an unconstrained prob-
lem (in a local sense) if the constraints are all inactive, or an equality constrained problem
if some constraints are active, and some are not.

One technique known as the penalty method transforms an equality constrained prob-
lem into an unconstrained problem. If h(x) = 0 then it is necessary that ν‖h(x)‖ = 0 as
well, for any ν > 0. One can penalize violating the constraint by writing

min
x∈Ω

f(x) subject to h(x) = 0 as min
x∈Ω

f(x) + ν‖h(x)‖2
2,

where ν > 0 is a “penalty term” that is sufficiently large. The penalty term forces the
constraints to be satisfied, and as ν → ∞, then the minima of both problems will agree.
Penalty functions are useful in several instances and can be used to augment other tech-
niques, but individually they suffer from several draw backs. As ν → ∞, the condition
number of the Hessian matrix tends to ∞, so high accuracy is not achievable unless ν
can be bounded in advance. Without any special information, this is difficult. We will
reference some methods in this thesis that make use of penalty techniques either directly
or indirectly.

Necessary conditions for x? to be a local minimizer to the constrained optimization
problem are known as the Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions
without inequality constraints simplify into the method of Lagrange multipliers.

We define the Lagrangian as

L = f(x) + λTh(x),

where λ is a vector of scalars with the same number of components as h(x). Lagrange
multipliers classify regular solutions, which for the purpose of this thesis are finite (non-
asymptotic) solutions, but in general include several other instances. The Lagrange mul-
tipliers, when unique, describe the sensitivity of the problem and characterize how much
the objective function can be improved by violating constraints. There will either be zero,
one or infinitely many Lagrange multipliers for a particular local solution.

In many of our problems the Lagrange multipliers are generally not unique, so the usual
Linearly Independent Constraint Qualification (LICQ) or regularity condition is usually
not satisfied. Despite this, one can still prove Lagrange multipliers exist. If the LICQ

21

is satisfied, then this ensures the existence of Lagrange multipliers. In our problems the
LICQ may not be satisfied because constraints are redundant at or around a solution,
that is hj(x

?) = 0 ⇐⇒ hk(x
?) = 0 in some situations. Accordingly, several Lagrange

multipliers are inactive (i.e. λj = 0 for some j). The lack of uniqueness of Lagrange
multipliers and redundancy of constraints is typically caused by using auxiliary variables
to encode non-convex rank constraints.

There are problems where Lagrange multipliers do not exist, and these solutions are
classified as irregular . In some problems a similar condition to LICQ known as the Constant
Rank Constraint Qualification (CRCQ) will hold, which is simply that for a ε > 0, we have
that rank(∇h(x)) does not change for all x ∈ B(x?, ε). In general, constraint qualifications
ensure the existence of Lagrange multipliers. We will study some optimization problems
where solutions are irregular, and approach these problems by studying a dual problem
(not the Lagrangian dual) that satisfies regularity conditions.

Lemma 2.4.8 (KKT (Necessary) Conditions). Suppose that x? is a regular local minimizer
of f(x) subject to the constraint that h(x) = 0. Then there exists a vector of Lagrange
multipliers λ? such that

1. ∇L(x?, λ?) = 0 and

2. ker(∇h(x?))T ∇xxL(x?, λ?) ker(∇(h(x?))) � 0.

These conditions are necessary, but not sufficient for a point (x?, λ?) to be a local
minimizer with associated Lagrange multiplier. In practice though, they are often sufficient,
and if a constraint qualification is satisfied, then they will be sufficient and necessary for
convex problems. The problems we discuss in this thesis are non-convex with many local
extrema, so we are content to obtain local solutions when possible.

Lemma 2.4.9 (Sufficient Conditions). Suppose that there exists a point (x?, λ?) where

1. ∇L(x?, λ?) = 0 and

2. ker(∇h(x?))T ∇xxL(x?, λ?) ker(∇(h(x?))) � 0.

Then x? is a regular local minimizer of f(x) subject to the constraint that h(x) = 0 with
Lagrange multiplier λ?.

22

The second-order sufficient condition assumes the existence of Lagrange multipliers, but
it is sufficient to obtain an algorithm with local rapid convergence despite the LICQ failing
to hold. In our problems Lagrange multipliers are not unique because some constraints
are redundant or the problem is over-padded with zeros, so the CRCQ holds or else the
problem can be modified so that the CRQC holds. Alternatively, in several instances one
can force the LICQ to hold by eliminating constraints that are repeated. We will discuss
this in more detail for each specific problem.

The matrix ∇2L has a special structure and is sometimes called the “KKT matrix”,
which appears frequently in Newton-like methods. We note that

∇2L =

(
∇2
xxL ∇xh(x)T

∇xh(x) 0

)
,

so the behavior of the Jacobian matrix of the constraints is very important when study-
ing convergence properties of Newton-like methods. In particular, if the Jacobian of the
constraints is rank deficient, then ∇2L will be rank deficient.

The following well-known result will be used several times without explicit reference in
this thesis.

Lemma 2.4.10 (Weierstrass’ Theorem). Let Ω ⊆ Rm be a compact set with respect to
the Euclidean norm. Suppose that f : Ω → R is a continuous function with respect to a
reasonable metric, then maxx∈Ω f(x) and minx∈Ω f(x) exist.

What this says is that if we minimize (or maximize) over a compact set, we are guar-
anteed that a solution to the optimization problem exists. In Euclidean space, the notion
of compactness is equivalent to closed and bounded. Unfortunately, this result provides us
with no means to actually compute a solution.

Several results in this work follow the general form of

1. Prove that solutions exist,

2. Argue that there exist “KKT points” (i.e. regular solutions to the optimization
problem exist),

3a. Show that some KKT points (i.e. a global minimizer if the residual is small) satisfy
second-order sufficient conditions, and

3b. Use a numerical algorithm to compute a KKT point (that probably satisfies second-
order conditions).

23

We could also try to enforce that the second-order necessary condition holds if we viewed
our results in a “global” scope instead of a “local” one. Our view is almost entirely
local given that the geometry of solutions are preserved locally, and not globally. In
several instances, large perturbations will radically change the geometry of solutions to an
optimization problem. Accordingly, our view is local, which is entirely reasonable given
that we prove that under mild conditions, the stronger second-order sufficient condition
will hold for several of our problems. If the computed solution does not satisfy second-
order sufficient conditions, then the instance of the problem is likely ill-posed or the initial
guess was poorly chosen, as the second-order sufficient conditions imply the existence of a
non-trivial radius of stability for a Newton-like method.

2.5 Basic Results About Matrix Polynomials

Matrix polynomials frequently occur in the linear form tA1−A0 ∈ R[t]n×n, which is some-
times referred to as a matrix pencil. Matrix pencils appear when solving polynomial
eigenvalue problems, which is seeking a solution to

A0x = tA1x for x ∈ Rn×1.

Most of the literature focuses on matrix pencils because every n × n matrix polynomial
of degree d can be linearized into the form P = tP1 − P0, where P has the same spectral
structure as A and P0, P1 ∈ Rnd×nd. In general, polynomial eigenvalue problems of the
form Ax = 0 can be solved by linearization, using the QZ decomposition or modifying the
problem so that the QZ decomposition can be applied.

Definition 2.5.1 (Companion Linearization). Many linearizations exist [44], although we
generally restrict ourselves to strong linearizations that preserve the finite and infinite
spectral structure, such as the well-known companion linearization that takes

P0 =

I

. . .

I
−A0 −A1 · · · · · · −Ad−1

 and P1 =

I

I
. . .

Ad

 .

Note that P is a vector with n2d2 entries, where as A is a vector with n2(d+1) entries.
Of course other linearizations are possible, such as those encountered in [81, 82], which we
do not explicitly consider.

24

Definition 2.5.2 (QZ Decomposition). Let P ∈ Cnd×nd be a matrix pencil. Then there
exist unitary matrices Q ∈ Cnd×nd and Z ∈ Cnd×nd such that

QP0Z =

r1 ∗ · · · ∗

r2 · · · ∗
. . .

...
rnd

 and QP1Z =

s1 ∗ · · · ∗

s2 · · · ∗
. . .

...
snd

 .

Accordingly, P can be triangularized by two-sided unitary transformations, and the eigen-
values can be easily extracted as a ratio of the diagonal entries. Note that when the input
is real valued, the arising decomposition will usually be complex valued.

The QZ decomposition reveals the finite and infinite eigenvalues of P, but not their
multiplicity structure. The finite eigenvalues are the zeros of det(P). The infinite eigen-
values appear when P1 is rank deficient, so deg(det(P)) 6= nd. The infinite eigenvalues are
characterized by −tP0 +P1. We note that the eigenvalues at infinity are always “known” so
a reasonable implementation of the QZ decomposition will compute the infinite eigenvalues
first then compute the remaining eigenvalues with this knowledge.

Definition 2.5.3 (Smith Normal Form). The Smith Normal Form (SNF) of a matrix
polynomial A ∈ R[t]n×n of degree at most d is defined as

S =

s1

s2

. . .

srank(A)

0
. . .

0

∈ R[t]n×n,

where s1, . . . , srank(A)) are monic (leading coefficient is 1) and si|si+1 for 1 ≤ i < rank(A),
such that there exist unimodular U,V ∈ R[t]n×n (i.e., with determinants in R\{0}) with
S = UAV. The Smith form always exists and is unique, although the matrices U, V

are not unique [65]. There always exist U and V with deg(U) ≤ nd and deg(V) ≤ nd,
but there also exists U and V with degrees that are arbitrarily high as well. The diagonal
entries s1, . . . , sn are referred to as the invariant factors of A.

We can write sj = p1,j(t)
α1,j · · · p`,j(t)α`,j . The exponents {αγ,j}`γ=1 are known as the

structural supports of sj.

25

There is also a canonical form analogous to the Smith Normal Form applied to the
rational matrix A(t−1) that has a similar divisibility property (involving rational functions)
that characterizes the infinite spectral structure, known as the Smith-McMillan form. For
matrix polynomials, studying the spectral structure of t = 0 of tdA(t−1) reveals the spectral
structure of eigenvalues at infinity.

The companion linearization, and several others also satisfy the property that SNF(P) =
diag(I, I, . . . , I, SNF(A)).

There is a more general form due to Kronecker that reveals the finite and infinite
spectral structure, as well as classifying the left and right kernels.

Definition 2.5.4 (Kronecker Canonical Form). The Kronecker Canonical Form (KCF) of
a matrix polynomial [65] A ∈ C[t]n×n of degree 1 is defined as the block-diagonal matrix

K = diag(Lµ1 , Lµ2 , . . . , Lµα , L̃ν1 , L̃ν2 , . . . , L̃να , tJ − I, tI − F)

where

1. F is in Jordan form,

2. J is a nilpotent Jordan matrix (a matrix in Jordan normal form with all zero eigen-
values),

3. Lµ is a µ× (µ+ 1) matrix of the form

t −1

t −1
.

t −1

 and

4. L̃ν is a (ν + 1)× ν matrix of the form

t
−1 t

.

−1 t

 .

The blocks L and L̃ do not appear if A has full rank (sometimes we say A is regular),
and these blocks are known as the right and left Kronecker indices. The block tI − F
consists of the eigenvalues of A (zeros of det(A)) and each Jordan block contains the
information about the multiplicity or structural support information of the eigenvalues.
We are especially interested in this block because it reveals the SNF of A. The block tJ− I

26

consists of the eigenvalues at infinity, which reveals the Smith-McMillan form of a matrix
of rational functions (a generalization of the SNF to matrices whose entries are rational
functions). The KCF is a generalization of the Jordan canonical form of scalar matrices.

The Kronecker indices that occur when A is rank deficient correspond to a left or right
kernel basis of A that is “minimal” or has kernel vectors of minimal degree. The minimal
kernel is useful, but it is not always required in our problems.

Definition 2.5.5. The adjoint matrix of A ∈ R[t]n×n is denoted as Adj(A) and is simply
the transpose of the co-factor matrix,

Adj(A) =

det(A11) − det(A12) · · · (−1)n+1 det(A1n)

− det(A21) det(A22) · · · (−1)n+2 det(A2n)
...

... · · · ...
(−1)n+1 det(An1) (−1)n+2 det(An2) · · · (−1)2n det(Ann)

T

,

where det(Aij) is the determinant of a sub-matrix with the ith row and jth column removed.
The adjoint satisfies Adj(A)A = A Adj(A) = det(A)I. This relationship implies that
Adj(A) = det(A)A−1 when A has full rank.

Note that this definition applies verbatim to scalar matrices by taking d = 0 (and in
general holds over arbitrary commutative rings and their fraction fields). If A ∈ R[t]n×n

has full rank, then unless det(A) is a scalar, we have that A−1 ∈ R(t)n×n.

Definition 2.5.6 (Affine/Linear Structure). A non-zero matrix polynomial A ∈ R[t]n×n

of degree at most d has a linear structure from a set K if A ∈ span(K) as a vector space
over R, where

K =
{
C0,0, . . . , C0,k, tC1,0, . . . , tC1,k, . . . , t

dCd,0, . . . , t
dCd,k

}
,

where Cl,j ∈ Rn×n for 0 ≤ j ≤ k, where k > 0 is a finite index variable. If A = C0 + C1,
where C0 ∈ R[t]n×n is fixed and C1 ∈ span(K), then A is said to have an affine structure
from the set K.

Affinely and linearly structured matrices are best thought of imposing linear equality
constraints on the entries. Examples of matrices with a linear structure include matri-
ces with prescribed zero entries/coefficients, Toeplitz/Hankel matrices, Sylvester matri-
ces, resultant-like matrices, Ruppert matrices and several other matrices appearing in
symbolic-numeric computation. Matrices with an affine structure include all matrices with

27

a linear structure and other matrices, such as ones with prescribed non-zero constant en-
tries/coefficients, such as monic matrix polynomials.

The companion linearization is a matrix polynomial with an affine structure. The
theory of matrix pencils (degree one matrix polynomials) with an affine coefficient structure
is sufficient to study most matrix polynomial problems in theory.

Definition 2.5.7 (Convolution Matrix). Polynomial multiplication between polynomials
a, b ∈ R[t], of degrees d1 and d2, respectively may be expressed as a Toeplitz-matrix-vector
product. We define

φd2(a) =

a0
...

. . .

ad1 a0

. . .
...
ad1

 ∈ R(d1+d2+1)×(d2+1). It follows that vec(ab) = φd2(a) vec(b).

When a is non-zero, we can also define division through pseudo-inversion of the convo-
lution matrix since φd2(a)+ vec(ab) = vec(b).

Definition 2.5.8 (Block Convolution Matrix). We can express multiplication of a matrix
and vector of polynomials, A ∈ R[t]m×n and b ∈ R[t]n×1, of degrees at most d1 and d2

respectively, as a scalar linear system

vec(Ab) = Φd2(A) vec(b),

where

Φd2(A) =

φd2(A11) · · · φd2(A1n)
...

...
φd2(Am1) · · · φd2(Amn)

 ∈ Rm(d1+d2+1)×n(d2+1).

The block convolution matrix is sometimes referred to as a “Sylvester matrix” or “resul-
tant matrix” associated with A. We differ in terminology when we say “Sylvester matrix”
as we mean a Sylvester matrix appearing in the GCD of two (or more) polynomials (which
is sometimes referred to as a resultant matrix as well). We will sometimes use “embedding”
to refer to block convolution matrices with several rows and columns deleted as well.

The block convolution matrix is a scalar matrix with a linear structure, and it is im-
portant when performing arithmetic on matrix polynomials and analyzing derivatives of
matrix polynomial valued functions.

We briefly describe some properties about the kernel of matrix polynomials.

28

Lemma 2.5.9 (Useful Degree Bounds). Let A ∈ R[t]n×n be a matrix polynomial of degree
at most d. Then deg(det(A)) ≤ nd and if rank(A) = s < n then there exists b ∈ R[t]n×1

such that deg(b) ≤ sd and Ab = 0.

Proof. The fact that deg(det(A)) ≤ nd is well known and follows immediately by an
application of Cramer’s rule.

When A is rank deficient we can assume without loss of generality that the leading
(s× s) sub matrix of A has full rank. There is a unique vector of the form

c = (b1/γ, . . . , bn−r/γ,−1, 0, . . . , 0),

from Cramer’s rule such that Ac = 0, where γ ∈ R[t] is the determinant of the leading
s× s minor of A and all of b1, . . . , bs, γ ∈ R[t] have degree at most sd ≤ nd. If we multiply
through by γ we have b = γc satisfies the requirements.

So, in the case of A having full rank, we note that Adj(A) has degree at most (n−1)d.
Thus we can look at det(·) as a mapping from Rn

2(d+1) → Rnd+1 and Adj(·) as mapping
from Rn

2(d+1) → Rn
2((n−1)d+1).

Lemma 2.5.10. A ∈ R[t]m×n with n ≤ m is rank deficient if and only if Φnd(A) is rank
deficient.

Proof. Suppose that b ∈ R[t]n×1 is a kernel vector of A of degree at most nd. Then Ab = 0
and this occurs if and only if Φnd(A) vec(b) = 0. A kernel vector of degree at most nd
exists if and only if A is rank deficient, thus the proof is complete.

What the previous two lemmas reveal is a limitation of the block convolution matrix,
which is that if b ∈ ker(A) satisfies deg(b) ≤ nd then Φnd(A)b = 0. However, if deg(b) <
nd, then p(t)b ∈ ker(A) for any p(t) ∈ R[t]\{0} with deg(p(t)) ≤ nd− deg(b). This means
that there is generally not a one-to-one correspondence between ker(A) and ker(Φnd(A)).
In particular, if A is rank deficient, then dim(ker(Φnd(A))) ≥ 2. We can normalize Φnd(A)
and B ⊆ ker(Φnd(A)) by deleting some rows and columns in a special way, which we will
discuss in detail when needed.

To emphasize why the block-convolution matrices are useful, we note that together with
the Kronecker product, we can often transform a matrix polynomial equation into a linear
algebra problem over R. For example if we assume AX = B has polynomial solutions in
X of degree at most µ, then we can write

(I ⊗A) pvec(X) = pvec(B) =⇒ Φµ ([I ⊗A]) vec(X) = vec(B),

29

which is a linear algebra problem over R. The problem of determining if X has coefficients
from R[t] and not R(t) without solving the actual system in advance is another problem
which we do not discuss. A useful application of this fact is that when A has full rank,
A Adj(A) = det(A)I, so the adjoint matrix is characterized by the system of equations
AX = det(A)I, i.e. X = Adj(A). Thus, we can easily analyze the Jacobian matrices
∇ det(·) and ∇Adj(·) using most of the theory from matrix calculus.

Lemma 2.5.11. The block-convolution matrix is quasi-distance preserving in that for µ ≥
0 we have

‖A‖F =
‖Φµ(A)‖F
µ+ 1

.

Proof. This follows by observing columns are cyclic shifts of each other.

This means that several matrix polynomial optimization problems are equivalent to
working on a manifold of linearly structured matrices. This fact will be useful to establish
equivalence between several problems. In particular, we can use the SVD on Φµ(A) but
not on A, thus we can use Φµ(·) to obtain semi-tight lower-bounds on several problems.

Lemma 2.5.12. For A ∈ R[t]m×n and B ∈ R[t]n×k of degree at most d, that

‖AB‖F ≤ (d+ 1)‖A‖F‖B‖F .

In other words, ‖ · ‖F is d+ 1 sub-multiplicative on matrix polynomials.

Proof. For two polynomials a, b ∈ R[t] of degree at most d we have that ‖ab‖2 = ‖φd(a) vec(b)‖2 ≤
(d+ 1)‖a‖2‖b‖2. This implies that

‖AB‖F ≤ (d+ 1)

∥∥∥∥∥∥∥
‖A11‖2 · · · ‖A1n‖2

...
...

‖Am1‖2 · · · ‖Amn‖2

∥∥∥∥∥∥∥
F

∥∥∥∥∥∥∥
‖B11‖2 · · · ‖B1k‖2

...
...

‖Bn1‖2 · · · ‖Bnk‖2

∥∥∥∥∥∥∥
F

= (d+ 1)‖A‖F‖B‖F .

It is important to note that this is generally an over-estimate, because

‖ vec(ab)‖2 ≤ min{‖φd(a)‖2‖b‖2, ‖φd(b)‖2‖a‖2} ≤ (d+ 1)‖a‖2‖b‖2.

30

2.6 Polynomial Approximate Greatest Common Di-

visor

In this section we briefly review some key results from the theory of polynomial approx-
imate Greatest Common Divisor (GCD). The theory of approximate GCD is essential to
normalize solutions to AX = 0 to ensure that they are primitive (the GCD of all entries
is 1). The ideas of polynomial approximate GCD are useful to understand how to obtain
a lower-rank approximation of a matrix polynomial. Polynomial approximate GCD also
appears again in computing the spectral structure of matrix polynomials in a floating point
enviroment.

2.6.1 Exact Polynomial Greatest Common Divisor

The Greatest Common Divisor (GCD) of f, g ∈ R[t] is a polynomial h ∈ R[t] of maximal
degree such that h is a factor of both f and g. We typically assume h is monic (leading
coefficient is 1), so that h is unique. The GCD of f and g is denoted as gcd(f, g) = h, and
if deg(h) = 0 then we define h = 1 and say that f and g are relatively prime. This implies
that there exists f ∗, g∗ such that f = f ∗h and g = g∗h. The quantities f ∗ and g∗ are
the co-factors of f and g. The co-factors need not belong to the domain of computation,
however in the case of polynomials they will when R = R or R = C, i.e. f ∗, g∗ ∈ R[t], but
this does not always need to hold.

Lemma 2.6.1. The polynomials f, g ∈ R[t] have a non-trivial GCD if and only if there
exist u, v ∈ R[t] satisfying deg(u) < deg(g) and deg(v) < deg(f) such that uf + vg = h.
The polynomials u and v are known as the Bézout coefficients.

Proof. The proof follows by applying the Euclidean algorithm. See [34, Chapter 3] for
details.

The Bézout coefficients can be written in matrix form (padding with zeros as appro-

priate) as
(
φd2−1(f) φd1−1(g)

)(vec(u)
vec(v)

)
= vec(h). If the degree of h is known, then one

can solve a linear system of equations to compute h.

Definition 2.6.2 (Sylvester Matrix). Given f, g ∈ R[t] of degrees d1 and d2 respectively,
we define the Sylvester matrix of f and g as

Syl(f, g) =

(
φd2−1(f)T

φd1−1(g)T

)
∈ R(d1+d2)×(d1+d2).

31

The Sylvester matrix is a matrix with a linear structure and is important due to the
fact that it encodes the existence of a GCD between two polynomials. We follow con-
vention by defining the Sylvester matrix with the blocks transposed, as this allows a very
straight forward generalization to more than two polynomials. The Sylvester matrix is also
sometimes referred to as a resultant matrix by some authors.

Definition 2.6.3 (Generalized Sylvester Matrix). Given f = (f1, . . . , fk) ∈ R[t]k with
sequence of degrees deg(f1) ≥ deg(f2) ≥ · · · ≥ deg(fk), we define the generalized Sylvester
matrix of f as

Syl(f) =

φdeg(f2)−1(f1)T

φdeg(f1)−1(f2)T

...
φdeg(f1)−1(fk)

T

 ∈ R(deg(f2)+(k−1)(deg(f1)))×(deg(f1)+deg(f2)).

This definition of generalized Sylvester matrix reduces to the usual Sylvester matrix
when k = 2. It is possible to define a smaller matrix that encodes the same information,
however this is not useful for our purposes since these matrices do not allow higher degree
coefficients to be perturbed. This definition is much more amenable to optimization prob-
lems and mathematical analysis. The results from the usual Sylvester matrix hold for the
generalized one with some minor modifications.

Lemma 2.6.4. Let f, g ∈ R[t], then

dim(ker(Syl(f, g))) = deg(gcd(f, g)).

Proof. The proof follows by applying the Euclidean algorithm. See [34, Chapter 3] for
details.

This result also holds for the generalized Sylvester matrix when the entries of f have
non-zero leading coefficients.

Lemma 2.6.5 ([75]). If the Sylvester matrix is triangularized using only row operations,
then the last (highest-index) non-zero row of Syl contains the coefficients of the polynomial
GCD.

The Sylvester matrix allows one to use techniques from numerical linear algebra to
approach a polynomial problem, and generalized versions of this matrix for several poly-
nomials will be discussed later. In several instances QR factoring the Sylvester matrix will
provide a robust approximation of the GCD of two or more polynomials [22].

32

Definition 2.6.6 (Primitive Matrix Polynomial). We say that A ∈ R[t]n×m is primitive
if the GCD of all entries are relatively prime.

We say that A is approximately primitive if A if the distance to a matrix polynomial
that is not primitive is reasonably large.

When we seek “primitive” solutions to problems in a floating point enviroment, we
almost always mean “approximately primitive”, because these solutions (or approximations
to solutions) are much better behaved.

2.6.2 Approximate Greatest Common Divisor Problems

Computing the GCD of two (or more) polynomials is known to be an ill-posed problem
numerically, in the sense that if gcd(f, g) is non-trivial (i.e. deg(gcd(f, g)) ≥ 1) then the
perturbed problem gcd(f + ∆f, g + ∆g) will produce a trivial answer with probability 1.

The first attempts at polynomial GCD with floating point arithmetic [96] generally tried
to use the Euclidean algorithm in an intelligent way, which unfortunately is highly unstable.
Our view of approximate GCD is more modern, in that we look at the problem of given f
and g, compute a “nearby” f̃ and g̃ such that gcd(f̃ , g̃) is non-trivial and ‖f − f̃‖+‖g − g̃‖
is sufficiently small or minimized for a reasonable ‖ · ‖. These type of problems are known
as “approximate GCD” problems, and several different views and perspectives exist. Some
authors view them as a root perturbation problem, and others view the problem strictly in
the coefficients (both are equivalent if the residual to the problem is zero, i.e. gcd(f, g) 6= 1
they both approximate the exact GCD). The root perturbation view does not make sense in
our domain of computation since we work on coefficients, and we will ignore it henceforth.

For the most part, the theory of polynomial approximate GCD is similar if we take
R = C or R = R. If an explicit difference occurs, then we will emphasize this. Several
results with matrix polynomials rely either directly or indirectly on GCD computations.

There are several variations of the approximate GCD problem, but we focus on the
following versions.

Problem 2.6.7 (Weak Approximate GCD Problem). Given f, g ∈ R[t] and dh > 0, find

f̃ , g̃ ∈ R[t] with deg(f̃) ≤ deg(f) and deg(g̃) ≤ deg(g) such that

‖f − f̃‖
2

2 + ‖g − g̃‖2
2

is “adequately small” and deg(gcd(f̃ , g̃)) ≥ dh.

33

In plain language, given a pair of polynomials, find a nearby pair of polynomials of the
same or lower degree that have a non-trivial GCD of prescribed degree. This is relaxed
from the more strict versions of the problem, since we need:

1. The distance to be “adequately small” and not “minimal”, and

2. We prescribe the degree of the divisor.

In practice dh will be 1 or 2 for R = R since there will always be a linear or irreducible
quadratic divisor. For the case of R = C, we can generally take dh = 1. For practical
purposes, QR factorization [22] and the SVD [21] are adequate to solve this problem if the
residual is close to zero.

This version of approximate GCD is well suited-towards optimization algorithms where
we need an initial guess or just need an upper bound on a problem to be adequately small.
It is useful to infer the degree of a primitive vector of polynomials, or to normalize a vector
of polynomials so that it is primitive.

Problem 2.6.8 (Strong Approximate GCD Problem). Given f, g ∈ R[t] find f̃ , g̃ ∈ R[t]

with deg(f̃) ≤ deg(f) and deg(g̃) ≤ deg(g) such that

‖f − f̃‖
2

2 + ‖g − g̃‖2
2

is minimized and deg(gcd(f̃ , g̃)) ≥ 1.

There is a polynomial-time solution to this problem due to [72] that relies on a modified
version of variable projection and bivariate polynomial root finding. For R = C there will
always be a degree one divisor and for R = R there will be a degree one or two divisor. The
degrees of the divisor can be forced to be higher, but the computation time is no longer
polynomial.

Related versions to the strong Approximate GCD problem [112] is to seek a local
solution to the unconstrained optimization problem

min
f∗,g∗,h

‖f − f ∗h‖2
2 + ‖g − g∗h‖2

2, (2.1)

where h is normalized to be monic (leading coefficient is 1) and proceed to use a Gauss-
Newton method to obtain a local minimizer to the problem, using the SVD to seed an
initial guess. Note that by making h monic, the degree of the divisor is prescribed. This
is a practical compromise between the Strong and Weak Approximate GCD problems.

34

A modified version I presented in [35, 36] originally developed for Ore Polynomials, that
uses Newton’s method for unconstrained optimization obtains a rate of convergence that
is quadratic when the residual is sufficiently small. The work [36] also provides a sufficient
condition for the minimization problem (2.1) to have a regular solution, as the problem in
question is known to have irregular solutions. We postpone the discussion to Chapter 5 on
how to deal with instances with irregular solutions to the approximate GCD problems.

35

Chapter 3

Structured Lower Rank
Approximations of Matrix
Polynomials

This chapter discusses some problems in Structured Lower Rank Approximations (SLRA)
of matrix polynomials. This chapter is heavily based on the conference paper [38] and a
manuscript of the journal paper [37].

The goal of this chapter is to derive an algorithm that converges with a quadratic
rate of convergence to a rank n− r matrix polynomial with a suitable initial guess under
some normalization assumptions. We will also discuss numerical algorithms for matrix
polynomial kernel computation. Computing and normalizing the kernel is a key step in
the algorithms in this chapter.

3.1 Introduction

Matrix polynomials appear in many areas of computational algebra, control systems theory,
differential equations, and mechanics. The algebra of matrix polynomials is typically de-
scribed assuming that the individual polynomial coefficients come from an exact arithmetic
domain. However, in the case of applications these coefficients typically have numeric co-
efficients, usually real or complex numbers. As such, arithmetic can have numerical errors
and algorithms are prone to numerical instability.

36

Numerical errors have an impact, for example, in determining the rank of a matrix
polynomial with floating point coefficients. In an exact setting determining the rank or
determinant of a matrix polynomial is straightforward, and efficient procedures are avail-
able, for example from [102]. However, in a numeric environment, a matrix polynomial
may appear to have full or high rank while at the same time being close to one having
lower rank. Here “close” is defined naturally under the Frobenius norm on the underlying
coefficient matrices of the matrix polynomial. Rather than computing the rank of the given
matrix polynomial exactly, one can ask how far away it is from one that is rank deficient,
and then to find one at that distance. In the case of matrices with scalar entries this is
a problem solved via the SVD. However, in the case of matrix polynomials no equivalent
rank revealing factorization has thus far been available.

In this chapter we consider the problem of computing the nearest matrix polynomial
to an input matrix polynomial in R[t]m×n, n ≤ m having a kernel with rank at most a
specified value r. More precisely, given an integer r and an A ∈ R[t]m×n of full rank,
we want to compute ∆A = A∆ ⊆ Rmn(d+1), such that under “reasonable” structured
perturbation function ∆(·) : Rmn(d+1) → R[t]m×n we have that A + ∆(A∆) has rank at
most n− r and ‖A∆‖F = ‖∆A‖F is (locally) minimized. Although we primarily consider
real valued problems in this thesis, ∆(·) generalizes in the obvious way for complex valued
problems.

Definition 3.1.1 (Structured Perturbation). For ease of readability, we will slightly abuse

notation. We will write ∆(A∆) = ∆̃A to denote the structured perturbation of A and
use ∆A to denote unstructured perturbations to A.

For the purpose of performing calculus on matrix-polynomial valued functions, when
we write vec(∆A) we are treating ∆A as a vector of variables with at most mn(d +
1) components. We can always relate the derivatives of structured perturbations to the
unstructured case by applying the chain rule, so it is usually adequate to study the calculus
of unstructured perturbations. Under the linear and affine structure assumptions, the
required structured derivatives can be computed once, as the transformation Jacobian
matrices will be constant.

Note that in the case of unstructured perturbations it is largely irrelevant if we treat
∆A ∈ R[t]m×n as a matrix polynomial of degree d or as a vector ofmn(d+1) variables, since
the two are isomorphic. Furthermore, vectorizing the matrix polynomial yields a vector
of the variables, further justifying this decision and making the vector space isomorphism
explicit.

37

In other words, the problem is compute a local minimizer to

min ‖∆A‖F subject to

{
(A + ∆̃A)B = 0,

rank(B) = r.
.

In the case where n− r is one less than the row or column size then this is the problem of
finding the nearest matrix polynomial which is singular.

In the problems we consider, we generally assume that ∆̃A ∈ R[t]m×n has independent

entries, satisfies ‖∆A‖F = ‖∆̃A‖F and is such that one of the following holds:

1. deg(∆̃A) ≤ deg(A), that is the degree of the matrix polynomial does not increase,

2. deg(∆̃Aij) ≤ degAij, that is the degrees of individual entries do not increase, and

3. ∆̃Aij has the same support as Aij, that is lower-order zero terms of A are not
perturbed.

These are all linear perturbation structures that are unstructured except that they do not
allow zero entries to be perturbed. Each perturbation structure is suitable in different
contexts of computation. The first perturbation structure where degrees do not increase
is the most generic and natural to consider. However, if A has many coefficients that
are zero, then perturbing them to be small non-zero entries may not make sense in the
context of the problem. Furthermore, if A is reasonably sparse or consists of sparse
polynomials, it may be desirable to preserve this sparsity in some way, in which the other
two coefficient perturbation structures may be more desirable. Of course other structures
may be defined where ‖∆A‖F 6= ‖∆̃A‖F , which would correspond to some entries being
directly or indirectly weighted. This is done later in Chapter 6 with a special type of
Sylvester matrix.

Example 3.1.2. Consider the matrix polynomial

A =

(
t+ 1 1
t 0

)
∈ R[t]2×2.

If we choose ∆(·) to preserve the support of A then

∆support(∆A) =

(
∆A111t+ ∆A110 ∆A120

∆A211t 0

)
.

38

Similarly, if we choose ∆(·) to preserve the degree of each entry of A then

∆entry(∆A) =

(
∆A111t+ ∆A110 ∆A120

∆A211t+ ∆A210 0

)
.

Finally, if we choose ∆(·) to preserve the degree of A then

∆degree(∆A) =

(
∆A111t+ ∆A110 ∆A221t+ ∆A120

∆A211t+ ∆A210 ∆A221t+ ∆A220

)
.

The main results in this chapter center on the characterization of the geometry of min-
imal solutions. We show that minimal solutions exist under linear perturbation structures,
that is, for a given r there exists a ∆A of minimal norm such that A + ∆̃A has rank at
most n − r and meets the required constraints on perturbed coefficients. In addition, we
show that minimal solutions are isolated and are surrounded by a non-trivial open neigh-
borhood of non-minimal solutions. Regularity and second-order sufficiency conditions are
generically satisfied. A restricted version of the problem always satisfies these conditions
under unstructured perturbation structures that preserve zero-coefficients, the support of
entries or the degree of the matrix polynomial. Finally we show that we can also generalize
several of our results to the lower rank approximation instance of matrix polynomials gen-
erated by an affine structure. Thus, these results generalize to low-rank approximations of
structured matrices by taking the degree to be zero.

We demonstrate efficient algorithms for computing our minimal lower rank approxi-
mations. That is, for an input matrix polynomial A ∈ R[t]m×n (with prescribed affine
structure) sufficiently close to a singular matrix polynomial, we give iterative schemes
which converges to a rank a deficient matrix polynomial at minimal distance, at a prov-
ably quadratic rate of convergence. We further generalize the iterative schemes so that
they converge (with a suitable initial guess) to a matrix polynomial with a kernel of di-
mension at least r, at a (local) minimal distance and a provable local quadratic rate of
convergence with a suitable initial guess. Finally, we also discuss a Maple implementation
which demonstrates the convergence and numerical robustness of our iterative schemes.

3.1.1 Outline

This chapter has the following objectives:

1. Review existing algorithms for computing the kernel of a matrix polynomial and how
to modify them to obtain an initial guess to an optimization problem.

39

2. Show that lower rank approximations of matrix polynomials exist and the problem
is generally well-posed.

3. Analyze some geometric properties of solutions to the problem by examining a con-
strained rank factorization formulation via Lagrange multipliers. A closed-form ex-
pression for the intermediate quantities appearing in the rank factorization are de-
rived and used to show that Lagrange multipliers exist and how to derive an iterative
algorithm with rapid local convergence.

4. Use the existence and isolation of solutions to build an iterative algorithm based
on solving the KKT conditions. Special attention is paid to the generic and non-
generic instances of the problem and how to ensure that the problem is posed so
that Lagrange multipliers exist. The method is shown to converge with a rate of
convergence that is super linear of order at least two under normalization assumptions
via a minimal embedding of the problem.

5. Discuss an implementation in Maple with examples comparing our techniques to
examples the existing literature with an affine structure.

6. The chapter concludes with a discussion about the problem and some directions for
future research.

3.1.2 Previous research

Much of the work in this area has often been done under the heading of matrix pencils.
See [44] for an excellent overview. Non-singular (full rank) square matrix polynomials are
sometimes referred to as regular matrix polynomials.

In the case of finding the nearest singular matrix pencil this problem was studied
in [38]. Previous to that this problem was posed for linear matrix pencils in [18] and
followed up in [17]. The nearest singular matrix polynomial relates to the stability of
polynomial eigenvalue problems, linear time invariant systems and differential-algebraic
equations studied subsequently in [50, 74]. For non-linear matrix polynomials/pencils,
previous works rely on embedding a non-linear (degree greater than one) matrix polynomial
into a linear matrix polynomial of much higher order. Theorem 1.1 in Section 7.2 of [44]
shows that any regular A ∈ R[t]n×n of degree d, is equivalent (in terms of the spectrum and
minimal kernel invariants) to a linear matrix polynomial P = tP1−P0, for P0, P1 ∈ Rnd×nd.
However, this equivalence is (obviously) not an isomorphism, nor is it distance preserving1.

1The equivalence mapping is not surjective.

40

Hence a nearby singular matrix polynomial to P ∈ R[t]nd×nd (even when constrained to
a degree one perturbation) almost certainly does not correspond to a nearby singular
matrix polynomial to A ∈ R[t]n×n. To overcome this issue, one would need to look at
perturbations that preserve the affine structure of the linearization (i.e. same companion or
other structure), which is computing a nearby matrix polynomial with an affine structure.

In the context of computer algebra the notion of symbolic-numeric algorithms for poly-
nomials has been an active area of research for a number of years, and the general frame-
work of finding nearby instances with a desired algebraic property is being thoroughly ex-
plored. Closest to our work here is work on approximate Greatest Common Divisors (GCD)
[5, 6, 21], multivariate polynomial factorizations [66], and especially the optimization-based
approaches employing the Structured Total Least Norm algorithm [68, 69, 77, 113] and Rie-
mannian SVD [13]. More recently, we have explored computing the approximate GCRD
of (non-commutative) differential polynomials [35, 36] and resolve similar issues.

The computer algebra community has made impressive progress on fast, exact algo-
rithms for matrix polynomials, including nearly optimal algorithms for computing ranks,
factorizations and various normal forms; see [67] and references therein for a recent overview.
Part of our goal in this current chapter is establish a basis for extending the reach of these
symbolic techniques to matrices of polynomials with floating point coefficients.

In a more general setting our problem can be formulated as a Structured Low Rank
Approximation (SLRA) problem. A popular method to solve SLRA problems is the Struc-
tured Total Least Norm (STLN) approach [92, 93]. These are iterative methods and in
general their convergence to stationary points is linear (first-order), rather than quadratic,
unless additional assumptions are made. In the event STLN converges to a solution, there
may be other solutions arbitrarily nearby, as second-order sufficient conditions may not
hold (STLN does not account for the curvature of the entire problem). The SLRA prob-
lem is a non-linear least squares problem and accordingly other techniques such as the
Restricted and Riemannian SVD [23, 24, 25] provide general tools for solving such prob-
lems. Other heuristic tools applicable to our problem include variable projection [45, 46]
and Newton’s method [1]. We would expect these methods to perform very poorly in our
case, as one can expect problems with large residuals to perform poorly and the rational
function arising from variable projection can be too costly to deal with for modestly sized
problems. The problem may also be considered as optimization on a manifold [3], however
we do not explicitly consider this approach. For a survey of affinely structured low-rank
approximation, see [85, 86].

Other methods for structured low-rank approximation involve the family of lift and
project algorithms, with the best known being Cadzow’s algorithm [19]. More recently

41

[97] gives a sequence of alternating projections that provably converge quadratically to a
fixed point. However, lift and project algorithms do not generally satisfy necessary first-
order optimality conditions. While they may converge (quickly) to a fixed point, there is
no guarantee that the fixed point is an optimal solution, though it is usually quite good.
Several alternating optimization problems use a block Gauss-Seidel-like method, which can
obtain suitable initial guesses for other optimization algorithms after a few iterations [49].
In any case, for specific problems such as ours, understanding the geometry of the minimal
solutions (and hence the well-posedness of the problem) is key to effective algorithms for
their computation.

SLRA problems are in general NP-hard to solve (i.e. approximate a solution over Q
to arbitrarily high precision), see for example [14, 91]. In general the hardness stems from
determining if a bi-linear system of equations admits a non-trivial solution. In the instance
of classical matrix polynomials it is trivial to construct feasible points since the underlying
scalar matrix problem is linearly structured. This presents a gap from the theory and
practice, which we do not attempt to answer.

In the same mindset, the scalar matrix problems of weighted lower rank approximations
and non-negative approximate matrix factorizations are similar in spirit to the problems
that we approach.

Weighted lower rank approximations seek a lower rank approximation of a matrix where
some entries are weighted differently when perturbed by the objective function [98]. In our
problem the affine structure can implicitly encode weights of various entries, namely en-
tries that do not change have a weight of “infinity”, i.e. the penalty for perturbing them
is infinitely large. Conversely, it is also possible to leave some entries zero-weighted or un-
weighted, meaning their value has no impact on the objective function of the minimization
problem. We generally do not consider zero-weighted instances of the problem, however
the ideas presented here can be modified so that they are applicable. Instances with zero-
weighted terms are closely related to matrix completion problems (see [20]), which we do
not consider (we are not interested in minimizing the rank, we are interested in minimizing
some perturbation, backwards error or other suitable loss function).

The non-negative matrix factorization problem in the most straightforward form [108]
seeks a lower-rank approximation of a matrix, subject to the inequality constraints that
the matrix factors into a product of two factors such that the entries of the factors are
non-negative, i.e. A + ∆A = UV where Uij ≥ 0 and Vij ≥ 0. In general this problem is
NP hard to solve under reasonable models of computation [107]. We deal exclusively with
equality constraints, and in a local sense, non-negative matrix factorization is an equality
constrained problem thus there is some similarity between the two problems.

42

Another similarity between these problems is that they are amenable to block coor-
dinate descent techniques if a matrix-factorization (possibly with inequality or inequality
constraints) approach is used. We briefly study matrix factorization techniques for com-
puting lower-rank approximations of matrix polynomials to prove some theoretical results.
The drawback of equality constrained factorization problems is that they do not immedi-
ately guarantee a rank at most approximation, whereas they do for their scalar cousins of
weighted and non-negative matrix factorization. Another issue with rank factorizations, is
that the dimension of the problem is output sensitive. The output size of several matrix
polynomial problems (such as kernel basis computation) can be an order of magnitude
larger than the input. This translates into algorithms with poor complexity in terms of
the number of FLOPs.

Likewise, one could use the results of [43] on a modified formulation of our problems in
lieu of [14, 91] to argue that computing the nearest affinely structured matrix polynomial
is an NP hard problem under reasonable models of computation. As noted earlier, we
generally stay away from weighted lower-rank approximation as this is not the primary
concern for us. To see the equivalence, one notes that if an entry of A is not permitted to
change then the entry has a weight of “infinity”. Our problem can be slightly modified to
accommodate an entry that has a weight of zero by ignoring variables pertaining to it (or
by assigning an adequately low weight to other entries that may be perturbed, analogous
to a penalty method).

Most of our contributions apply to matrix polynomials with an affine structure provided
that feasible points exist, that is, singular matrix polynomials with a prescribed structure
exist, which is NP-hard in general. In particular, in the degree zero case our algorithms
and techniques apply to affine SLRA problems. Thus, computing the nearest (affinely
structured) matrix polynomial is equivalent to SLRA problems with an affine structure.

While the contributions in this chapter focus on local properties of SLRA, the local
properties also imply global results. The Sum of Squares (SOS) hierarchy is a global frame-
work for studying polynomial optimization problems subject to polynomial constraints [76].
The SOS optimization tools have found experimental success in computing structured dis-
tances to singularity and extracting minimizers when the solutions are locally unique, see
for example [54]. In general the SOS hierarchy converges for an infinite order of relaxations,
but for several problems the relaxations converge after a finite order. The finite conver-
gence is in polynomial time with respect to the input and the number of relaxations. In
particular, this finite convergence was observed for affine SLRA problems (notably, com-
puting the nearest singular structured matrix) in [54] but little theory was provided to
indicate the reason why. The later work of [88] shows that, under regularity and second-
order sufficiency conditions, finite convergence always occurs and that it is possible to

43

extract a minimal solution. In our contributions we prove that second-order sufficiency
and regularity conditions hold generically (and if they do not, then they will hold on a
restricted subset of the problem) for computing the nearest singular matrix polynomial.
The corollary to this is that the SOS hierarchy will have finite convergence for several affine
SLRA problems if a solution exists, such as computing the distance of the nearest rank
deficient matrix polynomial. If the embedding is minimal then a minimizer may be ex-
tracted as well. Another useful feature of the SOS hierarchy is even if convergence cannot
be certified, a structured lower-bound is obtained.

3.2 Approximate Kernel Computation

A fundamental sub-problem in this thesis is computing a basis for the kernel of a matrix
polynomial using floating point arithmetic. We will provide a brief survey of some exist-
ing results and discuss some variations, which may or may not be new. In general, the
techniques described in a floating point setting will compute the kernel of a nearby matrix
polynomial (that is, they are backwards stable). The emphasis on this section is not being
fast; it is being numerically stable and remaining polynomial-time.

Most symbolic polynomial linear algebra algorithms rely on GCD computations either
directly or indirectly at some level. In a floating point enviroment, round-off and other
floating point errors prevent one from accurately computing the exact GCD of two or more
polynomials. The inability to compute GCDs correctly results in large degree swell in
underlying expressions when performing variants of Gaussian elimination. Replacing exact
GCD computations with an approximate GCD computation is generally not advised, as
during intermediate steps of various algorithms this introduces errors that will accumulate
throughout subsequent computations and can lead to unreliable results. The computed
solution could have a large residual in a least squares sense, or worse, have the wrong
degree due to the mishandling of a GCD at or near infinity. The fundamental issue is that
Gaussian elimination with polynomials is essentially performing the Euclidean algorithm
at some level, so any technique based on Gaussian elimination will not be robust to noise
or errors in the data. Other symbolic methods that do not rely on Gaussian elimination
may not suffer from these drawbacks, but it is not clear that they provide a solution to the
underlying least squares problem. Furthermore, to ensure that the computed kernel vectors
are minimal, some type of approximate GCD needs to be performed. We will generally
not consider exact symbolic methods, but in some instances they may be applicable.

The notion of approximate primitivity is important to normalize solutions to opti-
mization problems to ensure that they are unique. To obtain solutions to Ax = 0 that

44

are approximately primitive one can compute ker(Φnd(A)) using the SVD. One can use
polynomial approximate GCD and least squares division to extract an approximate kernel
vector that is relatively prime. The procedure is backwards stable. Alternatively, one can
reduce the degree of the entries of kernel vectors until there is only a single one left, i.e.
compute ker(Φµ(A)) for different values of µ, by basically performing a binary search on
the degree of the entries of a kernel vector of minimal degree.

3.2.1 Rank Computation

A problem related to computing the kernel of a matrix polynomial is determining if a matrix
polynomial is rank deficient. Our emphasis is on numerical methods for this problem, as
we are more interested in the two related problems:

1. Is the matrix polynomial A nearby a matrix polynomial that is rank deficient?

2. Can we infer the rank of a nearby matrix polynomial that is rank deficient?

The issue with exact algorithms is that generically all matrix polynomials have full rank,
so a rank deficient matrix polynomial that is perturbed by an infinitesimal amount will
have full rank. Despite exact quasi-optimal algorithms existing, they are generally not
numerically robust. Most algorithms that compute the rank of a matrix polynomial can
also be used to extract a kernel basis as well or can be modified accordingly to do this.

Formally, there are several definitions of the rank of a matrix polynomial A ∈ R[t]m×n,
all of which are equivalent. The two most useful characterizations to us are to de-
fine the rank as the number of linearly independent rows or columns over R[t], or as
maxω∈C{rank(A(ω))}, which is the maximum rank of A when evaluated at a generic
point.

Exact Algorithms for Rank Computation

In an exact setting [102], we can compute the rank of a matrix polynomial in Õ(n3d)
operations over R. In the bit complexity model of computation, the bit complexity is
polynomial in the input size (the bit complexity of the input is constant for our purposes,
since it is always a “word”). As discussed previously, these methods are not generally
suitable for numerical use.

45

Rank via Interpolation

Computing the rank of a matrix polynomial numerically is straight forward and can be
done efficiently using interpolation and the SVD. A ∈ R[t]n×n is rank deficient if at nd+ 1
evaluation points {ωj}ndj=0, A(ωj) has reduced rank. In practice, a single evaluation point
is adequate, so long as ωj is not a zero of det(A). If A has full rank, then this is verified
with high probability by using a single random evaluation point.

We can perform the evaluation quickly by choosing the ωj to be uniformly distributed
on the unit circle then using the Fast Fourier Transform (FFT). Thus computing the

rank of a matrix polynomial can be done in Õ(n3 + n2d) FLOPs with high probability
(the probability of success is 1 since there are finitely many eigenvalues and uncountably

infinitely many possible evaluation points) and Õ(n4d) FLOPs deterministically in the
worst case. It is straightforward to compute a kernel vector from the images, as there is
always some b ∈ ker(A) such that deg(b) ≤ (n− 1)d, although we do not investigate this.

Rank via Block Convolution Matrices

Another technique to compute the rank is via block convolution matrices.

Lemma 3.2.1 ([55]). Let A ∈ R[t]m×n. Let us suppose that A =
(
A1 · · ·An

)
, where

Aj ∈ R[t]m×1. Let µL =
∑n

j=1 deg(Aj)−min1≤j≤n deg(Aj).

Additionally, let us assume that AT =
(
A ′1 · · · A ′m

)
where A ′j ∈ R[t]n×1. Let µR =∑m

j=1 deg(A ′j)−min1≤j≤m deg(A ′j).

Now suppose that µ = min{µL, µR}. Then the rank of A is given by

rank(A) = min{rank(Φµ(A))− rank(Φµ−1(A)), rank(Φµ(AT)− rank(Φµ−1(AT))}.

Informally, the difference in rank between two block convolution matrices yields the
rank because there exists a kernel basis where vectors are a cyclic shift of each other, and
increasing the dimension of the block convolution matrix results in r additional kernel
vectors, where A has rank n− r. The degree bounds are needed to account for the highest
possible degree of the determinant. From this result it is straightforward to compute a
kernel basis in O(n6d3) FLOPs.

The degree bound on the kernel of (n−r)d is tight in some settings, but in general, it is
not the tightest possible. Regardless, the cost of computing ker(Φµ(A)) is O(n6d3) FLOPs
in the worst case. The advantage of this method over interpolation, is that interpolation

46

methods also rely on the conditioning of a Vandermonde matrix or the computational cost
of complex arithmetic to stabilize the Vandermonde matrices.

If A ∈ R[t]n×n has degree d, then the matrix Φµ(A) is similar to the block-Toeplitz
matrix [114]

ΦTop
µ (A) =

Ad
Ad−1 Ad

... Ad−1
. . .

A0
...

. . . Ad
A0 Ad−1

. . .
...
A0

∈ Rn(µ+d+1)×n(µ+1),

and satisfies the same spectral properties as Φµ(A) since it differs only by row and column
permutations. In fact, if we write b = b1 + tbj + · · ·+ tµbµ, where bj ∈ Rn×1 then we have

ΦTop
µ (A)

bµ
bµ−1

...
b0

 = 0 ⇐⇒ Ab = 0 ⇐⇒ Φµ(A) vec(b) = 0.

Now it is evident that there exist permutation matrices Prow and Pcol such that

ProwΦTop
µ (A)Pcol = Φµ(A).

Thus for matrix analysis purposes the two matrices are equivalent, as they have the same
rank and spectral information. Accordingly, most of the other properties hold as well.

By performing the LQ decomposition (without pivoting) on the columns of ΦTop
µ , it is

possible to obtain a kernel basis in O(n3d deg(ker(A))3) FLOPs, which is O(n6d4) FLOPs
in the worst case. It is argued [114] that the worst case is not typical in practical problems,
and the performance is closer to O(n3d) FLOPs in practice. Matrices involving a subset
of the rows and columns of ΦTop

µ (A) appear in determining the Smith-McMillan form
of rational functions [105] and accordingly can be used to obtain both finite and infinite
spectral information from an associated matrix pencil in the instance of matrix polynomials.
A modified LQ decomposition in this instance yields a kernel vector of minimal degree.

47

Matrix Pencil Methods

Another technique to compute the rank of a matrix polynomial is to linearize it into a pen-
cil. This can be accomplished using the companion linearization or any other linearization.
Rank-revealing factorizations, such as the QZ decomposition, can give us rank information
in O(n3d3) FLOPs or the well known “pencil method” can be used [8].

3.2.2 Kernel Basis via Block Convolution

A family of techniques to compute a kernel basis involve block convolution matrices. Block
convolution matrices have the drawback that extracting rank information is not immediate,
however it is straightforward to obtain a basis for the kernel of A from Φnd(A). Computing
ker(Φnd(A)) is done easily by the SVD or QR factorization (in O(n6d3) FLOPs). Thus,
the problem is reduced to given some kernel K = ker(Φnd(A)), compute K = ker(A) from
the information in K. Note that any technique that triangularizes A can be used to give
us a kernel basis, although these techniques may not be stable (due to a lack of pivoting).
Additionally, using the smallest singular vectors from the SVD is a numerically robust way
to compute an initial guess for our optimization problems.

Extracting a Primitive Kernel Vector

Computing a single kernel vector that is primitive is straightforward using block convolu-
tion matrices. One can triangularize K using orthogonal (or unitary if R = C) transforma-
tions (i.e. via Householder reflection on the columns of K, which is essentially a modified
RQ or LQ factorization) into a quasi-triangular form that resembles

KQT =

∗
...

...
∗ · · · ∗

∗ ∗ · · · ∗
∗ ∗ · · · ∗
...

... · · · ∗
∗ ∗ · · · ∗

︸ ︷︷ ︸

KL

or

∗ ∗ · · · ∗
...

... · · · ...
∗ ∗ · · · ∗
∗ ∗ · · · ∗
...

...
...

∗ ∗
∗

︸ ︷︷ ︸

KR

.

The first (left-most) column of KL when de-vectorized will be tkbL where bL is a primitive
kernel vector coming from a Column Reduced Echelon Form (CREF) basis of K and k =

48

µ−deg(bL), where µ is an upper-bound for the degree of the kernel (i.e. µ = nd generically).
It is straightforward to divide by tk to obtain the desired kernel vector. The last (right-
most) column of KR when de-vectorized will be bR where bR is a primitive kernel vector
from a CREF basis of K. Note that one could triangularize K using column operations to
obtain similar vectors (i.e. Gaussian elimination with some form of pivoting), but in our
implementation we use orthogonal (unitary) transformations for stability purposes.

Computing a Minimal Embedding

The kernel vectors bL and bR are special because they can be represented with the minimum
number of (polynomial) equations to ensure that AbR = 0 or AbL = 0, since the high or
low index entries are forced to be zero (thus one assumes several polynomial entries of b
are known to be zero). For the purpose of optimization algorithms, kernel vectors of the
form bR or bL satisfy regularity conditions and are locally unique (once higher index or
higher order degree coefficients are constrained to be zero), thus making them desirable.

We note that

bL =

0
...
0

bpivot
bpivot+1

...
bn

and bR =

b1
...

bpivot−1

bpivot
0
...
0

.

The factorization reveals the index of bpivot (i.e. what entry is the pivot) and the degree
of bpivot. Accounting for the lower/higher index terms that are zero, this is the mini-
mal number of polynomial equations needed to represent Ab = 0 (which is important if
rank(A) ≤ n− 2). If we force bpivot to not increase in degree, then the vector will remain
primitive if perturbed by a reasonable amount, and the degrees of the other entries are
implicitly upper bounded as, the degree of the pivot reveals the degree of each entry. This
is a constructive argument for writing Ab = 0 using the minimum number of polynomial
equations, thus useful for obtaining a normalization. Note that bL and bR need not agree,
and in practice they will be different if there are at least two kernel vectors. If we delete
columns of Φµ(A) (to obtain a matrix Φmin

µ (A)) that correspond to the zero rows of bL or
bR, then these will be the only possible kernel vectors for ker(Φmin

µ (A)). Thus the vector
b is embedded into a ground field linear algebra problem with the minimum number of
equations, which we will sometimes call a minimal embedding .

49

This computation will cost roughly O(n6d3) FLOPs in the worst case. Using approx-
imate GCD techniques, one can verify that the computed kernel vector is numerically
primitive or enforce this.

The triangularization is sufficient to obtain a kernel vector that is “locally unique” in a
sense that there are no other kernel vectors with the same support (coefficient structure).
If another kernel vector was chosen, call it b, then we could (without loss of generality)
have that b + bRε is another kernel vector that is arbitrarily close with the same degree
structure. In fact, we can always find a kernel vector b of the form (1 + εt)bR where this
occurs. This lack of “local uniqueness” is a hindrance to applying optimization methods
on this formulation of the problem.

Another notable advantage of using block convolution matrices is that σmin(Φnd(A))
gives us a lower bound on the distance to a matrix polynomial with a non-trivial kernel,
whereas the interpolation technique does not readily yield a nice lower bound. Using the
smallest singular vector of Φnd(A) or Φ(n−1)d(A) is a way to obtain an initial guess for an
optimization routine to compute a nearby matrix polynomial that is singular.

Extracting an Entire Primitive Kernel

While computing a single kernel vector that is primitive (and locally unique) is straight for-
ward, the techniques do not immediately generalize to computing the kernel in an efficient
manner without some care.

Let K1, . . . ,Kr ∈ R[t]n×1 be primitive column vectors forming a basis for K = ker(A)
that are of minimal degree. Furthermore, let dj = deg(Kj) ≤ nd. The matrix

Klin =
(
vec(K1) · · · vec(tnd−d1K1) · · · vec(Kr) vec(tKr) · · · vec(tnd−drKr)

)
has a Toeplitz-block structure and Klin = ker(Φnd(A)). Using a variant of Gaussian
elimination, one can transform K into Klin and extract a kernel basis in this manner. If
one knew that A has rank n − r, or more generally deg(ker(A)) = µ, via some other
means, then an analogous routine could be performed on Φµ(A). Typically Φnd(A) is
computed, but the ideas generalize in the obvious way for other degree bounds.

50

Computing a Minimal Kernel Embedding

For example it is useful for normalization purposes if K has primitive columns and is in a
CREF, i.e. we can write when K has a generic rank profile,

KCREF =

∗
. . .

∗
∗ · · · ∗
... · · · ...
∗ · · · ∗

or

∗ · · · ∗
... · · · ...
∗ · · · ∗
∗

. . .

∗

,

or in the case of a less generic form the CREF pivots would be in a different location.
Note that the entries of KCREF are polynomial. The CREF is unique up to scaling from a
unit over R[t], so ensuring each column is primitive makes these (or similar) forms unique
(up to a non-zero constant from R). Such a normalization can lead to coefficient or degree
growth, so instead we can look at ensuring that the vectorized form of K is in a CREF
(over R). If we assume kernel vectors have this form, then we can can delete columns of
Φµ(A) that correspond to entries forced to be zero and proceed in an analogous way to
minimally embed each column in a matrix .

One could reduce K into CREF (or some analogous form where pivots are not 1, but
normalized reasonably) to overcome this issue, however this is not as stable as RQ/LQ
factoring. The important aspect is that the kernel vectors are linearly independent, and
by adding a constraint on the kernel that it is (locally) in CREF, this ensures uniqueness
of the kernel (up to scaling factors). This is done by forcing some coefficients of the kernel
to be zero.

Regardless of the technique used to compute a primitive kernel basis (note that a kernel
basis of minimal degree must be primitive), assuming one can compute Klin efficiently and
robustly, we can normalize

Kmin =
(
vec(K1) · · · vec(Kr)

)
∈ Rn(µ+1)×r

into a CREF over R (i.e. pivots have unit norm, columns have unit norm or something
similar) that each column, when de-vectorized, remains primitive. The CREF constraints
imply that the de-vectorized kernel Kmin remains locally unique when coefficients are
perturbed. In a local sense the constraints are not “deformed” under this normalization,
and linear independence of kernel vectors is maintained. Now, we can minimally embed

51

each vector of Kmin into Φµ(A) by deleting columns corresponding to zero entries. If we
do this r times, then we will have r matrices with a different kernel vector that is minimally
embedded.

3.2.3 Initial Guesses for Optimization Algorithms

The ideas for computing a kernel basis generalize to obtaining an initial guess for a kernel
basis. If A is sufficiently close to a matrix polynomial of rank n − r then there will be
at least r singular vectors of Φnd(A) that are suitable candidates for an initial guess for a
kernel. If B is an approximate kernel for A built from these singular vectors, then ‖AB‖F
will be reasonably small.

One popular technique for SLRA problems, like this one, is to find the nearest rank
deficient matrix to Φnd(A) and project this to the nearest block convolution matrix. These
type of techniques are known as lift and project or alternating projections, and they will
generally converge (with a linear rate of convergence in the best case typically) to a fixed
point, that need not always be a local minimizer. The kernel basis techniques are required
here to actually verify that the computed initial guess for the kernel satisfies the rank
criteria, so that it can be normalized, or that the initial guess has reasonable prospects to
converge to a kernel with the desired properties.

A technique to obtaining a (nearby) rank deficient matrix polynomial is through lin-
earization and the QZ decomposition. Linearizing a matrix polynomial into a matrix pencil
and zeroing diagonal elements arising from the QZ decomposition (or a Schur decomposi-
tion) will produce a rank deficient matrix polynomial. The issue with the QZ and related
decompositions is that one is almost sure to obtain a matrix with complex coefficients.
Additionally, the nearest (or any nearby) rank deficient matrix pencil (or a lower rank
approximation) is unlikely to preserve the structure of the linearization, thus extracting a
rank deficient matrix polynomial from the pencil may not be possible (or the polynomial
extracted may have no meaning in the context of the problem).

Another technique is to use evaluation and interpolation in conjunction with the SVD.
The idea is to choose nd + 1 distinct evaluation points {ωj}ndj=0 and perturb A(ωj) to
the nearest singular (or rank n − r matrix) via the SVD. Once the singular images are
computed, one computes ∆A(ωj) and then attempts to solve for ∆A in a least squares
sense. The issue here is if complex evaluation points are chosen, then one needs to project
to a real matrix polynomial which will probably have full rank. If real evaluation points
are used, then the images may be ill-conditioned due to multiplication by a Vandermonde
matrix. The procedure can be iterated to improve the quality of the guess, as it’s not

52

expected that A + ∆A will be singular (but it will be relatively close to a singular matrix
polynomial).

3.2.4 Summary of Rank Computing Techniques

We now briefly summarize the discussed techniques for computing the rank of a matrix
polynomial. In Figure 3.1 we note the FLOPs required for computing the rank (but not
the kernel) and whether

• they are numerically stable,

• if a kernel basis can be computed in a numerically stable manner,

• if the kernel basis routine is suitable for generating an initial guess to an optimization
routine and

• if the initial guess is structure preserving.

Figure 3.1: Overview of Rank Computation Techniques

FLOPs Stable Kernel Basis Initial Guess Structure Preserving

Exact Õ(n3d) No No No

Pencil Õ(n3d3) Yes Yes Sometimes No

Interpolation Õ(n4d) Yes Sometimes Sometimes No

Convolution Õ(n6d3) Yes Yes Yes Yes

The interpolation approach is fast but if used for an initial guess it is not structure
preserving with respect to the original problem, and the kernel basis extracted may not
be primitive or be normalized appropriately, requiring additional computational resources.
Additionally, to build an optimization problem using interpolation there are O(rn2d) con-
straints arising from the O(nd) images required.

The block convolution approach is the slowest in terms of the FLOPs required for rank
and kernel operations, but it can be used to obtain a kernel basis in a stable manner.
Furthermore, the kernel algorithms are easily adjusted to obtain an initial guess for an
optimization problem that is structure preserving (alternating least squares or projections

53

for example). Like interpolation, there are O(rn2d) constraints arising from the equation

(A + ∆̃A)B = 0. Given that we prefer to work over R = R instead of R = C, complex
numbers are generally troublesome, but we include the discussion for completeness.

Using a Newton based constrained optimization method, the O(rn2d) constraints imply
a per-iteration cost using standard matrix arithmetic of (r3n6d3) FLOPs. Using a Newton-
like method, the interpolation and block convolution techniques will ultimately have a
comparable per-iteration cost. Given this information, we use the block convolution for-
mulation of the problem, although the interpolation approach is theoretically similar. In
fact Henrion and Šebek [56] show that interpolation techniques and block convolution
techniques are essentially the same, as interpolation techniques work on a permuted block
convolution matrix for several operations.

3.3 Optimization Formulation Setup

Problem 3.3.1 (Lower Rank Approximation of Matrix Polynomials). Given A ∈ R[t]n×n

non-singular of degree d and an integer r ≤ n − 1 determine ∆A ∈ R[t]n
2(d+1)×1, with

∆(·) = ∆entry(·), the structure of preserving the entry wise degree of A, and r linearly
independent vectors {bk}rk=1 with bk ∈ R[t]n×1, such that ‖∆A‖ is (locally) minimized,

subject to the constraint that (A + ∆̃A)bk = 0 and ‖bk‖ = 1.

Note that this is minimizing a convex objective function subject to non-convex con-
straints. However, the equality constraints are linear in each argument. It is still not clear
that Problem 3.3.1 is well-posed in the current form. We will prove that solutions exist,
that is, there is an attainable global minimum value and not an infimum.

In this problem, ∆̃A(·) converts ∆A ∈ Rn2(d+1)×1 into a (possibly padded with zero
entries) matrix polynomial over R with dimension n × n and degree d. Recall that for
unstructured perturbations of degree at most d, we can consider ∆(∆A) = ∆A ∈ R[t]n×n

where ∆A has degree at most d, since ∆ behaves like an identity operator on the coeffi-
cients.

Writing B = (b1, . . . , br) ∈ R[t]n×r, Problem 3.3.1 becomes

min ‖∆A‖2
F subject to

(A + ∆A)B = 0,

rank(B) = r,{
‖bk‖2

2 = 1
}r
k=1

.

54

Lemma 3.3.2. Given a non-singular A ∈ R[t]n×n, and ∆̃A ∈ R[t]n×n such that B =

A + ∆̃A is singular, it is the case that ‖Φnd(∆̃A)‖2 ≥ σmin(Φnd(A)).

Proof. This follows immediately by the SVD.

Lemma 3.3.3. The set of all matrices of rank at most n−r over R[t]n×n of degree at most
d is closed.

Proof. This is a non-technical restatement of the previous lemma.

Theorem 3.3.4 (Existence of Solutions). The minimization posed in Problem 3.3.1 has
an attainable global minimum if 0 ∈ Range(∆(·)), i.e. ∆(·) is a linear structure.

Proof. Let

S =
{
C ∈ R[t]n×n | rankC ≤ n− r ∧ degC ≤ d

}
∩
{
C ∈ R[t]n×n|‖C‖2

F ≤ ‖A‖
2
F

}
.

S is the intersection of a closed and bounded set and a closed set, hence S is closed and
bounded. S is isomorphic to some closed and bounded subset of Euclidean space, hence
by the Heine-Borel theorem, S is compact. To show the set is non-empty, we note that,
by the degree assumption on ∆̃A, ∆̃A = −A is a feasible point independent of rank.

Let C ∈ S then ‖A − C‖2
F = ‖∆A‖2

F is a continuous function over a compact set. By
Weierstrass’ theorem it has an attainable global minimum.

It is important not to over-constrain the problem with a choice of ∆̃A, since otherwise
the feasible set might be empty. Another reasonable choice of ∆(·) which we can handle, is
that the perturbation has the same coefficient structure/support as A, that is, zero terms
in polynomial entries are preserved. As long rank deficient matrices with the prescribed
structure exist, a solution to the optimization problem exists.

We note that this result says nothing about uniqueness or separation of solutions or
any local properties. All that has been shown is that if the perturbations are in the same
space as the input, and one seeks a rank at most approximation, then there is an attainable
global minimum value, i.e. not an infimum. If one wants a minimal solution with the rank
being exactly n− r, then there is no guarantee that there is an attainable global minimum
to Problem 3.3.1.

55

3.4 Rank Factorizations

A natural formulation of the problem that encompasses the rank implicitly is to perform
a rank factorization and write A + ∆̃A = UV ∈ R[t]n×n for U ∈ R[t]n×(n−r) and V ∈
R(t)(n−r)×n. Here UV is subject to some constraints that preserve the structure of ∆̃A (i.e.,
that we do not perturb any coefficients we are not allowed to, that is UV ∈ Range(∆(·)).
This is a non-linear least squares problem. However, solutions are not unique. Indeed, if
Z ∈ R[t](n−r)×(n−r) is unimodular (i.e., det(Z) ∈ R\{0}), then UZ, Z−1V is another rank
n− r factorization, and we obtain an infinite family.

In this section we investigate some theoretical properties of rank factorizations and use
them to derive separation bounds for the objective function. The rank factorization is a
technique suitable for obtaining an initial guess for a Newton-like method.

While normalizing over matrix polynomial rank-factorizations is difficult, it is much eas-
ier to exploit the quasi-distance preserving property of ‖ · ‖F and look at rank-factorizations
of Φnd(A), that do not necessarily correspond to U and V.

Definition 3.4.1 (R-Embedding). We say that Â ∈ RM×N is an R-embedding of
A ∈ R[t]m×n if for B =

(
b1 · · · br

)
∈ R[t]n×r and X ∈ R[t]n×r we have

AB = X ⇐⇒ Â
(
vec(b1) · · · vec(br)

)
=
(
vec(X1) · · · vec(Xr)

)
.

Obviously Φnd(A) is an embedding of A with respect to kernel vectors of A.

3.4.1 Embedded Rank Factorization

Definition 3.4.2. Let µ = nd, M = (µ + d)n, N = nµ and R > 0. A rank factorization

of Φµ(A + ∆̃A) is given by writing Φµ(A + ∆̃A) = UV where U ∈ RM×R and V ∈ RR×N

are arbitrary (unstructured) matrices over R.

If A is rank deficient, then Φµ(A) will be rank deficient, and all rank deficient matrices
admit a rank factorization. The matrix V implicitly parametrizes the kernel. Our goal is
to find U, V with appropriate dimensions which minimize

‖Φµ(∆A)‖F = ‖Φµ(A)− UV ‖F

and such that UV has the correct Toeplitz-block and coefficient structure (i.e., it is an
R-embedding of a matrix polynomial).

56

This is a problem with a non-convex objective function (that is convex in each argu-
ment) and non-convex constraints. We note that U and V have no direct connection with
U and V discussed earlier.

One may always write Φµ(A + ∆̃A) this way via the SVD for fixed A and ∆A, so
in particular the optimal solution can be written as a rank factorization. The problem
min ‖Φµ(A)− UV ‖2

F such that UV has the same structure as Φµ(∆̃A) for some ∆A is
generally ill-posed and needs to be constrained to do any meaningful analysis, as there are
numerous degrees of freedom. At first glance, optimizing over rank factorizations appears
to be a harder problem than the original. However, it is helpful to perform analysis on this
formulation. In particular, we are able to prove that optimal values of ∆A are separated
by a constant amount, and that equivalence classes of solutions are isolated. Additionally,
this formulation of the problem is convex in each argument (but not jointly convex) and
is amenable to block coordinate descent methods.

We next need to demonstrate that the condition that the matrix ∆Â = Φµ(A) − UV
is the R-embedding of some matrix polynomial ∆̃A ∈ R[t]n×n can be phrased as a single

polynomial being zero. Φµ(A) is generated by a linear structure
∑L

i=1 ciÂ
(i) where ci ∈ R

and {Â(1), . . . , Â(L)} ⊆ RM×N . Define the structural enforcement function

Γ : RM×R × RR×N → R as Γ(U, V) =

∥∥∥∥∥
L∑
i=1

ciÂ
(i) −∆Â

∥∥∥∥∥
2

F

.

We note that there exist ci such that Γ(∆Â) = 0 if and only if ∆Â is an R-embedding of
a matrix polynomial. The idea can be generalized in a straightforward way for arbitrary
∆(·).

Problem 3.4.3. With A, U, V as above, the constrained R-embedded rank factorization

problem consists of computing min ‖Â− UV ‖
2

F subject to the constraints that UTU − I = 0

and Γ(U, V) = 0 where Â = Φµ(A) . If R = M − 1, then this encodes all rank deficient
matrix polynomials.

It is still not clear that Problem 3.4.3 is well-posed, as there are many degrees of freedom
in V , and this matrix can have arbitrary rank. The enforcement of U as an orthogonal
matrix (UTU − I = 0) is allowed for without loss of generality. Informally, we are looking
at all rank factorizations where U is orthogonal and Γ(U, V) = 0, that is, the product

satisfies the block-Toeplitz structure on ∆Â.

We employ the machinery of non-linear optimization to describe the geometry of the
minimal solutions, and hence the nearest appropriately structured matrices.

57

Lemma 3.4.4. Suppose that ∆Â and ∆Â? are distinct local solutions of minimal rank to
Problem 3.3.1, then

‖∆Â−∆Â?‖2 > 0.

Proof. First we note that

‖∆Â−∆Â?‖2 = ‖Â+ ∆Â− Â−∆Â?‖2.

For any x ∈ ker(Â+ ∆Â) that satisfies ‖x‖2 = 1 and x /∈ ker(Â+ ∆Â?) then

‖Â+ ∆Â− Â−∆Â?‖2 ≥ ‖(Â+ ∆Â)x− (Â+ ∆Â?)x‖2

= ‖(Â+ ∆Â?)x‖2

> 0,

which follows from the fact that given A ∈ CM×N and x ∈ CN×1 we recall that for x 6= 0,

‖A‖2 = max
xT x=1

‖Ax‖2 = max
x 6=0

‖Ax‖2

‖x‖2

≥ ‖Ax‖2

‖x‖2

.

The best x would be one that is orthogonal to ker(Â + ∆Â?), although this may not
always be possible to find. Instead, the best x to generate a lower bound can be derived
by formulating a Procrustes problem where one seeks the x that is “closest” to being
orthogonal to the kernel. This is only useful in theory though, as the bound depends on
the solution, which we do not know in advance.

We note that ker(Â + ∆Â) 6= ker(Â + ∆Â?), since if their kernels were the same,
then this implies that the solutions are not distinct. In such a scenario we could write
K = ker(Â+∆Â) = ker(Â+∆Â?). The total least squares solution to (Â+∆Â)K = 0 for

a fixed K and variable ∆Â is unique, since it is a linear system of equations in the entries
of ∆Â. For the instance of arbitrary affine structures (assuming a solution exists) then
the solution can be normalized by other means, since it is a convex optimization problem
when K is fixed. Of course the bound from Lemma 3.4.4 is unstructured, but is adequate
to show that solutions are isolated. be used in instances where the separation theorem is
not particularly insightful. In general rank reducing perturbations of minimal norm do not
have rank one. We characterize when this occurs by analyzing the KKT conditions of a
different formulation of the problem in Section 3.6.2.

58

Corollary 3.4.5. All locally optimal solutions of minimal rank are isolated modulo equiv-
alence classes.

Proof. Suppose the contrary, that is that (U, V) ∈ RM×R×RR×N is a solution corresponding

to ∆Â and (U?, V ?) ∈ RM×R × RR×N is a solution corresponding to ∆Â?. Let csep be the
best lower bound from Lemma 3.4.4. The objective function and constraints are locally
Lipschitz continuous, so let s > 0 be a Lipschitz constant with respect to ‖ · ‖F in some
open neighborhood.

If we take 0 < ε <
csep
s

such that

∥∥∥∥(UV
)
−
(
U?

V ?

)∥∥∥∥
F

< ε then we have that

csep ≤ ‖∆Â−∆Â?‖2

≤ s

∥∥∥∥(UV
)
−
(
U?

V ?

)∥∥∥∥
F

≤ sε

< csep,

which is a contradiction to Lemma 3.4.4.

Implicitly the matrix V parametrizes the kernel of Â. If we normalize the kernel of Â to
contain R-embeddings of primitive kernel vectors then the matrix V can be made locally
unique, although we do not employ this in the rank-factorization formulation directly.
What this result says is that solutions in the (U, V) coordinates are only arbitrarily close
to each other if they correspond to the same minimal perturbation (because V is not
normalized, solutions in both coordinates are not necessarily unique).

While there are too many degrees of freedom to easily obtain a (locally) quadratically
convergent minimization over the rank factorization, the rank factorization does yield non-
trivial insights into the geometry of the solution space. In particular, the isolation of
solutions indicates first-order (gradient) methods will perform well on the problem. In the
next section we will introduce a locally quadratically convergent algorithm for an equivalent
form of Problem 3.3.1 that reduces each equivalence class of solutions to a single solution.

3.4.2 Lagrange Multipliers and Optimality Conditions

While Section 3.4.1 discusses solutions to the problem of computing the nearest singular
matrix polynomial, it is not particularly insightful into the instance of a lower-rank ap-
proximation. The issue is that a lower rank approximation of Â + ∆Â may correspond

59

to a rank deficient A + ∆A that is not adequately rank deficient. We recall that this
occurs because there exists a basis of kernel vectors where each kernel vector is a cyclic
shift of some of the other kernel vectors. To overcome this problem, we can iteratively
build lower rank approximations for different values of R by computing a local solution to
the optimization problem for each value of R. This avoids the tricky issue of normalizing
V and choosing an embedding that is “minimal” with respect to the input.

We can proceed to solve the optimization problem

min ‖∆A‖2
F subject to Â+ ∆Â− UV = 0, (3.1)

directly by using Newton’s method, alternating directions or alternating optimizations,
since the optimization problem is convex in U and V (but not jointly convex). Alternating
least squares (or a similar block Gauss-Seidel type routine) is particularly straightforward
to implement as an initial guess routine, although in our implementation we will use the
SVD and post-refine with Newton’s method2 to compute a feasible point for an initial
guess.

The bi-linearity of the problem means that the curvature of the constraints is constant,
that is, the second-order derivative of the constraints is a constant tensor. Accordingly,
if we normalize U and V (and eliminate some redundant constraint equations), we can
expect the second-order sufficient conditions to hold at a solution, although we will not
do this, since we generally satisfy a constant rank constraint qualification (which implies
that Newton-like methods will have rapid local convergence with a suitable initial guess).
In general, the problem can be normalized to ensure a constraint qualification is satisfied.
Later in this chapter we will show that another formulation of the problem satisfies the
second-order sufficient conditions. Accordingly due to the regularity conditions holding,
we will generally have local quadratic convergence with several Newton-like methods.

We note that there are two important parameters that the user can prescribe;

1. The first parameter is µ, which is the degree bound for some of the kernel vectors of
a solution. We can take µ = (n − r)d where r is the desired rank reduction of A.
This is because if rank(A) = n − r, then kernel vectors of minimum degree satisfy
deg(ker(A)) ≤ µ.

2. The other parameter is R, which is an upper bound on the rank of the sought
embedding. If the embedding is minimal, then it is easy to see that taking R = n− r

2We use a regularized Gauss-Newton method to solve F (x) = 0, we do not use “Newton’s method for
optimization”.

60

will produce the desired result. Unfortunately, computing a minimal embedding may
not be practical without a very good initial guess. To rectify this, independent of the
choice of µ, we can compute a local solution Â+∆Â? that corresponds to A +∆A?.
If rank(A + ∆A?) ≤ n− r, then we are done. Otherwise, rank(A + ∆A?) > n− r
and we can compute a new embedding of rank at most R− 1, using A + ∆A? as an
initial guess. We can proceed iteratively by reducing R on each computed solution
if it is not adequate. Note that we can choose Rnext = rank(Â + ∆Â?) − 1. The
quantity R−Rnext depends implicitly on µ.

For our implementation we choose to implement a Newton-like method to solve∇L = 0,
where

L = ‖∆A‖2
F + λT vec(Â+ ∆Â− UV).

Recall that L is the Lagrangian and λ is a vector of Lagrange multipliers. Note that there
are O(NM) = O(n2µ2) = O(n4d2) Lagrange multipliers in the worst case. The size of this
problem is large because U and V require several orders of magnitude more variables than
the size of A.

Remark 3.4.6. When U and V have full rank at a solution to (3.1) then the problem can
be normalized so that Lagrange multipliers exist. The Jacobian of the constraints is (up to
permutation)

J = ∇ vec(Â+ ∆Â− UV) =
(
∇∆A vec(Â+ ∆Â) −I ⊗ U −V T ⊗ I

)
. (3.2)

If U and V have locally constant rank in some open neighborhood around a solution, then
J will have (or can be normalized) to have locally constant rank. The expression Â+∆Â−

UV = 0 has prescribed zero entries, which means that ∇∆A vec(Â+∆Â) =
∂ vec(Â+ ∆Â)

∂ vec(∆A)
is a constant matrix. If R and µ are chosen to be “minimal” then, regularity conditions will
hold (either the constant rank or linearly independent constraint qualification will hold).

Furthermore, if R and µ are not minimal, Lagrange multipliers will exist because one
can always set some multipliers to zero to obtain the minimal solution.

3.4.3 The Hessian

We recall that

∇2L =

(
∇2
xxL JT

J 0

)
,

61

where J is defined as in (3.2). So, it remains to compute ∇2
xxL.

Recall that U ∈ RM×R, V ∈ RR×N and λ ∈ RNM (with some entries possibly fixed to
zero). We note that

∇2
xxL =

2I 0 0

0 0
∂

∂ vec(V)
(V ⊗ IM)λ

0
∂

∂ vec(V)
λT (V T ⊗ IM) 0

 .

Lemma 3.4.7. The matrix ∇2
xxL has closed-form expression2I 0 0

0 0 E
0 ET 0

 where E = (λT ⊗ IMR)(IM ⊗KM,R ⊗ IN)(INR ⊗ vec(IM)).

Proof. By symmetry, it is adequate to compute the expression

∂

∂ vec(V)
vec(λT (V T ⊗ IN)) =

∂

∂ vec(V)
(λT ⊗ IMR) vec(V ⊗ IM)

= (λT ⊗ IMR)(IN ⊗KM,R ⊗ IM)
∂

∂ vec(V)
(INR ⊗ vec(IM)) vec(V)

= (λT ⊗ IMR)(IM ⊗KM,R ⊗ IN)(INR ⊗ vec(IM)).

Thus, we now have a closed-form expression for the Hessian matrix that reveals the
underlying sparsity and kernel structure. The mixed partials are not generally square, so
∇2
xxL will not have full rank (but the rank will generally be locally constant). In general the

second-order sufficient condition will not hold for this formulation of the problem (however
the problem can be modified so that the second-order sufficient condition will hold).

Together Remark 3.4.6 and Lemma 3.4.7 have the following corollary.

Corollary 3.4.8. Suitable Newton-like methods to solve ∇L = 0 will have local quadratic
convergence with a suitable initial guess when R is minimal with respect to the parameter
µ.

62

Note that one such Newton-like method is discussed in detail in Chapter 5.4.3. Alter-
natively one may employ a Newton-like method that resembles the method of Wright [109]
in this instance, as we do later in this chapter. To obtain quadratic convergence we do not
need to ensure that µ is minimal, but we do need to ensure that R is minimal, otherwise
U and V can be rank deficient. Reducing R implies that µ can be reduced, but this is not
necessary, however this improvement reduces the size of the problem.

To compute the Hessian efficiently, we note that ∇xxL is a linear function in λ, and J
is a linear function in U and V . J is straightforward to compute since

∂

∂ vec(∆A)
vec(Â+ ∆Â)

is a constant and only needs to be computed once. I ⊗ U and V T ⊗ I are straightforward
to compute. The block ∇2

xxL is a linear function in λ. Thus, computing

∂

∂ vec(V)
vec(V ⊗ I) or the analogous expression

∂

∂ vec(U)
vec(I ⊗ UT)

needs to be done once, and then it may be scaled by (λT ⊗ I) to obtain the appropriate
block in ∇2

xxL.

Note that computing (IM⊗KM,R⊗IN) naively3 is generally unwise, as this is a M2RN×
M2RN matrix, where as the Hessian has dimension O(MNR)× O(MNR). We carefully
note that (IM ⊗KM,R⊗ IN) is a permutation matrix (hence has M2NR non-zero entries),
thus a careful application of the requisite permutation can be done quickly.

Given that L is a tri-linear scalar function, automatic differentiation is a reasonable
choice if the procedure is modified to exploit the Kronecker product block structure to
reduce the number of Lagrangian computations required.

3.4.4 Implementation Notes

Recall that Â ∈ RM×N where N,M ∈ O(n2d), so when R ∈ Θ(N) then U and V will have
O(n4d2) variables. This means that a Newton method that relies of matrix inversion (or
non-fast linear system solving) would require Ω(n12d6) FLOPs to compute a rank at most
n− 1 approximation of A.

3Assuming one uses (V ⊗ I) in lieu of (I ⊗ UT) to compute the second-order mixed partials. The
quantities are continuously differentiable so the mixed partials must agree.

63

However, if R is large, then the rank of A is small. In the instance when n− r ∈ o(n),
i.e. we want a very low rank approximation of A then U and V require O(nµ × R)
variables. As noted earlier, if µ is minimal, then R ≈ n − r, so the number of variables
needed for U and V is O(n2d(n− r)). When r ≈ n then U and V require O(n2d) variables,
which is asymptotically the same as ∆A. Thus, for very low rank approximations, the
the runtime is more accurately reflected as Ω(n6d3) FLOPS if the technique relies on naive
matrix inversion. Now, to account for the Lagrange multipliers, if n ≈ r then N ≈ n
and M ≈ n so the number of Lagrange multipliers will be proportional to n2d instead of
n4d2, thus a suitable Newton-like method will require O(n6d3) FLOPS, and a variant of
Newton’s method relying on standard linear system solving or matrix inverse would require
Θ(n6d3) FLOPs. In other words, the rank factorization will be quasi-optimal (with respect
to naive matrix inversion) for very low rank factorizations, and perform relatively poorly
for approximations of relatively high rank (but not full).

In general, we will use a Newton-like method to solve(
xk+1

λk+1

)
=

(
xk + ∆xk

λk + ∆λk

)
such that ∇2L

(
∆x
∆λ

)
= −∇L. (3.3)

The quantities in question will generally have constant rank, so a Newton iteration is
typically well-defined in a local sense with a feasible initial guess.

3.5 Evaluated Rank Factorization

A technique analogous to the previous section is to perform several rank factorizations on
nd+ 1 images simultaneously. If rank((A + ∆A)(ωj)) ≤ n− r for nd+ 1 distinct ωj then
A + ∆A must have rank n− r.

The following optimization problem yields a rank n− r approximation to A ∈ R[t]n×n

of degree at most d is

min ‖∆A‖2
F subject to

{(A + ∆̃A)(ωj) = UjVj}ndj=0,

Uj ∈ Rn×(n−r),

Vj ∈ R(n−r)×n.

(3.4)

For the analysis in this section we will take R = R. The evaluation points ωj can be
chosen as real numbers or complex numbers, irrespective of R. Complex roots of unity are
a suitable choice because of the Fast Fourier Transform (FFT) and the useful property that

64

the largest terms appearing will be on the order of O((d + 1)‖ vec(A + ∆A)‖∞) instead
of O(d|ω|d‖ vec(A + ∆A)‖∞). An alternative strategy is to employ a linearization, such
as the companion linearization. If only some parts of the arising pencil are perturbed
(corresponding to the input), then the exponential scaling is removed in exchange for a
larger problem.

3.5.1 Lagrange Multipliers and Optimality Conditions

The theory of Lagrange multipliers and optimality conditions for this section is remarkably
similar to that of Section 3.4.2. Since all of the quantities are constant. The vec(·) operator
will not pad zero entries for this analysis, again, since the images are all matrix polynomials
of degree zero. For ease of analysis we will assume that real evaluation points are used.
The ideas transfer over in a straightforward manner for complex evaluation points.

For our implementation, we choose to implement a Newton-like method to solve ∇L =
0, where

L = ‖∆A‖2
F + λT

vec((A + ∆̃A)(ω0)− U0V0)

vec((A + ∆̃A)(ω1)− U1V1)
...

vec((A + ∆̃A)(ωnd)− UndVnd)

 .

Remark 3.5.1. There exist {Uj}ndj=0 and {Vj}ndj=0 of full rank at a solution to (3.4) where
Lagrange multipliers exist.

Let Zj =
(
−I ⊗ Uj −V T

j ⊗ I
)

be a block matrix. The Jacobian matrix of the con-
straints may be written (up to permutation) as

J =

∇(vec(A + ∆̃A)(ω0)) Z0

∇(vec(A + ∆̃A)(ω1)) Z1
...

. . .

∇(vec(A + ∆̃A)(ωnd)) Znd

 . (3.5)

The matrices ∇(vec(A + ∆̃A)(ωj)) are constant, and the blocks consisting of the Zj are

clearly linearly independent. If each block
(
∇(vec(A + ∆̃A)(ωj)) 0 Zj

)
has locally con-

stant rank, then J will have locally constant rank, thus Lagrange multipliers will exist via
the constant rank constraint qualification.

65

The matrices Uj and V T
j both have rank n − r (they have n rows and n − r linearly

independent columns), and can be normalized so that the rank of each row block is constant.
If the Uj and Vj did not have rank n− r, then the rank could not be locally constant.

In fact, if some Uj or Vj did not have full rank, then we could perform a compression
that reduces the number of columns of Uj and rows of Vj, to obtain matrices that have
full rank. This statement is essentially a corollary of applying mathematical induction to
Lemma 3.4.6.

If complex evaluation points are used then Lagrange multipliers also exist.

Remark 3.5.2. An analogous expression to (3.5) exists after one separates the complex
and real parts from the equation

<((A + ∆̃A)(ωj)) = <(UjVj) and =((A + ∆̃A)(ωj)) = =(UjVj).

Accordingly, Lagrange multipliers will generally exist when complex evaluation points are
used.

3.5.2 The Hessian

The Hessian matrix of the evaluated rank factorization is a generalization of the Hessian
matrix appearing in Section 3.4.3. For ease of analysis we will suppose that real evaluation
points are used.

The Hessian matrix is essentially the same as the one appearing in Lemma 3.4.7, except
that there are now several more blocks that are decoupled.

Lemma 3.5.3. Let λj be a vector of the Lagrange multipliers corresponding to the con-
straint

vec((A + ∆̃A)(ωj)− UjVj) = 0.

The matrix ∇2
xxL may be written (up to permutation) as

2I
F0

F1

. . .

Fnd

 where Fj =

(
0 Ej
ET
j 0

)
and Ej =

∂

∂ vec(Vj)
(Vj ⊗ I)λj.

66

Proof. This follows by applying mathematical induction on Lemma 3.4.7.

It should be noted that a closed-form expression for the Hessian can be derived by
applying Lemma 3.4.7 on each block Fj.

The Hessian matrix for the evaluated rank projection is sparse under the assumption
that ∇∆A vec(A + ∆̃A(ωj)) is sparse. This condition holds for several perturbation struc-
tures we care about, such as when perturbations are unstructured. This sparsity pattern
may be exploited for fast linear system solving. If complex evaluation points are used,
then the Hessian will consist of diagonal blocks that correspond to the real part and the
imaginary part and the analysis is similar, and thus omitted. Complex evaluation points
result in a system that is roughly four times as large.

3.5.3 Implementation Notes

There are O(nd) matrix factorization constraints, each of which has O((n− r)2) variables
and O(n2) constraints assuming the kernel has rank r. The total number of variables is
O(n2d+nd(n− r)2) = O(n2d+n3d). There are O(n3d) Lagrange multipliers, arising from
the n2 constraints on nd+1 images. A reasonable Newton method would require O(n6d3 +
n3d3(n− r)6 + n9d3) = O(n9d3) FLOPs per iteration, which is a substantial improvement
over the embedded rank factorization. This improvement comes almost exclusively because
instead of having a rank factorization of one large matrix, we have rank factorizations of
O(nd) small matrices, which reduces the number of variables needed from O(n4d2) to
O(n3d) in the worst case. Rapid local convergence can be expected, since the Jacobian
will have (or can be normalized) to have (locally) constant rank under these assumptions.
An initial guess for Uj and Vj is easily obtained from applying a truncated SVD on (A +

∆̃A)(ωj) and projecting to a feasible point, and performing a row/column compression if
necessary. The matrices J and ∇2

xxL are sparse, in that ∇2L has O(n4d) non-zero entries
but has dimension O(n3d) × O(n3d). A fast iterative solver can reduce the per-iteration
cost to O(n7d2) FLOPs (almost quadratic in the output size), since computing the Hessian
can be done in O(n5d2 + n6d) FLOPs.

In general, we will use a Newton-like method to solve(
xk+1

λk+1

)
=

(
xk + ∆xk

λk + ∆λk

)
such that ∇2L

(
∆x
∆λ

)
= −∇L. (3.6)

The quantities in question will generally have constant rank, so a Newton iteration is
typically well-defined in a local sense with a feasible initial guess.

67

A lurking detail in a software implementation that is irrelevant in theory is the precision
used to compute ωj and A(ωj). The highest possible precision of a solution depends on
how accurately the quantities ωj and A(ωj) are computed. While the system is sparse
and in theory may be solved quickly using an iterative solver, this technique may fail to
compute answers to extremely high accuracy because of errors arising from computing
powers of ωj. To overcome the precision issue, instead of using roots of unity, one could
post-refine the roots of unity to be complex numbers close to roots of unity. The danger is
that evaluation points may become excessively large in magnitude or be perturbed to the
point that they are indistinguishable from each other.

3.6 Explicit Kernel Iterative Algorithm for Lower Rank

Approximation

In this section we propose an iterative algorithm to solve Problem 3.3.1 based on Newton’s
method for constrained optimization. Sufficient conditions for quadratic convergence are
that the second-order sufficiency condition holds [109] and local Lipschitz continuity of the
objective and constraints. We ensure these conditions hold for non-degenerate problems
by working on a restricted space of minimal R-embeddings that remove degrees of freedom.

3.6.1 Minimal System of Equations

In order to compute a nearby rank n− r approximation we want to solve the non-convex
optimization problem

min ‖∆A‖2
F subject to

{
(A + ∆̃A)B = 0,

rank(B) = r.
(3.7)

In the instance of (structured) scalar matrices the rank constraint can be enforced
by ensuring that B has orthogonal columns4 or is in a CREF. In the instance of matrix
polynomials this is not sufficient, since polynomial multiples of the same vector will have
linearly independent combined coefficient vectors. In order to apply these normalizations
on the coefficient vectors of B we require that the columns be represented with a minimal
number of equations with respect to B.

4This normalization alone is not sufficient for rapid convergence.

68

Definition 3.6.1 (Minimal R-Embedding). Suppose A ∈ R[t]n×n with R-embedding Â.

The vector b ∈ R[t]n×1, with R-embedding b̂ = vec(b), is said to be minimally R-embedded

in Â if ker(Â) = 〈̂b〉 (i.e., a dimension 1 subspace). We say that b̂ is minimally degree

R-embedded in Â if

1. b̂ is minimally R-embedded in Â, and

2. b̂ corresponds to a primitive kernel vector b, that is gcd(b1, . . . , bn) = 1.

We note that this definition ensures minimally R-embedded vectors are unique (up to

a scaling factor), or that (Â(j) + ∆Â(j))B̂∗,j = 0 has a (locally) unique solution for fixed

∆A and B̂ =
(
b̂(1) b̂(2) · · · b̂(r)

)
. In the minimal embedding, we will assume, without

loss of generality, that redundant or equations known in advance, such as 0 = 0,∆Âij = 0

or B̂ijk = 0 corresponding to known entries are removed for some indices of i, j and k. For

example, if we assume that B is primitive and B̂ is in CREF, then this will satisfy the
minimal embedding requirements. The degree of the pivot reveals the degrees of the other
entries, thus by knowing the pivot, one implicitly knows the degree of each entry. Some
of these trivial equations occur because of the CREF assumption, while others occur from
over-estimating degrees of entries.

This allows us to reformulate (A + ∆̃A)B = 0 as a (bi-linear) system of equations

{(Â(j) + ∆Â(j))B̂∗j = 0}rj=1, (3.8)

where the jth column of B is minimally degree embedded in the system (Â(j) + ∆Â(j)). We
also note that assuming B is in a column-reduced echelon form essentially requires us to
guess the pivots in advance of the optimal solution, which is possible with a good initial
guess. The benefit of this approach is that if the pivots are not guessed correctly, we are
still able to compute a n− r approximation of A (that will not be globally optimal).

In order to exclude trivial solutions, we can assume that the pivot elements of B

have a norm bounded away from zero. Let N(̂b(j)) be a normalization vector such

that N(̂b(j))T b̂(j) = 1 which implies that the CREF pivots are bounded away from zero.
For example, take the pivot to have unit norm. Note that other normalization vectors are
possible, such as N(̂b(j)) = b̂(j) (which corresponds to each column having a unit norm)
if the initial guess is adequately close, or we could take the pivot element to be a monic
polynomial. Of course there are several other permissible normalizations.

69

Define the matrix Â(j) to have the column b̂(j) = B̂∗,j minimally degree embedded. We
can express (3.8) in a vector-matrix form as follows

Â(1) + ∆Â(1)

Â(2) + ∆Â(2)

. . .

Â(r) + ∆Â(r)

N(̂b(1))T

N(̂b(2))T

. . .

N(̂b(r))T

b̂(1)

b̂(2)

...

b̂(r)

 =

0
0
...
0
1
1
...
1

. (3.9)

The minimal system has a (locally) unique solution for fixed ∆A. Note that the upper

block in this system is remarkably similar to (A + ∆̃A)B = 0, which is equivalent to

[I ⊗ (A + ∆̃A)] pvec(B) = 0 =⇒ Φnd([I ⊗ (A + ∆̃A)]) vec(B) = 0,

except that several rows and columns of each diagonal block of Φnd([I ⊗ (A + ∆̃A)]) are
deleted. These rows and columns are deleted to account for known zero entries in the
kernel or over-padding of zero entries in the block convolution matrix.

3.6.2 Lagrange Multipliers and Optimality Conditions

Let M(∆A,B) be the vector of residuals corresponding to (3.9), then the Lagrangian is
defined as

L = ‖∆A‖2
F + λTM(∆A,B), (3.10)

where λ is a vector of Lagrange multipliers.

We will find it convenient to define x =

(
vec(∆A)
vec(B)

)
to be the combined vector of un-

knowns corresponding to A and B. Let ∇2
xxL denote the Hessian matrix of L with respect

to x and J be the Jacobian of the residuals of the constraints, i.e. J = ∇xM(∆A,B).
Recall the necessary optimality conditions at a point (x∗, λ∗) are that

∇L = 0 and ker(J)T ∇2
xxL ker(J) � 0. (3.11)

Sufficient conditions for optimality at the same point are that

∇L = 0 and ker(J)T ∇2
xxL ker(J) � 0. (3.12)

70

We note that (3.12) implies that minimal solutions are locally unique, and will fail to
hold if minimal solutions are not locally unique. The idea is to show that (3.12) holds
in the minimal embedding, which allows us to construct an algorithm with rapid local
convergence.

Does There Always Exist an Optimal Rank One Perturbation?

An interesting observation here is that minimal perturbations to the nearest (structured)
singular matrix polynomial problem will generally have rank exceeding one (which is dif-
ferent from the unstructured scalar instance). In particular, the strategy of looking for an
optimal rank one perturbation to a matrix polynomial will almost never be a good idea.
We will also see that the same lesson will hold for structured scalar matrices.

Theorem 3.6.2. Suppose that A ∈ R[t]n×n has degree d and that ∆A ∈ Rn2(d+1) is a
minimal unstructured perturbation (i.e. ∆(·) = ∆degree(·)) to A that does not increase the

degree of A with b and λ =

(
λ1

λ2

)
corresponding to a regular solution (i.e. the Jacobian of

the constraints has full rank) to a rank at most n− 1 approximation to (3.7), then

2 vec(∆A) = −[Φd(b
T ⊗ I)]Tλ1.

Proof. From the KKT conditions we have that if we write λ =

(
λ1

λ2

)
then

∇∆AL = 0 =⇒ 2 vec(∆A)T = −∇∆Aλ
T
1 vec((A + ∆A)b)

= −∇∆Aλ
T
1 vec([bT ⊗ I] pvec(A + ∆A))

= −λT1
∂ vec([bT ⊗ I] pvec(A + ∆A))

∂ vec(∆A)

= −λT1 Φd(b
T ⊗ I)

∂ vec(A + ∆A)

∂ vec(∆A)

= −λT1 Φd(b
T ⊗ I).

Now, when d = 0 we have that 2 vec(∆A) = −(b ⊗ I) vec(λ1), which is equivalent5 to
2∆A = λ1b

T , thus the optimal (unstructured) ∆A is a rank one perturbation. This is

5This equivalence occurs because it is irrelevant in the unstructured scalar instance if ∆A is a vector
or a matrix, as the two are isomorphic. This distinction and abuse of notation is not permissible for
structured matrices or structured matrix polynomials in this context, because the isomorphism may not
exist.

71

not surprising, as the SVD implies the same result. However, if ‖b‖ = 1, then there exist
Lagrange multipliers λ where the block λ1 satisfies ‖λ1/2‖2 = ‖∆A‖F . In other words,
we can bound the size of the Lagrange multipliers (corresponding to (A + ∆A)b = 0) in
terms of the size of a minimal perturbation.

Note that λTΦd(b
T ⊗ I) does not in general admit a “nice” factorization interms of the

Kronecker product, other than the instances of d = 0 or deg(b) = 0. When deg(b) = 0 we
have that φd(b) = b ⊗ Id+1. Accordingly, if a kernel vector of a local minimizer has degree
zero, then it is generated by a rank one perturbation. If we suppose that λ1 = vec(z) for
some z ∈ R[t]n×1 of degree at most d then we have

2 vec(∆A) = −Φd(b
T ⊗ In)T vec(z)

= −(b ⊗ In(d+1)) vec(z)

= −Φd(b ⊗ In) vec(z),

so we have that
2 pvec(∆A) = −(b ⊗ In)z ⇐⇒ 2∆A = −zbT ,

which implies that ∆A is a rank one perturbation. It is important to note that in general
Φd(b

T ⊗ I)T 6= Φd(b ⊗ I). This relationship does hold when deg(b) = 0 though.

If the coefficient matrices of A + ∆A have a common kernel vector, then there exists
a kernel vector of degree zero, and so it must be generated by a rank one perturbation.
If deg(A + ∆A) = 1 and there is a degree zero kernel vector, then ∆A0 and ∆A1 have
rank (at most) one, which can be easily seen from evaluating rank((A + ∆A)(0)) and
rank((t(A0+∆A0)+A1+∆A1)(0)). These statements are a more general and direct proof
to some of the claims made in [50] about low rank perturbations, which only considered
matrix pencils (degree one matrix polynomials).

Next we observe that if perturbations are structured, i.e. we are solving (A+∆̃A)b = 0
then

∇∆A vec((A + ∆̃A)b) =
∂ vec((A + ∆̃A)b)

∂ vec(∆A)
6= Φd(b

T ⊗ I),

thus we cannot naively think of ∆A ∈ R[t]n×n. From the perspective of matrix calculus,
∆A is just a collection of at most n2(d + 1) variables that is sometimes isomorphic to a
matrix polynomial.

In the instances of support or entry degree preserving (but otherwise unstructured)
perturbations, the requisite derivative will be a sub-matrix of Φd(b

T ⊗ I) (several columns
would be deleted, corresponding to the fixed zero entries). An analogous theorem would

72

hold, and the following corollary can be modified in a straightforward manner. If some
entries were weighted, then again similar results hold (columns of the derivative are now
scaled).

Theorem 3.6.2 leads to the following bounds on the Lagrange multipliers.

Corollary 3.6.3. Suppose that ∆A is a minimal unstructured perturbation to A that does

not increase the degree of A with b and λ =

(
λ1

λ2

)
corresponding to a regular solution to

a rank at most n− 1 approximation to (3.7), then

2‖∆A‖F
‖(Φd(bT ⊗ I))‖2

≤ ‖λ1‖2 ≤
2‖∆A‖F

σmin(Φd(bT ⊗ I))
.

Furthermore, we have that when ‖b‖ = 1 that

2‖∆A‖F
d+ 1

≤ ‖λ1‖2.

Proof. First, b is a non-zero vector, so b has full rank. Thus bT ⊗ I has full rank, and
Φd(b

T ⊗ I) will have full rank as well. Thus, the smallest non-trivial singular value of
Φd(b

T ⊗ I) is non-zero.

The instance of d = 0 follows by the preceding discussion.

In the instance when d > 0 we have that −
[
Φd(b

T ⊗ I)
]T
λ = 2 vec(∆A), so

2‖∆A‖F
‖(Φd(bT ⊗ I))‖2

≤ ‖λ1‖2 ≤
2‖∆A‖F

σmin(Φd(bT ⊗ I))
.

The second-statement follows by Lemma 2.5.11.

So, if the linearly independent constraint qualification does not hold, we will later show
that the problem can be modified so that some other regularity condition holds. Thus
there will exist a Lagrange multiplier λ that satisfies Theorem 3.6.2 and the associated
corollary.

In general for arbitrary structured perturbations, we can write

2 vec(∆A)T = −λTΦd(b
T ⊗ I)

∂ vec(∆̃A)

∂ vec(∆A)
.

The preceding results generalize if Φd(b
T⊗I) is replaced with Φd(b

T⊗I)
∂ vec(∆̃A)

∂ vec(∆A)
, which

is scaling the block-convolution matrix of bT ⊗ I by the derivative of ∆(·) with respect to
∆A.

73

3.6.3 The Jacobian

Definition 3.6.4. The matrix ψ(̂b) is an alternative form of (Â+ ∆Â)̂b = 0 that satisfies

ψ(̂b) vec(A + ∆̃A) = 0. That is, ψ(̂b) satisfies

ψ(̂b) · vec(A + ∆̃A) = 0 ⇐⇒ (Â+ ∆Â)̂b = 0.

We will adopt that notation that ψ(̂b(j)) corresponds to ψ(̂b(j)) vec(Âi+∆Âi) = 0. Here
we use the bi-linearity of (3.9) to write the same system using a matrix with entries from

B̂ instead of vec(A + ∆̃A).

Note that ψ(̂b) can be computed explicitly. We can write

(A + ∆̃A)b = 0 ⇐⇒ [bT ⊗ I] pvec((A + ∆̃A)) = 0,

which reduces to
Φd([b

T ⊗ I]) vec(A + ∆̃A) = 0.

Now from the minimal embedding some columns or rows will be removed, and ψ(·) is a
sub matrix obtained from Φd([b

T ⊗ I]). So, as long as we know the degrees of the kernel

vector of minimal degree, ψ(̂b) will have full rank if this kernel vector is used and we do
not over-pad with zero entries for ∆(·) that preserve zero coefficients, the degree of each
entry or the degree of the matrix polynomial. For other structures (such as entries being
coupled or weighted), this rank condition may not hold.

The closed-form expression for the Jacobian of the residuals (up to permutation) in

(3.9) is (assuming N(̂bj)
T b̂j = ‖b̂j‖

2

2) given by

J =

ψ(̂b1) Â(1) + ∆Â(1)

ψ(̂b2) Â(2) + ∆Â(2)

...
. . .

ψ(̂br) Â(r) + ∆Â(r)

0 2N(̂b(1))T

0 2N(̂b(2))T

...
. . .

0 2N(̂b(r))T

. (3.13)

If we look at the problem when r = 1, then J will have full row rank, as the bi-linear
form is represented with the minimal number of equations.

74

Unlike the case of a single kernel vector, J may be rank deficient since some equations
corresponding to low (high) index entries may be redundant at the solution. The Lagrange
multipliers will not be unique in this particular scenario and the rate of convergence may
degrade if Newton’s method is used.

Theorem 3.6.5. Suppose that r = 1 and b̂(1) is minimally degree R-embedded in Â1, then
J has full rank when (3.11) holds.

Proof. We show that J has full row rank by contradiction. If this matrix was rank deficient,
then one row is a linear combination of the others. This means that one of the equations in
the constraints is redundant, trivial or the solution is not regular. As we are only concerned
about regular solutions, this contradicts the minimal R-embedding.

From the discussion earlier, all we need to know in a generic sense is the degrees of
the entries of a kernel vector that is primitive. A kernel vector of minimum degree will
of course satisfy this requirement. The minimal embedding assumption ensures linear
independence if there are multiple possible vectors of the same degree, thus no constraints
may be redundant. As mentioned earlier, it is straight forward to compute such a vector
via orthogonal (unitary) transformations. We note that for arbitrary linear and affine
structures that this result may not hold, as the structure may imply some additional
redundancy in the constraints.

The corollary to this is that in the minimal embedding regularity conditions hold and it
is straight forward to obtain rapid local convergence. If the kernel vector is not minimally
embedded, then there will exist a linearly independent subset of the rows which determine
the Lagrange multipliers. I.e. ∇x‖∆A‖2

F = 2(vec(∆A)T , 0) = −λTJ will be surjective
at a solution, as the rows that are redundant have λj = 0 as a Lagrange multiplier. In
general, it is not always possible to compute a minimal embedding for the solution to the
optimization problem from the initial guess. In practice, one makes a reasonable (possibly
over-restricted guess), then relaxes the degree and or dimension requirements until an
improvement cannot be made.

When r ≥ 1 we have that at the solution some constraints are redundant. If these
constraints were removed, then the bi-linear form would also be minimal. Thus, λTJ in
general will be surjective, i.e. if the solution is finite then Lagrange multipliers exist. J
can be rank deficient because some kernel vectors have non-pivot entries that are the same
(some constraints are redundant). Note that ∇J is a constant tensor, i.e. the Hessian of
the constraints is a constant, so the constraints have constant curvature.

75

3.6.4 The Hessian

The Hessian matrix, ∇2L is straight forward to compute as

∇2L =

(
∇2
xxL JT

J 0

)
.

The following theorem shows that second-order sufficiency holds for the instance of r = 1.
The case of r > 1 follows immediately by induction. This is in contrast to Theorem 3.6.5,
which does not always hold for r > 1.

Note that ∇2
xxL is a linear function in terms of the entries of λ, thus computing

∂

∂ vec(∆A)
vec(∆Â(j)) and

∂

∂ vec(̂b(j))
vec(ψ(̂b(j)))

can be done once, then the quantities can be scaled by (λT ⊗ I) each time ∇ vec(JTλ) is
required to be updated. Of course given the linear structure, other reasonable methods are
applicable as well.

Theorem 3.6.6 (Second-Order Sufficiency Holds). Suppose that Â+ ∆Â has a minimally

degree R-embedded kernel vector b̂, i.e. r = 1 in (3.10), then at a minimal solution, the

second-order sufficient condition (3.12) holds in the minimal embedding of b̂.

Proof. If ‖∆A‖ = 0 at the local minimizer (x∗, λ∗) then

∇2
xxL(x?, λ?) =

(
2I

0

)
and K = ker(∇2

xxL(x?, λ?)) = span

(
0

I

)
.

We have that for y ∈ span(K) such that Jy = 0 implies that Ây = 0 and N(̂b)Ty = 0.

It follows that ker(Â) = span(̂b), thus we have y = b̂ or y = 0 via the minimal degree

R-embedding, thus y = 0 as b̂ /∈ span(K). Hence, second-order sufficiency holds, as
ker(J) ∩K = 0.

If ‖∆A‖ 6= 0 then we have that

∇2
xxL(x?, λ?) =

(
2I 0
0 0

)
︸ ︷︷ ︸

H

+

(
0 ET

E 0

)
︸ ︷︷ ︸

E

.

76

The matrix E is linear in λ, however the precise tensor decomposition is irrelevant to the
proof. If E has full rank, then ∇2

xxL has full rank and we are done, so suppose that E
is rank deficient. If E is rank deficient, then one can eliminate a row of E and column
of ET without affecting H via symmetric row and column updates. We observe that
ker(H + E) ⊆ ker(H) and the result follows.

Corollary 3.6.7. Suppose that r > 1 in (3.10) and B is minimally degree embedded, then
second-order sufficiency (3.12) holds.

Proof. The proof is almost the same as Theorem 3.6.6 and follows by induction on r since
each block is decoupled.

We now have all of the ingredients for an iterative method with rapid local convergence.
Note that Theorem 3.6.6 is generally satisfied for arbitrary linear and affine structures
assuming the kernel vector is minimally embedded some how. All that was needed was
minimality of the kernel vector. There is no dependency on the magnitude of ∆A, which
differs from similar results that will be presented later in this thesis, that is they assume
‖∆A‖ is sufficiently small to show that the second-order sufficient condition holds.

3.6.5 Implementation Notes

Newton’s method for equality constrained minimization problems can be interpreted as
solving the non-linear system of equations ∇L = 0. Newton’s method is based on the
iterative update scheme:(

xk+1

λk+1

)
=

(
xk + ∆xk

λk + ∆λk

)
such that ∇2L

(
∆x
∆λ

)
= −∇L. (3.14)

If r = 1 then ∇2L has full rank and the iteration is well defined by matrix inversion. If
r > 1 then we consider the Newton method defined as(

xk+1

λk+1

)
=

(
xk + ∆xk

λk + ∆λk

)
such that

(
∇2
xxL JT

J −νkI

)(
∆x
∆λ

)
= −∇L, (3.15)

for a suitably chosen parameter νk. Taking νk = ‖∇L(xk, λk)‖1 one has provably quadratic
convergence [109, Theorem 4.2] with xk and λk chosen sufficiently close to the optimal
solution.

77

Theorem 3.6.8. The iteration (3.15) converges quadratically to (x?, λ?) if (x0, λ0) are
chosen sufficiently close to (x?, λ?).

The size of ∇2L is O(n2d + rn2d)× O(n2d + rn2d) = O(r2n4d2) and accordingly each
iteration has a cost of O(r3n6d3) FLOPs using standard matrix multiplication, where r is
the dimension of the kernel. In general the number of variables for r kernel vectors with
n × (n − r)d is O(rn(n − r)d) = O(rn2d). The worst-case is r = O(n), so the number of
FLOPs per iteration would be O(n9d3), which is cubic in the output.

We now have a method to compute a nearby rank deficient matrix polynomial with a
rate of convergence that is quadratic, provided that the initial values of x are chosen to be
sufficiently close to the optimal solution.

3.7 Implementation and Examples

In this subsection we discuss implementation details and demonstrate our implementation
for computing the nearest rank deficient matrix polynomial. All algorithms are imple-
mented in Maple.

3.7.1 Description of Algorithms

We now describe several algorithms for computing the nearest matrix polynomial of a
prescribed rank with a suitable initial guess. The variables x, λ and z are defined in the
respective section that each algorithm references.

Algorithm 1 attempts to compute a nearby embedding of a matrix polynomial of re-
duced rank. Usually reducing the rank of the embedding will lead to a reduced rank matrix
polynomial, but this is not necessarily the case. To ensure that A + ∆A has the desired
rank one may need to iteratively build several lower rank approximations of Â.

If C has full rank or has the wrong structure (for example, after projecting to a reduced
rank matrix via a truncated SVD), we use a variant of Newton’s method6 to compute a
feasible point of reduced rank to begin the Newton-like iteration (for optimization). After
computing a feasible point, we re-initialize U and V by performing a thin SVD so that
both U and V have full rank. If U or V become rank deficient then one simply re-initializes
after performing a thin SVD, thus by Corollary 3.4.8, Algorithm 1 will typically have local
quadratic convergence.

6We use a regularized Gauss-Newton method to project C to a feasible point.

78

Algorithm 1 : Iterative Embedded Rank Factorization Post-Refinement

Input:
• Matrix polynomial embedding Â ∈ RM×N .
• (Approximately) Rank deficient C ∈ RM×N of the desired degree/displacement struc-

ture and rank deficiency.
• Displacement structure matrix ∆̃A to optimize over.

Output:
• Â+ ∆Â of prescribed rank deficiency or an indication of failure.
1: Compute U and V from a rank factorization of C.
2: Compute Lagrangian L from Section 3.4.2.
3: Initialize λ via linear least squares from ∇L|xinit = 0.

4: Compute

(
x+ ∆x
λ+ ∆λ

)
by solving (3.3) until

∥∥∥∥(∆x
∆λ

)∥∥∥∥
2

or ‖∇L(x, λ)‖2 is sufficiently

small or divergence is detected.
5: Return the locally optimal ∆A or an indication of failure.

Algorithm 2 : Iterative Evaluated Rank Factorization Post-Refinement

Input:
• Matrix polynomial A ∈ Rn×n.
• Upper bound r on the dimension of the kernel of a solution.
• (Approximately) Rank deficient C ∈ Rn×n of the desired degree/displacement structure

and rank deficiency.
• Displacement structure matrix ∆̃A to optimize over.

Output:
• A + ∆̃A of prescribed rank deficiency or an indication of failure.
1: Choose nd+ 1 suitable evaluation points {ωj}ndj=0.
2: Compute Uj and Vj from an (approximate) rank factorization of C(ωj).
3: Compute Lagrangian L from Section 3.5.1.
4: Initialize λ via linear least squares from ∇L|xinit = 0.

5: Compute

(
x+ ∆x
λ+ ∆λ

)
by solving (3.6) until

∥∥∥∥(∆x
∆λ

)∥∥∥∥
2

or ‖∇L(x, λ)‖2 is sufficiently

small or divergence is detected.
6: Return the locally optimal ∆A or an indication of failure.

Algorithm 2 is basically Algorithm 1 applied to nd+ 1 small instances of the problem.
To compute an initial guess we perform a truncated SVD and post-refine the computed

79

Uj and Vj with a Newton-like method, analogous to earlier. It is important to recall that
the precision used to compute the ωj determines how accurate the solution will be. Maple
uses ten digits of accuracy, so we can expect convergence up to approximately ten digits
with default precision7. Our implementation uses complex roots of unity. This procedure
can be iterated several times to obtain a lower-rank approximation of desired rank.

Algorithm 3 : Iterative Kernel Post-Refinement

Input:
• Full rank matrix polynomial A ∈ R[t]n×n.
• (Approximately) Rank deficient matrix polynomial C ∈ R[t]n]×n.
• Approximate kernel vectors c1, . . . , cr ∈ R[t]n×1 of the desired degree/displacement

structure.
• Displacement structure matrix ∆̃A to optimize over.

Output:
• Singular matrix A + ∆̃A with B ⊆ ker(A + ∆A) or an indication of failure.

1: R-Embed A,C, c1, . . . , cr and ∆A.
2: Compute Lagrangian L from Section 3.6.2.
3: Initialize λ via linear least squares from ∇L|xinit = 0.

4: Compute

(
x+ ∆x
λ+ ∆λ

)
by solving (3.15) until

∥∥∥∥(∆x
∆λ

)∥∥∥∥
2

or ‖∇L(x, λ)‖2 is sufficiently

small or divergence is detected.
5: Return the locally optimal ∆A and B or an indication of failure.

All experiments using Algorithm 3 are done using quad precision floating point arith-
metic, with about 35 decimal digits of accuracy or hardware precision. We compare our
techniques to some degree one examples to the recent results of [50].

To compute an approximate kernel vector, first we use the SVD to compute an approx-
imate kernel of an R-embedded (nearly) rank deficient matrix polynomial. Next we use
structured orthogonal elimination RQ (LQ) decomposition to produce a minimally (de-
gree) R-embedded vector from the kernel. In the case of several kernel vectors we use a
modified Gaussian elimination on an embedding of an approximate kernel obtained by the
SVD and approximate GCD to find nearby approximate kernel vectors that are primitive.

Algorithm 3 has no global convergence guarantees, however a globally convergent (al-
though not necessarily optimal) algorithm can be developed in a straight forward manner

7This arises to truncations due to the use of evalf() in the implementation, and other implementations
may not exhibit this behavior.

80

via augmenting our second-order algorithm with a first-order one, and removing content
from kernel vectors if necessary.

3.7.2 Linear and Affinely Structured Matrix Examples

In this section we consider Examples 2.10, 2.11 and 2.12 from [50], where we compare
our results to real perturbations. Note that complex perturbations are a straight-forward
generalization of the theory presented here, and can be re-formulated as a problem over R.

The technique of [50] poses computing a nearby rank deficient linear matrix pencil
by verifying that sufficiently many images of the matrix polynomial are singular, so that
det(A + ∆̃A) ≡ 0. The problem is then posed as a solution to a system of Ordinary
Differential Equations (ODE), assuming that certain genericity conditions on the eigen-
values of the solution hold8. They consider the instances of computing A0 and A1 with a
common kernel vector, and the instance where A0 and A1 do not have a common kernel.
Additionally, perturbations affecting only one of A0 and A1 are considered. We note that
the solutions to the ODEs do not necessarily satisfy necessary optimality conditions (3.11),
and accordingly will generally not be local minimizers. Another distinction between both
methods is that we view the problem in terms of the coefficients, whereas [50] views the
problem through the context of interpolation.

Affine Structured Examples I

Consider first the matrix polynomial

A =

0 0 0
0 0 1
0 1 0

︸ ︷︷ ︸

A1

t+

 0 0.0400 0.8900
0.1500 −0.0200 0
0.9200 0.1100 0.06600

︸ ︷︷ ︸

A0

coming from Examples 2.10 and 2.12 of [50]

Example 3.7.1. If we assume that A1 is constant, then this is finding the (locally) nearest
matrix polynomial with an affine structure since A1 has non-zero fixed constants. First
let’s assume that zero entries are preserved, this is a linear structure on A0.

8Our algorithm and convergence theory does not explicitly rely on genericity assumptions or other
properties of eigenvalues, however we do exploit generic properties in formulating initial guesses.

81

To compute an initial guess for b we use the SVD on Â and extract a guess from the
smallest singular vector. This gives us

binit =

−0.41067t3 + 0.50576t2 − 0.26916t− 0.035720
0.38025t2 − 0.51139t+ 0.30674

0.027012t2 − 0.028083t+ 0.010715

 .

For an initial guess on A we take Ainit = A. Note that we do not need an initial guess
that is singular, it just needs to be “sufficiently close” to a singular matrix polynomial.

If we do not allow perturbations to zero-coefficients, that is, A0[1, 1] and A0[2, 3] may
not be perturbed, then after five iterations of plain Newton’s method (see [38]) we compute

∆A0 ≈

 0.0 −0.094149 −0.0057655
−0.093311 0.026883 0.0
0.0057142 −0.0016462 −0.00010081

with perturbation ‖∆A‖F ≈ 0.135507.

A corresponding (approximate) kernel vector is

b ≈

0.73073t+ 0.082126
−0.67644
−0.041424

 .

Example 3.7.2. If we allow perturbations to zero-coefficients in A0 then after five rounds
of plain Newton’s method we compute

∆A0 ≈

 0.0 −0.094179 −0.0057705
−0.093280 0.026786 0.0016412
0.0057154 −0.0016412 −0.00010056

with perturbation ‖∆A‖F ≈ 0.135497, which is a marginal improvement over the previous
example. A corresponding approximate kernel vector is

b ≈

0.73073t+ 0.082131
−0.67644
−0.041447

 .

[50] report an upper-bound on the distance to singularity allowing complex pertur-
bations , that is ∆A ∈ C[t]n×n of ‖∆CA‖F ≈ 0.1357 in Example 2.10. In Example

82

2.12, [50] report an upper-bound on the distance to singularity allowing real perturba-
tions, ‖∆RA‖F ≈ 0.1366. Although we only consider real perturbations, both bounds are
improved. We conjecture that the complex bound can be improved further.

If we allow perturbations to A0 and A1, then this is some form of finding the nearest rank
deficient matrix polynomial. The question is whether to allow degree or support preserving
perturbations. Again, we will use the same initial guesses as the previous example.

Matrix degree preserving perturbations are of the form

∆degA =

tA1,1,1 + A1,1,0 tA1,2,1 + A1,2,0 tA1,3,1 + A1,3,0

tA2,1,1 + A2,1,0 tA2,2,1 + A2,2,0 tA2,3,1 + A2,3,0

tA3,1,1 + A3,1,0 tA3,2,1 + A3,2,0 tA3,3,1 + A3,3,0

 ,

where as support preserving perturbations are of the form

∆supA =

 0 A1,2,0 A1,3,0

A2,1,0 A2,2,0 A2,3,1t
A3,1,0 tA3,2,1 + A3,2,0 A3,3,0

 .

Example 3.7.3. In the instance of degree preserving perturbations we compute after five
iterations of Newton’s method

∆degA ≈

0.0036502 0.0039174t− 0.066405 0.00011839t− 0.0020069
−0.066897 0.058993t+ 0.029807 0.0017829t+ 0.00090082
0.0059893 −0.0053098t− 0.0024133 −0.00016047t− 0.000072934

with ‖∆degA‖ ≈ 0.115585.

A corresponding approximate kernel vector is

b ≈

−0.72941t− 0.080355
0.67903
0.020522

 .

Example 3.7.4. In the instance of support preserving we compute after five iterations of
Newton’s method,

∆supA ≈

 0.0 −0.094311 −0.0057928
−0.092552 0.026973 0.0051028t
0.0057434 −0.0051554t− 0.0016739 −0.00010281

with ‖∆supA‖ ≈ 0.135313. A corresponding approximate kernel vector is

b ≈

−0.72895t− 0.082339
0.67832
0.041664

 .

83

[50] report an upper-bound on the distance to singularity of ‖∆degA‖F ≈ 0.1193 in
Example 2.12. This bound is larger than the one computed in Example 3.7.3.

3.7.3 Affine Structured Examples II

Example 3.7.5. Next we consider the the matrix polynomial A in Example 2.11 of [50]
defined as

A =

−1.79 0.10 −0.6
0.84 −0.54 0.49
−0.89 0.3 0.74

︸ ︷︷ ︸

A0

+

0 0 0
0 0 1
0 1 0

︸ ︷︷ ︸

A1

t.

To compute an initial guess for we take Ainit = A and take

binit =

−0.16001t3 − 0.10520t2 + 0.15811t+ 0.11409
0.14980t3 − 0.51289t2 − 0.18616t+ 0.54098
0.20801t3 + 0.26337t2 − 0.44619t− 0.027979

 .

binit is computed from the smallest singular vector of Â.

We note that this initial guess does not attempt to find a nearby singular matrix polyno-
mial for the initial guess, all that is needed is ∇L(xinit, λinit) is reasonably small to obtain
convergence.

Using a globalized variant of Newton’s method we compute a stationary point

∆A ≈

0.047498t+ 0.17772 0.44989t+ 0.12420 −0.091945t− 0.068210
0.20979t+ 0.078872 −0.094205t+ 0.41583 −0.037916t− 0.094081
0.082862t− 0.15413 −0.58334t+ 0.12940 0.081637t+ 0.017208

 ,

with ‖∆A‖F ≈ 0.949578. The corresponding approximate kernel vector is

b =

−0.29258t− 0.21491
0.044825t− 0.90281
0.068189t+ 0.21562

 .

If we use the result of [50] as the initial guess, then we compute

binit =

 0.16409t2 + 0.25146t+ 0.12362
−4.5353× 10−14t2 + 0.23740t+ 0.55516
1.2457× 10−13t2 − 0.48688t− 0.0060443

 .

84

We will assume the entries of b are of degree at most two.

After five iterations of Newton’s method we obtain

∆A ≈

 0.17257 0.12237t+ 0.25225 −0.46902t+ 0.087147
0.21449 0.15210t+ 0.31353 −0.58296t+ 0.10832
−0.055963 −0.039685t− 0.081803 0.15210t− 0.028261

 ,

with ‖∆A‖F ≈ 0.94356416.

The corresponding approximate kernel vector is

b =

0.18971t2 + 0.29750t+ 0.14667
0.27896t+ 0.66186
−0.58143t− 0.0079694

 .

The previously noted small quadratic terms were at roughly machine precision (the compu-
tation is done with 35 digits of precision) and truncated.

It is noted that in [50] a result on this past example that produces an upper bound on
the distance to singularity of 0.9438619. The computation [50] is accurate to seven decimal
points, and accordingly our post-refinement has an improvement of about 0.000297. This
is not surprising, since we solve the necessary conditions (3.11) directly with a reasonable
initial guess.

3.7.4 Lower Rank Approximation of a 4× 4 Matrix Polynomial

In this following example we consider computing a lower-rank approximation to a given
matrix polynomial. Consider the 4× 4 matrix polynomial A, defined as

A = A0 + A1t+ A2t
2 + A3t

3, where

85

A0 =

0.09108776 −0.05442464 0.3645006 0.01821543
−0.1456436 0.03647524 −0.07277662 0.07305016
0.05478714 −0.05444916 0.4373220 0.05478385
−0.1274211 0.09124859 −0.6556615 −0.05446850

 ,

A1 =

0.09116729 0.00001797690 0.2550857 0.05475106

0.0001156514 0.00001659159 0.09108906 −0.05447104
0.05470823 0.03662426 0.1276959 0.03650378
0.05472202 −0.1091389 0.1458359 −0.09090507

 ,

A2 =

0.01833149 0.03661770 0.01824331 0.03660918
0.01837542 −0.05442525 0.0 0.01832234
0.01841784 0.00003900436 0.0 0.01836515
0.01840752 0.00001508311 0.01839699 0.03659170

 ,

A3 =

0.0 0.01837967 0.0 0.0
0.0 0.01843603 0.0 0.0
0.0 0.01829203 0.0 0.0
0.0 0.01842778 0.0 0.0

 .

Example 3.7.6. We will consider a displacement structure on the kernel as well in this
example, where higher-order zero terms are not perturbed from the initial guess. For the
entries of ∆A we preserve higher-order zero terms, and allow low-order terms to be per-
turbed. This is a linearly structured problem, on both the main variable ∆A and the
auxiliary kernel variable B.

To ensure the rank constraint holds, we will additionally assume that the kernel, B̂ is in
a CREF (while B is obviously not) and the columns have unit norm. This normalization

is (locally) equivalent to the ones discussed in Section 3.6.2. Having B̂ in a CREF ensures
that the two kernel vectors are locally linearly independent during the iteration. Of course
perturbing both pivots to zero is possible (although this is sub-optimal). In such a scenario
linear independence can no longer be guaranteed, and the iteration would need to be re-
ininitialized.

For the initial guess we use Ainit = A and take Binit as
0.1954059t2 0.0

−0.2526800t− 0.7681472 −0.06131396t2 − 0.1839419t+ 0.7357675
−0.05727413t2 − 0.01010720t− 0.1280246 −0.06131396t3 − 0.06131396t+ 0.1226279

0.05727413t2 + 0.4683004t+ 0.2560491 0.06131396t3 + 0.4905117t2 − 0.3065698t− 0.2452558

.

86

Using Algorithm 3 we compute after nine iterations

∆A0 ≈

0.00003841866 −0.0001970606 −0.00002444167 −0.000003273264
0.00001831140 −0.00009026377 0.00002067189 −0.0001255102
−0.0001265513 −0.0001595407 0.00003425737 −0.00007523197
−0.00007666528 −0.0002773970 0.00004057408 −0.0001720881

 ,

∆A1 ≈

0.00001508776 0.00003166597 0.00004647888 −0.0001142308
−0.00005872595 −0.00004487730 0.00004547421 −0.0001483973
0.00002056901 −0.0001596527 −0.000006413632 −0.00006541721
−0.00003695701 −0.0001773889 0.00004119722 −0.0002159825

 ,

∆A2 ≈

−0.00003352295 −0.0001190577 0.00005687700 −0.0001783770
0.00001768442 −0.0001467423 0.0 −0.00008587235
−0.00006506345 0.00005243135 0.0 −0.0001686619
−0.0001471227 −0.0001295490 −0.00001105246 −0.0001124559

 ,

∆A3 ≈

0.0 −0.0001025690 0.0 0.0
0.0 −0.0001315095 0.0 0.0
0.0 −0.00002763942 0.0 0.0
0.0 −0.0001877673 0.0 0.0

 ,

with ‖∆A‖F ≈ 0.0007844.

An approximate kernel, B is given by
0.1955493t2 + 0.0006874986t− 0.001013023 0.0

−0.2542383t− 0.7686061 −0.06128819t2 − 0.1818298t+ 0.7368313
−0.05698735t2 − 0.01004111t− 0.1276311 −0.06125293t3 − 0.0002486115t2 − 0.06112324t+ 0.1226783

0.05795811t2 + 0.4677475t+ 0.2541290 0.06151690t3 + 0.4894569t2 − 0.3069667t− 0.2452396

.

A natural question is what happens if we change the displacement structure on the
kernel? To investigate this behavior, we consider an equivalent representation of the pre-
viously used kernel, except that B is in a CREF directly.

Example 3.7.7. If we change the kernel Binit to be
0.1581139t3 + 0.1581139t− 0.3162278 0.03965258t3 + 0.3172206t2 − 0.1982629t− 0.1586103
−0.1581139t2 − 0.4743417t− 0.6324556 −0.03965258t2 − 0.4361784t− 0.7930516

0.0 0.07930516t− 0.07930516
0.3162278t− 0.3162278 0.0

,
used in the initialization of the previous example, then we compute a perturbation with
‖∆A‖F ≈ 0.0008408.

87

In either case, we obtain comparable answers that are a reasonable lower-rank approx-
imation, and can likely be improved by relaxing restrictions on the displacement structure
on B or B̂. It is important to note that relaxing the degree bounds to be (n−r)d in general
on all non-zero entries (where entries are zero if they are in the same row as a CREF pivot)
will likely lead to a better approximation, however one may lose quadratic convergence if
doing so, since iterates may no longer have primitive kernel vectors, and (3.12) will no
longer hold. As discussed in Section 3.6, it is generally difficult to determine the CREF
pivots of the kernel unless the initial guess is very accurate.

The structure of the kernel is an important consideration when deciding upon an initial
guess. It is preferable to restrict fewer coefficients, however the iteration requires a better
initialization due to the increased number of possible descent directions. In such scenarios
for maximum flexibility, a globalized variant of Newton’s method is required. Like-wise,
the structure for ∆A is also an important choice. Restricting which terms can be changed
has a large influence on the (approximate) distance to singularity (of prescribed kernel
dimension).

Embedded and Evaluated Rank Factorization

Another way to approach the lower-rank approximation problem is to use the factorization
in Section 3.4 using Algorithm 1. In these examples hardware precision is used. The
advantage of the rank factorization is that it is kernel-free, in a sense that one does not
need to have any information about the kernel to compute a lower-rank approximation. In
these examples we use default precision (unless noted) in Maple, which is about ten digits.

Example 3.7.8. Consider the same problem as Example 3.7.7 and Example 3.7.6 without
imposing any structure on the kernel and taking ∆Ainit to be the computed perturbation
from Example 3.7.7 as an initial guess.

We compute the same solution of Example 3.7.6. In fact, initializing with the solution
to Example 3.7.6 yields a stationary point immediately.

The solution is computed using an implementation of Algorithm 1 based on a regularized
Newton method, that requires 12 iterations to reach approximately 13 digits of accuracy.

Example 3.7.9. Consider the same problem as Example 3.7.7and Example 3.7.6 without
imposing any structure on the kernel and taking ∆Ainit to be the computed perturbation
from Example 3.7.7 as an initial guess.

We compute the same solution of Example 3.7.6. In fact, initializing with the solution
to Example 3.7.6 yields a stationary point immediately.

88

The solution is computed using an implementation of Algorithm 2 using Newton’s
method, that requires one iteration to reach approximately 12 digits of accuracy with 15
digits of precision. We note that if the default precision is used, then two iterations of
Newton’s method yields an answer that is accurate to roughly 11 digits. This discrepancy
arises from the use of evalf during intermediate computations in Maple.

Example 3.7.10. Using the rank factorization and the previously computed rank 2 ap-
proximation, we can compute a rank 1 approximation via the rank factorization, without
normalizing the kernel.

We compute the following rank 1 approximation by iteratively constructing four lower-
rank approximations via Algorithm 3.

A rank 1 approximation of A is A + ∆A where

∆A0 ≈

−0.009816368 0.002504998 0.001000535 0.004258998

0.1228952 −0.02194259 −0.02952957 −0.07934090
0.04005767 −0.006141763 −0.01077717 −0.02855589
−0.01808597 0.001707572 0.001273578 0.01423062

 ,

∆A1 ≈

−0.02321372 0.004133564 0.006380596 0.01062149
0.01411873 −0.02242337 −0.01471757 0.04536903
−0.01495545 −0.006513157 −0.0004289664 0.02884990
−0.03764955 0.01307587 0.009973064 0.01222832

 ,

∆A2 ≈

−0.01131022 −0.007078220 −0.01824331 −0.001345216
−0.01632458 0.06305340 0.0 −0.008022115
−0.01500028 0.01433914 0.0 −0.001200648
−0.01422351 0.01758763 −0.01839699 −0.01557774

 ,

∆A3 ≈

0.0 −0.01837967 0.0 0.0
0.0 −0.01843603 0.0 0.0
0.0 −0.01829203 0.0 0.0
0.0 −0.01842778 0.0 0.0

 ,

with ‖∆A‖F ≈ 0.2007488.

The final iterative approximation converges to hardware precision in three steps once
‖∇L(x(k))‖2 ≈ 5.9 × 10−5. Prior to this, the rate of convergence is approximately linear.
The Newton-like method used required roughly 86 iterations to obtain convergence (although
this can be improved using various heuristics).

89

3.8 Conclusion

We have shown that finding lower-rank approximations of matrix polynomials can be es-
tablished as a numerically well-posed problem and is amenable to first and second-order
optimization methods. The existence and isolation of solutions is established along with
algorithms exploiting the affine structures to obtain locally quadratic convergence under
mild normalization assumptions.

Along with considering the lower-rank approximation of matrix polynomials, we present
a generalization of the theory to matrix polynomials with an arbitrary affine structure. We
provide examples of how the structure of permissible perturbations and prescribed kernel
structure impacts the distance to solutions. The rank factorization does not depend on
the structure of the kernel, however the trade off is a cost that can be prohibitively large.
This can be remedied in practice by using evaluation and computing rank factorizations of
several images simultaneously that are several orders of magnitude smaller. Of course the
issue here is with the precision of the computed solution, which means the method may be
fast but not accurate. There is no free lunch: of all of the methods studied rely on some
form of normalization or are prohibitively expensive.

We also regard this chapter as a first step towards a formally robust approach to non-
linear matrix polynomials, in the spirit of recent work with symbolic-numeric algorithms
for polynomials. Problems such as approximate matrix polynomial division, GCRD and
factorization all have applications which can benefit from these modern tools.

90

Chapter 4

Matrix Polynomial Determinants,
Adjoints, and their Derivatives

This chapter discusses computing the determinant and adjoint of a matrix polynomial
in a numerically robust and efficient manner. Computing the adjoint matrix, sometimes
known as the classical adjoint or adjugate, is a classical linear algebra problem. The results
presented in this chapter are based on a manuscript of [52] and the preliminary section
of [39]. The determinant and adjoint matrix appear naturally in optimization problems
related to the spectral structure of scalar and polynomial matrices, and are a necessary
component of Chapter 5.

4.1 Introduction

The problem of computing the adjoint matrix over an arbitrary field is well understood
as a symbolic computation problem [101] and exact quasi-optimal Õ(n3d) field operation

algorithms exist, even when A is rank deficient. Likewise for the determinant, fast Õ(n3d)
field operation algorithms exist [67] as well. The floating point matrix polynomial adjoint
has not been extensively studied previously in the literature to the best of the knowledge
of the author. Suppose that we are given A ∈ R[t]n×n of degree at most d. When A

has full rank, a popular algorithm in control theory involves computing the adjoint matrix
to compute A−1 ∈ R(t)n×n. In this instance the inverse is completely defined by the
relationship det(A)−1 Adj(A) = A−1. While the adjoint matrix can provide insight into
the behavior of the inverse of a matrix polynomial, our interest is in using the entries of

91

the adjoint matrix as a constraint in optimization problems. This naturally necessitates
computing the adjoint matrix quickly in a robust manner using floating point arithmetic,
and computing the first two derivatives. The entries of the adjoint matrix reveal partial
information about the spectral structure of a matrix polynomial (see Chapter 5 for a
detailed discussion). These applications arise since the adjoint matrix consists of the
(n− 1)× (n− 1) minors of A.

In the setting of floating point arithmetic, most of the previous work for computing
adjoint matrices was done for the scalar instance of d = 0 by Stewart [100]. The work of
Stewart [100] consists of a forward error analysis and some techniques to approximate the
adjoint matrix of A ∈ Rm×n. The general idea to compute the adjoint relies on the SVD,
QR decomposition, or some other combination of triangular or diagonal rank revealing
factorization. These numerical routines typically require O(mn2) FLOPs.

Other techniques for the scalar instance involve computing the determinant numeri-
cally and using automatic differentiation. The determinant when computed using floating
arithmetic is typically accomplished via a modified QR decomposition using Householder
reflections that compute det(Q) iteratively via the scaling of the Householder reflection
used in the orthogonal (unitary) elimination. Using the identity [84, Chapter 8] that
∇ det(A) = vec(Adj(A)T)T , computing the determinant is effectively the same as com-
puting the adjoint matrix when backwards mode automatic differentiation is used [89].
Computing the adjoint in this manner requires O(n3) FLOPs, assuming m = n.

The matrix polynomial determinant was historically computed with a modified QR
factorization on a linearized matrix pencil. Several of the algorithms found in the literature
typically require computing n2 determinants of (n−1)×(n−1) matrix polynomials of degree

at most d. If one assumes a determinant cost of Õ(n4d) FLOPs or O(n3d3) FLOPs, then

these routines to compute the adjoint typically cost Õ(n2 × n4d) FLOPs or O(n2 × n3d3)
FLOPs. Note that the determinant can be computed using the stated number of FLOPs
via an interpolation based approach or an algorithm analogous to the QZ decomposition.
The cost of these naive techniques are far from the information theoretical lower bound of
Ω(n3d), since Adj(A) generally has Θ(n3d) coefficients.

At the moment there are no known (to the author) robust algorithms for matrix poly-

nomial adjoint that use Õ(n3d) FLOPs. We review some existing algorithms that require

Õ(n4d) FLOPs and discuss algorithms that can be faster in some special cases. We propose

some algorithms based on two sided unitary decompositions that require Õ(n3d3) FLOPs.

In general, we can compute the adjoint matrix in Õ(n4d) or Õ(n3d3) FLOPs using “off the
shelf” numerical linear algebra routines in most instances.

92

4.1.1 Outline

This chapter has the following objectives:

1. Derive closed-form expressions for the first-order derivatives of the determinant and
adjoint matrices.

2. Use the closed-form derivative information to obtain condition number estimates for
det(·) and Adj(·).

3. Discuss several algorithms for computing the adjoint of a matrix polynomial that are
numerically stable and reasonably fast.

4. Discuss how to compute the first two derivatives of adjoint matrix using floating
point arithmetic.

5. Use fast determinant and adjoint computation results to derive a formulation of the
nearest singular square matrix polynomial without auxiliary variables as an applica-
tion of these techniques.

4.2 Overview of Existing Results and Techniques

This section reviews some basic results about the adjoint matrix and determinant compu-
tation.

Lemma 4.2.1 ([100]). Suppose that A ∈ Cn×n and A = UΣV ∗ is a singular value decom-
position of A. Then

Adj(A) = det(U) det(V)V ΓU∗,

where Γ = diag(γ1, . . . , γn) and γj =
∏n

i=1
i 6=j

σi. If A has full rank then this is equivalent to

writing
Adj(A) = det(U) det(V) det(Σ)V Σ−1U∗.

Note that this result holds independent of the rank of A by continuity. Since det(U)
and det(V) are just complex numbers on the unit disk, this is an SVD of Adj(A). If U and
V are real, i.e. orthogonal instead of unitary, then det(U), det(V) ∈ {±1}. Stewart [100]
discusses several algorithms for computing (approximating) the adjoint matrix and provides
a first-order perturbation theory. We do not explicitly make use of these algorithms, but it

93

is important to mention that they exist and can compute (approximate) the adjoint matrix
even if A is (nearly) singular.

While [100] essentially performs a forward error analysis on the problem, a backwards
error analysis is missing from the literature. In several meaningful instances, computing
the adjoint is not even backwards stable. For a problem to be backwards stable, it must
compute the exact solution to a “nearby” problem. The issue with this is that the adjoint
operator is not surjective [11], even when A has full rank. What this means is that there
may not exist a C ∈ Rn×n such that C = Adj(B) for some B ∈ Rn×n. Fortunately, this
only occurs when n is odd, i.e. n = 2k + 1 ∈ Z≥0.

Beslin [11] shows that for every A ∈ Rn×n (R = R or C) of full rank we have that
A = Adj(ωA−1) where ω ∈ C satisfies ωn−1 = det(A). Furthermore:

1. For every A ∈ Cn×n of full rank, there exists C ∈ Cn×n such that Adj(C) = A.

2. For every A ∈ R2n×2n of full rank, there exists C ∈ R2n×2n such that Adj(C) = A.

3. For every A ∈ Rn×n of full rank, there exists C ∈ Cn×n such that Adj(C) = A.

For the case of full rank scalar matrices, the problem will generally be backwards stable
if it is well-conditioned and we permit complex perturbations to the coefficients. In the
special case of matrices of even dimension, the problem is backwards stable over R.

To illustrate why the problem is not backwards stable when n is odd, we will provide
an example.

Example 4.2.2. Let A ∈ R3×3 with det(A) = −1. Suppose that there exists C ∈ R3×3

such that Adj(C) = A. Then det(C)2 = det(A) = −1, and so one would conclude that
(−1)1/2 ∈ R, which is clearly false.

While we can simply tweak the domain of computation with scalar matrices to obtain
satisfactory results, this is not necessarily the case with matrix polynomials. Again, we
will illustrate this with an example.

Example 4.2.3. Let A ∈ R[t]3×3 with det(A) = −t. Suppose that there exists C ∈ R[t]3×3

such that Adj(C) = A. By assumption we have that det(A) = −t. However, det(C)2 =
det(A) = −t, so one concludes that (−t)1/2 ∈ R[t], which is false.

In the case of matrix polynomials, it is not even adequate to consider perturbations
over C[t]n×n. Rather, we would need to work over a far more complicated algebraic domain

94

including radicals. In this scenario, it makes more sense to study a model of mixed stability.
Formally, if Ãdj(·) is an approximation to Adj(·), i.e. Ãdj(A) = Adj(A) + B for some
B ∈ R[t]n×n is a numerical approximation to Adj(·). Then there exists C ∈ R[t]n×n such
that Adj(A + C) = Adj(A) + B and ‖B‖ and ‖C‖ are sufficiently small.

In order to study the notion of backwards and mixed stability in detail, we will need to
analyze the behavior of ∇Adj(·), that is how the derivative of Adj(·) behaves as a vector-
valued function from Rn

2(d+1) → Rn
2((n−1)d+1) (note that d = 0 includes the scalar case

without loss of generality). We will also study computing the second-order derivatives of
Adj(·) later, since it is of interest for optimization problems involving the adjoint.

4.3 The First Derivative of the Determinant

The first task at hand is to understand the Jacobian of the determinant. If A ∈ R[t]n×n has
degree at most d then det(·) : Rn

2(d+1) → Rn
2(nd+1), since deg(det(A)) ≤ nd, with equality

holding generically. In our applications we generally take R = R since we are primarily
concerned with problems over the real numbers. The theory developed will hold [59] if
one considers R = C as well, and so we present the results in the most general form. If
A ∈ Rn×n has full rank, then it is well known that ∇(det(A)) = vec(Adj(A)T)T , with the
result holding for R = R or R = C.

Intuitively one would suspect that it is straight-forward to extract the first-order deriva-
tive from the adjoint operator by the multi-linearity of the determinant operator. The issue
is each entry of A is essentially a vector of d + 1 entries, which complicates the matter
somewhat. Informally, one can make a linear substitution and apply the chain rule to
obtain the derivative of the d+ 1 entries. Using this idea, one notes that

det(A + ∆A) = det(A) + pvec(Adj(A)T)T pvec(∆A) +O(‖∆A‖2
F),

or the scalar expression (ignoring higher-order terms)

vec(det(A + ∆A)) ≈ vec(det(A)) + vec(pvec(Adj(A)T)T pvec(∆A)).

Recall from Definition 3.1.1 that ∆A is an unstructured perturbation.

The Jacobian can be extracted by (padding with zero coefficient entries as neces-
sary) writing vec(pvec(Adj(A)T)T pvec(∆A)) = Jdet vec(∆A) as a matrix-vector product.
Thus, using block-convolution matrices we have

∂ vec(det(A))

∂ vec(A)
= ∇(det(A)) = Φd(pvec(Adj(A)T)T).

95

Theorem 4.3.1. Let A ∈ R[t]n×n have degree at most d, then

Jdet =
∂ vec(det(A))

∂ vec(A)
= Φd(pvec(Adj(A)T)T) ∈ R(nd+1)×n2(d+1).

Proof. The proof follows immediately from the discussion above, as the Jacobian provides
the best first-order approximation.

It is not surprising that the matrix polynomial determinant admits a derivative similar
to the scalar case given the similar structure. In fact, we can derive the same expression
via interpolation of the first-order approximation and using the result of the degree zero
instance. Later we will need to compute the derivative of the adjoint operator, and this is
essentially computing the second derivative of the determinant. In several instances Jdet

can be padded with rows of zeros, such as when the determinant has non-zero degree.

4.3.1 First-Order Perturbation Bounds for the Matrix Polyno-
mial Determinant

Corollary 4.3.2. Theorem 4.3.1 implies the first-order local perturbation bound (ignoring
higher-order terms)

‖ det(A)− det(A + ∆A)‖2

‖ det(A)‖2

≤ ‖Jdet vec(∆A)‖2

‖ det(A)‖2

≤ (d+ 1)‖Adj(A)‖F‖∆A‖F
‖ det(A)‖2

.

Now, we can re-write this bound by noting that

Adj(A)A = det(A)I =⇒
√
n‖ det(A)‖2 = ‖Adj(A)A‖F ,

thus
‖ det(A)− det(A + ∆A)‖2

‖ det(A)‖2

≤ (d+ 1)
√
n
‖Adj(A)‖F‖∆A‖F
‖A Adj(A)‖F

.

If A ∈ Rn×n, then
‖Adj(A)‖2

‖AAdj(A)‖2

= ‖A−1‖2. Due to our choice of coefficient norm we

are not able to handle matrices of rational functions, however the ratio

‖A‖F‖Adj(A)‖F
‖A Adj(A)‖F

=
‖A‖F‖ det(A)A−1‖F√

n‖ det(A)‖F

96

can be thought of as an analog to the classical scalar (degree zero matrix polynomial
instance) condition number. It should be noted that one can use Hadamard’s inequality
to obtain a (poor) bound 1 on ‖Adj(A)‖ and the other related quantities interms of ‖A‖
and n. In the scalar instance using ‖ · ‖2, our bounds are the same as the ones obtained in
[64] (accounting for the choice of ‖ · ‖).

4.4 The First Derivative of the Adjoint

While we have a perturbation theory for the scalar adjoint, we are missing one for the
matrix polynomial adjoint. Naturally, a first-order series expansion would provide insights
into the problem.

Recall that det(A)I = A Adj(A), although this relationship does not define the adjoint
when A is rank deficient. If A is rank deficient, then either Adj(A) has rank one or is the
zero matrix. For the purposes of deriving an error analysis, we are generally not concerned
with these cases.

We can write
Φ(n−1)d(I ⊗A) vec(Adj(A)) = vec(det(A)I),

which is a scalar matrix equation, and from which estimates from
∂ vec(Adj(A))

∂ vec(A)
can be

extracted. We note that Φ(n−1)d(I ⊗ A) is pseudo-invertible if A has full rank. The
Jacobian of Adj(·) can be extracted from this form by performing matrix calculus (see [84,
Chapter 9]).

4.4.1 Computing the First Derivative

Now, we formally state the result and include a technical proof.

Theorem 4.4.1. Let A ∈ R[t]n×n have degree at most d and rank n. The Jacobian of
Adj(A) is JAdj ∈ Rn

2((n−1)d+1)×n2(d+1) with

JAdj =
[
Φ(n−1)d(I ⊗A)

]+ [
Φd(pvec(I) pvec(Adj(A)T)T)− Φd(Adj(A)T ⊗ I)

]
,

where I is understood to be the n×n identity matrix and for a scalar matrix A of full rank,
A+ is the Moore-Penrose pseudo-inverse arising from the SVD.

1The bound is exponential and too large to be of practical use.

97

Proof. First recall that if A has full rank, then A Adj(A) = Adj(A)A = det(A)I. This
expression defines the adjoint matrix when A has full rank. We can write

pvec(A Adj(A)) = (Adj(A)T ⊗ I) pvec(A) = (I ⊗A) pvec(Adj(A)),

thus converting to a linear system over R produces

vec(A Adj(A)) = Φ(n−1)d(I ⊗A) vec(Adj(A)) = Φd(Adj(A)T ⊗ I) vec(A).

Applying the product rule yields

∂ vec(A Adj(A)) = (∂Φ(n−1)d(I⊗A)) vec(Adj(A))+Φ(n−1)d(I⊗A)∂ vec(Adj(A)). (4.1)

Next we observe that (4.1) has the same coefficients as the expression

vec((∂A) Adj(A) + A(∂ Adj(A)))

which is equivalent to

vec((Adj(A)T ⊗ I) pvec(∂A) + (I ⊗A) pvec(∂ Adj(A))),

which reduces to

Φd((Adj(A)T ⊗ I)) vec(∂A) + Φ(n−1)d(I ⊗ A) vec(∂ Adj(A)). (4.2)

We now have the derivative of the left hand side of the expression A Adj(A) = det(A)I.
Differentiation of the right hand side yields

∂ vec(det(A)I) = vec(∂ pvec(det(A)I)),

which is equivalent to the expression

vec(∂ pvec(det(A)I)) = vec(pvec(I) pvec(Adj(A)T)T pvec(∂A)). (4.3)

Converting (4.3) into a linear system over R leads to

vec(pvec(I) pvec(Adj(A)T)T) pvec(∂A) = Φd(pvec(I) pvec(Adj(A)T)T) vec(∂A), (4.4)

which is the derivative of the right-hand side.

98

Combining (4.2) and (4.4) we have

Φ(n−1)d(I ⊗A)
∂ vec(Adj(A))

∂ vec(A)
= Φd(pvec(I) pvec(Adj(A)T)T)− Φd(Adj(A)T ⊗ I).

Assuming that A has full rank so Φ(n−1)d(pvec(I ⊗A)) is pseudo-invertible, we can
write

JAdj =
[
Φ(n−1)d(I ⊗A)

]+ [
Φd(pvec(I) pvec(Adj(A)T)T)− Φd(Adj(A)T ⊗ I)

]
,

which completes the proof.

An observation that is important later is that the derivative of the adjoint has a
Toeplitz-block structure. More importantly, the bandwidth is O(d), and we only need
to compute O(n2) columns instead of O(n2d). We also note that JAdj may be padded with
zeros, since A may not have generic degrees.

Corollary 4.4.2. If A has full rank then JAdj has full rank.

Proof. The matrix Φ(n−1)d(I ⊗A) has full rank since I ⊗A has full rank. The matrix

pvec(I) pvec(Adj(A)T)T −Adj(A)T ⊗ I = −
(
− pvec(I) pvec(Adj(A)T)T + Adj(A)T ⊗ I

)
(4.5)

is a rank one update to a matrix polynomial. By evaluating (4.5) at a complex number ω
that is not an eigenvalue of A we can show that (4.5) has full rank. Let A = A(ω), so
A ∈ Cn×n has full rank.

Using the Sherman-Morrison formula [57, pg. 487] for rank 1 updates to a matrix, we
need to verify that

1− vec(Adj(A)T)T
[(

Adj(A)T
)−1 ⊗ I

]
vec(I) 6= 0,

in order to ensure that (4.5) has full rank. We have that

vec(Adj(A)T)T
[(

Adj(A)T
)−1 ⊗ I

]
vec(I) = vec(Adj(A)T)T vec

(
Adj(A)T)−1

)
= Tr

(
Adj(A)T

(
Adj(A)T

)−1
)

= n,

99

thus (4.5) has full rank. Note we have used the identities for matrices X, Y and Z of ap-
propriate dimension, that vec(XY Z) = (ZT ⊗X) vec(Y) and vec(XT)T vec(Y) = Tr(XY).
Again, we have that

Φd(pvec(I) pvec(Adj(A)T)T)− Φd(Adj(A)T ⊗ I)

has full rank, thus JAdj is a product of two matrices of full rank, and so JAdj must also
have full rank.

Corollary 4.4.2 implies that Lagrange multipliers will exist to several optimization prob-
lems involving the adjoint matrix as a constraint, since the Jacobian matrix of the adjoint
has full rank. The linear independent constraint qualification or the constant rank con-
straint qualification will hold for several optimization problems of the form

min ‖∆A‖ subject to Adj(A + ∆A) = F,

for some reasonably prescribed F ∈ R[t]n×n.

Remark 4.4.3. If A is rank deficient, then the derivative is still defined, but not neces-
sarily by Theorem 4.4.1. If rank(A) ≤ n − 3 then JAdj = 0, since all (n − 3) × (n − 3)
minors vanish (JAdj consists of the coefficients of these minors). If rank(A) = n − 1 or
rank(A) = n− 2 then JAdj is still defined and in both cases JAdj 6= 0. However JAdj is not
necessarily described by Theorem 4.4.1.

For several affine or linear perturbation structures (such as ones that preserve the degree
of entries or the support of entries), Theorem 4.4.1 and the associated Corollary 4.4.2 will
hold (after deleting some extraneous rows or columns).

For the purpose of differentiation techniques, we need at most O(n2) adjoint calls
to compute the first derivative and at most O(n4) adjoint calls to compute the second
derivative. Since Adj(·) : Rn

2(d+1) → Rn
2((n−1)d+1), forward mode automatic differentiation

is ideal. If the cost to compute the adjoint is Õ(n4d2) FLOPs, then with respect to using a
Newton method on a problem with constraints involving the adjoint matrix, this is quasi-
optimal with respect to naive (cubic) matrix inversion. Note that the adjoint has a size
of O(n3d) (assuming floating point representation), so the Hessian would have dimension
Ω(n3d)×Ω(n3d). Using standard (non asymptotically fast) linear algebra techniques, this
would require roughly Ω(n9d3) FLOPs to invert the Hessian matrix. For the purpose of
a naive second-order optimization technique that works on the Hessian, we do not need
quasi-optimal adjoint computation.

Again, a similar observation holds for the determinant as well and we exploit this in
our implemented algorithms.

100

4.4.2 First-Order Perturbation Bounds for the Matrix Polyno-
mial Adjoint

Theorem 4.4.1 has the following corollary.

Corollary 4.4.4. If we let c =
∥∥∥[Φ(n−1)d(I ⊗A)

]+∥∥∥
2
, then we have the relative first-order

perturbation bound (ignoring higher-order terms)

‖Adj(A)− Adj(A + ∆A)‖F
‖Adj(A)‖F

≤ c(n+
√
n)(d+ 1)‖Adj(A)‖F
‖Adj(A)‖F

‖∆A‖F

= c(n+
√
n)(d+ 1)‖∆A‖F .

This quantity also implicitly bounds the second-order condition number2 of det(·) when
rank(A) = n.

Corollary 4.4.4 is analogous to the degree zero case [84], where

∂ vec(Adj(A))

∂ vec(A)
= det(A)

[
vec(A−1) vec((A−1)T)T − ((A−1)T ⊗ A−1)

]
.

In fact, if we take d = 0, then both results agree with each other (up to the choice of
norm).

This produces the perturbation bound (ignoring higher-order terms)

‖Adj(A)− Adj(A+ ∆A)‖2

≈
∥∥∥∥(1

det(A)
vec(Adj(A)) vec(Adj(A)T)T − Adj(A)T ⊗ Adj(A)

)
vec(∆A)

∥∥∥∥
2

≤
∥∥∥∥(1

det(A)
vec(Adj(A)) vec(Adj(A)T)T − Adj(A)T ⊗ Adj(A)

)∥∥∥∥
2

‖ vec(∆A)‖F

≤ 1

| det(A)|
(n+

√
n)‖Adj(A)‖2

2‖∆A‖2

≤(n+
√
n)‖Adj(A)‖2‖A

−1‖2‖∆A‖2.

If we analyze the first-order perturbation bound directly arising from the instance of
d = 0, we have

‖Adj(A)− Adj(A+ ∆A)‖2

‖Adj(A)‖2

≤ (n+
√
n)‖A−1‖2‖∆A‖2.

2The second-order condition number is the “condition number of the condition number”. See [58] for
a detailed discussion of second-order (and higher) condition numbers.

101

Note that this is different from [100], which has the first-order bound (ignoring higher-order
terms)

‖Adj(A)− Adj(A+ ∆A)‖2

‖A‖2

≤ (n− 1 +
√
n− 1)

‖A‖2

σn−1(A)

‖∆A‖2

‖A‖2

.

Thus, there is possibly room for improvement for d ≥ 1. However the tools used by [100]
(mainly the singular value decomposition) are not available for matrix polynomials. One
could proceed by interpolation for example as, the result would hold for the images.

4.5 Floating Point Algorithms for Matrix Polynomial

Adjoint

In this section we discuss families of floating point techniques to compute the adjoint of a
matrix polynomial, that does not necessarily have full rank.

Naive methods involve computing O(n2) determinants with a cost of Ω(n3d) FLOPs
for each determinant, for a total cost of Ω(n5d) FLOPs. Other naive methods might use
floating point polynomial linear algebra directly and use a variant of Gaussian elimination
over R[t] to compute the adjoint. This is generally unstable since Gaussian elimination
(or a fraction-free variant) amounts to performing the Euclidean algorithm using floating
arithmetic.

Instead, it is often preferred to either solve the underlying polynomial system by ex-
panding the coefficients into a larger linear system and seeking a least squares solution by
performing linear algebra over R. An alternative method to this is to solve the problem by
evaluation and interpolation. Using complex roots of unity as evaluation points leads to
stable interpolations, so the stability depends entirely on the conditioning of the problem
at the evaluation points.

Another family of algorithms that have not received much attention is performing a
computation using exact arithmetic with a symbolic method, then rounding to the required
precision. Such a technique is only viable if the intermediate bit complexity is proportional
to the working floating point precision. The advantage is that we have absolute control
over how errors are propagated and the problem is straight forward to analyze. The trade
off here is that the computation will likely take longer than an algorithm that does not use
symbolic computation techniques.

For the purpose of this thesis and arising optimization problems involving the adjoint
matrix, we need to be able to compute Adj(A) in O(n4d2) FLOPs. Recall that Adj(A)

102

has O(n3d) entries (as a finite dimensional vector space), and so inverting the blocks
of the Hessian with derivatives of the adjoint terms appearing would require O(n9d3)
FLOPs using standard arithmetic. Computing these blocks in the Hessian would require
O(n2 × n2 × n4d2) = O(n8d2) FLOPs under this assumption. Most of the algorithms
discussed will be able to accomplish this, or they can accomplish this in some special cases
(such as d is a constant or significantly smaller than n as a parameter).

4.5.1 Exact Symbolic-Numeric Method

The symbolic-numeric method for computing the adjoint is to treat the input as exact,
execute a symbolic-algorithm then round to the required precision. The algorithm pre-
sented by Storjohann [101] can be used, which will succeed with high probability. Al-
ternatively, any fast deterministic determinant and inverse algorithm can be used. If the
algorithm of Storjohann is used naively, then the number of FLOPs required is propor-
tional [80] to Õ(n3d(log(nn(d + 1)n‖A‖n∞))) = Õ(n4d2) FLOPs. The issue is that the
bit complexity of intermediate terms may be larger than a constant number of words.
Hadamard’s bound (Goldstein-Graham variant) provides a very rough upper bound of
‖Adj(A)‖∞ ∈ O(Poly(n, d)‖A‖n−1

∞ (d + 1)n−1n(n−1)/2). Given that ‖A‖∞ is constant for
numerical purposes, the issue is that after rounding, the size in terms of the bit complexity
of the problem is O(n3d), but the size of the exact solution is O(n4d2).

The technique of [101] is unstable if one attempts to translate it into a purely numerical
algorithm since it relies on several GCD and remainder operations. If these operations are
stabilized using approximate GCD techniques, then the cost is no longer Õ(n3d) FLOPs.

4.5.2 Floating Point Interpolation Method

The problem can also be approached from numeric interpolation (see [62, 63]). The algo-
rithm is simply to evaluate A at (n − 1)d + 1 (or another suitable upper bound on the
degree of the determinant) equidistant roots of unity and use a floating point scalar matrix
adjoint method. The algorithm may be briefly summarized as:

1. Compute O(nd) images of A for a cost of Õ(n2d) FLOPs via the Fast Fourier Trans-
form (FFT).

2. Compute O(nd) scalar matrix adjoints for a cost of O(n3) FLOPs, for a total cost of
O(n4d) FLOPs.

103

3. Interpolate the O(nd) adjoint images for a cost of Õ(n2d) FLOPs via the FFT.

The cost of such a procedure is Õ(n4d) FLOPs, and is suboptimal by a factor of O(n),
since the adjoint has O(n3d) entries.

Let εijk be the error from computing Bij(ωk) where B = Adj(A) and ωk is an nd − 1
root of unity. The quantity εijk is the error of the underlying scalar adjoint problem. This
quantity is also backwards stable if A is not poorly conditioned. The error propagated
from interpolating Bij(ω) is the error of solving the linear system

Vij(ω0, . . . , ω(n−1)d)

 Bijk0

...
Bijk(n−1)d

 =

 Bij(ω0)

...
Bij(ω(n−1)d)

+

 εij0
...

εij((n−1)d)

 ,

The Vandermonde matrices Vij(ω0, . . . , ω(n−1)d) are unitary, so the error propagated

(using ‖ · ‖2) in each instance will be proportional to O(
√
nd)εk, where εk = maxk{εijk}.

The total error propagation is O(n3/2d1/2εmax), where εmax = maxk{εk}. This method is
not always backwards stable (but each sub-problem can typically be solved in a backwards
stable manner), because Adj(·) is not surjective over R[t]n×n. Thus, the error propagation
will be proportional to the condition number of Adj(·) and the interpolation point with
the largest error.

4.5.3 Linear System Solving over R

If we assume that A has full rank, then we can pose computing the adjoint matrix as a
solution to

AX = det(A)I.

The problem can be reduced to solving

Φ(n−1)d(I ⊗A) vec(X) = vec(det(A)I).

Given the block structure present, it is sufficient to compute det(A) once (which we assume

can be done fast enough) and QR factor Φ(n−1)d(A) for Õ(n6d3) FLOPs. After Φ(n−1)d(A)
has been QR factored, n linear system solves need to be performed (at a cost of O(n4d2)

FLOPs each), so the total cost of Õ(n6d3) FLOPs are required. This method is too slow
to use in practice. However it is easy to analyze as it is a linear algebra problem over R
(and the QR decomposition is backwards stable).

104

4.5.4 Automatic Differentiation

If we assume that we can compute det(A) in Õ(n4d) FLOPs, then we can extract Adj(A)
from ∇ det(A). This requires O(nd) determinant calls using backwards mode automatic

differentiation, for a total cost of Õ(n5d2) FLOPs. The stability of such an algorithm is
proportional to the dimension, machine round off and the condition number of Adj(·).

In general, any method to compute the determinant in O(f(n, d)) FLOPs leads to a
trivial O(nd f(n, d)) FLOP algorithm to compute the adjoint via reverse mode automatic
differentiation.

4.5.5 QZ Decomposition

It is possible to break the Õ(n4) barrier in exchange for increasing the cost with respect
to d in some special instances. If we linearize A ∈ R[t]n×n of degree at most d into the

pencil P ∈ R[t]nd×nd then we can QZ factor P in Õ(n3d3) FLOPs. This means we can
compute the adjoint of P in O(n3d3) FLOPs, which is often sufficiently good in many
problems. In some special instances, we can also compute the adjoint matrix of A from
this linearization.

Suppose that P = QRZ for Q,Z ∈ Cnd×nd, Q∗Q = I, Z∗Z = I and R ∈ C[t]nd×nd

with R being a triangular matrix. Then we can write

det(A) = det(Q) det(R) det(Z).

Analogous to the QR decomposition, we can compute det(Q), det(Z) and if needed, their
derivatives once while performing the QZ decomposition. Note that Q and Z are scalar
matrices, whose determinant is always a degree zero polynomial, so their derivative with
respect to the entries of A can be computed in O(n3d3) FLOPs. Now we can compute

det(R) in Õ(nd) FLOPs.

For a suitable ω ∈ C, we may invert R(ω) in O(n2d2) FLOPs (as R is triangular)

and compute det(R(ω)) in Õ(nd) FLOPs. We can compute Adj(R) in Õ(n3d3) FLOPs
via interpolation on O(nd) images. We can also compute Adj(Q) and Adj(Z) in O(n3d3)

FLOPs, thus Adj(P) may be computed in Õ(n3d3) FLOPs (if A is a degree one matrix

polynomial, this is Õ(n3) FLOPs).

Alternatively, one may use automatic differentiation (reverse mode) on the O(nd) im-
ages of det(R(ω)) in conjunction with the derivatives of det(Q) and det(Z) to obtain

105

O(nd) images of
∂ det(A(ω))

∂ vec(A(ω))
= vec(Adj(A(ω))T)T in a comparable amount of time if

A ∈ R[t]n×n is not a degree one matrix polynomial.

In terms of numerical stability, the QZ decomposition uses unitary operations so the
error from the QZ decomposition is proportional to the dimension, unit round-off error
and the condition number of Adj(·). Note that the QZ decomposition is a modified QR
decomposition and behaves in almost the same way with respect to numerical stability. If
some eigenvalues are repeated or the spectral structure of A is non-trivial then the QZ
algorithm may not be stable in some implementations. The technique of [7] can be used in
lieu of a pure QZ decomposition, of which the analysis holds since it is another two-sided
unitary factorization.

4.6 Error Analysis of Matrix Polynomial Adjoint Com-

putations

In this section we discuss the problem of estimating the backwards error of an algorithm
that computes the adjoint of a matrix polynomial. The main application is a symbolic
algorithm that computes the adjoint exactly, then rounds to working precision. We provide
a detailed analysis of the instance of scalar matrices (d = 0), then generalize the idea using
block-convolution matrices to the instance of matrix polynomials.

4.6.1 The Scalar Instance

Given A ∈ Rn×n of full rank, there exists a B ∈ Rn×n such that AB = det(A)I. One such
method to approximate the adjoint matrix, B, is to compute the exact adjoint of A then
round to the required working precision. Alternatively, one can use a technique mentioned
in [100] with sufficiently high precision.

We want to find a bound on the minimal (unstructured) perturbation ∆A such that (A+
∆A)(B+ ∆B) = det(A+ ∆A)I where ∆B is the rounding error arising from computation
(floating point error). One notes that B = Adj(A) in this formulation of the problem
for ease of reading and notation. In general if R = R or R = C, we can write ∆A =
ω(B + ∆B)−1 − A, where ωn−1 = det(B + ∆B). Note that ωn−1 need not be real, even if
R = R.

106

Estimating the Backwards Error Directly

The goal is to estimate the backwards error ‖∆A‖2 = ‖ω(B + ∆B)−1 − A‖2 in terms of
‖∆B‖2.

We can write a first-order series expansion [61]

(B − (−∆B))−1 ≈ B−1(I −∆BB−1).

Using a first-order Taylor expansion we can also write

ωn−1 ≈ det(A)n−1 + Tr(Adj(B)∆B) = det(A)n−1

(
1 +

Tr(A∆B)

det(A)

)
.

Thus, ω ≈ det(A) (1 + Tr(Adj(A)−1∆B))
1/(n−1)

, since Adj(Adj(A)) = det(A)n−2A and
A/ det(A) = Adj(A)−1.

This leads to the approximation

∆A = ω(B + ∆B)−1 − A

≈ det(A)
(
1 + Tr(Adj(A)−1∆B)

)1/(n−1) A

det(A)

(
I −∆BB−1)− A

)
=
(
1 + Tr(Adj(A)−1∆B)

)1/(n−1)
A

(
I −∆B

A

det(A)

)
− A.

If we consider c = (1 + Tr(Adj(A)−1∆B))
1/(n−1)

, then c ≈ 1 +
Tr(Adj(A)−1∆B)

n− 1
, again

using a first-order expansion.

Taking norms we obtain

‖∆A‖2 ≈
∥∥∥∥cA− A− cA∆B

A

det(A)

∥∥∥∥
2

≤ ‖A‖2|c− 1|︸ ︷︷ ︸
O(‖∆B‖2)

+
|c|

det(Σ)
‖A∆BA‖2︸ ︷︷ ︸

O(‖∆B‖22)

.

Theorem 4.6.1. Ignoring higher-order terms, we have

‖∆A‖2 ≤
n

n− 1

‖A‖2
2

det(Σ)
‖∆B‖2 ≈ κ2(A)

1

σ2 · · ·σn−1

‖∆B‖2.

107

Estimating the Backwards Error via Optimization

Computing the backwards error can also be expressed as the optimization problem

min ‖∆A‖F subject to (A+ ∆A)(B + ∆B)− det(A+ ∆A)I = 0,

which is a non-linear least squares problem in ∆A. By considering R = C we can always
compute some notion of a backwards error, as the constraint can be satisfied.

Recall that ∇ det(·) is essentially the adjoint operator as(
∂

∂ vec(A)
det

)
(A) = vec(Adj(A)T)T .

The non-linear part of this problem is det(A)− det(A+ ∆A) which can be approximated
by a first-order approximation det(A + ∆A) − det(A) ≈ vec(Adj(A)T)T vec(∆A). Using
the identity that vec(XT)T vec(Y) = Tr(XY), we can write det(A + ∆A) − det(A) ≈
Tr(Adj(A)∆A).

If we suppose that ‖∆A‖F is sufficiently small, then the constraint is approximately

− vec(Adj(A)T)T vec(∆A)I + ∆A(B + ∆B) + A∆B +O(‖∆A‖2
F) = 0.

If we ignore higher-order terms, we have a linear system of the form

∆A(Adj(A) + ∆B) + A∆B − Tr(Adj(A)∆A)I = 0

⇐⇒
([

Adj(A)T + ∆BT
]
⊗ I − vec(I) vec(Adj(A)T)T

)
vec(∆A) + vec(A∆B) = 0.

The coefficient matrix
([

Adj(A)T + ∆BT
]
⊗ I − vec(I) vec(Adj(A)T)T

)
is the sum of a

full rank matrix and a rank one matrix. If we assume that ‖∆B‖2 is sufficiently small, then
we can largely ignore it, since ∆B is essentially a random perturbation of a sufficiently
small magnitude and will generally not perturb the spectral structure into singularity.
Using the Sherman-Morrison formula for rank 1 updates to a matrix, we need to verify
that

1− vec(Adj(A)T)T
[(

Adj(A)T
)−1 ⊗ I

]
vec(I) 6= 0,

in order to ensure that the coefficient matrix has full rank. We have that

vec(Adj(A)T)T
[(

Adj(A)T
)−1 ⊗ I

]
vec(I) = vec(Adj(A)T)T vec

(
Adj(A)T)−1

)
= Tr

(
Adj(A)T

(
Adj(A)T

)−1
)

= n,

108

so for n ≥ 2 the coefficient matrix will have full rank. Note we have used the identities
vec(XY Z) = (ZT ⊗X) vec(Y) and vec(XT)T vec(Y) = Tr(XY).

Now, the matrix C = Adj(A)T ⊗ I is invertible and the rank one update
C− vec(I) vec(Adj(A)T)T was also shown earlier to be invertible. Given this, we can write

(C − vec(I) vec(Adj(A)T)T)−1 = C−1 +
C−1 vec(I) vec(Adj(A)T)TC−1

1− vec(Adj(A)T)TC−1 vec(I)

= C−1 +
vec((Adj(A)T)−1) vec(I)T

1− n
.

We can now derive some bounds on the conditioning of the coefficient matrix in terms
of A.

‖C − vec(I) vec(Adj(A)T)T)−1‖2 ≤ σmin(Z)−1 +
‖I‖F‖Adj(A)−1‖F

n− 1

≤ σmin(Z)−1 +
(
√
n) (
√
n‖Adj(A)−1‖2)

n− 1

≤ σmin(C)−1

(
1 +

n

n− 1

)
≈ 2σmin(C)−1.

We note that[
Adj(A)T ⊗ I

]−1
=
[
(Adj(A)T)−1 ⊗ I

]
and

∥∥[(Adj(A)T)−1 ⊗ I
]∥∥

2
= ‖(Adj(A)T)−1‖2.

Now, by a similar argument we have that

‖C − vec(I) vec(Adj(A)T)T)‖2 ≤ ‖C‖2(n+ 1).

Thus, the 2 norm condition number is bounded above by

κ2(C − vec(I) vec(Adj(A)T)T)) ≤ 2(n+ 1)κ2(Adj(A)).

An immediate application of Lemma 4.2.1 yields that κ2(Adj(A)) = κ2(A).

Now we ignored the ∆B term earlier, which we need to consider. If we have that
‖∆B‖ is sufficiently small, then it seems obvious that the impact on the conditioning will
be minimal. Since the entries of ∆B are proportional to the machine round-off error,

109

we can in theory increase the precision to be sufficiently high so that errors do not af-
fect the computation. The question is how much precision is needed? We recall that if
‖(Adj(A)T)−1∆B‖2 < 1 then

‖(Adj(A)T + ∆B)−1‖2 ≤
‖Adj(A)−1‖2

1− ‖(Adj(A)T)−1∆B‖2

,

so if we force ‖(Adj(A)T)−1∆B‖2 < 1/2 we have ‖((Adj(A)T) + ∆B)−1‖2 ≤ 2‖Adj(A)−1‖2.
Note that this follows from a first-order series expansion of (B + ∆B)−1.

To ensure that ‖∆B‖ is sufficiently small, we note that

‖(Adj(A)T)−1∆B‖2 ≤ ‖Adj(A)−1‖2‖∆B‖2 =
‖A‖2

det(Σ)
‖∆B‖2.

So, if we choose ‖∆B‖2 ≤
1

2

det(Σ)

‖A‖2

, we can estimate the backwards error using this

approximation. Note that computing the SVD of A is adequate to determine if computing
the adjoint will have a modest backwards error.

Theorem 4.6.2. If ‖∆A‖F is sufficiently small, then

‖ vec(∆A)‖2 = ‖∆A‖F ≈
∥∥∥([Adj(A)T + ∆BT

]
⊗ I − vec(I) vec(Adj(A)T)T

)−1
vec(A∆B)

∥∥∥
2
.

Furthermore, if ‖∆B‖2 is sufficiently small, then ignoring O(‖∆B‖2
2) terms,

‖∆A‖2 ≤ ‖∆A‖F ≤ (‖(B + ∆B)−1‖2 + ‖B−1‖2)‖ vec(A∆B)‖2 ≤
2
√
nκ2(A)

σ2 · · ·σn−1

‖∆B‖2.

Proof. The term∥∥∥([Adj(A)T + ∆BT
]
⊗ I − vec(I) vec(Adj(A)T)T

)−1
∥∥∥

2
≤ ‖(B + ∆B)−1‖2 + ‖B−1‖2

follows from the earlier analysis in this section, as this is a rank one update to a matrix.
We note that

‖ vec(A∆B)‖2 = ‖A∆B‖F ≤ ‖A‖F‖B‖2 ≤
√
n‖A‖2‖∆B‖2.

110

Corollary 4.6.3. If ‖∆B‖2 is sufficiently small, then

κ2

([
Adj(A)T + ∆BT

]
⊗ I − vec(I) vec(Adj(A)T)T

)
∈ O(n× κ2(A)).

The proof follows immediately from the preceding discussion.

Note that the two analysis of the backwards error agree up to a constant factor of
2
√
n, which arises due to the vectorization and resulting linear system of equations. If we

used ‖ · ‖F for our first analysis, then the constant factor becomes 2, which arose from the
triangle inequality. We observe from analysis in both instances that it is sufficient to have
‖∆B‖2 ≤

1
2

det(Σ)/‖A‖2 to ensure that the series approximation (B+∆B)−1 is meaningful
in both instances.

It is important to note that the analysis in this section generalizes very easily to matrix
polynomials since it is “inverse-free” until the last step.

4.6.2 The Matrix Polynomial Instance

Suppose that we are given A ∈ R[t]n×n of full rank, so there exists B ∈ R[t]n×n such that
AB = det(A)I. We would like a bound on the minimal (unstructured) perturbation ∆A

such that (A + ∆A)(B + ∆B) = det(A + ∆A)I where ∆B is the rounding error arising
from the computation (floating point error). We will assume with some loss of generality
that there exists C ∈ R[t]n×n such that Adj(C) = B + ∆B. In theory, the rounded answer
could be perturbed to a nearby matrix polynomial with a pre-image under the adjoint
operator. However, we assume that this does not need to be done.

The analysis of the previous section can be applied directly here by an interpolation
argument. Alternatively, we can generate a linear system of equations over R and solve
this problem instead.

Like earlier, we are now looking to compute a solution to([
Adj(A)T + ∆BT

]
⊗ I − pvec(I) pvec(Adj(A)T)T

)
pvec(∆A)+pvec(A∆B) = 0, (4.6)

which is equivalent to solving the linear system

Φd

(([
Adj(A)T + ∆BT

]
⊗ I − pvec(I) pvec(Adj(A)T)T

))
vec(∆A)+Φd

(
∆BT ⊗ I

)
vec(A) = 0.

Note that the coefficient matrix in (4.6) has full rank by essentially the same argument
as before if A has full rank. By assumption a solution exists (otherwise in theory one
could perturb ∆B to the nearest point in which a solution does exist).

111

Theorem 4.6.4. If ‖∆A‖F is sufficiently small and there exists C ∈ R[t]n×n such that
Adj(C) = B + ∆B, then vec(∆A) ≈

−
[
Φd

(([
Adj(A)T + ∆BT

]
⊗ I − pvec(I) pvec(Adj(A)T)T

))]+
Φd

(
∆BT ⊗ I

)
vec(A).

To answer the precision problem we draw our attention to the instance of d = 0. We
can determine how much precision is needed by evaluating the problem at O(nd) complex
roots of unity that are uniformly distributed along the unit circle. An upper bound on the
precision needed is easily derived from the image that requires the most precision.

4.7 Computing the First and Second Derivatives of

the Determinant and Adjoint

In this section we discuss some methods for computing first and second-order derivatives
of the adjoint matrix when working over R[t]n×n. The degree zero case is well studied (see
[12, 64] for example).

As we saw earlier, the adjoint matrix is basically the first-order derivative of the de-
terminant. Accordingly, it should not be a surprise that we can think of the first two
derivatives of the adjoint as the second and third order derivatives of the determinant. In
the scalar case, this is quite straight forward to compute, however in the matrix polynomial
case the generalization is not quite immediate. We will assume that computing the ad-
joint matrix numerically costs Õ(n4d) FLOPs, as this is easily accomplished with existing
numerical linear algebra routines currently available.

4.7.1 Polynomial-Time Symbolic Differentiation of the Matrix
Polynomial Determinant

If we consider same degree unstructured perturbations to A ∈ R[t]n×n of the form ∆A ∈
R[t]n×n, then computing derivatives is straight forward. A naive method would be to
compute det(A + ∆A) as a vector of nd+ 1 multivariate polynomials of total degree nd.
Obviously there are at least exponentially many coefficients in the entries of det(A+∆A),
so this will not yield a fast algorithm for differentiation.

Alternatively, one could use Theorem 4.3.1 to compute the derivatives. The cost of
computing the first derivative with such a technique is Õ(n4d + n3d2) FLOPs. To ob-
tain the second derivative a naive computation using Theorem 4.4.1 would cost roughly

112

O(n6d3 + n5d3) FLOPs after expanding the Toeplitz-block structure. A faster algorithm

would require Õ(n5d + n5d3) FLOPs by computing the first derivative of the adjoint di-
rectly then expanding the Toeplitz-block structure. In practice we would not compute the
tensor ∇2 det(A) directly, since we generally need expressions of the form ∇2λT det(A)
where λ ∈ R(nd+1)×1. It is important to note that automatic differentiation is very efficient
for evaluating expressions of the form ∇2λTf(x). However, in several situations the tools
of automatic differentiation may not be available.

We can use a hybrid-symbolic algorithm to compute det(A) in the case where A has
an affine structure ∆(·) of some kind. Since det(·) is a multi linear function in the entries
of ∆A, i.e. det(·) is multi-linear in R[∆A110, . . .∆Annd], we can store it as a sequence of
multi-linear polynomials. Again, this would require an exponential amount of storage in n

and d. To compute
∂ det(A + ∆A)

∂∆Aijk

it is adequate to compute
∂ det(A + ∆Aijk · Eijk)

∂∆Aijk

,

where Eijk ∈ R[t]n×n is a matrix from an appropriate basis for the perturbation structure,
assuming we are evaluating the derivative at ∆A = 0 (by performing a shift we can
generalize to other evaluation points, as we will demonstrate for the adjoint). Likewise,
evaluating the derivative at a particular point follows a similar idea. The cost to compute
det(A + ∆Aij · Eijk) is Õ(n4d2) FLOPs using naive symbolic methods, so computing all

n2d derivatives would have a worst case cost of Õ(n6d3) FLOPs. We can improve this
slightly, by making n2 determinant calls, by computing the derivatives of ∆Aij ·Eij in the
same pass (one simply makes a linear substitution, computes the derivative, then invokes
the chain rule on the computed result and performs a scalar polynomial multiplication).
A reasonable implementation avoids the multivariate polynomial swell, so the resulting
cost remains polynomial. The derivative cost is reduced to Õ(n6d2) FLOPs. If one were
to assume that ∆A has no structure, i.e. A has degree at most d and any entry may
be arbitrarily perturbed, then computing Adj(A) (symbolically) requires Õ(n4d) FLOPs,
which would be faster in the unstructured case or the case of some special affine structure.
If we had a quasi-optimal algorithm to compute the adjoint matrix that required Õ(n3d)

FLOPs then we could compute ∇ det(A) in Õ(n3d2) FLOPs (which is quasi-optimal).

Computing the two remaining higher-order derivatives remains to be done, and this
technique generalizes in the obvious way. The run time is still polynomial, except more
determinant calls are required. We explain in detail how to do this for the adjoint matrix,
of which the theory is nearly identical.

113

4.7.2 Polynomial Time Symbolic Differentiation of the Matrix
Polynomial Adjoint

Computing the derivatives of the matrix polynomial adjoint is similar to the determinant,
however we will include a proper discussion for completeness. While det(·) : Rn

2(d+1) →
Rnd+1, we have that Adj(·) : Rn

2(d+1) → Rn
2((n−1)d+1). We will generally take R = R,

because we will treat C ∼= R2 and the ideas will carry over with some care, since we are
generally not performing complex differentiation (the end goal is to minimize ‖ · ‖ of some
function subject to some constraints, of which real differentiation is exclusively used).

If we compute ∇Adj(·) using Theorem 4.3.1 directly, then using standard arithmetic
this will cost O(n6d3) FLOPs which is too slow. Instead, we will discuss methods that
behave like forward mode automatic differentiation, but are well suited towards matrix
polynomials with an affine structure. If A ∈ R[t]n×n has the structure of preserving
the degree of each entry or the support of each entry then the following method has the
same cost as the unstructured case (the unstructured Jacobian will be padded with several
columns of zeros which can be deleted to obtain the structured Jacobian).

We can compute the first-order derivatives using the same idea as the determinant,
that is

∂ Adj(A + ∆A)

∂∆Aijk

∣∣∣∣
∆A=∆Aeval

=
∂ Adj(A + ∆Aijk · Eijk + ∆Aeval −∆Aeval

ijk · Eijk)
∂∆Aijk

,

from which vectorizing (and padding with zeros as needed) produces the desired vector of
derivatives. Since Adj(·) is a continuous function as a multivariate polynomial in ∆A, we
can compute mixed partial derivatives in an analogous fashion. The “blocking” idea from
earlier is equally applicable. We are essentially computing the adjoint symbolically of a
matrix with entries over R[t][∆Aijk]. The cost of doing this symbolically (i.e. performing

the computation with symbols) is roughly Õ(n4d) FLOPs, since the polynomials in ∆Aijk

are linear.

The expression

Adj(A + ∆Aijk · Eijk + ∆Aeval −∆Aeval
ijk · Eijk)

may seem confusing at first, but all it does is evaluate ∆A at the point ∆Aeval except for
the entries ∆Aijk. This is the “shift” that would need to be applied to the determinant.

Computing the second-order derivatives is commonly found in optimization problems
using sequential quadratic programming, or Newton-like methods. Generally, we will need

114

to differentiate an expression of the form

λT vec(Adj(A + ∆A)) (4.7)

where λ ∈ Rn2((n−1)d+1)×1 is a vector of Lagrange multipliers .

The second derivative of (4.7) is sometimes required, and we can write (differentiating
with respect to ∆A)

∇2λT vec(Adj(A + ∆A)) = ∇λTJ, with J = ∇ vec(Adj(A + ∆A)).

If we define

Adiffijk,uvw = Adj(A + ∆Aeval + (∆Aijk −∆Aeval
ijk) · Eijk + (∆Auvw −∆Aeval

uvw) · Euvw),

then Adiffijk,uvw represents a symbolic expression of Adj(A + ∆A) evaluated at ∆Aeval ex-

cept at the points corresponding to ∆Auvw and ∆Aijk. Computing the quantity A
diff
ijk,uvw

requires a symbolic matrix polynomial adjoint computation over R[t][∆Aijk,∆Auvw]. The
entries are bivariate multi-linear polynomials in R[∆Aijk,∆Auvw], so the corresponding

computation will cost Õ(n4d) operations. Since there are two multivariate polynomials of
total degree two, the overhead cost will generally be asymptotically constant for unstruc-
tured matrices or matrices with some special affine structures. This technique is feasible
for computing a few low-order terms, but not all of the higher-order derivatives, as the
cost will grow exponentially in the number order of the derivatives computed.

Now we note that

∂2λT vec(Adj(A + ∆A))

∂∆Aijk∂∆Auvw

∣∣∣∣
∆Aeval

=
∂2λT vec(Adiff

ijk,uvw)

∂∆Aijk∂∆Auvw

,

so computing the Hessian at a specific point can be done in a polynomial amount of time.
Note that a reasonable implementation will compute ∇2

∆Aijk,∆Auvw
λTAdiff

ijk,uvw or something
similar. Again we can use O(n2)×O(n2) adjoint calls if we work on blocks of each coefficient
∆Aij. As mentioned earlier, these types of problems are well suited towards automatic
differentiation, especially if a matrix-free method is used to approach the problem.

4.8 Optimization Problems Involving the Determinant

One particular application of Section 4.7.1 and the other ideas in this chapter is computing
a nearby matrix polynomial with a prescribed eigenvalue, determinant or minors. The list

115

of problems here are not exhaustive, but they fit within the theme of this thesis. The
next chapter is dedicated to an optimization problem that depends on the derivatives of
the adjoint matrix. If one had reason to compute additional minors, a very similar theory
would hold.

4.8.1 Nearest Singular Matrix (Polynomial) Revisited

One such application in this family is finding the nearest singular matrix (polynomial) with
an affine displacement structure, assuming it exists. Of course in the degree zero case with
no particular structure this problem can be solved quickly with the SVD.

The optimization problem in Chapter 3 of computing the nearest rank deficient matrix
polynomial can be formulated as

min ‖∆A‖2
F subject to det(A + ∆A) = 0, (4.8)

without any particular affine structure. The quantity ∇ det(A + ∆A) will typically have
(locally) constant rank. In general, Lagrange multipliers exist when rank(A+∆A) ≥ n−1
since the adjoint, thus the derivative, does not vanish by Theorem 4.3.1 (recall that the
adjoint has full rank or rank one in these scenarios). Note that the linear operator Φd(·)
does not deform the non-zero vector pvec(Adj(A + ∆A)T)T .

The constraint qualifications will fail to hold when rank(A + ∆A) ≤ n − 2 since
∇ det(A + ∆A) ≡ 0. One could prescribe that the (n − r) × (n − r) minors are zero
to remedy this, although this is difficult to determine in advance. This observation can
provide an alternative proof to the separation bounds and arguments to show that regu-
larity conditions hold from Chapter 3. Note that no auxiliary variables are used in this
formulation of the problem.

The idea of computing more minors is analogous to the ideas in Chapter 3 involving
the minimal embedding. The minimal embedding shows that a constraint qualification can
be satisfied if there are multiple kernel vectors. The analog in this instance is the number
of leading zeros before or after the pivot element (depending on the permutation used) is
the number of other kernel vectors.

We can formally summarize the procedure to compute the nearest singular matrix
polynomial via the determinant in the following algorithm.

Using a standard variant of Newton’s method, Algorithm 4 using non-fast linear sys-
tem solving will require Ω(n6d3) FLOPs. In practice, computing the Hessian will require

Õ(n4d × n2d × n2d) = O(n8d3) FLOPs assuming the determinant is computed in Õ(n4d)

116

Algorithm 4 : Nearest Matrix Polynomial with Zero Determinant

Input:
• Matrix polynomial A ∈ Rn×n

• (Approximately) Rank deficient C ∈ R[t]n×n of the desired degree/displacement struc-
ture and rank deficiency.
• Displacement structure matrix ∆̃A to optimize over.

Output:
• A + ∆A that is singular or an indication of failure.
1: Compute ∆Ainit from C

2: Define Lagrangian function L as

L(x, λ) = ‖∆A‖2
F + λT vec(det(A + ∆̃A)) where x = vec(∆A).

3: Initialize λ ∈ R(nd+1)×1 via linear least squares from ∇L|xinit = 0.
4: Compute (

x+ ∆x
λ+ ∆λ

)
by solving ∇2L

(
∆x
∆λ

)
= −∇L(x, λ) until∥∥∥∥(∆x

∆λ

)∥∥∥∥
2

or ‖∇L(x, λ)‖2 is sufficiently small, or divergence is detected.

5: Return the locally optimal ∆A or an indication of failure.

FLOPs using standard techniques. Using reverse mode automatic differentiation on the
Lagrangian should generally require Õ(n4d) × O(n2d + nd) = Õ(n6d2) FLOPs, although
our implementation does not do this. A reasonable implementation will require roughly
O(n6d3) FLOPs, assuming “Newton’s method” is used in some form. A first-order gradient

algorithm would generally require Õ(n4d) FLOPs per iteration.

Theorem 4.8.1. If ‖∆A‖ is sufficiently small and Adj(A + ∆A) 6= 0 then reasonable
versions of Newton’s method will converge quadratically in Algorithm 4 with a suitable
initial guess .

Proof. All the quantities are polynomials and thus locally Lipschitz. We have that ∇2
xxL =(

2I + F
)
, where F is a symmetric matrix with zero diagonal that is a linear function in

λ and multi-linear in ∆A that satisfies F = 0 if λ = 0. If ‖λ‖ is sufficiently small, then
σmin(2I +F) > 0 so ∇2

xxL has full rank and the second-order sufficient condition will hold
at a minimizer, as the second-order necessary condition must hold. If Adj(A + ∆A) 6= 0
then Lagrange multipliers exist by an application of Theorem 4.3.1.

117

If the solution has rank at most n−2 then regularity conditions are no longer satisfied.
One would need to add the constraint that higher-order minors vanish in order to ensure
that a constraint qualification held.

Example 4.8.2. Let us consider A from Example 3.7.5, using the technique of 4.7.1 to
solve the optimization problem (4.8) via Lagrange multipliers.

We can compute a local minimizer3 by taking Ainit = A and performing 14 iterations
of a Newton method to obtain an answer that is accurate to approximately 15 decimal points
of accuracy.

We compute ‖∆A‖ ≈ 0.94356416746 with

∆A0 ≈

 0.1725690 0.2522491 0.08714713

0.2144912 0.3135280 0.1083178
−0.05596349 −0.08180346 −0.02826149

 ,

∆A1 ≈

0.0 0.1223740 −0.4690226
0.0 0.1521023 −0.5829622
0.0 −0.03968543 0.1521023

 .

This is the same solution computed earlier, up to rounding errors.

It should be noted that solving (4.8) with the same initial guesses in Section 3.7.2 and
Section 3.7.3 computes the same solutions when rank(A + ∆A) = n− 1.

4.8.2 Nearest Matrix Polynomial with Prescribed Eigenvalue

An analogous problem is to find a nearby matrix polynomial with a prescribed finite
eigenvalue by computing a (local) solution to

min ‖∆A‖2
F subject to

det(A + ∆A) = p(t)(t− ω),

p(t) ∈ R[t],

ω ∈ C.

In this problem p(t) is an arbitrary polynomial and ω is prescribed by the user. If R = R
and ω ∈ C\R then the right factor can be modified to be (t − ω)(t − ω) so that a real
irreducible quadratic factor is obtained. This problem generally has a solution since the set

3The second-order sufficient conditions are satisfied.

118

of all polynomials that do not have ω as a zero is open. I.e. if p(ω) 6= 0 then (p+∆p)(ω) 6= 0
by continuity for a ∆p that is sufficiently small. Thus the set of all polynomials with ω as
a zero is closed. ∆A = −A is such a solution, hence by Weierstrass’ theorem a solution
exists. As long as deg(det(A + ∆A)) 6= −∞ (i.e. the solution has full rank) then a rank
based constraint qualification will generally hold. Under these assumptions, we can expect
Newton-like methods to have a local rate of convergence that is super linear and generally
of order two.

A related problem is finding a nearby matrix polynomial with a prescribed infinite
eigenvalue. It is well known that a matrix polynomial A ∈ R[t]n×n of degree at most d has
an infinite eigenvalue if and only if the leading coefficient matrix Ad is rank deficient. In
other words, the matrix polynomial td(A(t−1)) has t = 0 as an eigenvalue. This problem
is easily solved via the SVD if A is unstructured . If A is structured then this easily seen
to be essentially the same problem as the finite case.

A natural question is how to compute a nearby matrix polynomial with a prescribed
spectral structure. If possible, compute a nearby matrix polynomial that has a non-trivial
Smith normal form or whose reversed polynomial has a prescribed spectral structure at
the point t = 0. The next chapter is dedicated to this problem with an emphasis on the
finite spectral structure.

4.9 Conclusion

We have shown that the matrix polynomial determinant and adjoint can be computed
in a numerically robust manner using floating point operations that is reasonably fast.
Furthermore theoretically, quasi-optimal symbolic numeric algorithms that compute the
adjoint and determinant were discussed. Algorithms with a polynomial amount of FLOPs
are discussed to compute the matrix polynomial adjoint and determinant in the instance
of matrix polynomials with an affine structure. Also studied were the first two derivatives
of the determinant, adjoint and some algorithms to compute them.

This chapter discussed the determinant and adjoint of matrix polynomials extensively,
however the ideas here can be applied to performing differential calculus on a matrix
consisting of the (n − k) × (n − k) minors. Importantly, the determinant is a multi-
linear function, so computing higher-order minors can be accomplished via differentiation
of the determinant. Most of the ideas presented in this chapter also generalize to matrix
polynomials with an affine structure by considering directional derivatives. Alternatively,
one may use Theorem 4.3.1 Theorem 4.4.1 or or Theorem 4.3.1 conjunction with the chain

119

rule to compute the derivatives of affinely structured matrices. This amounts to a derivative
computation and a matrix multiplication and can be more efficient in some instances.

We view this chapter as a first step towards a formally robust numerical algorithm to
compute the adjoint of a matrix polynomial in a quasi-optimal number of FLOPs. The
applications of this section have several applications in the study of the spectral properties
of matrix polynomials and fast algorithms to find a nearby matrix polynomial with an
interesting spectral structure. The next chapter will make use of these results extensively.

120

Chapter 5

The Approximate Smith Normal
Form

This chapter discusses the problem of computing a nearby matrix polynomial with a pre-
scribed spectral structure. The emphasis is on the finite spectral structure of a matrix
polynomial. The techniques described for the finite spectral structure are easily general-
ized to handle the instance of the infinite spectral structure as a special case. Most of the
results presented in this chapter are based on the conference paper [39] and a manuscript of
the extended journal version [40]. This chapter is not about computing the Smith normal
form of a matrix polynomial using floating point arithmetic; instead we discuss comput-
ing a nearby matrix polynomial with “an interesting” or non-generic Smith normal form.
This chapter draws heavily on the ideas presented in Chapter 4, since several optimization
problems involve the determinant and adjoint matrix.

5.1 Introduction

Matrix polynomials appear in many areas of computational algebra, control systems the-
ory, differential equations and mechanics. The algebra of matrix polynomials is typically
described assuming that the coefficients are from the field of real or complex numbers.
However, in some applications, coefficients can come from measured data or contain some
amount of uncertainty. As such, arithmetic may contain numerical errors and algorithms
are prone to numerical instability.

One problem of computational importance is finding the Smith Normal Form (SNF, or
simply Smith form) of a matrix polynomial. Given A ∈ R[t]n×n of full rank, the Smith

121

form S of A is a matrix polynomial

S =

s1

s2

. . .

sn

 ∈ R[t]n×n,

where s1, . . . , sn are monic and si | si+1 for 1 ≤ i < n, such that there exist unimodular
U,V ∈ R[t]n×n (i.e., with determinants in R∗) with S = UAV. The Smith form always
exists and is unique though the matrices U, V are not unique [44, 65]. The diagonal entries
s1, . . . , sn are referred to as the invariant factors of A.

The Smith form is important as it reveals the structure of the polynomial lattice of
rows and columns, as well as the effects of localizing at individual eigenvalues. That is, it
characterizes how the rank decreases as the variable t is set to various eigenvalues. The
form is closely related to the more general Smith-McMillan form for matrices of rational
functions, a form that reveals the structure of eigenvalues at infinity.

In an exact setting, computing the Smith form has been well studied and very effi-
cient procedures are available (see [67] and the references therein). However, in the case
that coefficients contain uncertainties, the problem is much less understood. Numerical
methods to compute the Smith form of a matrix polynomial typically rely on linearization
and orthogonal transformations [7, 26, 27, 28, 104] to infer the Smith form of a nearby
matrix polynomial via the Jordan blocks in the Kronecker canonical form (see [65]). These
linearization techniques are backwards stable, and for many problems this is sufficient to
ensure that the computed solutions are computationally useful when a problem is con-
tinuous. However, the eigenvalues of a matrix polynomial are not necessarily continuous
functions of the coefficients of the matrix polynomial, and backwards stability is not always
sufficient to ensure computed solutions are useful in the presence of discontinuities. These
methods are also unstructured in the sense that the computed non-trivial Smith form may
not be the Smith form of a matrix polynomial with a prescribed coefficient structure. In
extreme instances, the unstructured backwards error can be arbitrarily small, while the
structured distance to an interesting Smith form is relatively large. This is often seen in
problems with prescribed sparsity patterns or zero-coefficients. Numerical methods can
also fail to compute meaningful results on some problems due to uncertainties. Examples
of such problems include nearly rank deficient matrix polynomials, repeated eigenvalues
or eigenvalues that are close together and other ill-posed instances. The above issues are
largely resolved by our optimization-based approach, though at a somewhat higher com-
putational cost.

122

The invariant factors s1, . . . , sn of a matrix A ∈ R[t]n×n can also be defined via the
determinantal divisors δ1, . . . , δn ∈ R[t], where

δi = GCD
{

all i× i minors of A
}
∈ R[t].

Then s1 = δ1 and si = δi/δi−1 for 2 ≤ i ≤ n (and δn = det(A)). In the case of 2 × 2
matrix polynomials, computing the nearest non-trivial Smith form is thus equivalent to
finding the nearest matrix polynomial whose polynomial entries have a non-trivial GCD.
This points to a significant difficulty: approximate GCD problems can have infima that
are unattainable. That is, there are co-prime polynomials with nearby polynomials with
a non-trivial GCD at distances arbitrarily approaching an infimum, while at the infimum
itself the GCD is trivial (see, e.g., [36]). This issue extends to Smith forms as is seen in
the following example.

Example 5.1.1. Let f = t2−2t+ 1 and g = t2 + 2t+ 2. We first seek f̃ , g̃ ∈ R[t] of degree

at most 2 such that gcd(f̃ , g̃) = γt+ 1 at a minimal distance ‖f − f̃‖
2

2 + ‖g − g̃‖2
2 for some

γ ∈ R. Using the approach of Karmarkar & Lakshman [72] it is shown [51, Example 3.3.6]
that this distance is (5γ4 − 4γ3 + 14γ2 + 2)/(γ4 + γ2 + 1). This distance has an infimum

of 2 at γ = 0. However, at γ = 0 we have gcd(f̃ , g̃) = 1 even though deg gcd(f̃ , g̃) > 0 for
all γ 6= 0.

Now consider the matrix A = diag(f, g) ∈ R[t]2×2. For A to have a non-trivial
Smith form we must perturb f, g such that they have a non-trivial GCD, and thus any
such perturbation must be at a distance of at least 2. However, the perturbation of distance
precisely 2 has a trivial Smith form. There is clearly no merit to perturbing the off-diagonal
entries of A.

Our work indirectly involves measuring the sensitivity to the eigenvalues of A and the
determinant of A. Thus we differ from most sensitivity and perturbation analysis [4, 99]
since we also study how perturbations affect the invariant factors, instead of the roots of
the determinant. Additionally our theory is able to support the instance of A being rank
deficient and having degree exceeding one. One may also approach the problem geomet-
rically in the context of manifolds [29, 30]. We do not consider the manifold approach
directly since it does not yield numerical algorithms.

5.1.1 Outline

We address two fundamental questions in this chapter:

123

1. What does it mean for a matrix polynomial A to have a non-trivial Smith form
numerically?

2. How far is A from another matrix polynomial with an interesting or non-trivial Smith
form?

We formulate the answers to these questions as solutions to continuous optimization
problems. The main contributions of this chapter are deciding when A has an interesting
Smith form, providing bounds on a “radius of triviality” around A and a structured
stability analysis on iterative methods to compute a structured matrix polynomial with
desired spectral properties.

The remainder of the chapter is organized as follows. In Section 5.2 we give the notation
and terminology along with some needed background used in our work. Section 5.3 dis-
cusses the approximate Smith form computation as an optimization problem and provide
some new bounds on the distance to non-triviality. We present an optimization algorithm in
Section 5.4 with local stability properties and rapid local convergence to compute a nearby
matrix polynomial with a non-trivial Smith form and discuss implementation details. A
method to compute a matrix polynomial with a prescribed lower bound on the number of
ones is discussed in Section 5.5. The instances of prescribing the whole spectral structure
is dealt with in Section 5.6 and the prescribed Smith form and eigenvalues at infinity is
dealt with in Section 5.7. The chapter ends with a discussion of our implementation and
examples.

5.2 Preliminaries

In this section we explore the topology of the approximate Smith normal form and discuss
basic results concerning the notion of both attainable and unattainable solutions. In the
context of the KKT conditions, the unattainable solutions are irregular in the meaning
that Lagrange multipliers generally do not exist. In the instance of irregular solutions, we
describe how to regularize the optimization problem to obtain a problem where Lagrange
multipliers exist.

In this chapter we are mainly concerned with preserving the zero structure of a matrix
polynomial, that is we do not change zero-coefficients or increase the degrees of entries.

Recall that the rank of a matrix polynomial is the maximum number of linearly inde-
pendent rows or columns as a vector space over R(t). This is the rank of the matrix A(ω)
for any ω ∈ C except when ω is an eigenvalue of A(t).

124

Definition 5.2.1 (McCoy Rank and Non-Trivial SNF). The McCoy rank of A is
minω∈C{rankA(ω)}, which is the lowest rank when A is evaluated at an eigenvalue (or
any value in C for that matter). The McCoy rank is also the number of ones in the Smith
form, or equivalently, if A has r non-trivial invariant factors, then the McCoy rank of A
is n− r. The matrix polynomial A is said to have a non-trivial Smith form if the McCoy
rank is at most n−2, or equivalently, has two or more invariant factors of non-zero degree.

Problem 5.2.2 (Approximate SNF Problem). Given a matrix polynomial A ∈ R[t]n×n,

find the distance to a non-trivial SNF and, if possible, a matrix polynomial Â ∈ R[t]n×n

of prescribed coefficient structure that has a prescribed McCoy rank of n− r for r ≥ 2 such
that ‖A − Â‖ is minimized under ‖ · ‖.

We will consider ‖ · ‖ = ‖ · ‖F to be the Frobenius norm. Computing the nearest (if
it exists) McCoy rank n − 2 matrix is the approximate SNF. Note that rank deficient
matrix polynomials have a non-trivial SNF under this definition, although the SNF may
be unattainable (the matrix polynomial is rank deficient and all of the non-zero invariant
factors are one).

Problem 5.2.3 (Lower McCoy Rank Approximation Problem). Computing the nearest (if
it exists) McCoy rank n− r matrix for r ≥ 3 is a lower McCoy rank approximation.

In a generic sense, the nearest matrix polynomial with an interesting SNF will have
McCoy rank n − 2 with probability one, but many matrices arising from applications are
expected to have more interesting (i.e. the invariant factors have a richer or non-generic
multiplicity structure) Smith forms nearby.

As described in Section 5.1, it is possible that the distance to a non-trivial SNF is
not attainable. That is, there is a solution that is approached asymptotically, but where
the Smith form is trivial at the infimum. Fortunately, in most instances of interest, solu-
tions will generally be attainable, and we will later discuss how to identify and compute
unattainable solutions. Problem 5.2.2 and Problem 5.2.3 admit the nearest rank n− 1 or
rank n− 2 matrix polynomial as a special case. However the computational challenges are
fundamentally different for non-trivial instances.

5.2.1 Basic Results

In this subsection we review some basic results needed to analyze the topology of the
approximate Smith form problem. We draw heavily on the notion of a generalized Sylvester
matrix.

125

For a matrix A ∈ R[x]n×n, we know that sn = δn/δn−1, the quotient of the determinant
and the GCD of all (n−1)× (n−1) minors. Since these minors are precisely the entries of
the adjoint matrix, it follows that A has a non-trivial Smith form if and only if the GCD
of all entries of the adjoint is non-trivial, that is, deg(gcd({Adj(A)ij})) ≥ 1. In order to
obtain bounds on the distance to a matrix having a non-trivial Smith form, we consider
an approximate GCD problem of the form

min ‖∆A‖ subject to deg
(

gcd
{

Adj (A + ∆A)ij

)}
6= 1.

If this was a classical approximate GCD problem, then the use of Sylvester-like matrices
would be sufficient. However, in our problem the degrees of the entries of the adjoint may
change under perturbations. In order to perform an analysis, we need to study a family of
generalized Sylvester matrices that allow higher-degree zero coefficients to be perturbed.

The computation of the GCD of many polynomials is typically embedded into a scalar
matrix problem using the classical Sylvester matrix. However, in our case we want to
look at GCDs of nearby polynomials but with the added wrinkle that the degrees of the
entries of the individual polynomials may change under perturbations. In order to perform
such an analysis, we need to study a family of generalized Sylvester matrices that allow
higher-degree zero coefficients to be perturbed.

Let f = (f1, . . . , fk) ∈ R[t]k be a vector of polynomials with degrees d = (d1, . . . , dk)
ordered as dj ≥ dj+1 for 1 ≤ j ≤ k − 1. Set d = d1 and ` = max(d2, . . . , dk) and suppose
that for each i ∈ {2, . . . , k} we have fi =

∑
1≤j≤` fijt

j. Recall that defined the generalized
Sylvester matrix of f is defined as

Syl(f) = Syld(f) =

φ`−1(f1)T

φd−1(f2)T

...
φd−1(fk)

T

 ∈ R(`+(k−1)d)×(`+d).

Some authors, e.g., [33, 106], refer to such a matrix as an expanded Sylvester matrix or
generalized resultant matrix. The generalized Sylvester matrix has many useful properties
pertaining to the Bézout coefficients. However, we are only concerned with the well known
result that gcd(f) = gcd(f1, . . . , fk) = 1 if and only if Syld(f) has full rank [106].

Sometimes treating a polynomial of degree d as one of larger degree is useful. This can
be accomplished by constructing a similar matrix and padding rows and columns with zero
entries. The generalized Sylvester matrix of degree at most d′ ≥ d (component-wise) of f

126

is defined analogously as Syld′(f), taking d to be the largest degree entry and ` to be the
largest degree of the remaining entries of d′. Note that ` = d is possible and typical. If the
entries of f have a non-trivial GCD (that is possibly unattainable) under a perturbation
structure ∆f , then it is necessary that Syld′(f) is rank deficient, and often this will be
sufficient.

If we view the entries of f as polynomials of degree d′ and d′i > di for all i, then the
entries of f have an unattainable GCD of distance zero, typically of the form 1 + εt, which
can be normalized to t + ε−1. Accordingly, as ε → 0 we have that ‖t+ ε−1‖ → ∞ . In
other words, the underlying approximate GCD problem is ill-posed in a sense that the
solution is unattainable, and the magnitude of the GCD approaches infinity. In order to
study the theory of unattainable GCD’s, sometimes referred to as GCD’s at infinity, we
need to study the notion of a degree reversed polynomial.

Lemma 5.2.4. If max(d) = max(d′) then Syld(f) has full rank if and only if and Syld′(f)
has full rank.

Proof. Let d and ` be the largest and second largest entries of d and `′ be the second
largest entry of d′. The result follows from the main theorem of [106] by considering the
case of `′ = d.

This lemma characterizes the (generic) case when elements of maximal degree of f
do not change under perturbations, in which case the generalized Sylvester matrix still
meaningfully encodes GCD information. However, it is possible that Syld(f) has full rank
and Syld′(f) is rank deficient but the distance to a non-trivial GCD is not zero. This can
occur when dj = d′j for some j and d′ ≥ d. To understand the most general case, we need
to look at generalized Sylvester matrices of the reversal of several polynomials.

Definition 5.2.5. The degree d reversal of f ∈ R[t] of degree at most d is defined
as revd(f) = tdf(t−1). For a vector of polynomials f ∈ R[t]k of degrees at most d =
(d1, . . . , dk) the degree d reversal of f is the vector revd(f) = (revd1(f1), . . . , revdk(fk)).

The following theorem enables us to determine if unattainable solutions are occurring
in an approximate GCD problem with an arbitrary (possibly non-linear) structure on the
coefficients.

Theorem 5.2.6. Let f be a vector of non-zero polynomials of degree at most d. Suppose
that Syld(f) has full rank and Syld′(f) is rank deficient, where the perturbations ∆f have
degrees at most d′ and the entries of f have degrees d. Then f has an unattainable non-
trivial GCD of distance zero under the perturbation structure ∆f if and only if Syl(revd′(f))
is rank deficient.

127

Proof. Suppose that Syl(revd′(f)) has full rank. Then gcd(revd′(f)) = 1, hence f does
not have an unattainable non-trivial GCD, since gcd(f) = 1. Conversely, suppose that
Syl(revd′(f)) is rank deficient. Then, t is a factor of gcd(revd′(f)) but t is not a factor of
gcd(revd(f)). Accordingly, all entries of f + ∆f may increase in degree and so the distance
of f having a non-trivial GCD is zero, and so is unattainable.

If the generalized Sylvester matrix of f has full rank, but the generalized Sylvester
matrix that encodes the perturbations f + ∆f is rank deficient, then either there is an
unattainable GCD, or the generalized Sylvester matrix is rank deficient due to over-padding
with zeros. Theorem 5.2.6 provides a reliable way to detect this over-padding.

Definition 5.2.7. We say that A has an unattainable non-trivial Smith form if
gcd(Adj(A)) = 1 and gcd(Adj(A + ∆̃A)) 6= 1 for an arbitrarily small perturbation ∆A

of prescribed affine structure ∆(·).

We recall that ∆(·) and ∆A are defined in the same was as in Definition 3.1.1. We
have to carefully consider structured perturbations, because some matrix polynomials have
an unattainable non-trivial SNF under unstructured perturbations, but have an attainable
non-trivial SNF under structured perturbations (perturbations that preserve the degree of
entries or support of entries are structured). Solutions that cannot be attained correspond
to an eigenvalue at infinity of A with a non-trivial spectral structure. Such examples are
easily constructed when det(A) or Adj(A) have non-generic degrees.

Example 5.2.8. Let

A =

(
t t− 1

t+ 1 t

)
∈ R[t]2×2 and C =

(
A

A

)
∈ R[t]4×4.

Then C has an unattainable non-trivial Smith form if all perturbations to A are support
or degree preserving (i.e. they preserve zero entries or do not increase the degree of each
entry), both linear structures. Note that A and C are both unimodular. However small
perturbations to the non-zero coefficients of A make A + ∆A non-unimodular.

The Smith form of rev(C) = tC|t=t−1 is

SNF(rev(C)) =

1

1
t2

t2

 ,

128

which implies that the eigenvalue at infinity of A has a non-trivial spectral structure. The
eigenvalue at infinity having a non-trivial spectral structure implies that the SNF of C is
unattainable. Note that this is equivalent to saying that C has a non-trivial Smith-McMillan
form.

These examples are non-generic. Generically, the degree of all entries in the adjoint
will be (n− 1)d and will remain unchanged locally under perturbations to the coefficients.
Computing the distance to the nearest matrix polynomial with a non-trivial Smith form
under a prescribed perturbation structure can be formulated as finding the nearest rank
deficient (structured) generalized Sylvester matrix of the adjoint or the d′ reversal of the
adjoint.

5.3 Nearest Rank Deficient Structured Generalized

Sylvester Matrix

Suppose that A ∈ R[t]n×n of degree at most d has a trivial Smith form and does not have
an unattainable non-trivial Smith form. Then one method to compute a lower bound on
the distance the entries of A need to be perturbed to have an attainable or unattainable
non-trivial Smith form is to solve

inf ‖∆A‖ subject to

{
rank(Syld′(Adj(A + ∆̃A))) < e,

e = rank(Syld′(Adj(A))).
(5.1)

Here d′ is the vector of the largest possible degrees of each entry of Adj(A + ∆̃∆A), and

∆̃A is a prescribed linear or affine perturbation structure.

It is sufficient to compute max(d′), a quantity which will generically be (n − 1)d. For
non-generic instances we require the computation of d′. This optimization problem is
non-convex, but multi-linear in each coefficient of ∆A.

We do not attempt to solve this problem directly via numerical techniques, since it
enforces a necessary condition that is often sufficient. Instead we use it to develop a theory
of solutions which can be exploited by faster and more robust numerical methods.

Lemma 5.3.1. Let f be a vector of polynomials with degrees d and admissible perturba-
tions ∆f of degrees d′ where max(d) ≤ max(d′). Then the family of generalized Sylvester
matrices Syld′(f) of rank at least e form an open set under the perturbations ∆f .

129

Proof. By the degree assumption on ∆f we have that for an infinitesimal ∆f that Syld′(f)
and Syld′(∆f) have the same dimension. Accordingly, let us suppose that Syld′(f) has
rank at least e. Then the Sylvester matrix in question must have rank at least e in
an open-neighborhood around it. In particular, when ‖ Syld′(∆f)‖2 < σe(Syld′(f)) then
rank(Syld′(f + ∆f)) ≥ rank(Syld′(f)) and the result follows.

Theorem 5.3.2. The optimization problem (5.1) has an attainable global minimum under
linear perturbation structures.

Proof. Let S be the set of all rank at most e−1 generalized Sylvester matrices of prescribed
shape by d′ and Adj(A). Lemma 5.3.1 implies that S is topologically closed.

Let R = {Syld′(Adj(C)) subject to ‖C‖ ≤ ‖A‖}, where the generalized Sylvester ma-
trices are padded with zeros to have the appropriate dimension if required. Since ∆A has
a linear perturbation structure, a feasible point is always C = −A. By inspection R is
seen to be a non-empty set that is bounded and closed.

The functional ‖ · ‖ is continuous over the non-empty closed and bounded set S ∩ R.
Let B ∈ S ∩ R. By Weierstrass’s theorem ‖A − B‖ has an attainable global minimum
over S ∩R.

Note that if a feasible point exists under an affine perturbation structure, then a solution
to the optimization problem exists as well. What this result says is that computing the
distance to non-triviality is generally a well-posed problem, even though computing a
matrix polynomial of minimum distance may be ill-posed (the solution is unattainable).
The same results also hold when working over the d′ reversed coefficients. A similar
argument is employed by [71, Theorem 2.1].

5.3.1 Bounds on the Distance to non-triviality

Suppose that A ∈ R[t]n×n, of degree at most d, has a trivial Smith form and does not
have an unattainable non-trivial Smith form. This section provides some basic bounds on
the distance coefficients of A need to be perturbed to have a non-trivial Smith form. The
bounds we derive are unstructured, although they can be generalized to several perturba-
tion structures (such as ones that preserve the degree or support of entries) in a straight
forward manner.

If we consider the mapping Adj(·) as a vector-valued function from Rn2(d+1) → Rn2((n−1)d+1)

(with some coordinates possibly fixed to zero), then we note that the mapping is locally

130

Lipschitz. More precisely, there exists c > 0 such that for a sufficiently small ∆A that

‖Adj(A)− Adj(A + ∆A)‖ ≤ c‖∆A‖.
The quantity c can be bounded above by the (scalar) Jacobian matrix∇Adj(·) evaluated at
A. A local upper bound for c is approximately ‖∇Adj(A)‖2. We can invoke Theorem 4.4.1

if A has full rank. By considering ĉ =
∥∥∥[Φ(n−1)d(I ⊗A)

]+∥∥∥
2
, we obtain the (absolute)

first-order approximate perturbation bound

‖Adj(A)− Adj(A + ∆A)‖F ≤ ĉ(n+
√
n)(d+ 1)‖Adj(A)‖F‖∆A‖F .

The entries of ∇Adj(A) consist of the coefficients of the (n − 2) × (n − 2) minors of
A. This follows because Adj(·) is a multi-linear vector mapping and the derivative of each
entry is a coefficient of the leading coefficient with respect to the variable of differentiation.
The size of each minor can be bounded above (albeit poorly) by Hadamard’s inequality
(Goldstein-Graham variant, see [80]). As such, we have the sequence of bounds

‖∇Adj(A)‖2 ≤ n
√
d+ 1‖∇Adj(A)‖∞ ≤ n3(d+ 1)5/2‖A‖n−2

∞ (d+ 1)n−2n(n−2)/2,

where ‖A‖∞ is understood to be a vector norm and ‖∇Adj(A)‖∞ is understood to be a
matrix norm. The bound in question can be used in conjunction with the SVD to obtain
a lower bound on the distance to a matrix polynomial with a non-trivial Smith form.

Theorem 5.3.3. Suppose that d′ = (γ, γ . . . , γ) and Syld′(Adj(A)) has rank e. Then a
lower bound on the distance to non-triviality is

1

γ‖∇Adj(A)‖F
σe(Syld′(Adj(A))).

Proof. We note that for polynomials f with degrees d′ that ‖ Syld′(f)‖F = γ‖f‖F . Ac-
cordingly, if ∆A is a minimal perturbation to non-triviality, then (ignoring higher-order
terms)

1

γ
σe(Syld′(Adj(A))) ≤ ‖Adj(A)− Adj(A + ∆A)‖F

≤ ‖∇Adj(A)‖F‖∆A‖F ,
and the theorem follows by a simple rearrangement. Note that ‖ · ‖2 ≤ ‖ · ‖F .

If d′ has different entries, then `‖f‖F ≤ ‖ Syld′(f)‖F ≤ γ‖f‖F , where γ and ` are the
largest and second-largest entries of d′. The lower bound provided can also be improved
using the Karmarkar-Lakshman distance [72] in lieu of the smallest singular value of the
generalized Sylvester matrix, the d′ reversal of the adjoint or other approximate GCD
lower bounds (e.g., [6]).

131

5.4 Approximate SNF via Optimization

In this section we formulate the approximate Smith form problem as the solution to a
continuous constrained optimization problem. We assume that the solutions in question
are attainable and develop a method with rapid local convergence. As the problem is
non-convex, our convergence analysis will be local.

5.4.1 Constrained Optimization Formulation

An equivalent statement to A having a non-trivial attainable Smith form is that Adj(A) =
F∗h where F∗ is a vector (or matrix) of scalar polynomials and h is a divisor of gcd(Adj(A)).
This directly leads to the following optimization problem:

min ‖∆A‖2
F subject to

{
Adj(A + ∆A) = F∗h, F∗∈R[t]n×n, h ∈ R[t],

Nh vec(h) = 1, Nh ∈ R1×(deg(h)+1).
(5.2)

This is a multi-linearly structured approximate GCD problem which is a non-convex opti-
mization problem. Instead of finding a rank deficient Sylvester matrix, we directly enforce
that the entries of Adj(A) have a non-trivial GCD. The normalization requirement that
Nh vec(h) = 1 is chosen to force h to have a non-zero degree, so that h is not a scalar. One
useful normalization is to define Nh such that lcoeff(h) = 1 (that is lcoeff(·) is the leading
coefficient of a polynomial). Explicitly, we assume the degree of the approximate GCD is
known and make it monic. Of course, other valid normalizations also exist.

Since we are working over R[t], there will always be a quadratic, linear or zero factor
of attainable solutions. If h = 0 then the approximate SNF of A is rank deficient and
computing approximate SNF reduces to the nearest rank at most n − 1 or n − 2 matrix
polynomial problems, both of which are well-understood [37, 38]. Assuming that we are
now working in the non-zero case, we can assume generically that deg(h) = 1 or deg(h) = 2.

5.4.2 Lagrange Multipliers and Optimality Conditions

In order to solve our problem we will employ the method of Lagrange multipliers. The
Lagrangian is defined as

L = ‖∆A‖2
F + λT

(
vec(Adj(A + ∆A)−F∗h)

Nh vec(h)− 1

)
,

132

where λ is a vector of Lagrange multipliers.

A necessary first-order condition (KKT condition, e.g. [10]) for a tuple z? = z?(∆A,F∗, h, λ)
to be a regular (attainable) minimizer is that the gradient of L vanishes, that is,

∇L(z?) = 0. (5.3)

Let J be the Jacobian matrix of the constraints defined as

J = ∇∆A,F∗,h

(
vec(Adj(A + ∆A)−F∗h)

)
.

The second-order sufficiency condition for optimality at a local minimizer z? is that

ker(J(z?))T ∇2
xxL(z?) ker(J(z?)) � 0, (5.4)

that is, the Hessian with respect to x = x(∆A,F∗, h) is positive definite over the kernel
of the Jacobian of the constraints. The vector x corresponds to the variables in the affine
structure of ∆A,F∗, and h. If (5.3) and (5.4) both hold, then z? is necessarily a local
minimizer of (5.2). Of course, it is also necessary that ker(J(z?))T ∇2

xxL(z?) ker(J(z?)) � 0
at a minimizer, which is the second-order necessary condition. Our strategy for computing
a local solution is to solve ∇L = 0 using a Newton-like method.

5.4.3 An Implementation with Local Quadratic Convergence

A problem with Newton-like methods is that when the Hessian is rank deficient or ill-
conditioned, then the Newton step becomes ill-defined or the rate of convergence degrades.
The proposed formulation of our problem can encounter a rank deficient Hessian (this is
due to over padding some vectors with zero entries or redundant constraints). Despite
this we are still able to obtain a method with rapid local convergence under a very weak
normalization assumption.

In order to obtain rapid convergence we make use of the Levenberg-Marquart (LM)
algorithm. If H = ∇2L, then the LM iteration is defined as repeatedly solving for z(k+1) =
z(k) + ∆z(k) by

(HTH + νkI)∆z(k) = −HT∇L(z(k)) where z =

(
x
λ

)
∈ R`,

for some ` > 0 while using ‖∇L‖2 as a merit function. The speed of convergence depends
on the choice of νk > 0. Note that since LM is essentially a regularized Gauss-Newton

133

method, when the Hessian is rank deficient then we may converge to a stationary point of
the merit function. If convergence to a stationary point of the merit function is detected,
then the method of [109] can be used to replace LM in several instances.

Yamashita and Fukushima [110] show that, under a local-error bound condition, a
system of non-linear equations g(z) = 0 approximated by LM will converge quadratically
to a solution with a suitable initial guess. Essentially, what this says is that to obtain
rapid convergence it is sufficient for regularity (J having full rank) to hold or second-
order sufficiency, but it is not necessary to satisfy both. Note that we assume Lagrange
multipliers exist. However, unlike the case when J has full rank, the multipliers need
not be unique. The advantage of LM over other Newton methods is that this method is
globalized1 in exchange for an extra matrix multiplication, as HTH+νkI is always positive
definite, and hence always a descent direction for the merit function. We make the choice
of νk ≈ ‖g(z)‖2 based on the results of [32].

Definition 5.4.1 (Local Error Bound). Let Z? be the set of all solutions to g(z) = 0 and
X be a subset of R` such that X ∩Z? 6= ∅. We say that ‖g(z)‖ provides a local error bound
on g(z) = 0 if there exists a positive constant c such that c · dist(z, Z?) ≤ ‖g(z)‖ for all
z ∈ X, where dist(·) is the distance between a point and a set.

Theorem 5.4.2. If the second-order sufficiency condition (5.4) holds at an attainable so-
lution to (5.2), then the local error-bound property holds.

Proof. This result follows immediately from Section 3 of [109] and the references therein.

The bounds of Wright can be used to infer when quadratic convergence occurs for
Newton-like methods. In this problem, perturbations to x are important in understanding
how the problem behaves locally.

Remark 5.4.3. Let z = z(x, λ) where x is a vector of variables and λ is a vector of
Lagrange multipliers, and define g(z) = ∇L(z). First suppose that both the second-order
sufficiency condition (5.4) and first-order necessary condition (5.3) hold at the point z?.
We can write the first-order expansion

g(z? + ∆z) = H(z?)(∆z) +O(‖∆z‖2
2) ≈ H(z?)(∆z),

1Here “globalized” means that the method will converge to a stationary point of the merit function,
not a local extremum of the problem.

134

noting that g(z?) = 0. It is useful to observe that

H(z?) =

(
Hxx(z

?) JT (z?)
J(z?) 0

)
.

If ∆x = 0 then the error-bound from [60] (main theorem) applies and we have that there

exists chof > 0 such that chof‖∆λ‖ ≤ ‖g(x, λ+ ∆λ)‖. If ∆x 6= 0 then

∥∥∥∥(Hxx(z
?)

J(z?)

)
∆x

∥∥∥∥ ≈
‖g(x+ ∆x, λ)‖ and (5.4) implies that H(z?)(∆z) = 0 =⇒ ∆x = 0, so

σmin

(
Hxx(z

?)
J(z?)

)
‖∆x‖ . ‖g(x+ ∆x, λ)‖,

so there exists cσmin
> 0 when ‖∆x‖ is sufficiently small such that cσmin

‖∆x‖ ≤ ‖g(x+ ∆x, λ)‖.

Note that cσmin
≈ σmin

(
Hxx(z

?)
J(z?)

)
.

The first-order approximation implies that when ‖∆z‖ is sufficiently small that

g(z? + ∆z) ≈ H(z?)(∆z) = H(z?)

(
∆x
0

)
+H(z?)

(
0

∆λ

)
≈ g(x+ ∆x, λ) + g(x, λ+ ∆λ).

The key idea is to separate the problem into the cases of ∆x = 0 and ∆x 6= 0, and then
derive error bounds for each case. The important part of the discussion is that if one can
estimate cσmin

then one can often infer when quadratic convergence occurs.

The second-order sufficiency assumption is not necessary to derive error bounds bounds.
It is straightforward to show the local error bound property holds if J(z?) has full rank, as
the Lagrange multipliers will be (locally) unique, hence the solution is (locally) unique.
Alternatively, if J had constant rank in a non-trivial open neighborhood around a solution,
then a similar argument could be made about the local error-bound property.

Theorem 5.4.4. The second-order sufficiency condition holds at minimal solutions with
Lagrange multipliers of minimal norm if h is of maximal degree and monic and the minimal
structured perturbation ‖∆A?‖ is sufficiently small.

Proof. The Hessian of L with respect to x = x(∆A,F∗, h) is

∇2
xxL = Hxx =

F + 2I
E

ET

 ,

135

where F is a square matrix with zero diagonal whose entries are a multi-linear polynomial
in λ and ∆A and ET is a matrix whose entries are homogeneous linear functions in λ.

If ∆A? = 0 then λ? = 0. Hence both E = 0 and F = 0 and so, if y ∈ ker(Hxx)∩ker(J)

then y =
(
0 y2 y3

)T
. The Jacobian of the constraints may be written (up to permutation)

as

J =

(
∗ Ch CF∗

Nh

)
,

where ∗ are blocks corresponding to differentiation with respect to variables in ∆A and the
blocks CF∗ and Ch consist of block convolution and convolution matrices that correspond
to multiplication by F∗ and h, respectively. The block Nh contains a normalization vector
to ensure that h has the appropriate degree. Jy = 0 implies that there exists a vector of
polynomials v and a polynomial u with the same degrees as F∗ and h such that F∗u+vh = 0
and Nh vec(u) = 0.

We have that h is a factor of both F∗u and vh. Since gcd(F∗, h) = 1 it must be that h is
a factor of u. It follows that deg(u) = deg(h), so there exists some α 6= 0 such that αu = h.
Since h is monic, we have that Nh vec(h) = 1 but Nh vec(u) = 0, which implies that α = 0,
and so u = 0. We have that vh = 0 and this implies v = 0. Hence ker(J) ∩ ker(Hxx) = 0
and second-order sufficiency holds when ‖∆A∗‖ = 0.

If ‖∆A∗‖ is sufficiently small, then ‖F‖ will be sufficiently small so that F + 2I has
full rank. Accordingly, we have that

ker

F + 2I
0 E
ET 0

 ⊆ ker

2I
0

0

 .

We remark that the techniques in the proof are very similar to those of [112] and [36]
to show that a Jacobian matrix appearing in approximate GCD computations of two (or
more) polynomials has full rank. If we over-estimated the degrees of F∗ then Hxx would
have some columns and rows consisting of zero (the block-convolution matrices would be
padded with extra zero entries).

In the proof of Theorem 5.4.4 we note that

∇2
xxL = ∇2

xx‖∆A‖2
F +∇xλ

TJ.

The matrix F = ∇∆Aλ
TJAdj(A + ∆A) will consist of coefficients of the (n− 3)× (n− 3)

minors of A + ∆A scaled by entries of λ. Accordingly, F will generally not have −2 as
an eigenvalue.

136

Remark 5.4.5. Thus far we have assumed that Lagrange multipliers exist at the current
solutions of interest, which are attainable solutions that have full rank. Corollary 4.4.2
and the proof of Theorem 5.4.4 imply that Lagrange multipliers generally exist under these
assumptions for several perturbation structures, since we need to solve(

2 vec(∆A)T 0
)

= −λTJ,

of which J generally has (locally) constant or full rank. Of course if the solution was
unattainable then the GCD constraints would break down as there is a “solution at infinity”
in a sense that ‖h‖ → ∞ as ∆A → ∆A?.

The implication of the local error bound property holding is that one can reasonably
approximate when quadratic convergence occurs by estimating σmin

([
Hxx | JT

])
and chof .

In particular, these quantities act as a structured condition number on the system. A
structured backwards-error analysis of existing techniques can be performed using these
quantities. Additionally, it is somewhat generic that F + 2I has full rank, hence the
local error-bound will hold for most instances of the approximate SNF problem with an
attainable solution. It is also important to note that we did not explicitly use the adjoint
matrix. Indeed the result remains valid if we replace the adjoint with minors of prescribed
dimension. Likewise, if A is an ill-posed instance of lower McCoy rank or approximate
SNF without an attainable global minimum, then optimizing over a reversal of each entry
of Adj(A + ∆A) would yield a non-trivial answer and the same stability properties would
hold. Thus, poorly posed problems also remain poorly posed if slightly perturbed.

Corollary 5.4.6. The LM algorithm for solving ∇L = 0 has quadratic convergence under
the assumptions of Theorem 5.4.2 and using νk = ‖∇(L(zk))‖2.

Proof. The quantity ∇L is a multivariate polynomial, hence it is locally Lipschitz. Second-
order sufficiency holds, thus we have the local error bound property is satisfied. The method
converges rapidly with a suitable initial guess.

Note that for several perturbation structures if the adjoint has generic degrees, then
the Jacobian of the constraints will have full rank, and a standard Newton iteration is also
well-defined, and will converge quadratically as well.

In the next section we discuss a technique that possibly forgoes rapid local convergence,
but has a polynomial per iteration cost to compute a low McCoy rank approximation.

137

5.4.4 Computational Challenges and Initial Guesses

The most glaring problem in deriving a fast iterative algorithm for the approximate Smith
form problem is that the matrix Adj(A + ∆A) has exponentially many coefficients as a
multivariate polynomial in ∆A. This means computing the adjoint matrix symbolically
as an ansatz is not feasible. In order to solve (5.3) we instead approximate the derivatives
of the coefficients of the adjoint numerically.

To compute an initial guess, we can use ∆Ainit = 0 and take F∗ and h to be a
reasonable approximation to an approximate GCD of Adj(A), which will often be valid as
per Theorem 5.4.2. To make sure the point is feasible, one can use a variant of Newton’s
method to project to a feasible point. Corollary 4.4.2 implies that with a suitable initial
guess, reasonable variants of Newton’s method (such as LM) will converge quadratically
to a feasible point, assuming one exists.

Another technique is to take two rows or columns of A and perturb them so that
the 2n entries have a non-trivial GCD. To find the best guess with this technique, O(n2)
approximate GCD computations on O(n) polynomials of degree d need to be performed.
In the next section we will discuss more sophisticated techniques.

5.4.5 Attaining Unattainable Solutions

If a solution is unattainable then the degrees of all the entries of the adjoint matrix may
change in an open neighborhood around a solution. If ∆A? is an unattainable solution
(of full rank) to (5.2) then h(t) = t is clearly not a solution since h(t) = t being a
solution implies that such a solution would be attainable. Let dAdj be the generic degree of
Adj(A + ∆A). Then t is a factor of gcd(revdAdj

(Adj(A + ∆A?))). The reversed adjoint
has no GCD at infinity by assumption, as such a GCD at infinity would be an attainable
solution to the original problem. Accordingly, we note that Theorem 5.4.4 applies after
some straightforward modifications, since

∇ vec(Adj(A + ∆A)) and ∇ vec(revdAdj
(Adj(A + ∆A)))

are essentially (block) permutations of each other.

Since revdAdj
(Adj(A + ∆A))) achieves the generic degree, Lagrange multipliers should

exist as we can apply Corollary 4.4.2 on∇ vec(revdAdj
(Adj(A+∆A))) by permuting entries,

and the underlying approximate GCD problem is well-posed. Thus the problem will also
typically admit Lagrange multipliers.

138

The essential ingredient in Theorem 5.4.4 is the normalization of the underlying ap-
proximate GCD problem. This means that “backwards stable” algorithms will compute
the exact SNF of a nearby matrix polynomial that has no meaning in the context of com-
putation. This generally occurs because the radius of uncertainty, usually proportional
to unit rounding errors, contains infinitely many matrix polynomials with a non-trivial
SNF. The backwards stability is not meaningful in this context, because the instance of
the problem is not continuous. In such instances, computing the SNF is most likely the
wrong problem to be considering. Instead, computing the spectral structure of eigenvalues
at infinity is most likely the appropriate problem. However there exist instances where
both problems could be simultaneously poorly conditioned.

If the reversed problem has a radius of stability with respect to Theorem 5.4.4, then
the original problem has a radius of instability, meaning that the iterates will converge
to a point where ‖h‖ is excessively large. In other words, if an instance of a problem
is ill-posed, then it cannot be regularized — the finite and infinite eigenvalues and their
spectral structure is indistinguishable in floating point arithmetic — in the context of the
QZ decomposition, GUPTRI [26, 27] or similar algorithms. There are some instances where
attempting to compute the SNF numerically is not possible and should not be attempted.
In the context of an optimization problem, we can of course regularize the problem as we
have just described. In fact, Van Dooren [103] suggests that ill-posed problems should be
formulated as an optimization problem as a means of regularization to overcome some of
the numerical difficulties.

5.5 Lower McCoy Rank Approximation

In this section we describe how to find a nearby matrix polynomial of lower McCoy. Another
way to formulate A having a non-trivial SNF is to solve the minimization problem

min ‖∆A‖2
F subject to

(A(ω) + ∆A(ω))B = 0,

B∗B = I2,

for some ω ∈ C and B ∈ Cn×2,

(5.5)

where ∆A must have the appropriate structure. Essentially this finds the smallest pertur-
bation of A with an eigenvalue that lowers the rank by at least 2. The auxiliary variables
ω and B are used to enforce this constraint. Here B∗ is the conjugate transpose of B, and
B∗B = I2 ensures that the kernel vectors are linearly independent and do not tend towards
zero.

139

The optimization is unstable if ω is reasonably large, since the largest terms appearing
are proportional to O((d+ 1)‖A‖∞|ω|d). To remedy this, if we assume that a solution to
the optimization problem (5.5) exists and has full rank, then we may transform A + ∆A

into a degree-one matrix polynomial (also known as a matrix pencil) with the same spectral
properties, known as a linearization. If there is no full-rank solution one can simply take
a lower-rank approximation [37] and extract a square matrix polynomial of full rank that
may be linearized. Alternatively, one may forgo the linearization and work directly with
a problem that is more poorly conditioned. For the rest of this section we will assume,
without loss of generality, that A and the solutions to the low McCoy rank problem have
full rank.

We can encode the spectral structure and SNF of A as the following degree-one matrix
polynomial (sometimes referred to as the companion linearization [44]) of the form P ∈
R[t]nd×nd, defined as

P =

I . . .

Ad

 t−

 I
. . .

−A0 −A1 · · · −Ad−1

 .

This particular linearization encodes the SNF of A, as SNF(P) = diag(I, I, . . . , I, SNF(A)).
It follows that A has a non-trivial SNF if and only if P has a non-trivial SNF. If we preserve
the affine structure of P and only perturb blocks corresponding to A, then the reduction
to a pencil will be sufficient. Other linearizations are possible as well. The pencil is gen-
erally better behaved numerically since the largest entry upon evaluation at a ω ∈ C is
proportional to O(d‖A‖∞|ω|) rather than O(‖A‖∞|ω|d), albeit with matrices that are d
times larger.

5.5.1 Fast Low McCoy Rank via Optimization

One way to approach the lower McCoy rank approximation problem is to study all the
minors (or sufficiently many) of a matrix polynomial. This method immediately general-
izes from the previous section, however is not practical for computational purposes since
the number of minors grows exponentially in the dimension. Instead, we can approach
the problem by formulating it as an optimization problem, one that is remarkably simi-
lar to structured lower rank approximation of scalar matrices. This similarity facilitates
computing an initial guess for the following optimization problem using the SVD.

The lower McCoy rank approximation problem may be formulated as the following real
optimization problem: to find the nearest matrix polynomial to A ∈ R[t]n×n with McCoy

140

rank n− r, find the perturbation ∆A ∈ R[t]n×n which minimizes

min ‖∆A‖2
F subject to

<((P + ∆̃P)(ω)B) = 0,

=((P + ∆̃P)(ω)B) = 0,

<(B∗B) = Ir,

=(B∗B) = 0,

for some ω ∈ C and B ∈ Cnd×r.

(5.6)

Note that the perturbation ∆A is real valued in this problem and ∆̃P are structured
(affine) perturbations that preserve the linearization structure. The unitary constraint on
B ensures that rank(B) = r and each column of B remains away from zero. Accordingly,

ω ∈ C will be an eigenvalue of (P + ∆̃P)(ω) since rank((P + ∆̃P)(ω)) ≤ nd− r, and thus
the McCoy rank of A + ∆A is at most n− r.

Real matrix polynomials can have complex eigenvalues and so complex numbers must
necessarily appear in the constraints. The constraints arising from the complex numbers
may be divided into real parts and imaginary parts, denoted as <(·) and =(·), respectively.
By dividing the constraint into real and imaginary parts, we are able to solve an equivalent
optimization problem completely with real variables. This ensures that =(∆A) = 0, that
is, the perturbations are real. Since A + ∆A may have complex eigenvalues (but entries
with real coefficients), we require that SNF(A + ∆A) has entries from R[t]. Accordingly,
we need to interpret the auxiliary variable ω. The instance of =(ω) = 0 corresponds to
t− ω as an invariant factor, while =(ω) 6= 0 corresponds to the real irreducible quadratic
(t− ω)(t− ω). Thus at a solution, we are able to recover a real invariant factor regardless
if ω has a non-zero imaginary part.

In order to approach the problem using the method of Lagrange multipliers we define
the Lagrangian as

L = ‖∆A‖2
F + λT vec

<(P + ∆̃P)(ω)B)

=(P + ∆̃P)(ω)B)
<(B∗B)− Ir
=(B∗B)

 ,

and proceed to solve ∇L = 0. In our implementation we again make use of the LM
method, although given the relatively cheap gradient cost, a first-order method will often
be sufficient and faster. The problem is essentially tri-linear, and structurally similar to
affinely structured low rank approximation, of which Lagrange multipliers will exist for
most instances.

141

It is important to note that an attainable solution to this problem is not guaranteed, as
it is possible for ‖ω‖ → ∞ as ∆A → ∆A?. Such an instance is an unattainable solution in
the context of Section 5.4.5. These solutions behave like an infinite eigenvalue and can be
handed by specifically considering the eigenvalue t = 0 of the reversed matrix polynomial.

5.5.2 Computing an Initial Guess

In order to compute an initial guess to (5.6) we exploit the pseudo tri-linearity of the
problem. If two of ∆A, ω and B are fixed then the problem is linear (or a linear surrogate
can be solved) in the other variable. Despite the unitary constraint on B being non-linear,
it is not challenging to handle. Any full rank B is suitable for an initial guess, since we
may orthonormalize B to satisfy the constraint that B∗B = Ir.

First we approximate the determinant of A and consider initial guesses where σn−r(A(ωinit))
is reasonably small. If σn−r(A(ωinit)) is reasonably small, then ωinit is (approximately)
an eigenvalue of a nearby matrix polynomial of reduced McCoy rank. The zeros and local
extrema of det(A) are suitable candidates for computing an initial guess for ω. The kernel
Binit can be approximated from the smallest r singular vectors of A(ωinit). This ensures
that Binit is unitary and spans the kernel of a nearby rank deficient (scalar) matrix.

To compute an initial guess for ∆A we can take ∆Ainit = 0, or solve a linear least
squares problem where B and ω are fixed. Alternatively, one may project to a feasible point
by using a variant of Newton’s method, using ∆Ainit = 0, ωinit and Binit as an initial guess
for the Newton iteration to solve (A + ∆A)(ω)B = 0 and B∗B = Ir. A feasible point
computed by Newton’s method tends not to perturb ∆A very much, whereas the least
squares approximation may perturb A by an unnecessarily large amount.

5.5.3 Convergence and Prescribed Spectral Structure

The linearization may converge to a solution where the invariant factors are reducible
quadratics or degree larger than two. Accordingly, the rate of convergence will generally be
linear with a first-order method and super-linear (but not always quadratic) with Newton-
like methods. To obtain a prescribed spectral structure one simply adds constraints of the
form (5.6) in conjunction with a “staircase form” constraint [104] to force invariant factors
to be repeated or have higher degree. We defer discussion to Section 5.6.

142

5.5.4 About Global Optimization Methods

The problems previously discussed are NP hard to solve exactly and to approximate with
coefficients from Q. This follows since affinely structured low rank approximation [14, 91]
is a special case. If we consider a structured matrix polynomial of degree zero, then this
is a scalar matrix with an affine structure. The approximate SNF will be a matrix of rank
at most n− 2, and finding the nearest affinely structured singular matrix is NP hard.

Despite the problem being intractable in the worst case, not all instances are necessarily
hard. The formulation (5.6) is multi-linear and polynomial, hence amenable to the sum
of squares hierarchy. Lasserre’s sum of squares hierarchy [76] is a global framework for
polynomial optimization that asymptotically approximates a lower bound. Accordingly, if
‖ωopt‖ is bounded, then sum of squares techniques should yield insight into the problem.

5.6 The Theory of Prescribed Spectral Structure

In several instances it may be practical to prescribe the degree structure, also called the
structural supports , of the eigenvalues or the invariant factors of a nearby matrix poly-
nomial. A lower McCoy rank approximation just ensures that (t − ω) is an eigenvalue
and a divisor of an invariant factor. However in some instances we may want (t − ω)2 or
(t− ω)(t− ω) to divide an invariant factor. In general, it may be desired that (t− ω)αj is
a divisor of the invariant factor sj for αj ≥ 0 and αj ≤ αj+1.

Example 5.6.1. If A ∈ R[t]2×2 with det(A) = t4, then there are three possible SNF’s for
A:

S1 =

(
1

t4

)
, S2 =

(
t2

t2

)
or S3 =

(
t
t3

)
.

Both S2 and S3 imply that A has McCoy rank zero. However their degree structures,
sometimes referred to as the structural supports, are different.

The tools of Section 5.4 can help answer this problem, as well as encode the structural
support information as a constraint in the GCD of the entries. Of course computing
exponentially many minors is not practical, but the theory generalizes immediately from
Section 5.4 in a very straightforward manner.

The most general form of the problem is described as follows.

143

Problem 5.6.2 (Nearest Matrix Polynomial with Prescribed Structural Supports). Given
A ∈ R[t]n×n of degree at most d with a trivial SNF and (α1, . . . , αn) ∈ Zn≥0, compute a
(local) solution (in terms of ∆A, h and {sj}nj=1) to the optimization problem

inf ‖∆A‖2
F subject to

SNF(A + ∆A) = S = diag(s1, . . . , sn),

hαj is a factor of sj,

sj ∈ R[t] are the invariant factors of A + ∆A,

h ∈ R[t] is monic.

One needs to find the h and sj that satisfy this problem, as they are not generally prescribed.
In Section 5.7 we discuss a variation of the problem where h is prescribed.

In this problem formulation we implicitly require that det(A + ∆A) ≤ nd. Thus if
the structural supports or McCoy rank are over prescribed, then the zero matrix is the
only feasible point. It is also necessary that α1 ≤ α2 ≤ · · · ≤ αn for j = 1, . . . , n to
ensure that the divisibility property of the SNF is maintained. Accordingly, formulating
an approximate GCD problem in the minors may be feasible for several instances and is
generally more robust than the alternatives described later. Like all approximate GCD-
type problems, solutions may be unattainable (irregular). However in this work we will
only consider the special case where the solutions are regular (so the inf is assumed to be
a min for the instances concerned here).

We can approach prescribing the entire spectral structure as an approximate GCD
problem in terms of the minors of A + ∆A in a manner analogous to Section 5.4, with
most of the results holding. Unfortunately, using exponentially many minors is only useful
for a theoretical understanding and does not lead to an efficient implementation. The
ideas in Section 5.5 in the presently described form cannot handle prescribing the spectral
structure, despite being relatively faster for lower McCoy rank approximations. However,
we are able to augment the technique in theory by specifying a “staircase” constraint on
an appropriate matrix pencil.

Recall that Kronecker’s Canonical Form [65, § 6.3] reveals the spectral structure, hence
the Smith normal form. Instead of adding the constraint that the KCF is non-trivial
(which would require one to “know” the entire KCF in advance), we can instead encode
a constraint that implies the KCF is non-trivial (which is computationally more feasible).
A staircase constraint is a sufficient condition to ensure this occurs.

To approach this problem numerically, we can also formulate an approximate GCD
type optimization problem in terms of the unimodular multipliers and the SNF. Such a
problem formulation is analogous to polynomial approximate GCD with some determinant
constraints.

144

5.6.1 Stair Case Constraints

We now discuss how to incorporate staircase constraints into the optimization problems
discussed in Section 5.5. The notions in this section are presented mainly for theoretical
completeness, as they are generally not suitable for a robust implementation.

Lemma 5.6.3 ([103]). Let P = Dt − C ∈ Rnd×nd be a matrix pencil with an eigenvalue
t = 0. Then there exists unitary matrices Q,Z ∈ Cnd×nd such that

QPZ =

(
tD`+1,`+1 − C`+1,`+1 0

∗ tDα − Cα

)
(5.7)

=

tD`+1,`+1 − C`+1,`+1

tD`+1,` − C`+1,` tD`,`
...

...
. . .

tD`+1,2 − C`+1,2 tD`,2 − C`,2 · · · tD2,2

tD`+1,1 − C`+1,1 tD`,1 − C`,1 · · · tD2,1 − C2,1 tD1,1

 ,

where

1. C`+1,`+1 has full rank,

2. Dj,j ∈ Crj×rj have full rank for j = 1, . . . , ` and

3. Cj,j−1 ∈ Crj×rj−1 have full column rank for j = 2, . . . , `.

Furthermore, rj − rj+1 = αj ≥ 0 for j = `, . . . , 1.

The assumption that t = 0 is an eigenvalue is without loss of generality, as one can
perform the “deflation” (t − ω)D − (C − ωD) which shifts the problem for an arbitrary
eigenvalue ω ∈ C.

From this unitary decomposition, we have enough information to determine the blocks
in the KCF that reveal the spectral structure of the eigenvalue t = ω. In particular, this
tells us the multiplicity of t = ω in each of the invariant factors of the SNF. The assumption
that the Cj,j−1 and Dj,j have full column rank is important, as this ensures that Jordan
blocks in the KCF are non-trivially block-diagonal. Note that these blocks will locally
have full rank under small perturbations, so the staircase constraint is only valid in a local
context.

145

Note that P is equivalent [103] to the matrix pencil (in triangular block form)

TPS =

tD`+1,`+1 − C`+1,`+1 0 0 · · · 0

∗ tJ`

∗ −K`−1
. . .

∗

∗ −K1 tJ1

 , (5.8)

where T, S ∈ Cnd×nd, Jj = Irj and Kj =

(
Ir`+1

0

)
∈ R(r`+1)×r` . The transformation matrices

T and S are not unitary, and this reduction can be poorly conditioned as it amounts to
a Gaussian-like elimination without pivoting. We could add (5.8) as a constraint to the
Lower McCoy rank approximation problem, but computing T and S for an initial guess
could be ill-posed.

Two similar techniques in the literature that both require O(n4d4) FLOPs to compute
the form of (5.7) are those of Van Dooren [103] and Demmel and K̊agström [26, 27]. There
is a faster variation due to Beelen and Van Dooren [7] that requires O(n3d3) FLOPs using
a rank-revealing QR decomposition in lieu of the SVD for intermediate rank computations.
All of these decompositions compute a two-sided unitary transformation.

We can also formulate an optimization problem to find a nearby matrix polynomial
with McCoy rank at most n − r. Given A ∈ R[t]n×n of degree at most d and a desired
staircase of the form (5.7), compute a (local) solution to

min ‖∆A‖2
F subject to

(P + ∆̃P)(ω)B = 0,

B∗B = Ir, B ∈ Cnd×r, ω ∈ C,
Q(P + ∆̃P)Z is in a staircase form (5.7) around t = ω ,

Q∗Q = I, Z∗Z = I,

Q ∈ Cnd×nd, Z ∈ Cnd×nd.

(5.9)
Analogous to Section 5.5, we need to find B,ω,Q, Z such that the constraints are satisfied.
As in Section 5.5, we are looking for real perturbations, that is =(∆A) = 0.

We note that ∆̃P = ∆(∆A) is a structure-preserving perturbation that maintains
the companion linearization analogous to Section 5.5. This problem is also similar to an
affinely structured SLRA, and so we can expect Lagrange multipliers to exist for attainable
solutions.

146

The optimization problem (5.9) leads to an algorithm to compute a nearby matrix pencil
with (t−ω)αj as a factor of the invariant factor sj if the blocks in (5.7) are chosen according

to Lemma 5.6.3. The first constraint, that (P+∆̃P)(ω)B = 0 (which is separated into real
and imaginary parts as in Section 5.5) implies that t = ω is an eigenvalue, so the staircase
form is valid. Likewise, the constraints that Q∗Q and Z∗Z may be separated into real and
imaginary parts, so that the entire problem is formulated as a real optimization problem.
The constraint that Q(P + ∆̃P)Z is in a staircase form prescribes the structural supports
of the eigenvalue t = ω.

Alternatively, we could specify that the staircase constraint is of the form (5.8) and
replace Q and Z with S and T . In this case the staircase form is guaranteed, but S and
T could be poorly conditioned. In both formulations, it is possible that at the solution
the blocks in the staircase are not of maximal size for the eigenvalue ω. It is also possible
that other blocks of the same or larger size could exist for a different eigenvalue ω̂. For
example, an instance where this occurs is when ω̂ = ω̄ 6= ω, that is, ω is a solution with a
non-trivial complex conjugate.

5.6.2 A Direct Approach with Unimodular Multipliers

A direct method to approach Problem 5.6.2 is to study another approximate GCD type
problem that also optimizes over the unimodular multipliers. Given A ∈ R[t]n×n of degree
at most d and (α1, . . . , αn), we can formulate the following approximate GCD-like problem
as

min ‖∆A‖2
F subject to

U(A + ∆A)V = S,

S = diag(s′1, s
′
1s
′
2, . . . , s

′
1s
′
2 · · · s′n) diag(hα1 , . . . , hαn),

h ∈ R[t] is monic,

det(U) = c0 ∈ R\{0},
det(V) = c1 ∈ R\{0}

(5.10)
where U,V ∈ R[t]n×n have degrees at most nd and s′j ∈ R[t].

The objective of this problem is to find {s′j}nj=1, h, U, V. The constraint that

S = diag(s′1, s
′
1s
′
2, . . . , s

′
1s
′
2 · · · s′n) diag(hα1 , . . . , hαn)

ensures that A + ∆A has a non-trivial SNF with a divisor of the invariant factors h with
the prescribed degree structure. Note that h is not prescribed, but the degree structure

147

of h is prescribed. The requirements that det(U) and det(V) have a non-zero determinant
ensures that U and V are unimodular, so S is indeed the SNF of A + ∆A. The quantities
c0 and c1 can be taken to be any reasonable non-zero constant in practice, as the s′j will
absorb the re-scaling.

Generically, if we are working over R[t] then h will either be an irreducible degree
one or degree two polynomial. The structural supports αj are prescribed and constant
with respect to the problem. There will likely be some redundancy, as generically, for
j = 1 . . . , n − 1, we have deg(s′j) = 0. In the most general form, deg(s′j) ≤ nd. There
are no normalization assumptions on S other than that a divisibility property holds and
that there is an upper bound on the degrees of the entries. To extract the SNF we can
make the entries of S monic after the computation. We could also instead prescribe that
∆A has some affine coefficient structure ∆̃A with the analysis being similar for various
instances we care about (such as perturbations that preserve the support of each entry or
do not increase the degrees of each entry).

Regularity and Existence of Lagrange Multipliers

The Jacobian of the constraints of (5.10) will generally have constant rank (after accounting
for the redundancy of constraints and over-padding with zero coefficients of some polyno-
mials) around a solution, as it behaves both like a determinant constrained problem and a
multi-linear constrained approximate GCD problem. We do not investigate a second-order
stability theory explicitly, because Theorem 5.4.4 can be generalized using more minors
to reveal the same type of information. Accordingly, solutions in ∆A are isolated when
the residual of the problem is sufficiently small and quadratic convergence for Newton-like
methods is expected when the problem is normalized in a reasonable manner.

Lemma 5.6.4. Lagrange multipliers exist for the constraints det(U) = c0 and det(V) = c1

in (5.10).

Proof. Suppose without loss of generality that that deg(U) ≤ nd and deg(V) ≤ nd. By
Theorem 4.3.1 we can write ∇ vec(det(U)) = Φnd(pvec(Adj(U)T)T).

The matrix Φnd(pvec(Adj(U)T)T) will generally have linearly independent non-zero
rows, so long as one of the (n − 1) × (n − 1) minors of U achieves the generic degree.
Unimodular matrices always have a full rank trailing coefficient matrix, since

det(U) = det(U|t=0) = det(U0) ∈ R\{0}.

148

Accordingly, the block could be rank deficient by over-estimating the degree of U. If we
knew the minimal degree of U, then Lagrange multipliers exist if the degrees are minimal,
since ∇ vec(det(Umin)) would have full rank. By setting some Lagrange multipliers to
zero, the Lagrange multipliers to the reduced problem can be obtained as a subset of the
Lagrange multipliers of the unreduced problem.

Lagrange multipliers existing for the other derivative corresponding to V has the same
reasoning by symmetry. Accordingly, the problem can be normalized so that the linear
independent or constant rank constraint qualifications holds. Lagrange multipliers must
exist for attainable solutions.

For reasonable affine perturbation structures, we can generally expect Lagrange multi-
pliers to exist. Likewise, if we restrict U or V in some way (such as forcing one of them to
be triangular), then Lagrange multipliers will also generally exist so long as the problem
is not over constrained.

Remark 5.6.5. We can write the Jacobian of the constraints (up to permutation) in a block
form (using Theorem 4.3.1 to compute the derivatives of the determinant constraints) as

J =

∂∆A ∂U ∂V ∂S ∂h
∗∆A ∗U ∗V CS Ch

0 Φnd(pvec(Adj(U)T)T) 0 0 0
0 0 Φnd(pvec(Adj(V)T)T) 0 0

 .

Here the precise expressions for ∗∆A, ∗U, and ∗V are mostly irrelevant (they are permuted
block-convolution matrices or permuted block convolution matrices with several zero columns
removed). For suitable values of µU, µA and µV we can write,

∂ vec(U(A + ∆A)V)

∂ vec(U)
= ΦµU(((A + ∆A)V)T ⊗ I)

and
∂ vec(U(A + ∆A)V)

∂ vec(V)
= ΦµV (I ⊗U(A + ∆A)).

Both of these matrices have full column rank if A + ∆A has full rank, which will hold
locally around a solution. Next, we can write

∂ vec(U(A + ∆A)V)

∂ vec(∆A)
= ΦµA(VT ⊗U),

149

which has full rank since U and V are unimodular. If ∆A had some prescribed affine

perturbation structure ∆(·), then the derivative would be ΦµA(VT ⊗U)
∂ vec(∆̃A)

∂ vec(∆A)
. If the

perturbations preserve the zero structure, then the derivative has full rank (the derivative
is a sub-matrix of ΦµA(VT ⊗U) with some columns deleted).

The blocks CS and Ch are closely related to the GCD constraint from Section 5.4.
Accordingly, if h is normalized properly (analogous to Theorem 5.4.4, i.e. degree of h is
known, h is monic, hαj is of maximal degree, the degrees of the entries of S are known and
symmetry is removed), then this block will have locally constant rank. Since the approximate
GCD constraint is feasible (the solution is attainable), the matrix ∇ vec(U(A+∆A)V−S)
can typically be normalized to have constant rank, thus Lagrange multipliers generally exist.

Of course unattainable (irregular) solutions are possible when some of the minors of
A+∆A have an unattainable non-trivial SNF. In such a scenario, ‖s′j‖ → ∞ or ‖h‖ → ∞
as ∆A → ∆A?, where ∆A? is a minimal perturbation. The optimization problem can
be regularized by dividing the constraint further into a regular part and an irregular part.
The irregular part corresponds to an eigenvalue at infinity, a case dealt with in the next
section.

Computing an Initial Guess

Unless the minimal perturbation ‖∆A?‖ is sufficiently small, computing an initial guess is
a difficult problem. In some special instances, one can use an exact algorithm to compute
the SNF of A with the multipliers and use this as an initial guess. Generally in a floating
point environment, computing unimodular multipliers is a difficult problem since the exact
algorithms relying on Gaussian elimination or related variants are not numerically stable.
If the residual is small, then we can infer the SNF of a nearby matrix polynomial and use
linear-least squares to approximate the unimodular multipliers.

Lemma 5.6.6. Suppose SNF(A) = S and UAV = S. Then we can write UA = SṼ

with Ṽ unimodular. One may then compute a feasible U and V by solving the linear least
squares problem

min
U,Ṽ
‖UA − SṼ‖F subject to Ṽ =

1 ∗ · · · ∗

1
. . .

...
. . . ∗

1

 . (5.11)

150

Proof. We note that Adj(Ṽ) = V, so the other multiplier may be recovered in a straight-
forward manner. A solution must always exist because there always exists a unimodular
U such that UA = H where H is in a triangular form that can be reduced into the SNF
via column operations. We can perform column operations on a triangular matrix with
the same SNF as A, resulting in a triangular post-multiplier matrix that reduces H into
S, and the existence follows.

The normalization that Ṽ is upper-triangular with constant diagonal enforces that
U 6= 0, V 6= 0 and that U is unimodular. Of course other normalizations are possible,
as the unimodular multipliers are not unique. Setting the diagonal entries to be 1 is
theoretically valid (as any re-scaling is absorbed by U), but may not be wise from a
numerical perspective.

Remark 5.6.7. The residual to (5.11) is necessarily (approximately) 0 if SNF(A) = S.
To observe this, we can write

UAV = S ⇐⇒ UA = SV−1.

Since V is assumed to be unimodular, the inverse is also a matrix polynomial. If the residual
is non-zero but sufficiently small, then U will be sufficiently close to a unimodular matrix
polynomial by continuity.

Lemma 5.6.6 provides a suitable means for computing an initial guess (and computing a
pair of unimodular multipliers, that are not necessarily of minimal degree). If the residual
is relatively large, then the guess can be projected to a feasible point using a variant of
Newton’s method. We recall that S can be approximated to high precision using GUPTRI
[26, 27] or two sided unitary transformations [7, 104].

5.7 Prescribed Smith Normal Form

Our focus is now brought to the instance when divisors of the SNF are prescribed (that
is, divisors of the invariant factors are polynomials with prescribed coefficients). Fixing
every invariant factor of an entire SNF is typically ill-posed because the invariant factor
sn will generally be of the form sn = p(t)sε where p(t) ∈ R[t] is divided by some of the
other invariant factors and sε ∈ R[t] is relatively prime with the other invariant factors.
Specifying that sε = 1 (either explicitly or implicitly) can lead to problems where the only
feasible points are the zero matrix or some other rank deficient matrix polynomial.

151

Problem 5.7.1. Given A ∈ R[t]n×n of degree at most d with a trivial SNF, compute a
(local) solution to the optimization problem

min ‖∆A‖2
F subject to

SNF(A + ∆A) = S′H,

H = diag(h1, h1h2, . . . , h1h2 · · ·hn), hj ∈ R[t] are prescribed,

S′ = diag(s′1, s
′
1s
′
2, . . . , s

′
1s
′
2 · · · s′n), s′j ∈ R[t].

The use of “min” here is intentional, as solutions to this problem always exist. Generi-
cally, at a solution to this problem ∆A?, we will have that SNF(A+∆A?) = H diag(1, . . . , 1, sε).
This problem can be handled as a special case of the previous section. However it is dif-
ferent enough to merit a section on its own.

Theorem 5.7.2. A solution to Problem 5.7.1 exists under linear perturbation structures.

The result also holds under affine perturbation structures where feasible points also
exist. Note that Problem 5.7.1 assumes that SNF(A) is trivial, but this is not strictly
required.

Proof. Note first that the feasible set is non-empty and bounded since ∆A = −A is a
feasible point. It is also implicit that we can take ‖∆A‖ ≤ ‖A‖.

Note also that the set of all polynomials that do not have hj as a factor is topologically
open. A generalized Sylvester matrix formed from a non-zero set of polynomials that do
not have hj as a factor and hj does not decrease in rank when perturbed by a small non-zero
amount, analogous to Theorem 5.3.2.

This implies that the set of matrix polynomials of degree at most d that do not have a
prescribed divisor hj of the entries in the SNF is also topologically open, since the invariant
factors are polynomials and can be defined as a GCD problem with respect to sufficiently
many j × j minors of A for j = 1 . . . , n. Therefore, the set of all matrix polynomials of
degree at most d that have prescribed divisors of invariant factors is topologically closed.
We note that the minors are continuous functions in the coefficients of the entries of A,
and are thus bounded in size if perturbations to A are bounded (one can apply a variant
of Hadamard’s inequality to show this for example, the actual bound is irrelevant to the
proof).

By Weierstrass’ theorem, we can optimize a continuous function over the intersection
of a closed, non-empty and bounded set and a non-empty closed set, hence an attainable
global minimum exists.

152

This does not contradict the earlier problems, because in the underlying approximate
GCD problem, the GCD is a priori that is prescribed and the co-factors and invariant
factors are variable. The problem is structurally similar to the approximate GCD type
problem over R or C where h is prescribed along with f and g. The minimization problem
for f, g, h ∈ R[t] (or C[t]) is

min
f∗,g∗
‖f − f ∗h‖2

2 + ‖g − g∗h‖2
2,

which has an attainable global minimum that is easy to compute by applying linear least
squares.

The computational techniques of the previous section can be modified in a straightfor-
ward manner to handle this case, thus we omit a technical discussion.

5.7.1 Prescribed Infinite Spectral Structure

Recall that the infinite eigenvalues of A ∈ R[t]n×n of degree at most d are characterized by
the spectral structure of t = 0 of revd(A). Accordingly, to prescribe the infinite spectral
structure of A+∆A it is sufficient to prescribe the spectral structure of the eigenvalue t = 0
of revd(A + ∆A). The previously discussed techniques can be applied nearly verbatim to
accomplish this. Since the eigenvalue at infinity is always “known”, the matrix polynomial
with the nearest non-trivial infinite spectral structure always exists. Accordingly, a nearest
matrix polynomial with an interesting SNF always exists if eigenvalues at infinity are
permitted, which is consistent with Theorem 5.3.2.

5.8 Implementation and Examples

We have implemented our algorithms and techniques in the Maple computer algebra sys-
tem. All computations are done using hardware precision and measured in floating point
operations, or FLOPs. The input size of our problem is measured in the dimension and
degree of A, which are n and d respectively. The cost of most Newton methods is roughly
proportional to inverting the Hessian matrix, which is O(`3), where ` is the number of
variables in the problem.

153

5.8.1 Nearest Interesting SNF and Lower McCoy Rank Approx-
imation

We use the variant of Levenberg-Marquardt discussed in Section 5.4 in several instances to
solve the first-order necessary condition. The method of Section 5.4 requires approximately
O((n3d)3) = O(n9d3) FLOPs per iteration in an asymptotically optimal implementation
with cubic matrix inversion, which is the cost of inverting the Hessian. Computing the Hes-
sian costs roughly Õ(n4d2×(n2)2) = Õ(n8d2) FLOPs using a blocking procedure, assuming

the adjoint computation runs in Õ(n4d) FLOPs (which can be done via interpolation in
a straightforward manner). There are O(n3d) Lagrange multipliers since the adjoint has
degree at most (n − 1)d. Using reverse-mode automatic differentiation to compute ∇2L,

this can be accomplished in Õ(n4d× n3d) = Õ(n7d2) FLOPs.

The method of Section 5.5 has a Hessian matrix of size O(n2d2) × O(n2d2) in the
case of a rank zero McCoy rank approximation. Accordingly, the per iteration cost is
roughly O(n6d6) FLOPs. If the linearization is not performed, then the per-iteration cost
is O(n6d3) FLOPs. Given the lack of expensive adjoint computation, a first-order method
will typically require several orders of magnitude fewer FLOPs per iteration (ignoring the
initial setup cost), with local linear convergence.

Example 5.8.1 (Nearest Interesting SNF). Consider the matrix polynomial A with a
trivial SNF

t2 + .1t+ 1 0 .3t− .1 0
0 .9t2 + .2t+ 1.3 0 .1
.2t 0 t2 + 1.32 + .03t3 0
0 .1t2 + 1.2 0 .89t2 + .89

of the form diag(1, . . . , 1, det(A)).

If we prescribe the perturbations to leave zero coefficients unchanged, then using the
methods of Section 5.4 and Section 5.5 results in a local minimizer A + ∆Aopt given by

1.0619t2 + .018349t+ .94098 0 .27477t− .077901 0
0 .90268t2 + .22581t+ 1.2955 0 .058333

.13670t 0 .027758t3 + .97840t2 + 1.3422 0
0 .10285t2 + 1.1977 0 .84057t2 + .93694

,
with ‖∆Aopt‖F ≈ .164813183138322. The SNF of A + ∆Aopt is approximately

diag(1, 1, s1, s1(t5 + 35.388t4 + 6.4540t3 + 99.542t2 + 5.6777t+ 70.015)),

154

where s1 ≈ t2 + 0.0632934647739423t + 0.960572576466186. The factor s1 corresponds to
ωopt ≈ −0.0316467323869714− 0.979576980535687i.

The method discussed in Section 5.4 converges to approximately 14 decimal points of
accuracy2 after 69 iterations and the method of Section 5.5 converges to the same precision
after approximately 34 iterations. The initial guess used in both instances was ∆Ainit = 0.
The initial guesses of F∗ and h were computed by an approximate GCD routine. For the
initial guess of ω we chose a root or local extrema of det(A) that minimized the second-
smallest singular value of A(ω), one of which is ωinit ≈ −.12793− 1.0223i.

Example 5.8.2 (Lowest McCoy Rank Approximation). Let A be as in the previous ex-
ample and consider the 0-McCoy rank approximation problem with the same prescribed
perturbation structure.

In this case we compute a local minimizer A + ∆Aopt given by
.80863t2 + 1.1362 0 0 0

0 .91673t2 + 1.2881 0 0
0 0 .95980t2 + 1.3486 0
0 .60052t2 + .84378 0 .71968t2 + 1.0112

,
with ‖∆Aopt‖F ≈ .824645447014665 after 34 iterations to 14 decimal points of accuracy.
We compute ωopt ≈ −1.18536618732372i which corresponds to the single invariant factor
s1 ≈ t2 + 1.4051. The SNF of A + ∆Aopt is of the form (s1, s1, s1, s1).

5.8.2 Prescribed Structural Supports

Now we consider some examples whereby we compute a nearby matrix polynomial with
a prescribed spectral structure, including the structural supports. The algorithm imple-
mented assumes that the structural supports are the generic instance where the SNF is of
the form

S =

s1h
α1

. . .

snh
αn

where {deg(sj)}n−1

j=0 ⊆ {0,−∞} and deg(sn) = nd− deg(h)
n∑
j=1

αj.

2∇L = 0 is solved to 14 digits of accuracy; the extracted quantities are accurate to approximately the
same amount.

155

As this assumption is with loss of generality, we can make the appropriate modifications
that are particular to the instance at hand. Recall that the issue with the non-generic
instances is that {sj}n−1

j=0 may have some symmetry or other redundancy if not handled
properly, possibly preventing rapid local convergence. If these variables are handled prop-
erly, then rapid local convergence will occur. In our experiments, we use hardware precision
and attempt to solve ∇L = 0 to at-least 10 digits of precision3. Local super linear conver-
gence to precision occurs in all examples.

To demonstrate the convergence properties we take an exact instance with an exact non-
trivial SNF and then perturb the coefficients by a prescribed amount of noise. We then
attempt to compute a nearby matrix polynomial whose SNF has prescribed structural
supports. In the examples we make the assumption that the degree of each entry of U and
V does not increase from the initial guess4, and is not necessarily the generic bounds of
nd. If a reasonable technique (such as automatic differentiation) is used to compute the
derivatives of the determinant of U and V then Newton methods will have a polynomial
per-iteration cost.

3Ten digits of precision is the standard Digits of accuracy in Maple for software floats. In practice, the
computed solutions are accurate between 12 to 14 decimal points.

4This reduces the dimension of the problem considerably. The auxiliary variables to enforce the spectral
structure constraints can typically be several orders of magnitude larger than the input size of the problem.

156

Algorithm 5 : Nearest Matrix Polynomial with Prescribed Spectral Structure

Input:
• Matrix polynomial A ∈ Rn×n.
• Initial guesses ∆Ainit, Uinit, Vinit, hinit and Sinit.
• (Optional) Displacement structure matrix ∆̃A to optimize over.
• Vector of structural supports α and degree bound for h.

Output:
• A + ∆̃A with a non-trivial SNF prescribed by h and α or an indication of failure.
• Unimodular multipliers U,V and a diagonal matrix S such that

U(A + ∆̃A)V ≈ S,

where S is a constant re-scaling of SNF(A + ∆̃A).
1: Define x = x(∆A,U,V, h,S) to be a combined vector of variables.
2: Define Lagrangian function L as

L(x, λ) = ‖∆A‖2
F + λT vec(c(x)) where c(x) is defined from (5.10).

3: Initialize λ via linear least squares from ∇L(∆xinit) = 0.
4: Compute (

x+ ∆x
λ+ ∆λ

)
by solving ∇2L

(
∆x
∆λ

)
= −∇L(x, λ) until∥∥∥∥(∆x

∆λ

)∥∥∥∥
2

or ‖∇L(x, λ)‖2 is sufficiently small or divergence is detected.

5: Return the locally optimal ∆A or an indication of failure.

The method to solve the KKT equations we use is a combination of plain Newton’s
method via truncated SVD or a variant of Levenberg-Marquardt as described in Sec-
tion 5.4.3. Solving the KKT equations is sufficient in practice by Lemma 5.6.4. The per-
iteration cost mostly depends on the degrees of the unimodular multipliers. If we assume
the most generic instance where deg(U) = deg(V) = nd then deg(det(U)) = deg(det(V)) =
O(n2d). Accordingly, there will be O(n2d) constraints and O(n2d) + O(nd) + O(n3d) =
O(n3d) variables. The resulting Hessian matrix will have dimension O(n3d)×O(n3d) and
the per-iteration cost will be roughly O(n9d3) FLOPs assuming that derivatives of det(U)

and det(V) are computed sufficiently fast. If we assume that det(·) requires Õ(n4d) FLOPs
to compute the determinant of a n×n matrix polynomial of degree d, then computing the

157

derivatives of det(U) and det(V) should require Õ(n5d × n3d × n3d) = Õ(n11d3) FLOPs.
Using reverse-mode automatic differentiation on the Lagrangian5, this cost can be reduced
to Õ(n5d × n3d) = Õ(n8d2) FLOPs to compute ∇2L, which is sufficiently fast. In some
special instances, Theorem 4.3.1 and Theorem 4.4.1 can be used as well.

Example 5.8.3. Consider the matrix polynomial A =
∑4

j=1 t
jAj where

A0 =

 11.00005819 12.00084512 −1.399997946
−1.499479482 −7.999005049 −7.699516738
−2.999119009 4.000860204 7.000347109

 ,

A1 =

−22.99958387 −19.99925876 8.400477800
−10.99927786 3.500374705 9.100640203
12.00087464 −0.9993746387 −6.999133373

 ,

A2 =

 17.00052443 8.000906180 −12.59919322
21.00020391 15.50006404 3.500285016
−8.999824450 −7.999667605 −5.599217955

 ,

A3 =

−8.999008650 −3.999657217 5.600342707
−4.999925327 −7.499143553 −4.899086933
−3.999653167 1.000675922 5.600679017

 ,

A4 =

 4.000080910 4.000127572 0.0
−3.499011335 −3.499217500 0.0
4.000732625 4.000376565 0.0

 .

If we consider perturbations to A that do not perturb zero coefficients then for our initial
guess we use a feasible ∆Ainit with an absolute distance of ‖∆Ainit‖F ≈ 0.004065107497.
This is a relative error of approximately 0.00006748779330. We extract an initial guess
where ‖L(xinit, λinit)‖2 ≈ 8.130214 × 10−3. The prescribed structural supports are α =
(1, 2, 2) for deg(h) = 1.

Five iterations of Newton’s method6 yields a stationary point satisfying second-order

5Recall that L : RO(n3d) → R is a scalar function, where a single function call costs Õ(n5d) FLOPs,
since it is dominated by determinant operations.

6The implementation uses a truncated SVD to solve the linear system. The computed solution is
verified to be a solution to the KKT equations by checking a regularized linear system as well.

158

necessary conditions. The computed ∆A satisfies ‖∆A‖F ≈ 0.00374266893916940 with

∆A0 ≈

−0.0003844000 −0.0007351014 −0.0003249840
−0.0004893421 −0.0007075497 −0.0005221761
−0.0005834209 −0.0006799116 −0.0006610957

 ,

∆A1 ≈

−0.0003844000 −0.0007351014 −0.0003249840
−0.0004893421 −0.0007075497 −0.0005221761
−0.0005834209 −0.0006799116 −0.0006610957

 ,

∆A2 ≈

−0.0004029894 −0.0006319195 −0.0003966100
−0.0004392784 −0.0005271485 −0.0008297230
−0.0005550320 −0.0004622514 −0.0008856620

 ,

∆A3 ≈

−0.0005315500 −0.0003651453 −0.0005821823
−0.0002555722 −0.0005416553 −0.0006660183
−0.0002162420 −0.0007004980 −0.0006262513

 ,

∆A4 ≈

−0.0004079370 −0.0003551865 0.0
−0.0006757246 −0.0005565483 0.0
−0.0008509183 −0.0003954382 0.0

 .

The Smith form is a re-scaling of

diag(h, h2, h2(0.998439140885453t+0.998660090266538)) where h ≈ t−1.00000113481449.

Note that the infinite eigenvalues were not meaningfully perturbed.

159

Example 5.8.4. Consider the matrix polynomial A =
∑4

j=1 t
jAj where

A0 =

 13.00581869 6.008090944 1.434278386
−1.452220013 −7.979609270 −7.693595603
−2.935979688 4.087464486 7.086020397

 ,

A1 =

 23.04161255 15.08451185 2.812757318
−10.41932202 −25.49253255 −12.51435541
−4.971498360 15.01755487 14.06253613

 ,

A2 =

 7.052443015 12.07412422 1.400205449
−14.46572923 −24.90113358 −2.021749851
−0.9086934350 18.03468319 7.033239490

 ,

A3 =

−2.900864980 3.090617872 0.0
−3.447948247 −5.400504917 2.848326232
1.088099075 7.073262447 0.0

 ,

A4 =

 0.0 0.0 0.0
2.072213842 2.037470532 0.0

0.0 0.0 0.0

 .

If we consider perturbations to A that do not perturb zero coefficients then for our initial
guess we use a feasible ∆Ainit with an absolute distance of ‖∆Ainit‖F ≈ 0.3739284133.
This is a relative error of approximately 0.005862300872. We extract an initial guess where
‖L(xinit, λinit)‖2 ≈ 7.478568×10−1. The prescribed structural supports are α = (2, 2, 2) for
deg(h) = 1.

Six iterations of Newton’s method yields a stationary point satisfying second-order nec-

160

essary conditions. The computed ∆A satisfies ‖∆A‖F ≈ 0.195106246768620 with

∆A0 ≈

 0.003672710 0.004785086 −0.02245739
−0.005187912 −0.03621277 0.007193448
−0.06403311 −0.08485719 −0.04527277

 ,

∆A1 ≈

−0.009980157 −0.01509224 0.01007845
−0.002422992 0.008174672 −0.01519851

0.02881208 0.01774652 0.01493851

 ,

∆A2 ≈

−0.008520615 0.02778100 0.01080944
0.002975467 0.006109075 0.01583740
0.02104305 0.02636789 0.003488096

 ,

∆A3 ≈

−0.07735493 −0.04525647 0.0
−0.04655637 −0.001737837 −0.01108606
−0.03307563 −0.04490523 0.0

 ,

∆A4 ≈

 0.0 0.0 0.0
−0.06830108 −0.01322433 0.0

0.0 0.0 0.0

 .

The Smith form is

diag(h2, h2, h2) where h ≈ t+ 1.00028560646861.

Note that the infinite eigenvalues were not meaningfully perturbed.

161

Example 5.8.5. Consider the matrix polynomial A =
∑4

j=1 t
jAj where

A0 =

 4.005818693 6.084511854 0.3335387824
3.052051754 −0.9005049160 2.381659565
4.088099075 4.073262446 4.067592248

A1 =

 2.124945887 2.157457552 0.4644466538
7.155547175 1.120803866 3.480686979
8.087464486 8.086020397 4.037656444

 ,

A2 =

 3.219109680 3.257284539 0.4973446486
9.187057395 3.173071064 3.445168307
8.017554870 8.062536135 4.034710873

 ,

A3 =

−0.7341983133 −2.799054947 0.1176041064
6.174134120 4.252311257 1.174639898
4.034683193 4.033239487 0.0

 ,

A4 =

 1.091424277 1.096090651 0.0
2.182199749 2.161583482 0.0

0.0 0.0 0.0

 .

If we consider perturbations to A that do not perturb zero coefficients then for our initial
guess we use a feasible ∆Ainit with an absolute distance of ‖∆Ainit‖F ≈ 0.3834240788.
This is a relative error of approximately 0.01439260580. We extract an initial guess where
‖L(xinit, λinit)‖2 ≈ 7.668482×10−1. The prescribed structural supports are α = (1, 1, 1) for
deg(h) = 2.

To compute a solution we use a hybrid Newton method where Newton’s method is used
for the first two iterations and a regularized Newton method based on Levenberg-Marquardt
is used for eight iterations to compute a local minimizer 7. The local minimizer ∆A satisfies

7The computed point satisfies second-order sufficient conditions, however the Jacobian of the constraints
and projected Hessian are both rank deficient.

162

‖∆A‖F ≈ 0.133615685603406 and is given by

∆A0 ≈

−0.006991058 0.003723321 0.02165736
0.01237565 −0.03888976 −0.04065646
−0.01008063 0.005678707 −0.02034014

 ,

∆A1 ≈

0.005138626 −0.004803751 0.006353215
−0.01570427 −0.003329195 −0.01394313
0.003091133 0.01993365 −0.006293378

 ,

∆A2 ≈

0.001515364 0.001382172 −0.02789106
0.004169284 0.04187736 0.05550295
0.003999821 −0.02276316 0.02018658

 ,

∆A3 ≈

 −0.01775122 0.01464300 −0.001669402
0.02062815 −0.04831373 −0.01978488
−0.006211543 0.008028807 0.0

 ,

∆A4 ≈

0.004236129 0.01890377 0.0
−0.04154365 0.001907364 0.0

0.0 0.0 0.0

 .

The Smith form is a re-scaling of

diag(h, h, hsn) where h ≈ t2 + 1.00362940720781t+ 1.00553122631092 and

sn ≈ 0.000058187t9 − 0.000070334t8 − 0.000033959t7 + 0.00016269t6

− 0.00014110t5 − 0.000081232t4 − 0.0010299t3 − 0.0054643t2 + 1.0420t− 7.8367.

We note that unlike the previous two examples, the Smith form of the computed solution
perturbed eigenvalues at infinity to be non-zero. Making sn monic is not necessarily a wise
normalization, as the trailing coefficient of sn will become quite large. In particular, comput-
ing the SNF with the associated multipliers may be an ill-conditioned problem numerically,
but inferring the SNF via unitary transformations can still be reasonably behaved.

5.9 Conclusion

The optimization problem of computing a nearby matrix polynomial with a non-trivial
spectral structure was shown to be amenable to local optimization techniques. Three
broad families of techniques were proposed based on;

163

1. Computing the minors of a matrix polynomial that while not practical, yields theo-
retical insights into the problem in a straightforward manner.

2. A technique that resembles a weighted instance of affine or linear structured lower
rank approximations of matrix polynomials that is efficient in computing a lower
McCoy rank approximation with respect to the per-iteration cost. A modification
with staircase constraints is proposed to handle the most general form of the problem.

3. A direct approach yielding the unimodular multipliers and Smith form at the same
time. The most generic version is discussed, although the results are applicable to
other instances with some minor modifications.

While all of the methods solve the same problem, their challenges and theoretical
considerations regarding the KKT conditions are different.

In general, the more structure that is demanded, the harder the problem becomes to
solve. Finding a nearby matrix polynomial with an interesting Smith form has a larger
region of convergence than finding a nearby matrix polynomial of reduced McCoy rank,
which in turn has a larger region of convergence than finding a nearby matrix polynomial
where the entire spectral structure is prescribed. In particular, our view of the problems are
almost entirely local. While a global view of the problem may be desirable, this is perhaps
too much to request. We recall that the eigenvalues are not always continuous, and any
continuity tends to be local. Irregular solutions exist and solving the KKT conditions
may not make sense without any information about the solution. To ensure existence of
Lagrange multipliers, one must know in advance how eigenvalues at infinity at the solution
behave, which is a local property and not a global one.

Regularity conditions were shown to hold for most instances of the problems in ques-
tion, ensuring that Lagrange multipliers exist. When Lagrange multipliers do not exist,
alternative formulations that satisfy Lagrange multipliers are proposed and shown to be
theoretically robust with a suitable initial guess. In general, Newton methods will have
rapid local convergence under normalization assumptions for all the problems considered.

164

Chapter 6

Approximate Greatest Common
(Right) Divisors of Differential
Operators

In this chapter we revisit some classic problems in symbolic-numeric computation with
the goal of demonstrating that the techniques proposed earlier are applicable to other
problems. We will study the approximate Greatest Common Right Divisor (GCRD) of
differential polynomials over R[t][∂;′] from the perspective of computing a nearby matrix
polynomial with a linear structure.

The approximate GCRD problems is a non-commutative generalization of approximate
GCD. Approximate GCRD is structurally similar to the approximate GCD of two or more
polynomials, but the ground ring of computation is R[t] instead of R or C. This means
that instead of computing the nearest rank deficient Sylvester matrix, we need to compute
the nearest rank deficient differential Sylvester matrix, which is a Sylvester-like matrix
with coefficients over R[t]. In other words, this is an application of computing the nearest
singular matrix polynomial with a linear structure [38, 51]. This chapter documents some
improvements to the theory of the approximate GCRD of differential operators and some
analogs to approximate GCD type problems over similar domains of computation.

165

6.1 Introduction

The problem of computing the Greatest Common Right Divisor (GCRD) in a symbolic and
exact setting dates back to [90], who presents a Euclidean-like algorithm. See [15] for an
elaboration of this approach. [79] introduces a differential-resultant-based algorithm which
makes computation of the GCRD very efficient using modular arithmetic. The technique
of [79] is an extension of ideas presented by [48] for computing GCRDs of differential
operators.

The analogous approximate GCD problem for usual (commutative) polynomials has
been a key topic of research in symbolic-numeric computing since its inception. A full
survey is not possible here, but we note the deep connection between our current work
and that of [21]; see also [72], [95], and [112]. Also important to this current work is
the use of so-called structured (numerical) matrix methods for approximate GCD, such as
structured total least squares (STLS) and structured total least norm (STLN); see [13] and
[68]. More directly employed later in this chapter is the multiple polynomial approximate
GCD method of [69]. This latter paper also provides a nice survey of the current state
of the art in approximate GCDs. Finally, we modify the proof of [70], an optimization
approach to computing the GCD of multiple, multivariate commutative polynomials, to
prove the existence of a globally nearest GCRD.

The goal of this chapter is to devise an efficient, numerically robust algorithm to com-
pute the GCRD when the coefficients in R are given approximately. Given f, g ∈ R(t)[∂;′],

we wish to find f̃ , g̃ ∈ R(t)[∂;′], where f̃ is near f and g̃ is near g, such that

deg∂(gcrd(f̃ , g̃)) ≥ 1, where near is taken with respect to a distributed Euclidean norm.

That is, f̃ and g̃ have an exact, non-trivial GCRD.

Linear differential polynomials and GCRD’s are key tools in finding closed form sym-
bolic solution of systems of linear differential equations in modern computer algebra sys-
tems like Maple and Mathematica (see, e.g., [94] and [2]). Equations with real (floating
point) coefficients or parameters are regularly encountered and it is important to under-
stand the stability of this fundamental tool in this case. Moreover, floating arithmetic is
potentially much faster than managing large rational coefficients. We regard this work [36]
as a positive and important initial exploration of this topic.

6.1.1 Outline

The main theoretical improvements to the theory involve studying the approximate GCRD
problem as a constrained optimization problem, opposed to an unconstrained optimization

166

problem as was done in the past [38, 51]. This chapter establishes:

1. A rigorous application of the theory of Chapter 3 to the problem to improve several
degree bounds.

2. Characterization of the existence and local uniqueness of regular and irregular solu-
tions.

3. Regularization for special cases with irregular solutions via nearest singular matrix
polynomial.

4. A brief summary of how the constrained optimization approach improves upon un-
constrained optimization techniques with an example, whereby a hybrid technique is
used.

We commence with necessary preliminaries and well-known results that we expand
upon in the remainder of this introductory section. In Section 6.3 we describe a linear
algebra formulation of the approximate GCRD problem and that can be used in conjunction
with truncated SVD [21, 35, 51] to compute nearby polynomials with an exact GCRD.
Section 6.4 reformulates the approximate GCRD problem as a continuous unconstrained
optimization problem. Sufficient conditions for existence of a solution are provided with
an example showing that when this sufficient condition is not satisfied there is no solution.
These results are complemented by showing that the Jacobian of the residuals has full rank
and under ideal circumstances Newton iteration will converge quadratically. We generalize
some results of [111] and [112] to a non-commutative Euclidean domain showing that the
problem is locally well-posed. In Section 5.8 we present our algorithms explicitly, discuss
their complexity and evaluate the numerical robustness of our implementation on examples
of interest.

A part of this work, presenting the SVD-based approach to approximate GCRD, but
without the proof of existence of a nearest solution or analysis of the corresponding op-
timization, is presented in the workshop paper [35]. Section 6.5 studies the optimization
problem in the context of structured matrices further drawing upon the ideas of Chapter 3.

6.2 Preliminaries

We review some well known results [90] and [16] on differential polynomials.

167

The ring of differential (Ore) polynomials R(t)[∂;′] over the real numbers R provides a
(non-commutative) polynomial ring structure to the linear ordinary differential operators.
Differential polynomials have found great utility in symbolic computation, as they allow us
to apply algebraic tools to the simplification and solution of linear differential equations;
see [15] for a nice introduction to the mathematical and computational aspects.

Let R(t)[∂;′] be the ring of differential polynomials over the function field R(t). R(t)[∂;′]
is the ring of polynomials in ∂ with coefficients from the commutative field of rational func-
tions, under the usual polynomial addition along with the non-commutative multiplication
defined by

∂y(t) = y(t)∂ + y′(t) for y(t) ∈ R(t).

Here y′(t) is the usual derivative of y(t) with respect to t.

There is a natural action of R(t)[∂;′] on the space C∞[R] of infinitely differentiable
functions y(t) : R→ R. In particular, for any y(t) ∈ C∞[R],

f(∂) =
∑

0≤i≤M

fi(t)∂
i acts on y(t) as

∑
0≤i≤M

fi(t)
di

dti
y(t).

We maintain a right canonical form for all f ∈ R(t)[∂;′] by writing

f =
1

f−1

∑
0≤i≤M

fi∂
i, (6.1)

for polynomials f−1, f0, . . . , fM ∈ R[t]. That is, with coefficients in R(t) always written to
the left of powers of ∂. An analogous left canonical form exists as well.

A primary benefit of viewing differential operators in this way is that they have the
structure of a left (and right) Euclidean domain. In particular, for any two polynomials
f, g ∈ R(t)[∂;′], there is a unique polynomial h ∈ R(t)[∂;′] of maximal degree in ∂ such
that f = f ∗h and g = g∗h for f ∗, g∗ ∈ R(t)[∂;′] (i.e., h divides f and g exactly on the
right). This polynomial h is called the Greatest Common Right Divisor (GCRD) of f and
g and it is unique up to multiplication by a unit (non-zero element) of R(t) (we could make
this GCRD have leading coefficient 1, but this would introduce denominators from R[t],
as well as potential numerical instability, as we shall see).

An important geometric interpretation of GCRDs is that the GCRD h of differential
polynomials f and g is a differential polynomial whose solution space is the intersection of
the solution spaces of f and g.

Approximations require a norm, so we need a proper definition of the norm of a differ-
ential polynomial.

168

Definition 6.2.1. We define a distributed coefficient norm for differential polynomials as
follows: for f =

∑
0≤i≤M fi∂

i ∈ R[t][∂;′], define

‖f‖ = ‖f‖2 =

(∑
0≤i≤M

‖fi‖2
2

)1/2

.

We could extend the above definition of norm over R(t) and R(t)[∂;′]. However it turns
out that this is unnecessary and somewhat complicating. In practice, we perform most of
our computations over R[t]. In the cases where we are unable to avoid working over R(t), we
simply solve an associate problem. This is done by clearing denominators and performing
intermediate computations over R[t], then converting back to the representation over R(t).
Note that the algebraic problem is always computing GCRDs and co-factors in R(t)[∂;′],
and not the more intricate algebraic domain R[t][∂;′]; see the discussion below.

Problem 6.2.2 (Approximate GCRD). Given f, g ∈ R[t][∂;′] such that gcrd(f, g) = 1 we

wish to compute f̃ , g̃ ∈ R[t][∂;′] with the same coefficient degree structure1 as f and g such

that h = gcrd(f̃ , g̃) with D = deg∂(h) ≥ 1 and

1. ‖f − f̃‖
2

2 + ‖g − g̃‖2
2 = ε is minimized, and

2. D is the largest possible for the computed distance ε.

The differential polynomial h is said to be an approximate GCRD of f and g if these
conditions are satisfied. In general it is not easy to minimize ε, so instead we take a local
optimization approach and compute an upper bound on this quantity. These upper-bounds
will agree with the global minimum if ε is sufficiently small. The algorithmic considerations
will generally assume D is fixed without loss of generality, since we can vary D from 1 to
min{M,N} to determine the (local) optimal value.

The approximate GCRD problem is a generalization of computing an ε-GCD [21, 31,
72, 96] in the commutative case. The requirement that the GCRD has maximal degree is
difficult to certify outside the exact setting, however this usually is not a problem in our
experiments. We prove that our formulation of the approximate GCRD problem has a
solution with a minimal ε (opposed to an infimum). Furthermore, if D is fixed, then for a
computed pair of nearby differential polynomials, we are able to certify that ε is reasonably
close to the optimal value through a condition number.

1The polynomial coefficients of ∂i have the same degree, i.e. deg(f̃i) ≤ deg(fi) and deg(g̃i) ≤ deg(gi).

169

In our approach to the approximate GCRD problem we devise methods of performing
division and computing an exact GCRD numerically. These tools are used in conjunction
with our algorithm for computing a nearby pair of differential polynomials with an exact
GCRD via the SVD. The nearby differential polynomials with an exact GCRD are used
as an initial guess in a post-refinement Newton iteration.

It will also be necessary to define a partial ordering on differential polynomials. In later
sections we will need to make use of this partial ordering to preserve structure.

Definition 6.2.3. Let dvec : R[t][∂;′]→ ZM+1 be the degree vector function defined as

dvec(f) = (degt(f0), degt(f1), . . . , degt(fM)), for f0, . . . , fM ∈ R[t].

For f, g ∈ R[t][∂;′] with deg∂(f) = deg∂(g) = M we write

dvec(f) < dvec(g) if degt fi ≤ degt gi for 0 ≤ i ≤M.

We define dvec(f) = dvec(g), dvec(f) < dvec(g), dvec(f) ≥ dvec(g) and dvec(f) > dvec(g)
analogously.

We note that differential polynomials are written in a canonical ordering with highest
degree coefficients appearing to the left in our examples. The degree vector function and
most linearizations will appear in reverse order as a result. For convenience, we will assume
that deg(0) = −∞. Note that in this instance our vectorizations of differential operators
are defined as the transpose of what one would expect from earlier chapters. This is because
we are performing linear algebra on the left, opposed to the right, that is, we are solving
equations that resemble xTA = 0.

Definition 6.2.4. Let f ∈ R[t][∂;′] where deg∂(f) = M is in standard form. The content
of f is given by cont(f) = gcd(f0, f1, . . . , fM). If cont(f) = 1, we say that the differential
polynomial is primitive.

Proposition 6.2.5. The ring R(t)[∂;′] is a non-commutative principal left (and right)
ideal domain. For f, g ∈ R(t)[∂;′], with deg∂(f) = M and deg∂(g) = N , we have the
following properties [90].

(i) deg∂(fg) = deg∂(f) + deg∂(g) , deg∂(f + g) ≤ max{deg∂(f), deg∂(g)}.

(ii) There exist unique q, r ∈ R(t)[∂;′] with deg∂(r) < deg∂(g) such that f = qg+r (right
division with remainder).

170

(iii) There exists h ∈ R(t)[∂,′] of maximal degree in ∂ with f = f ∗h and g = g∗h. h is
called the GCRD (Greatest Common Right Divisor) of f and g, written gcrd(f, g) =
h. f ∗ and g∗ are called the left co-factors of f and g. The GCRD is unique up to
multiplication from a unit belonging to R(t).

(iv) There exist σ, τ ∈ R(t)[∂;′] such that σf = τg = ` for ` of minimal degree. ` is called
the LCLM (Least Common Left Multiple) of f and g, written lclm(f, g) = `. The
LCLM is unique up to multiplication from a unit belonging to R(t).

(v) deg∂(lclm(f, g)) = deg∂(f) + deg∂(g)− deg∂(gcrd(f, g)).

In an algebraic context we can clear denominators of our inputs and assume without
loss of generality that our GCRD belongs to R[t][∂;′]. We will also assume our inputs
and output are primitive. Again, this is not algebraically necessary but will be important
for the convergence of our subsequent optimization formulation (see Section 6.4.2). It
is important to note that the co-factors of the GCRD need not belong to R[t][∂;′] even
if we have f, g, h ∈ R[t][∂;′] such that gcrd(f, g) = h. This is not unexpected, as a
similar situation occurs when computing GCD’s over Z[x], where co-factors in the GCD
of primitive polynomials may well lie in Q[x] \ Z[x]. In essence, this is a computational
technique to narrow the input domain, not a change to the problem being considered.

A related but considerably more difficult problem is computing ideal bases and factor-
izations completely within R[t][∂;′]. This has been dealt with algebraically and in terms
of exact computation by a number of authors, though not with respect to approximate
coefficients; see for example [9, 41, 53].

Most of our results involve transforming a representation of f ∈ R(t)[∂;′] into a repre-
sentation over R(t)1×K for K ≥ deg∂(f). We make extensive use of the following map.

Definition 6.2.6. For f ∈ R(t)[∂;′] of degree M in ∂ as in (6.1), and K > M , we define

ΨK(f) =
1

f−1

(f0, f1, . . . , fM , 0, . . . , 0) ∈ R(t)1×K .

That is, ΨK maps polynomials in R(t)[∂;′] of degree (in ∂) less than K into R(t)1×K.

It will be useful to linearize (differential) polynomials, that is, express them as an
element of Euclidean space. For p ∈ R[t] with degt(p) = d we write

vec(p) = (p0, p1, . . . , pd) ∈ R1×(d+1)

171

For f = f0 + f1∂ + · · · fM∂M ∈ R[t][∂;′] with deg∂(f) = M and degt(fi) = di we write

vec(f) = (vec(f0), . . . , vec(fM)) ∈ R1×L,

where L = (d0 + 1) + · · · + (dM + 1). If d ≥ max{di} we will sometimes pad each vec(fi)
with zeros to have precisely d+ 1 coefficients, and by a slight abuse of notation regard

vec(f) ∈ R1×(M+1)(d+1).

We will not do this unless specifically stated.

6.3 Computing the GCRD via Linear Algebra

In this section we demonstrate how to reduce the computation of the GCRD to that of
linear algebra over R(t), and then over R itself. This approach has been used in the exact
computation of GCRDs [79] and differential Hermite forms [42], and has the benefit of
reducing differential, and more general Ore problems, to a system of equations over a
commutative field. Here we will show that it makes our approximate version of the GCRD
problem amenable to numerical techniques. We note that for computing approximate
GCRDs of differential polynomials, much as for computing approximate GCDs of standard
commutative polynomials, the Euclidean algorithm is numerically unstable, and thus we
employ resultant-based techniques, as described below.

Since R(t)[∂;′] is a right (and left) Euclidean domain [90], a GCRD may be computed
by solving a Diophantine equation corresponding to the Bézout coefficients. Using the sub
resultant techniques of [78], we are able to transform the non-commutative problem over
R(t)[∂;′] into a commutative linear algebra problem over R(t). This is done through a
Sylvester-like resultant matrix. By using resultant-like matrices we are able to express the
Bézout coefficients as a linear system over R(t) and compute a GCRD via nullspace basis
computation.

Lemma 6.3.1. Suppose f, g ∈ R(t)[∂;′] with deg∂(f) = M and deg∂(g) = N . Then
deg∂(gcrd(f, g)) ≥ 1 if and only if there exist u, v ∈ R(t)[∂;′] such that deg∂(u) < N ,
deg∂(v) < M , and uf + vg = 0.

Proof. This follows immediately from Proposition 6.2.5.

Using Lemma 6.3.1 we can solve a Bézout-like system to compute a GCRD of two
differential polynomials. This is characterized by the differential Sylvester matrix, based
on the sub resultant method of [79].

172

Definition 6.3.2. Suppose h ∈ R[t][∂;′] has deg∂(h) = D. For any K ∈ N, the matrix

CR
K (h) =

ΨK+D+1(h)

ΨK+D+1(∂h)
...

ΨK+D+1(∂Kh)

 ∈ R[t](K+1)×(K+D+1)

is the Kth right differential convolution matrix of h. We note that the entries of CR
K (h)

are written in their right canonical form, where the ∂’s appear to the right (polynomials in
R[t] appear to the left). We note that degt(∂

ih) = degt(h), so the degree in t of all entries
of CR

K (h) is at most degt(h).

We analogously define the Kth left differential convolution matrix of h as CL
K(h) as

CL
K(h) =

ΨK+D+1(h)

ΨK+D+1(h∂)
...

ΨK+D+1(h∂K)

 ∈ R[t](K+1)×(K+D+1),

where elements are written in their left canonical form, where the ∂’s appear to the left
(polynomials in R[t] always appear to the right).

Both right and left differential convolution matrices can be used to perform multipli-
cation. Suppose f ∗ ∈ R(t)[∂;′], h ∈ R(t)[∂;′] and f = f ∗h ∈ R[t][∂;′], with

f =
∑

0≤i≤M

fi∂
i, f ∗ =

∑
0≤i≤M−D

f ∗i ∂
i and h =

∑
0≤i≤D

hi∂
i, (6.2)

with fi, hi ∈ R[t] and f ∗i ∈ R(t). We can express the product of f ∗ and h as

(f0, f1, . . . , fM) = (f ∗0 , . . . , f
∗
M−D)CR

M−D(h).

Similarly, we may write

(f0, f1, . . . , fM)T = CL
D(f ∗)(h0, h1, . . . , hD)T .

In keeping with our canonical ordering, we express our results in terms of right differential
convolution matrices. We carefully observe that both the right and left differential con-
volution matrices described correspond to right multiplication. Left multiplication can be
formulated in a similar manner.

173

Let f, g ∈ R(t)[∂;′] with deg∂(f) = M and deg∂(g) = N . Then by Lemma 6.3.1
we have that deg∂(gcrd(f, g)) ≥ 1 if and only if there exist u, v ∈ R(t)[∂;′] such that
deg∂(u) < N, deg∂(v) < M and uf + vg = 0. We can encode the existence of u, v as an
(M +N)× (M +N) matrix over R(t) in what we will call the differential Sylvester matrix.

Definition 6.3.3. The matrix

S = Syl∂(f, g) =

(
CR
N−1(f)

CR
M−1(g)

)
∈ R(t)(M+N)×(M+N)

is the differential Sylvester matrix of f and g.

This matrix [79] is analogous to the Sylvester matrix of real polynomials; see [34, Chap-
ter 6]. As expected, many useful properties of the Sylvester matrix over real polynomials
still hold with the differential Sylvester matrix. These similarities become evident when
we consider

w = (u0, u1, . . . , uN−1, v0, v1, . . . , vM−1) ∈ R(t)1×(M+N).

Then uf+vg = 0 implies that wS = 0, hence w is a non-trivial vector in the (left) nullspace
of S. In particular, this solution is equivalent to saying that S is singular. Clearing
denominators of f and g, we may assume that u, v ∈ R[t][∂;′], i.e., they have polynomial
coefficients, which implies that S ∈ R[t](M+N)×(M+N). Moreover, for f, g ∈ R[t][∂;′] with
degt(f) ≤ d and degt(g) ≤ d then degt(Sij) ≤ d.

We summarize these results in the following lemma.

Lemma 6.3.4. Suppose f, g ∈ R[t][∂;′], where deg∂(f) = M , deg∂(g) = N , degt(f) ≤ d
and degt(g) ≤ d.

(i) S = Syl∂(f, g) is singular if and only deg∂(gcrd(f, g)) ≥ 1.

(ii) deg∂(gcrd(f, g)) = dim ker`(S), where ker`(S) is the left nullspace of S.

(iii) For any w = (u0, . . . , uN−1, v0, . . . , vM−1) ∈ R(t)1×(M+N) such that wS = 0, we have
uf + vg = 0, where u =

∑
0≤i<N ui∂

i and v =
∑

0≤i<M vi∂
i.

(iv) Suppose that deg∂(gcrd(f, g)) ≥ 1. Then there exists w ∈ R[t]1×(M+N) such that
wS = 0 and degt(w) ≤ µ = 2(M +N)d.

Proof. Part (i) – (iii) follow from Lemma 6.3.1 and the discussion above. Part (iv) follows
from Lemma 2.5.9.

In practice, the bound in part (iv) can be improved in several instances by applying
Lemma 3.2.1.

174

6.3.1 Linear Algebra over R

Let S ∈ R[t](M+N)×(M+N) be the differential Sylvester matrix of f, g ∈ R[t][∂;′] of degrees
M and N respectively in ∂, and degrees at most d in t. From Lemma 6.3.4 we know that
if a GCRD of f and g exists, then there is a w ∈ R[t]1×(M+N) such that wS = 0, with
degt(w) ≤ µ = (M +N)d.

Definition 6.3.5. Given the (M +N)× (M +N) differential Sylvester matrix S, we apply

Φµ(·) to S to with µ ≤ nd to obtain Φµ(S)T = Ŝ ∈ R(µ+1)(M+N)×(M+N)(µ+d+1). We refer to

Ŝ as the inflated differential Sylvester matrix of f and g.

Lemma 6.3.6. Let f, g ∈ R[t][∂;′] have differential Sylvester matrix S ∈ R[t](M+N)×(M+N)

and inflated differential Sylvester matrix

Ŝ ∈ R(M+N)(µ+1)×(M+N)(µ+d+1).

There exists a w ∈ R[t]1×(M+N) such that wS = 0, if and only if there exists a ŵ ∈
R(µ+d+1)×(M+N)(µ+1) such that ŵŜ = 0.

Proof. This follows by Lemma 2.5.9 and Lemma 3.2.1.

The degree of the GCRD can be computed using any matrix polynomial kernel basis
technique from Chapter 3.

6.3.2 Division Without Remainder

While multiplication of differential polynomials with approximate numerical coefficients is
straightforward, division is somewhat more difficult. We will generally require a division
without remainder, for the computation of which we use a least squares approach. Given
f, h ∈ R[t][∂;′] as in (6.2), we wish to find an f ∗ ∈ R(t)[∂;′] such that ‖f − f ∗h‖ is mini-
mized. We will assume as usual that deg∂(f) = M , deg∂(h) = D and degt(f), degt(h) ≤ d.

Much as in the (approximate polynomial) commutative case, we do this by setting the
problem up as a linear system and then finding a least squares solution. Let us assume for
now that f = f ∗h is exact, so this can be expressed as a linear system over R(t) by writing

(f0, f1, . . . , fM) = (f ∗0 , . . . , f
∗
M−D)CR

M−D(h). (6.3)

This system of equations is over-constrained (over R(t)), but we note that the sub-
matrix formed from the last M − D + 1 columns of CR

M−D(h) is lower triangular, with

175

diagonal entry hD ∈ R[t]. Thus, any exact quotient h ∈ R[t][∂;′] such that f = f ∗h,
in lowest terms, must have denominators dividing hM−D+1

D , and in particular have de-
nominators of degree at most (M − D + 1) degt(hD) ≤ (M − D + 1)d. Equivalently,
hM−D+1
D f ∗ ∈ R[t]M−D+1. By applying Cramer’s rule on the last M − D + 1 columns of

CR
M−D(h), the degrees of the numerators in f ∗ must be at most (M −D + 1)d. Using this

information we can formulate an associated problem with coefficients from R[t] and avoid
performing linear algebra over R(t).

Now let v−1, v0, . . . , vM−D be generic polynomials in t, with indeterminate coefficients
of degree at most (M −D + 1)d. I.e.,

vi =

d(M−D+1)∑
j=0

vijt
j, i = −1 . . .M −D,

for indeterminate vij with v−1 6= 0. Then we are seeking to solve the linear system of
equations

v−1 · (f0, . . . , fM) = (v0, . . . , vM−D) CR
M−D(h)

for the vij. For each entry fi we have (M −D + 1)d + d + 1 equations; this is the degree
(v0, . . . , vM−D)CR

M−D(h) plus one, and we get one equation per coefficient. Hence there are
(M + 1)((M −D+ 1)d+d+ 1) equations in (M −D+ 2)(M −D+ 1)d unknowns. We then
use a standard linear least squares solution to find the vi which minimizes the residual,
and thus minimizes ‖f − f ∗h‖.

It may be desirable to find the lowest degree v−1 which meets this criteria, for which we
can use a simple binary search for a lower degree with reasonable residual (or alternatively
use an SVD-based identification procedure).

Finally, a more straightforward approach to solving (6.3) is to simply use the solution
from the last M−D+1 columns of CR

M−D(h). The last M−D+1 columns of CR
M−D(h) are

lower triangular, with diagonal entries consisting of hD ∈ R[t]. While this does not yield
a solution to the least squares normal equations, it is usually sufficiently good in practice,
and considerably easier to formulate.

6.4 Unconstrained Optimization Formulation of Ap-

proximate GCRD

First we standardize some notation and assumptions. We assume that f, g, f̃ , g̃, h ∈
R[t][∂;′] and f ∗, g∗ ∈ R(t)[∂;′]. Moreover, we assume that f̃ = f ∗h and g̃ = g∗h and

176

h = gcrd(f̃ , g̃). Intuitively, f, g are our “input polynomials” and we will be identifying

“nearby” f̃ , g̃ with a non-trivial GCRD h. Note that f ∗, g∗ have rational function coeffi-
cients. Later we will find it useful to clear fractions and work with a primitive associate.

We also assume degree bounds as follows: deg∂(f) = deg∂(f̃) = M , degt(f), degt(f̃) ≤
d, deg∂(g), deg∂(g̃) = N , degt(g), degt(g̃) ≤ d, deg∂(h) = D, deg∂(f

∗) = M − D and
deg∂(g

∗) = N −D.

Using the method of [35], essentially the generalization of the SVD-based method of [21]

to differential polynomials, we will make an initial guess for f̃ , g̃; details are described in
Section 6.6 of this chapter. We then use optimization techniques to hone in on polynomials
with minimal distance. While the techniques in that paper are not particularly effective
at providing a nearest solution, they do provide a suitable initial guess, which we employ
here.

We next describe how to formulate an objective function Φ that, when minimized,
corresponds to a solution to the approximate GCRD problem.

Problem 6.4.1 (Unconstrained Approximate GCRD). Define the objective function Φ :
R[t][∂;′]× R(t)[∂;′]2 → R as

Φ(h, f ∗, g∗) = ‖f − f ∗h‖2
2 + ‖g − g∗h‖2

2.

In keeping up with our notation from earlier, we observe that f̃ = f ∗h and g̃ = g∗h in the
context of the objective function Φ, as f and g will typically be relatively prime.

To compute guesses for the co-factors given h, we will perform an approximate division
without remainder using the method of Section 6.3.2. We only require an initial guess for
f ∗ and g∗ to minimize Φ, so this factorization doesn’t need to be exact, in the event that
gcrd(f, g) = h.

We show that Φ has an attainable global minimum under appropriate assumptions.
More precisely, there exist non trivial f̃ and g̃ such that

‖f − f̃‖
2

2 + ‖g − g̃‖2
2

is minimized. Furthermore, we will show that the approximate GCRD problem is locally
well-posed.

177

6.4.1 Existence of Solutions

Lemma 6.4.2. Let f, h ∈ R[t][∂;′], with monic leading coefficients, be not necessarily
primitive, such that f = f ∗h for f ∗ ∈ R[t][∂;′] with deg∂(f) = M and deg∂(h) = D. Then
‖f ∗‖ is bounded above.

Proof. It follows that f ∗ is bounded by the computing the solution to (6.3) using the last
M −D + 1 columns of CR

M−D(h) and Cramer’s rule.

As an observation, we relax the assumption that f is primitive (we work with an
associate instead) in order to guarantee that f ∗ ∈ R[t][∂;′]. This can be taken without
loss of generality as the quantity ‖ cont(f)‖2

2 is bounded above and away from zero (as its
leading coefficient is monic). Thus we may divide by it without affecting the quality of the
results, as ‖f − f ∗h‖ is still well defined.

We first state a general version of the theorem where a logical predicate Ξ : Rk →
{true, false} (for some k) can be chosen to impose additional constraints on the problem.
For the rest of this section let

φ : R[t][∂;′]2 → R(M+N+2)(d+1)

be the combined coefficient vector function, i.e. for arbitrary f, g ∈ R[t][∂;′] we write
φ(f, g) = (vec(f), vec(g)), where vec(f) and vec(g) are padded with zeros to have the
desired dimensions.

The following lemma and its proof are analogous to [70, Theorem 2], which in turn
generalizes the univariate argument of [71, Theorem 1].

Theorem 6.4.3 (Existence of Global Minima). Let f, g ∈ R[t][∂;′]\{0}, let d = max{degt(f), degt(g)},
deg∂(f) = M , deg∂(g) = N and D ≤ min{M,N}. Furthermore, let Ξ : R(M+N+2)(d+1) →
{true, false} be a predicate on φ(f, g). We assume that the preimage Ξ−1(true) is a topolog-
ically closed set in R(M+N+2)(d+1) with respect to the Euclidean norm. For a given Ω ∈ R>0

we define the set of possible solutions by

FΩ =

(f̃ , g̃) ∈ R[t][∂;′]2 such that deg∂(f̃) = M,
deg∂(g̃) = N,

deg∂(h̃) ≥ D,

h̃ = gcrd(f̃ , g̃),

‖h̃‖ ≤ Ω,

lcoefft(lcoeff∂(h̃)) = 1,

and Ξ(φ(f̃ , g̃)) = true

.

178

Suppose that FΩ 6= ∅. Then the minimization problem

min
(f̃ ,g̃)∈FΩ

‖f − f̃‖
2

2 + ‖g − g̃‖2
2 (6.4)

has an attainable global minimum.

Proof. Without loss of generality, we assume that M ≤ N . Then we iterate the minimiza-
tion over all ` ∈ Z≥0 such that D ≤ ` ≤ M and coefficients ρ ⊂ R[t]`. Let H`,ρ denote
the set of all differential polynomials over R[t][∂;′] of degree ` with coefficients from ρ. We
optimize over the continuous real objective function

Φ(h, f ∗, g∗) = ‖f − f ∗h‖2
2 + ‖g − g∗h‖2

2,

for h ∈ H`,ρ, deg∂(f
∗) ≤ M −D and deg∂(g

∗) ≤ N −D. We fix the leading coefficient of
h with respect to ∂ to be monic, that is lcoefft(lcoeff∂(h)) = 1.

Since the leading coefficient of h is monic, we can write G = gcrd(f ∗h, g∗h) with
deg∂(G) ≥ D. Since G is a multiple of h, we normalize G so that lcoefft(lcoeff∂(G)) = 1,
i.e. the leading coefficient of G is also monic. The restriction on h that the leading
coefficient of h is monic enforces that deg∂(G) ≥ D. Furthermore, we restrict the domain
of our function Φ to those h, f ∗ and g∗ for which (f ∗h, g∗h) ∈ FΩ. If there is no such
common factor h and co-factors f ∗ and g∗, then this pair of ` and ρ does not occur in the
minimization (6.4). By assumption we have that FΩ 6= ∅, so there must be at least one
possible case. We note that if (0, 0) ∈ FΩ, then f ∗ = g∗ = 0.

Now suppose that for the given ` and ρ, there are h̃ ∈ H`,ρ and f̃ ∗, g̃∗ satisfying

deg∂(f̃
∗) ≤ M − ` and deg∂(g̃

∗) ≤ N − ` such that (f̃ ∗h̃, g̃∗h̃) ∈ FΩ. We shall prove that
the function Φ has a value on a closed and bounded set (i.e., compact with respect to the
Euclidean metric) that is smaller than elsewhere. Hence Φ attains a global minimum by
Weierstrass” theorem.

Clearly any solution h̃ ∈ H`,ρ and f̃ ∗, g̃∗ with (f̃ ∗h, g̃∗h) ∈ FΩ but with Φ(h̃, f̃ ∗, g̃∗) >

Φ(h, f ∗, g∗) can be discarded. So the norm of the products ‖f̃ ∗h̃‖2 and ‖g̃∗h̃‖2 can be

bounded from above. We have that ‖h̃‖ is bounded above by Lemma 6.4.2 because it is

a right factor of G̃ = gcrd(f̃ ∗h̃, g̃∗h̃) with ‖G̃‖ ≤ Ω. We note that h̃ has a monic leading

coefficient, so ‖h̃‖ ≥ 1. We have that ‖f̃ ∗‖ and ‖g̃∗‖ (or the appropriate associate) are
both bounded above by Lemma 6.4.2.

Thus we can restrict the domain of Φ to values that lie within a sufficiently large closed
ball B. The function ζ that maps (h, f ∗, g∗) to the combined coefficient vector φ(f ∗h, g∗h)

179

of f ∗h and g∗h is continuous. We minimize over ζ−1(Ξ−1(true)∩ζ(B)), which is a compact
set.

For the less general version of the theorem, given arbitrary f, g ∈ R[t][∂;′], we define

S = S(f, g) =
{
φ(f̃ , g̃) | f̃ , g̃ ∈ R[t][∂;′] such that dvec(f̃) ≤ dvec(f) dvec(g̃) ≤ dvec(g)

}
.

We observe that S is a closed subset of R(M+N+2)(d+1), where deg∂(f) = M , deg∂(g) = N
and d = max{degt(f), degt(g)}. The set S corresponds to the combined coefficient vectors

of f̃ and g̃ that have the same degree structure as f and g.

Corollary 6.4.4. Let f, g ∈ R[t][∂;′]\{0}, let d = max{degt(f), degt(g)}, deg∂(f) = M ,
deg∂(g) = N and D ≤ min{M,N}. For a given Ω ∈ R>0 we define the set of possible
solutions by

FΩ =

(f̃ , g̃) ∈ R[t][∂;′]× R[t][∂;′] such that deg∂ f̃ = M,
deg∂ g̃ = N,

φ(f̃ , g̃) ∈ S,

deg∂ h̃ ≥ D,

h̃ = gcrd(f̃ , g̃),

‖h̃‖ ≤ Ω,

and lcoefft(lcoeff∂(h̃)) = 1

.

Suppose that FΩ 6= ∅. Then the minimization problem

min
(f̃ ,g̃)∈FΩ

‖f − f̃‖
2

2 + ‖g − g̃‖2
2

has an attainable global minimum.

We note that Theorem 6.4.3 does not guarantee a unique minimum of Φ, merely that
Φ has an attainable minimum (as opposed to an infimum). The choice of h, f ∗ and g∗

that we optimize over is important. If lcoefft(lcoeff∂(h)) vanishes or ‖h0‖, . . . , ‖hD−1‖ are
quite large, then f ∗ and g∗ can be ill-conditioned in the approximate GCRD problem.
Furthermore, choosing overly large, small or poor degree structure in t for h can result
in a Φ that cannot be minimized for the specified structure, but would otherwise have a
minimum for a different choice of h.

180

Example 6.4.5. Consider f = ∂2 − 2∂ + 1 and g = ∂2 + 2∂ + 2 (see [70] for an example
with complex perturbations). Then f and g do not have a degree 1 approximate GCRD.

That is, we show that there does not exist f̃ , g̃ ∈ R[t][∂;′] where deg∂(gcrd(f̃ , g̃)) = 1 and

‖f − f̃‖
2

2 + ‖g − g̃‖2
2 is minimized.

The real monic Karmarkar-Lakshman distance [72, 73] of

‖f − f̃‖
2

2 + ‖g − g̃‖2
2

occurs when the rational function

2h4
0 + 14h2

0 + 4h0 + 5

h4
0 + h2

0 + 1

is minimized for h0 ∈ R. The minimum value (if it exists) of this function corresponds to
the approximate GCRD h = ∂ − h0. The infimum is 2, which is unattainable. There is no
attainable global minimum.

The non-monic real Karmarkar-Lakshman distance is 2, which is achieved if and only
if the leading coefficient vanishes. The minimum occurs when the rational function

5h4
1 − 4h3

1 + 14h2
1 + 2

h4
1 + h2

1 + 1

is minimized. The minimum value of this function corresponds to the approximate GCRD
h = h1∂ + 1.

In particular, if we consider f̃ = (−2∂ + 1)(ε∂ + 1) and g̃ = (2∂ + 2)(ε∂ + 1), then

‖f − f̃‖
2

2 + ‖g − g̃‖2
2 becomes arbitrarily near 2 as ε→ 0.

There is no real degree 1 approximate GCRD, as

min
{(f̃ ,g̃)∈R[t][∂;′]2 | deg∂(gcrd(f̃ ,g̃))=1}

‖f − f̃‖
2

2 + ‖g − g̃‖2
2

is not defined in the monic case. In the non-monic case, if a minimum exists then it occurs
when lcoeff∂(h) vanishes, so the minimum value is not defined either.

This example illustrates that not all f, g ∈ R[t][∂;′] have an approximate GCRD. Fur-
thermore, we see that the requirement that lcoefft(lcoeff∂(h)) = 1 and ‖h‖ is bounded, from
Theorem 6.4.3 are required, even if there are no additional constraints imposed.

181

Now it remains to show that it is possible to obtain a (locally) unique solution to Φ.
One of many equivalent conditions for uniqueness of an exact GCRD, is to require it to be
primitive and have a monic leading coefficient. Numerically, to obtain a unique solution of
the approximate GCRD problem, we impose the same constraints, making solutions locally
unique.

6.4.2 Convergence of Newton Iteration and Conditioning

From Theorem 6.4.3 and Corollary 6.4.4 we know a solution to the approximate GCRD
problem exists. We now show that a standard Newton iteration will converge quadrati-
cally when starting with an estimate sufficiently close to an approximate GCRD. We first
describe the Jacobian of the residuals and show that the Jacobian has full rank. This leads
to a first-order approximation of the Hessian matrix showing that it is locally positive def-
inite around a global minimum when the residual is sufficiently small. The implication is
that Newton’s method will converge quadratically. If we consider structured perturbations,
then we are able to obtain results similar to that of [112] to the overall conditioning of the
system.

In this section we assume without loss of generality that f ∗, g∗ ∈ R[t][∂;′] are primitive,
and that f and g may no longer be primitive to simplify computations. We need to clear
fractions of rational functions to apply our coefficient norms, and to linearize h, f ∗ and g∗

as vectors of real numbers.

The residual of the approximate GCRD is

r = r(h, f ∗, g∗)

= (vec(f ∗h)− vec(f), vec(g∗h)− vec(g))T ∈ Rη×1,

where

η =
∑

0≤i≤M

max{degt(fi),−1}+
∑

0≤i≤N

max{degt(gi),−1}+ (M + 1) + (N + 1)

≤ (M +N + 2)(d+ 1).

Intuitively, η represents the number of components of (vec(f), vec(g)) ∈ R1×η. Let ν be the
number of variables needed to represent the coefficients of h, f ∗ and g∗, i.e. (vec(h), vec(f ∗), vec(g∗)) ∈
R1×ν .

Recall that when f = f ∗h, we can linearize this relationship with differential convolution
matrices, by writing

f = (f ∗0 , . . . , f
∗
M−D)CR

M−D(h).

182

If fi is a coefficient of f with degt(fi) = d, then we may write

fi =
∑

0≤j≤M−D

f ∗j (CR
M−D(h)[j, i]).

This relationship may be linearized over R through the use of convolution matrices. Writing

vec(fi) =
∑

0≤j≤M−D

vec(f ∗j) · Cd
(
CR
M−D(h)[j, i]

)T
,

we now have a direct method of computing vec(fi) in terms of the coefficients of f ∗ and h.

If we differentiate vec(f ∗h) with respect to an entry from vec(f ∗), then we will obtain
the corresponding (linearized) row of CR

M−D(h). Similarly, differentiating vec(f ∗h) with
respect to an entry of vec(h) will give us a (linearized) column of CL

D(f ∗). This relationship
becomes clear when we observe that

(f ∗0 , . . . , f
∗
M−D)CR

M−D(h) =

CL
D(f ∗)

h0
...
hD

T

.

Differentiating vec(g∗h) with respect to variables from vec(g∗) and vec(h) will produce
similar results.

The Jacobian of r(h, f ∗, g∗) for arbitrary h, f ∗ and g∗ may be expressed (up to column
permutation) in block matrix form as

J =

(
CR
M−D(h)T 0 CL

D(f ∗)
0 CR

N−D(h)T CL
D(g∗)

)
∈ Rη×ν ,

where the block matrices are linearized accordingly. In our formulation of the approximate
GCRD problem we normalize lcoefft(lcoeff∂(h)) so that it is a predetermined constant,
which results in essentially the same Jacobian as described above.

The only difference in the Jacobians, is that the νth column would become the zero col-
umn if differentiated with respect to lcoefft(lcoeff∂(h)), since lcoefft(lcoeff∂(h)) is constant.
When normalized for computational purposes, the Jacobian belongs to Rη×ν−1 instead (the
last column is deleted). In the general case when gcrd(f ∗, g∗) = 1, J is rank deficient by
1 and the νth column is a linear combination of the other columns. The following lemma,
similar to [111], formalizes this statement.

183

Theorem 6.4.6. Let r be the residual described earlier with Jacobian J . Suppose that
lcoefft(lcoeff∂(h)) is a fixed non-zero constant. If gcrd(f ∗, g∗) = 1, then all non-zero
columns of J are linearly independent.

Proof. Let vec(eν) ∈ R1×ν be a unit vector whose last component is 1. We write

vec(eν)(0, . . . , 0, vec(h))T = lcoefft(lcoeff∂(h)) 6= 0.

We shall prove the equivalent statement that the matrix(
J

vec(eν)

)
=

CR
M−D(h)T 0 CL

D(f ∗)
0 CR

N−D(h)T CL
D(g∗)

vec(eν)

 ∈ R(η+1)×ν

has full rank.

Suppose the converse holds, then there exists q1, q2, p ∈ R[t][∂;′] with deg∂(q1) ≤ M −
D, deg∂(q2) ≤ N −D and deg∂(p) ≤ D such that their combined coefficient vector satisfies(

J
vec(eν)

) vec(q1)T

vec(q2)T

− vec(p)T

 =

0
0
0

 .

Expressing this as multiplication over R[t][∂;′], we have that

f ∗p = q1h,

g∗p = q2h.

We conclude that gcrd(f ∗p, g∗p) = p, as gcrd(f ∗, g∗) = 1. If p = 0 or q1 = 0 or q2 = 0,
then we are done (as R[t][∂;′] is a domain). Suppose that p 6= 0 and q1 6= 0 and q2 6= 0.
Accordingly we must also have that gcrd(q1h, q2h) = gcrd(q1, q2)αh = p for some α 6= 0.
Since deg∂(p) ≤ deg∂(h) it follows that gcrd(q1, q2) = 1 so p = αh.

Since p = αh we must have that αf ∗ = q1 and αg∗ = q2. Now,

vec(eν)(0, . . . , 0, vec(h))T = lcoefft(lcoeff∂(h)) 6= 0.

On the other hand,
vec(eν)(0, . . . , 0, α vec(h))T = 0.

This occurs if and only if α = 0. But in this case p = 0 as well, so vec(q1)T

vec(q2)T

− vec(p)T

 =

0
0
0

 .

184

It follows that the only vector in the nullspace is the zero vector, hence

(
J

vec(eν)

)
has

full rank. Since any subset of linearly independent vectors is also linearly independent, we
have that when lcoefft(lcoeff∂(h)) is a fixed non-zero constant that J has rank ν − 1.

Note that from the proof we see that if lcoefft(lcoeff∂(h)) were not fixed, then the vector
(vec(f ∗), vec(g∗), vec(h))T forms a basis for the nullspace of J . Intuitively, if we did not fix
lcoefft lcoeff∂ in advance, then there would be infinitely many tuples of (h, f ∗, g∗) with the
same degree structure over R[t] that minimized Φ, since for any α 6= 0 we have

‖f − f ∗h‖2
2 + ‖g − g∗h‖2

2 = ‖f − (αf ∗)(α−1h)‖2

2 + ‖g − (αg∗)(α−1h)‖2

2.

In other words, we need to normalize h in advance to obtain a unique solution.

Corollary 6.4.7. Let r be the residual defined earlier in this section with lcoefft(lcoeff∂(h))
a non-zero constant. If r = 0, then the Hessian matrix ∇2Φ(h, f ∗, g∗) is positive definite.

Proof. Let J be the Jacobian of r. J has full rank, so JTJ has full rank and is pos-
itive semidefinite. If r = 0, at the global minimum we have that 2JTJ = ∇2Φ, and
∇2Φ(h, f ∗, g∗) is positive definite.

When there is no residual, the Hessian ∇2Φ(h, f ∗, g∗) is positive definite. It follows
that if f and g are perturbed by a sufficiently small amount, then ∇2Φ remains locally
positive definite, and a Newton iteration will converge to the (local) global minimum with
an initial guess that is sufficiently close.

We are able to obtain a condition number for a structured perturbation through the
Jacobian of the residuals. Since J has full rank, the smallest singular value σν−1 of
J(r(h, f ∗, g∗)) is strictly positive. If we consider structured perturbations, then we are
able to show that the approximate GCRD problem is (locally) well-posed.

In the next lemma, we make use of the fact that for any f ∈ R[t][∂;′], we have that
‖f‖2 = ‖ vec(f)‖2.

Lemma 6.4.8. Let f, g, h, f ∗, g∗ ∈ R[t][∂;′] be such that Φ(h, f ∗, g∗) < ε for some ε > 0,

with lcoefft(lcoeff∂(h)) a fixed non-zero constant. Suppose f̂ , ĝ, ĥ, f̂ ∗, ĝ∗ ∈ R[t][∂;′] possess
the same degree structures as f, g, h, f ∗ and g∗ and that

Φ̂(ĥ, f̂ ∗, ĝ∗) = ‖f̂ − f̂ ∗ĥ‖
2

2 + ‖ĝ − ĝ∗ĥ‖
2

2 < ε.

Then,∥∥∥(h− ĥ, f ∗ − f̂ ∗, g∗ − ĝ∗)
∥∥∥2

2
≤ 1

σ2
ν−1

(
2ε+

∥∥∥(f − f̂ , g − ĝ)
∥∥∥2

2

)
+

higher order
terms.

185

Proof. Let J = J(r(h, f ∗, g∗)) be the Jacobian of the residuals from earlier in this section.
We have that

(vec(f ∗h)− vec(f̂ ∗ĥ), vec(g∗h)− vec(ĝ∗ĥ))T

≈J(vec(h− ĥ), vec(f ∗)− vec(f̂ ∗), vec(g)− vec(ĝ∗))T .

Ignoring high order terms and using the well known fact that for a (left) pseudo inverse
J+ of J , that ‖J+‖2 = 1

σν−1
gives us∥∥∥(vec(f ∗h− f̂ ∗ĥ, g∗h− ĝ∗ĥ))T

∥∥∥2

2
≈
∥∥∥J(vec(h− ĥ, f ∗ − f̂ ∗, g∗ − ĝ∗))T

∥∥∥2

2

≥ σ2
ν−1

∥∥∥(vec(h− ĥ, f ∗ − f̂ ∗, g∗ − ĝ∗))
∥∥∥2

2
.

A straightforward application of the triangle inequality gives∥∥∥(h− ĥ,f ∗ − f̂ ∗, g∗ − ĝ∗)
∥∥∥2

2

≤ 1

σ2
ν−1

∥∥∥(f ∗h− f̂ ∗ĥ, g∗h− ĝ∗ĥ)
∥∥∥2

2

≤ 1

σ2
ν−1

(
Φ(h, f ∗, g∗) + Φ̂(ĥ, f̂ ∗, ĝ∗) +

∥∥∥(f − f̂ , g − ĝ)
∥∥∥2

2

)
≤ 1

σ2
ν−1

(
2ε+

∥∥∥(f − f̂ , g − ĝ)
∥∥∥2

2

)
+ higher order terms.

Corollary 6.4.9. Suppose that hopt, f
∗
opt, g

∗
opt ∈ R[t][∂;′] are a locally unique global mini-

mum of Φ in some neighborhood around h, f ∗ and g∗. If

Φ(h, f ∗, g∗) < ε and Φ(hopt, f
∗
opt, g

∗
opt) < ε

for ε > 0, then∥∥(h− hopt, f ∗ − f ∗opt, g∗ − g∗opt)
∥∥2

2
≤ 2ε

σ2
ν−1

+ higher order terms.

If we compute different approximate GCRD pairs of f and g (using different optimiza-
tion techniques or initial guesses), then we are able to bound the size of the perturbations
of f ∗, g∗ and h based on how near they are. Furthermore, this corollary allows us to certify
an upper bound on the distance between our computed approximate GCRD tuple and the
actual global minimum.

186

6.5 Approximate GCRD via Nearest Singular Matrix

Polynomial

Another way to approach the approximate GCRD problem is through finding the nearest
matrix polynomial with a linear structure. The differential Sylvester matrix is a matrix
polynomial that is endowed with a linear structure.

Problem 6.5.1 (Approximate GCRD via Nearest Singular Differential Sylvester Matrix).
Given f, g ∈ R[t][∂;′] with deg∂(f) ≤M, deg∂(g) ≤ N and max{degt(f), degt(g)} ≤ d then
we can formulate the approximate GCRD problem as the following minimization problem:

min
∆f,∆g

‖∆f‖2
2 + ‖∆g‖2

2 subject to rank(Syl∂(f + ∆f, g + ∆g)) ≤M +N − 1, (6.5)

for some reasonable perturbation structures ∆f and ∆g imposed upon f and g respectively.

Some examples of reasonable perturbation structures are preserving low or high-order
zero coefficients, or allowing perturbations in t of at most degree degt(f) or degt(g).

It is important to note that it is not generic that the nearest rank deficient differential
Sylvester matrix has rank M + N − 1 (despite being a matrix polynomial), which is the
generic instance of the nearest singular matrix polynomial problem. This occurs because of
the particular structure differential Sylvester structure encountered and the factorization
properties of R(t)[∂;′].

6.5.1 Why Consider Approximate GCRD via Nearest Rank De-
ficient Matrix Polynomial?

At a first glance the unconstrained formulation appears superior; obviously there are no
constraints, when the residual is small the problem is locally convex (strictly convex if
normalized properly) and the size of the problem is typically small. A natural question is
what is gained by studying the problem in the context of the nearest rank deficient matrix
polynomial (with a linear structure)?

First, we note that the unconstrained version of the problem has irregular solutions.
That is, Theorem 6.4.3 only characterizes regular solutions. It is entirely possible that at a
solution (∆f ?,∆g?) that lcoeff∂(f +∆f)→ 0 and lcoeff∂(g+∆g)→ 0. In such a scenario,
the differential Sylvester matrix Syl∂(f + ∆f ?, g + ∆g?) will have a column of zero entries
because the leading coefficients of f and g were both perturbed to zero. Naturally, this
leads to an unattainable or irregular solution.

187

Theorem 6.5.2 (Characterization of Solutions). A nearest rank deficient differential Sylvester
matrix exists for perturbations ∆f and ∆g that are linearly structured.

Proof. This is essentially a corollary of Theorem 3.3.4.

Theorem 6.5.2 characterizes both regular and irregular solutions to the approximate
GCRD problem. Indeed, if the leading coefficient with respect to ∂ of both f and g vanish,
then there is a GCRD at infinity, which is entirely analogous to the usual commutative
approximate GCD theory. To regularize approximate GCD problems with solutions at
infinity (i.e. an irregular or unattainable solution), then we typically reverse the coeffi-
cients as was done in Chapter 5. In the instance of differential operators, reversing the
coefficients no longer regularizes the problem. Fortunately a close inspection of Propo-
sition 6.2.5 reveals that a GCRD at infinity is theoretically permissible. Analogously, an
alternative regularization to approximate GCD problems is to approach them through their
(generalized) Sylvester matrices, which is considered in Chapter 5.

6.5.2 Equivalence of Problem Formulations

Next, we observe that (6.5) permits restricting the perturbations to f and g to have some
reasonable structure. The unconstrained formulation does not have such fine control over
the coefficient perturbations, and tends to increase the degrees of the input. Perturbing
higher-order zero coefficients in t may not make sense in the context of several problems.

Note that Theorem 6.4.6 implies that if the unconstrained problem were transformed
into a constrained problem, Lagrange multipliers would exist via a combination of lin-
early independent constraint qualification and linear constraint qualification for regular
solutions. Indeed, the optimization problem

min ‖∆f‖2
2+‖∆g‖2

2 subject to

∆f = f − f ∗h,
∆g = g − g∗h,
f ∗ ∈ R(t)[∂;′],

g∗ ∈ R(t)[∂;′],

∆f has a prescribed linear structure,

∆g has a prescribed linear structure and

h is primitive and has a monic leading coefficient in t.

(6.6)

188

is easily seen to be equivalent to (6.5) in several instances. The primitivity and monic
leading coefficient assumption is analogous to the minimal degree embedding encountered
in Chapter 3 to ensure that solutions are locally unique. If the primitivity assumption
in (6.6) is relaxed, then (6.6) and (6.5) are only equivalent if all possible degrees in ∂
of h are considered. In theory, (6.5) and (6.6) are functionally equivalent for regular or
attainable solutions, although in practical instances there is some care required to ensure
that different implementations solve the same problem.

Furthermore in the matrix polynomial version of the problem, the co-factors f ∗ and
g∗ are no longer required. Since f ∗, g∗ ∈ R(t)[∂;′] there was size growth in the original
problem, and the headache of possibly being required to solve an associate problem. In
the nearest singular matrix polynomial formulation of the problem there are no associates
instances to consider, as there will always be a kernel vector that is polynomial and a GCRD
that belongs to R[t][∂;′] that is primitive. If desired, the co-factors may be extracted from
the computed solution via a least squares division.

6.5.3 A Hybrid Algorithmic Approach

The unconstrained formulation of the problem is highly desirable as one may apply descent
methods, alternating minimizations or some other reasonable block coordinate descent. Ini-
tial guesses are easily computed via the SVD by performing a round of lift and project.
Unfortunately, the unconstrained formulation does not encapsulate structure in the co-
efficients of f and g very well. To overcome this limitation a hybrid approach can be
used.

One can first compute a local minimizer to Problem 6.4.1, then fit via least squares a
guess for ∆f and ∆g from ∆f (0) ≈ f − f ∗h and ∆g(0) ≈ g− g∗h. The initial guesses ∆f (0)

and ∆g(0) can be improved by projecting to the feasible set by using Newton’s method to
compute a solution to (

Syl(f + ∆f, g + ∆g)b

‖b‖2
2

)
=

(
0
1

)
.

From this feasible point we can then use the machinery of Chapter 3 to compute a nearby
rank deficient differential Sylvester matrix to solve Problem 6.5.1.

189

6.6 Implementation of Approximate GCRD

In this section we discuss an implementation of computing a pair of nearby differential
polynomials with a non-trivial GCRD. We use the concepts presented in Chapter 3 to
compute a nearby differential Sylvester matrix that is singular. The implementation is in
Maple.

Algorithm 6 : Nearest Singular Differential Sylvester Matrix

Input:
• f, g ∈ R[t][∂;′].
• Initial guesses ∆f init and ∆ginit.
• Displacement structure ∆f and ∆g to optimize over.

Output:
• A local minimizer to (6.5) or an indication of failure.
1: Extract a (minimally embedded) kernel vector from ker(Syl∂(f + ∆f init, g + ∆ginit)).
2: Apply Algorithm 3 with displacement structure Syl∂(∆f,∆g), Syl∂(f + ∆f init, g +

∆ginit) and the extracted kernel vector as an initial guess.
3: Return the locally optimal ∆f and ∆g or an indication of failure.

Note that one can also use Algorithm 1 or Algorithm 2 in lieu of Algorithm 3. This
technique does not compute the GCRD, however the techniques summarized earlier can
be used. See [51] or [36] for a detailed discussion.

Example 6.6.1. Consider a pair of differential polynomials

f =
(
0.11329 t6 + 0.23414 t5 + 0.12840 t4 + 0.00755 t3 + 0.00005

)
∂3

+
(
0.00001 t6 + 0.23414 t5 + 0.59667 t4 + 0.02269 t3 − 0.04528 t2 − 0.02266 t+ 0.000000367436

)
∂2

+
(
−0.11329 t6 + 0.33231 t5 − 0.43054 t4 − 0.00754 t3 − 0.00003 t2 − 0.06798 t+ 0.00003

)
∂

+
(
−0.00001 t6 − 0.23414 t5 + 0.34741 t4 + 0.01510 t3 − 0.06799 t2 + 0.09064 t+ 0.00004

)
and

g =
(
0.01938 t4 − 0.03876 t3 − 0.07752 t2 + 0.03876 t+ 0.05819

)
∂3

+
(
0.13567 t4 + 0.23252 t3 − 0.07750 t2 − 0.34879 t+ 0.29066

)
∂2

+
(
−0.01938 t4 + 0.13563 t3 + 0.03873 t2 + 0.25195 t− 0.23257

)
∂

+
(
−0.13562 t4 + 0.44570 t3 − 0.56198 t2 − 0.03874 t+ 0.17439

)
.

190

A nearby pair of differential polynomials with an exact GCRD computed using an un-
constrained variant of Newton’s method are given as

f init =
(
0.000000333124 t8 + 0.11329 t6 + 0.23414 t5 + 0.12842 t4 + 0.00757 t3 + 0.00001 t2 + 0.000000833124

)
∂3

+
(
0.000000781664 t8 + 0.00001 t6 + 0.23415 t5 + 0.59666 t4 + 0.02268 t3 − 0.04529 t2 − 0.02267 t

)
∂2

+
(
−0.000000333148 t8 − 0.000000566435 t7 − 0.11329 t6 + 0.33232 t5 − 0.43054 t4 − 0.00753 t3 − 0.00001 t2 − 0.06797 t− 0.00001

)
∂

+
(
−0.00000078172 t8 − 0.00001 t6 − 0.23413 t5 + 0.34741 t4 + 0.01510 t3 − 0.06798 t2 + 0.09064 t+ 0.00001

)
and

ginit =
(
0.00001 t5 + 0.01938 t4 − 0.03876 t3 − 0.07751 t2 + 0.03875 t+ 0.05814

)
∂3

+
(
0.13566 t4 + 0.23253 t3 − 0.07751 t2 − 0.34879 t+ 0.29067

)
∂2

+
(
0.00001 t5 − 0.01939 t4 + 0.13563 t3 + 0.03873 t2 + 0.25195 t− 0.23256

)
∂

+
(
−0.00001 t5 − 0.13563 t4 + 0.44569 t3 − 0.56198 t2 + 0.17441− 0.03874 t

)
.

We seek to minimize the objective function

min ‖∆f‖2
2 + ‖∆g‖2

2 subject to rank(Syl∂(f + ∆f, g + ∆g)) ≤ deg∂(f) + deg∂(g)− 1,

where ∆f and ∆g do not increase the entries of f and g. This problem is the same
as computing a nearby pair of differential polynomials with an exact GCRD, except this is
done by computing a nearby rank deficient matrix polynomial with a linear structure2. This
structure is different than previous ones considered, in that ‖ Syl∂(∆f,∆g)‖F 6= ‖∆f‖

2
F +

‖∆g‖2
F , as some coefficients of f and g are weighted.

Since f init and ginit do not have the same degree structure as f and g we fit initial
guesses for ∆f and ∆g using linear-least squares, then project to a rank deficient differential
Sylvester matrix using a variant of Newton’s method. The initial guess satisfies ‖∆f init‖2

2 +

‖∆ginit‖2
2 ≈ 0.118542385435895× 10−7.

Using Algorithm 3 we solve ∇L = 0 to roughly 16 digits of precision after five iterations.
The quality of the initial guess is ‖∇L(xinit, λinit)‖2 ≈ 2.17754343614046737 × 10−4. The
computed point is a local minimizer satisfying second-order necessary conditions3.

The computed solution Syl∂(f+∆f opt, g+∆gopt) is rank deficient by two, so the approx-
imate GCRD has degree two. In particular, the nearest rank deficient differential Sylvester

2This structure is special because of the falling factorials, some low-order terms have a higher-weight
to being perturbed

3The computed kernel vector was not minimally degree embedded. The kernel was normalized so that
all kernel vectors were R(t) multiples of the same vector, which is why quadratic convergence was observed.

191

matrix did not have rank deg∂ f+deg∂ g−1, which differs from generic instances of matrix
polynomials.

The computed ∆f opt and ∆gopt satisfy ‖∆f opt‖2
2+‖∆gopt‖2

2 ≈ 0.112995220147126×10−7,
which is a minor improvement over the unconstrained variant. The main difference here
is that f + ∆f opt and g + ∆gopt do not perturb non-zero coefficients of f and g, where the
previously computed solution did.

We note that 104 ×∆f opt is approximately(
0.085059 t6 − 0.035717 t5 + 0.15180 t4 + 0.12435 t3 − 0.48265

)
∂3

+
(
−0.073094 t6 + 0.018895 t5 − 0.043636 t4 − 0.028647 t3 − 0.19383 t2 − 0.16530 t+ 0.090054

)
∂2

+
(
−0.016301 t6 + 0.052931 t5 + 0.036604 t4 + 0.057169 t3 + 0.15617 t2 + 0.16275 t− 0.34846

)
∂

+
(
0.074632 t6 + 0.076493 t5 + 0.046422 t4 + 0.034308 t3 + 0.057546 t2 + 0.011222 t− 0.37588

)
,

and that 104 ×∆gopt is approximately(
−0.0043637 t4 − 0.011309 t3 + 0.15654 t2 − 0.070927 t− 0.49168

)
∂3

+
(
−0.16195 t4 + 0.060975 t3 − 0.036591 t2 − 0.043150 t+ 0.11584

)
∂2

+
(
0.017964 t4 − 0.037126 t3 + 0.024188 t2 + 0.054643 t+ 0.10390

)
∂

+
(
−0.25546 t4 − 0.12419 t3 − 0.030284 t2 + 0.035474 t+ 0.11033

)
.

6.7 Conclusion

In this chapter we have formally defined an approximate GCRD problem for differential
polynomials, and given an approach to a robust numerical solution. We have seen that,
under reasonable assumptions the approximate GCRD problem is well posed. In particu-
lar, we show that Newton iteration will converge to an optimal solution if the residual is
sufficiently small. We employ the earlier results in [35], analogous to SVD-based approx-
imate GCD methods like [21], to compute a reasonable initial estimate for the Newton
iteration. The refinements of the technique of [35] in [36, 51] is discussed in the light of
some technical improvements to the theory. We conclude with an application of the theory
of Chapter 3 to provide a factor-free technique to compute nearby differential polynomials
with a non-trivial GCRD.

The results were presented for real differential polynomials, however the results general-
ize in a very straight forward way to the instance of complex differential polynomials. This

192

holds more generally than differential polynomials, and a particular example to consider is
the shift operator, commonly associated with linear difference equations.

The differential polynomials defined in this chapter are a special case of more general
Ore polynomials, which have broader application in the solution of differential and differ-
ence equations. In particular, we could potentially apply our methods in the context of
q-differentiation (Jackson differentiation) or derivations on exponential polynomials. Ul-
timately, any Ore structure will have a well-defined Sylvester-like matrix (see, e.g., [42]).
However, the numerical properties of different derivations may well be quite difficult or
even problematic, and may well introduce poles or other significant sources of numerical
instability.

We also hope, the results of this chapter are a foundation for extending the approxi-
mate polynomial toolbox to other problems with differential polynomials and more general
linear differential operators. Much like approximate GCD, the approximate GCRD is
both a stepping stone and a key tool towards operations like approximate factorization
and (functional) solution of differential polynomials. More immediately, computation of
an approximate GCRD enables computation of a corresponding approximate LCLM, and
multiple GCRD’s, and to multiple differential variables (i.e., iterated Ore polynomials),
which provide an effective method for dealing with linear PDEs.

193

Chapter 7

Conclusion

In this thesis we have studied several symbolic-numeric problems with a strong emphasis
on optimization problems concerning matrix polynomials and their properties in various
linear algebra problems. The problems of computing a matrix polynomial with a prescribed
spectral structure and kernel are studied in detail revealing insights about local stability
properties of optimization algorithms and the existence and uniqueness of solutions. These
insights into the local geometric properties of these problems are leveraged to develop
algorithms with second-order (quadratic) local convergence.

Important problems that appear as auxiliary problems are computing the determinant
and the adjoint of a matrix polynomial. These two operators are studied in detail in the
context of matrix polynomials in a floating point enviroment with closed form expressions
for their derivatives and condition number results for the problem. We use the determinant
and adjoint matrix explicitly to study the spectral structure of matrix polynomials and
generalize the theory via the computation of several minors.

An application of the theory developed is in computing a nearby pair of differential poly-
nomials with a non-trivial GC(R)D. The non-commutative algebra problem is turned into
a commutative symbolic-numeric optimization problem that consists of finding a nearby
matrix polynomial with a special structure that is rank deficient.

7.1 Why the Forms of Smith and Kronecker?

A natural question is why we chose to study the Canonical forms of Smith and Kronecker.
Kronecker’s canonical form is an obvious choice in that it describes all of the invariants

194

of a matrix polynomial. Smith’s canonical form is useful for describing the finite spectral
structure and the kernel, and can be used to obtain the infinite spectral structure as well via
reversion. For practical purposes, linearizing a pencil and computing Kronecker’s canonical
form or computing the Smith form yield the same information.

When factoring matrix polynomials, changing the spectral structure or eigenvalues in
the factors is undesirable because each factor needs to be analyzed separately. This is
why factorizations based on unimodular transformations are desirable, as the unimodular
factor is largely irrelevant in the computation. The other factor has the same invariants
as the input. For example, Hermite’s canonical form is desirable because it is triangular.
Unfortunately, computing it amounts to some form of Gaussian-like elimination without
pivoting. Hermite’s canonical form requires that UA = H ∈ R[t]m×n where U is unimod-
ular and H is triangular and the pivot entries are monic and have degree larger than the
other entries in their column.

If we consider

A =

 0 t2 − t 0
−1 0 1
0 −t2 + t 1

 then the Hermite form of A is H =

1
t2 − t

1

 .

If we want the Hermite form to be “non-trivial” in the meaning that the diagonal elements
are not of the form diag(1, . . . , 1, det(A)/ lcoeff(det(A)), 1, . . . , 1) then a natural question
to ask is “how far away is A from a matrix polynomial A + ∆A such that A + ∆A has
a non-trivial Hermite form”? The answer to this question is zero in this instance. If we
consider

∆A =

0 −εt 0
0 0 0
0 0 0

 then the Hermite form of A + ∆A is

1 0 −1

t
−1

ε
t− 1− ε

 ,

which is non-trivial for any ε 6= 0. We note that the perturbation did not change the
coefficients in any significant way. This example is peculiar, because A has eigenvalues at
infinity with a non-trivial spectral structure, as

SNF(rev2(A)) =

1
t2

t2(t− 1)

 .

Since the SNF of rev2(A) is non-trivial, A has a non-trivial spectral structure for the eigen-
value at infinity. Indeed, the Hermite form is ill-equipped for such instances of problems

195

and not generally suitable for numerical analysis. This is not surprising, as the require-
ments imposed upon the Hermite form mean that computing it amounts to some type of
Gaussian elimination without pivoting. While Hermite’s form is useful in exact arithmetic
and in theory, it is not quite as practical from the perspective of a numerical analyst.

Now one could consider other canonical forms as well, but at some level if they are
not the forms of Smith or Kronecker, they should be unimodularily equivalent to them to
retain useful information about the problem at hand.

The Smith form is structured as an approximate GCD type problem with respect to the
minors, and approximate GCD is known to have a radius of stability. As we have seen, the
Smith form inherits this stability. Importantly, other canonical forms do not inherit these
numerical stability properties. For practical purposes, computing approximations to the
unimodular multipliers is not that hard once the Smith form is known. The Smith form
can be determined to relatively high accuracy by inferring several blocks of Kronecker’s
canonical form.

7.2 Faster Algorithms

A possible point of contention in this work is that the algorithms implemented may seem
relatively slow, especially when compared to their exact variants. In this work second-order
optimization techniques were considered, meaning we ignored first-order gradient descent
type techniques for the most part. For many problems, first-order methods will have a
cheaper per-iteration cost in exchange for a reduced rate of convergence. Given that we
proved several second-order methods will converge quadratically on several instances of
problems, this implies that first-order methods will converge linearly.

In general, we treated the KKT matrix as a dense matrix, which may not always be
the case. For example, the KKT matrix appearing in our proposed formulation of the
rank factorization in Chapter 3.4 is highly structured and closed-form expressions for the
quantities exist using the Kronecker product and the Commutation matrix. The abysmal
worst-case runtime of O(n12d6) FLOPs can be improved by several orders of magnitude
by exploiting structure via computing entries as needed in conjunction with an iterative
linear system solver, since matrix-vector products may be computed efficiently.

Alternatively, the rank factorization can be improved by working on several images eval-
uated at suitable complex roots of unity. The run time is O(n9d3) FLOPs in exchange for
some careful considerations in an implementation. In general, the Hessian of the evaluated
rank factorization has O(n4d) non-zero entries (the Jacobian of the constraints has O(n4d)

196

non-zero entries while the projected Hessian has O(n3d) non-zero entries) but dimension
O(n3d)×O(n3d). The constraints from the rank factorization are highly structured, and if
a matrix-vector product can be performed faster, then this suggests a fast iterative solver
could compute a Newton step in O(n6d2) FLOPs, which is quadratic in the output size
of the problem. This should be possible given the Kronecker-product structure of the
constraints.

Several of these problems can also be approached via matrix-free methods to solve them.
Conjugate gradient methods are well suited as a solver for a regularized Gauss-Newton type
technique (by solving normal equations). Exploiting the sparsity in the Hessian of the La-
grangian and using automatic differentiation, several problems can have their per-iteration
cost reduced by a factor of O(d) or O(n) or more. For example, the linearization technique
for lower McCoy rank approximations in Chapter 5.5 can be improved almost trivially by
a factor of O(d) FLOPs by exploiting the sparsity of the companion linearization.

7.3 Truly Global Convergence

This work views the problems considered from a perspective that is almost entirely local.
Despite Lagrange multipliers existing for most formulations of the problems encountered,
the proofs relied on using local information at some level. In the context of each problem,
global convergence may be interpreted in several different ways.

When considering the instance of lower rank approximations of matrix polynomials, an
algorithm with global convergence to a point satisfying second-order conditions is highly
desirable and makes sense given Theorem 3.3.4. While we did not investigate global con-
vergence explicitly, the rank factorization algorithm can be iterated (with possible re-
initialization if the factors are found to be rank deficient) to a point satisfying the second-
order necessary condition (recall that the projected Hessian ∇2

xxL is always rank deficient,
but the rank is locally constant after the factors are compressed). In the context of affinely
structured matrices, feasible points may not even exist (which is a decidable, but NP-hard
problem), of which there is no solution to compute.

In the context of computing a nearby matrix polynomial with a prescribed spectral
structure, global convergence may not even make sense, given that there are often irregular
solutions. Furthermore, the discontinuity between the eigenvalues of a matrix polynomial
and its entries make this problem incredibly challenging from a global perspective. The
eigenvalues are typically locally continuous in the entries of the matrix polynomial. Global
convergence for a problem that is only well-behaved locally may not always be reasonable.

197

7.4 NP Hardness of Problems

A natural question to ask is whether the nearest singular matrix polynomial problem
and approximate Smith form problems are intractable when we consider unstructured
perturbations (each coefficient matrix is completely unstructured and may be perturbed in
any manner). Indeed, all of the hardness results mentioned assume that the perturbation
structure is affine, and this hardness comes from determining if a feasible point exists.
Both of these problems are non-convex, but this alone is not enough to show that they
are difficult to solve. For example, the singular value decomposition solves a non-convex
problem. In this work, we have only stated that very general versions of these problems
are NP hard to approximate solutions to.

7.4.1 Nearest Singular Matrix Polynomial

Not all problems involving Toeplitz-block matrices are intractable. The approximate great-
est common divisor problem of two polynomials can be solved in a polynomial amount of
time [72] using a variant of variable projection [45, 46]. The technique of Karmarkar and
Lakshman was successful because the solution was known to exist inside of a “box” and
the fact that a degree one solution always exists to the complex valued approximate great-
est common divisor problem, which reduces the number of variables required to a finite
number for problems of arbitrary degree. Such a technique is unlikely to find success, as
the variable projection for the nearest singular matrix polynomial problem is unable to
reduce the number of variables by exploiting special low dimension properties of solutions.
This results in minimizing a rational function with a large number of variables and of large
degree, which is not necessarily easier than the original problem.

The work of Lasserre and Henrion [54] show that the sum of squares hierarchy often
solves (approximates to sufficiently high precision) structured lower rank approximation
problems when feasible points exist. Indeed, when feasible points to the problems con-
sidered exist, most of the hardness results are no longer applicable. This is a sizable gap
between the theory and practical results. It could very well be that most instances of
computing the nearest singular matrix polynomial are easy, and that only some instances
are difficult.

We know by Theorem 3.6.2 that rank one perturbations are usually not optimal, since
they will not satisfy the KKT conditions in most instances. This is in contrast to unstruc-
tured scalar matrices. While this result is negative, we do know that regularity conditions

198

and second-order sufficiency hold in some formulation of the nearest singular matrix poly-
nomial problem. These local conditions are part of the reason why the hierarchy of Lasserre
[76] is able to compute solutions to several problems [88].

Investigating the gap between the theory and implementations is a problem left as
future work, although the author conjectures that the problem is intractable.

7.4.2 Approximate Smith Normal Form and Related Problems

The approximate Smith normal form problem can be formulated in a manner similar to
structured lower rank approximation (see Section 5.5) via companion (or other) lineariza-
tions. Naturally, one would assume that the difficulty would be comparable or harder than
computing the nearest singular matrix polynomial. In particular, there exist instances
where the nearest matrix polynomial with an interesting Smith form is singular.

These similarities aside, the approximate Smith form problem has the issue of solutions
at infinity. If the iterates converge towards an eigenvalue of large magnitude, it is difficult
to ascertain if the eigenvalue is infinite in the algorithms implemented. We know that the
problem is decidable by Theorem 5.3.2. This is accomplished by verifying that leading
coefficients of sufficiently many minors of sufficiently high order vanish at a critical point.

In some variations of the approximate Smith form where we prescribe entries, we know
that it is at least as hard as the nearest singular matrix polynomial problem, because we
can prescribe the last invariant factor to be zero.

Investigating the computational hardness of these problems is left as future work, al-
though the author conjectures that the problem is intractable given that several instances
are at least as hard as computing the nearest singular matrix polynomial.

199

References

[1] T. Abatzoglou, J. Mendel, and G. Harada. The constrained total least squares
technique and its applications to harmonic superresolution. IEEE Transactions on
Signal Processing, 39(5):1070–1087, 1991.

[2] S. Abramov, H. Le, and Z. Li. Univariate ore polynomial rings in computer algebra.
J. Math. Sci., 131(5):58855903, 2005.

[3] P-A Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix mani-
folds. Princeton University Press, 2009.

[4] S. Ahmad and R. Alam. Pseudospectra, critical points and multiple eigenvalues of
matrix polynomials. Linear Algebra and its Applications, 430(4):1171–1195, 2009.

[5] B. Beckermann and G. Labahn. A fast and numerically stable euclidean-like al-
gorithm for detecting relatively prime numerical polynomials. Journal of Symbolic
Computation, 26(6):691–714, 1998.

[6] B. Beckermann and G. Labahn. When are two numerical polynomials relatively
prime? Journal of Symbolic Computation, 26:677–689, 1998.

[7] Th. Beelen and P. Van Dooren. An improved algorithm for the computation of
Kronecker’s canonical form of a singular pencil. Linear Algebra and its Applications,
105:9–65, 1988.

[8] Th. Beelen and G.W. Veltkamp. Numerical computation of a coprime factorization
of a transfer function matrix. Systems & Control Letters, 9(4):281–288, 1987.

[9] J. Bell, A. Heinle, and V. Levandovskyy. On noncommutative finite factorization
domains. Trans. AMS, 369:2675–2695, 2017.

[10] D. Bertsekas. Nonlinear programming. Athena Scientific, USA, 1999.

200

[11] S. Beslin. Cofactor matrices. Linear algebra and its applications, 165:45–52, 1992.

[12] R. Bhatia and T. Jain. Higher order derivatives and perturbation bounds for deter-
minants. Linear Algebra and its Applications, 431(11):2102–2108, 2009.

[13] B. Botting, M. Giesbrecht, and J.P. May. Using the Riemannian SVD for problems
in approximate algebra. In Proc. Workshop on Symbolic-Numeric Comp., pages
209–219, 2005.

[14] R. P. Braatz, P. M. Young, J. C. Doyle, and M. Morati. Computational complexity
of mu calculation. IEEE Transactions on Automatic Control, 39(5):1000–1002, 1994.

[15] M. Bronstein and M. Petkovšek. On Ore rings, linear operators and factorisation.
Programmirovanie, 20:27–45, 1994.

[16] M. Bronstein and M. Petkovšek. An introduction to pseudo-linear algebra. Theoret-
ical Computer Science, 1996.

[17] R. Byers, C. He, and V. Mehrmann. Where is the nearest non-regular pencil? Linear
algebra and its applications, 285(1):81–105, 1998.

[18] R. Byers and N. Nichols. On the stability radius of a generalized state-space system.
Linear Algebra and Its Applications, 188:113–134, 1993.

[19] J. Cadzow. Signal enhancement – a composite property mapping algorithm. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 36(1):49–62, 1988.

[20] E. J. Candès and T. Tao. The power of convex relaxation: Near-optimal matrix
completion. IEEE Transactions on Information Theory, 56(5):2053–2080, 2010.

[21] R. M. Corless, P. Gianni, B. Trager, and S. Watt. The singular value decomposition
for polynomial systems. In Proc. Int. Symp. Symb. Algebraic Computation (ISSAC),
pages 96–103, 1995.

[22] R. M. Corless, S. M. Watt, and L. Zhi. QR Factoring to Compute the GCD of Uni-
variate Approximate Polynomials. IEEE Transactions on Signal Processing, 52(12),
2004.

[23] B. De Moor. Structured total least squares and L2 approximation problems. Linear
algebra and its applications, 188:163–205, 1993.

201

[24] B. De Moor. Total least squares for affinely structured matrices and the noisy real-
ization problem. IEEE Transactions on Signal Processing, 42(11):3104–3113, 1994.

[25] B. De Moor. The Riemannian singular value decomposition. In Signal Processing,
III: Algorithms, Architectures and Applications, pages 61–78. Elsevier, 1995.

[26] J. Demmel and B. K̊agström. The generalized Schur decomposition of an arbitrary
pencil A-λB – robust software with error bounds and applications. part i: theory and
algorithms. ACM Transactions on Mathematical Software (TOMS), 19(2):160–174,
1993.

[27] J. Demmel and B. K̊agström. The generalized Schur decomposition of an arbitrary
pencil A-λB – robust software with error bounds and applications. part ii: software
and applications. ACM Transactions on Mathematical Software (TOMS), 19(2):175–
201, 1993.

[28] J. W. Demmel and A. Edelman. The dimension of matrices (matrix pencils) with
given jordan (Kronecker) canonical forms. Linear Algebra and its Applications,
230:61–87, 1995.

[29] A. Edelman, E. Elmroth, and B. K̊agström. A geometric approach to perturbation
theory of matrices and matrix pencils. part I: Versal deformations. SIAM Journal
on Matrix Analysis and Applications, 18(3):653–692, 1997.

[30] A. Edelman, E. Elmroth, and B. K̊agström. A geometric approach to perturbation
theory of matrices and matrix pencils. part II: A stratification-enhanced staircase
algorithm. SIAM Journal on Matrix Analysis and Applications, 20(3):667–699, 1999.

[31] I. Z. Emiris, A. Galligo, and H. Lombardi. Certified approximate univariate gcds.
Journal of Pure and Applied Algebra, 117–118:229–251, 1997.

[32] J-Y. Fan and Y-X. Yuan. On the quadratic convergence of the Levenberg-Marquardt
method without nonsingularity assumption. Computing, 74(1):23–39, 2005.

[33] S. Fatouros and N. Karcanias. Resultant properties of gcd of many polynomials and
a factorization representation of gcd. International Journal of Control, 76(16):1666–
1683, 2003.

[34] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 3 edition, 2013.

202

[35] M. Giesbrecht and J. Haraldson. Computing GCRDs of approximate differential
polynomials. In Proc. Workshop on Symbolic-Numeric Computing (SNC’14), pages
78–87, 2014.

[36] M. Giesbrecht, J. Haraldson, and E. Kaltofen. Computing approximate greatest
common right divisors of differential polynomials. To Appear in Foundations of
Computational Mathematics.

[37] M. Giesbrecht, J. Haraldson, and G. Labahn. Computing lower rank approximations
of matrix polynomials. To Appear in Journal of Symbolic Computation, 2017.

[38] M. Giesbrecht, J. Haraldson, and G. Labahn. Computing the nearest rank-deficient
matrix polynomial. In Proc. ACM on International Symposium on Symbolic and
Algebraic Computation (ISSAC’17), pages 181–188, Kaiserslautern, Germany, 2017.

[39] M. Giesbrecht, J. Haraldson, and G. Labahn. Computing nearby non-trivial Smith
forms. In Proceedings of International Symposium on Symbolic and Algebraic Com-
putation (ISSAC’18), pages 159–166, New York, USA, 2018.

[40] M. Giesbrecht, J. Haraldson, and G. Labahn. Computing nearby non-trivial Smith
forms. Submitted to Journal of Symbolic Computation, 2018.

[41] M. Giesbrecht, A. Heinle, and V. Levandovskyy. Factoring linear partial differential
operators in n variables. Journal of Symbolic Computation, 75:127–148, 2016.

[42] M. Giesbrecht and M. Kim. Computing the Hermite form of a matrix of Ore poly-
nomials. Journal of Algebra, 376:341–362, 2013.

[43] N. Gillis and F. Glineur. Low-rank matrix approximation with weights or missing
data is NP-hard. SIAM Journal on Matrix Analysis and Applications, 32(4):1149–
1165, 2011.

[44] I. Gohberg, P. Lancaster, and L. Rodman. Matrix polynomials. SIAM, USA, 2009.

[45] G. Golub and V. Pereyra. The differentiation of pseudo-inverses and nonlinear least
squares problems whose variables separate. SIAM Journal on numerical analysis,
10(2):413–432, 1973.

[46] G. Golub and V. Pereyra. Separable nonlinear least squares: the variable projection
method and its applications. Inverse problems, 19(2):R1, 2003.

203

[47] G. Golub and C. Van Loan. Matrix Computations, volume 3. Johns Hopkins Uni-
versity Press, USA, 2012.

[48] D. Grigor’ev. Complexity of factoring and calculating the GCD of linear ordinary
differential operators. Journal of Symbolic Computation, 10(1):7–37, 1990.

[49] L. Grippo and M. Sciandrone. On the convergence of block nonlinear Gauss-Seidel
method under convex constraints. Operations Research Letters, (26).

[50] N. Guglielmi, C. Lubich, and V. Mehrmann. On the nearest singular matrix pencil.
Preprint, 12, 2016.

[51] J. Haraldson. Computing Approximate GCRDs of Differential Polynomials. Master’s
thesis, University of Waterloo, 2015.

[52] J. Haraldson. Numerical differentiation and computation of matrix polynomial ad-
joint matrices. 2018.

[53] A. Heinle and V. Levandovskyy. A factorization algorithm for g-algebras and appli-
cations. In Proc. International Symposium on Symbolic and Algebraic Computation
(ISSAC 16), pages 263–270. ACM Press, 2016.

[54] D. Henrion and J-B. Lasserre. Convergent relaxations of polynomial matrix in-
equalities and static output feedback. IEEE Transactions on Automatic Control,
51(2):192–202, 2006.

[55] D. Henrion and M. Šebek. Numerical methods for polynomial matrix rank evaluation.
IFAC Proceedings Volumes, 31(18):369–374, 1998.

[56] D. Henrion and M. Šebek. Reliable numerical methods for polynomial matrix trian-
gularization. IEEE Transactions on Automatic Control, 44(3):497–508, 1999.

[57] N. J. Higham. Accuracy and stability of numerical algorithms, volume 80. SIAM,
2002.

[58] N. J. Higham and S. D. Relton. Higher order Freéchet derivatives of matrix functions
and the level-2 condition number. SIAM Journal on Matrix Analysis and Applica-
tions, 35(3):1019–1037, 2014.

[59] A. Hjørungnes and D. Gesbert. Complex-valued matrix differentiation: Techniques
and key results. IEEE Transactions on Signal Processing, 55(6):2740–2746, 2007.

204

[60] A. J. Hoffman. On approximate solutions of systems of linear inequalities. Journal
of Research of the National Bureau of Standards, 49(4), 1952.

[61] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[62] M. Hromcik and M. Sebek. New algorithm for polynomial matrix determinant based
on fft. In Control Conference (ECC), 1999 European, pages 4173–4177. IEEE, 1999.

[63] M. Hromcik and M. Sebek. Numerical and symbolic computation of polynomial
matrix determinant. In Decision and Control, 1999. Proceedings of the 38th IEEE
Conference on, volume 2, pages 1887–1888. IEEE, 1999.

[64] I. Ipsen and R. Rehman. Perturbation bounds for determinants and characteristic
polynomials. SIAM Journal on Matrix Analysis and Applications, 30(2):762–776,
2008.

[65] T. Kailath. Linear systems, volume 156. Prentice-Hall, USA, 1980.

[66] E Kaltofen, J. P. May, Z. Yang, and L. Zhi. Approximate factorization of multivariate
polynomials using singular value decomposition. Journal of Symbolic Computation,
43(5):359–376, 2008.

[67] E. Kaltofen and A. Storjohann. The complexity of computational problems in exact
linear algebra. In Encyclopedia of Applied and Computational Mathematics, pages
227–233. Springer, Germany, 2015.

[68] E. Kaltofen, Z. Yang, and L. Zhi. Structured low rank approximation of a sylvester
matrix. In Proc. Int. Workshop on Symbolic-Numeric Computation (SNC 2005),
pages 188–201, 2005.

[69] E. Kaltofen, Z. Yang, and L. Zhi. Approximate greatest common divisors of several
polynomials with linearly constrained coefficients and singular polynomials. In Proc.
2006 Int. Symp. Symbolic Algebraic Comput., pages 169–176. ACM Press, 2006.

[70] E. Kaltofen, Z. Yang, and L. Zhi. Approximate greatest common divisors of several
polynomials with linearly constrained coefficients and singular polynomials. Unpub-
lished manuscript, 2007.

[71] E. Kaltofen, Z. Yang, and L. Zhi. Structured low rank approximation of a sylvester
matrix. In Symbolic-Numeric Computation, Trends in Mathematics, pages 69–83,
Basel, Switzerland, 2007. Birkhäuser Verlag.

205

[72] N. Karmarkar and Y. N. Lakshman. Approximate polynomial greatest common
divisors and nearest singular polynomials. In Proc. International Symposium on
Symbolic and Algebraic Computation (ISSAC’96), pages 35–39, Zurich, Switzerland,
1996. ACM Press.

[73] N. Karmarkar and Y. N. Lakshman. On approximate GCDs of univariate polynomi-
als. Journal of Symbolic Computation, 26(6):653–666, 1998.

[74] D. Kressner and M. Voigt. Distance problems for linear dynamical systems. In Nu-
merical Algebra, Matrix Theory, Differential-Algebraic Equations and Control The-
ory, pages 559–583. Springer, 2015.

[75] M. A. Laidacker. Another Theorem Relating Sylvester’s Matrix and the Greatest
Common Divisor. Mathematics Magazine, 42(3):pp. 126–128, 1969.

[76] J-B. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM Journal on Optimization, 11(3):796–817, 2001.

[77] B. Li, Z. Yang, and L. Zhi. Fast low rank approximation of a Sylvester matrix
by structure total least norm. J. Japan Soc. Symbolic and Algebraic Computation,
11:165–174, 2005.

[78] Z. Li. A subresultant theory for Ore polynomials with applications. In Proc. In-
ternational Symposium on Symbolic and Algebraic Computation (ISSAC’98), pages
132–139. ACM, 1998.

[79] Z. Li and I. Nemes. A modular algorithm for computing greatest common right
divisors of Ore polynomials. In Proc. International Symposium on Symbolic and
Algebraic Computation (ISSAC’97), pages 282–289, 1997.

[80] O.P. Lossers. Solution to problem 73-17: A Hadamard-type bound on the coefficients
of a determinant of polynomials. SIAM review, 16(3):394–395, 1974.

[81] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Structured polynomial eigen-
value problems: Good vibrations from good linearizations. SIAM Journal on Matrix
Analysis and Applications, 28(4):1029–1051, 2006.

[82] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Vector spaces of lineariza-
tions for matrix polynomials. SIAM Journal on Matrix Analysis and Applications,
28(4):971–1004, 2006.

206

[83] J. Magnus and H. Neudecker. The commutation matrix: some properties and appli-
cations. The Annals of Statistics, pages 381–394, 1979.

[84] J. Magnus and H. Neudecker. Matrix differential calculus with applications in statis-
tics and econometrics. Wiley, 1988.

[85] I. Markovsky. Structured low-rank approximation and its applications. Automatica,
44(4):891–909, 2008.

[86] I. Markovsky. Low rank approximation: algorithms, implementation, applications.
Springer Science & Business Media, 2011.

[87] J. Moré. The Levenberg-Marquardt algorithm: implementation and theory. In Nu-
merical analysis, pages 105–116. Springer, 1978.

[88] J. Nie. Optimality conditions and finite convergence of lasserre’s sos hierarchy. Math-
ematical Programming, 146(1-2):97–121, 2014.

[89] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.

[90] O. Ore. Theory of non-commutative polynomials. Annals of Mathematics. Second
Series, 34:480–508, 1933.

[91] S. Poljak and J. Rohn. Checking robust nonsingularity is NP-hard. Mathematics of
Control, Signals, and Systems (MCSS), 6(1):1–9, 1993.

[92] B. Rosen, H. Park, and J. Glick. Total least norm formulation and solution for
structured problems. SIAM Journal on Matrix Analysis and Applications, 17(1):110–
126, 1996.

[93] B. Rosen, H. Park, and J. Glick. Structured total least norm for nonlinear problems.
SIAM Journal on Matrix Analysis and Applications, 20(1):14–30, 1998.

[94] B. Salvy and P. Zimmermann. Gfun: a Maple package for the manipulation of
generating and holonomic functions in one variable. ACM Trans. Math. Software,
20(2):163–177, 1994.

[95] T. Sasaki and M. Sasaki. Polynomial remainder sequence and approximate GCD.
ACM SIGSAM Bulletin, 31:4–10, 1997.

[96] A. Schönhage. Quasi-GCD computations. J. Complexity, 1:118–137, 1985.

207

[97] É. Schost and P.-J. Spaenlehauer. A quadratically convergent algorithm for
structured low-rank approximation. Foundations of Computational Mathematics,
16(2):457–492, 2016.

[98] N. Srebro and T. Jaakkola. Weighted low-rank approximations. In Proceedings of
the 20th International Conference on Machine Learning (ICML-03), pages 720–727,
2003.

[99] G. Stewart. Perturbation theory for rectangular matrix pencils. Linear algebra and
its applications, 208:297–301, 1994.

[100] G. W. Stewart. On the adjugate matrix. Linear Algebra and its Applications, 283(1-
3):151–164, 1998.

[101] A. Storjohann. On the complexity of inverting integer and polynomial matrices.
computational complexity, 24(4):777–821, 2015.

[102] A. Storjohann and G. Villard. Computing the rank and a small nullspace basis of a
polynomial matrix. In Proc. Int. Symp. Symb. Alg. Comp. (ISSAC), pages 309–316.
ACM Press, 2005.

[103] P. Van Dooren. The computation of Kronecker’s canonical form of a singular pencil.
Linear Algebra and its Applications, 27:103–140, 1979.

[104] P. Van Dooren and P. Dewilde. The eigenstructure of an arbitrary polynomial matrix:
computational aspects. Linear Algebra and its Applications, 50:545–579, 1983.

[105] P. Van Dooren, P. Dewilde, and J. Vandewalle. On the determination of the Smith-
MacMillan form of a rational matrix from its Laurent expansion. IEEE Transactions
on Circuits and systems, 26(3):180–189, 1979.

[106] A. Vardulakis and P. Stoyle. Generalized resultant theorem. IMA Journal of Applied
Mathematics, 22(3):331–335, 1978.

[107] S. A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal
on Optimization, 20(3):1364–1377, 2009.

[108] Y-X. Wang and Y-J Zhang. Nonnegative matrix factorization: A comprehensive
review. IEEE Transactions on Knowledge and Data Engineering, 25(6):1336–1353,
2013.

208

[109] S. Wright. An algorithm for degenerate nonlinear programming with rapid local
convergence. SIAM Journal on Optimization, 15(3):673–696, 2005.

[110] N. Yamashita and M. Fukushima. On the rate of convergence of the Levenberg-
Marquardt method. In Topics Num. Analysis, pages 239–249. Springer, 2001.

[111] Z. Zeng. The approximate gcd of inexact polynomials. part 1: a univariate algorithm.
preprint, 2004.

[112] Z. Zeng and B. H. Dayton. The approximate GCD of inexact polynomials. In Proc.
International Symposium on Symbolic and Algebraic Computation (ISSAC’04), pages
320–327, Santander, Spain, 2004.

[113] L. Zhi. Numerical optimization in hybrid symbolic-numeric computation. In Proc.
2007 International Workshop on Symbolic-Numeric Computation, pages 33–35, 2007.

[114] J.C. Zúniga Anaya and D. Henrion. An improved Toeplitz algorithm for polynomial
matrix null-space computation. Applied Mathematics and Computation, 207(1):256–
272, 2009.

209

	List of Figures
	Introduction
	A Non-Technical Overview
	Structured Matrix Polynomials
	Optimization Problems
	Stark Differences between Scalar and Polynomial Matrices

	Partitioning of the Thesis
	Overview of Chapters

	Preliminaries
	Domain of Computation and Basic Notions
	Numerical Linear Algebra
	The Calculus of Vector and Matrix Valued Functions
	Smooth Continuous Optimization
	Unconstrained Optimization
	Constrained Optimization

	Basic Results About Matrix Polynomials
	Polynomial Approximate Greatest Common Divisor
	Exact Polynomial Greatest Common Divisor
	Approximate Greatest Common Divisor Problems

	Structured Lower Rank Approximations of Matrix Polynomials
	Introduction
	Outline
	Previous research

	Approximate Kernel Computation
	Rank Computation
	Kernel Basis via Block Convolution
	Initial Guesses for Optimization Algorithms
	Summary of Rank Computing Techniques

	Optimization Formulation Setup
	Rank Factorizations
	Embedded Rank Factorization
	Lagrange Multipliers and Optimality Conditions
	The Hessian
	Implementation Notes

	Evaluated Rank Factorization
	Lagrange Multipliers and Optimality Conditions
	The Hessian
	Implementation Notes

	Explicit Kernel Iterative Algorithm for Lower Rank Approximation
	Minimal System of Equations
	Lagrange Multipliers and Optimality Conditions
	The Jacobian
	The Hessian
	Implementation Notes

	Implementation and Examples
	Description of Algorithms
	 Linear and Affinely Structured Matrix Examples
	Affine Structured Examples II
	Lower Rank Approximation of a 44 Matrix Polynomial

	Conclusion

	Matrix Polynomial Determinants, Adjoints, and their Derivatives
	Introduction
	Outline

	Overview of Existing Results and Techniques
	The First Derivative of the Determinant
	First-Order Perturbation Bounds for the Matrix Polynomial Determinant

	The First Derivative of the Adjoint
	Computing the First Derivative
	First-Order Perturbation Bounds for the Matrix Polynomial Adjoint

	Floating Point Algorithms for Matrix Polynomial Adjoint
	Exact Symbolic-Numeric Method
	Floating Point Interpolation Method
	Linear System Solving over R
	Automatic Differentiation
	QZ Decomposition

	Error Analysis of Matrix Polynomial Adjoint Computations
	The Scalar Instance
	The Matrix Polynomial Instance

	Computing the First and Second Derivatives of the Determinant and Adjoint
	Polynomial-Time Symbolic Differentiation of the Matrix Polynomial Determinant
	Polynomial Time Symbolic Differentiation of the Matrix Polynomial Adjoint

	Optimization Problems Involving the Determinant
	Nearest Singular Matrix (Polynomial) Revisited
	Nearest Matrix Polynomial with Prescribed Eigenvalue

	Conclusion

	The Approximate Smith Normal Form
	Introduction
	Outline

	Preliminaries
	Basic Results

	Nearest Rank Deficient Structured Generalized Sylvester Matrix
	Bounds on the Distance to non-triviality

	Approximate SNF via Optimization
	Constrained Optimization Formulation
	Lagrange Multipliers and Optimality Conditions
	An Implementation with Local Quadratic Convergence
	Computational Challenges and Initial Guesses
	Attaining Unattainable Solutions

	Lower McCoy Rank Approximation
	Fast Low McCoy Rank via Optimization
	Computing an Initial Guess
	Convergence and Prescribed Spectral Structure
	About Global Optimization Methods

	The Theory of Prescribed Spectral Structure
	Stair Case Constraints
	A Direct Approach with Unimodular Multipliers

	Prescribed Smith Normal Form
	Prescribed Infinite Spectral Structure

	Implementation and Examples
	Nearest Interesting SNF and Lower McCoy Rank Approximation
	Prescribed Structural Supports

	Conclusion

	Approximate Greatest Common (Right) Divisors of Differential Operators
	Introduction
	Outline

	Preliminaries
	Computing the GCRD via Linear Algebra
	Linear Algebra over R
	Division Without Remainder

	Unconstrained Optimization Formulation of Approximate GCRD
	Existence of Solutions
	Convergence of Newton Iteration and Conditioning

	Approximate GCRD via Nearest Singular Matrix Polynomial
	Why Consider Approximate GCRD via Nearest Rank Deficient Matrix Polynomial?
	Equivalence of Problem Formulations
	A Hybrid Algorithmic Approach

	Implementation of Approximate GCRD
	Conclusion

	Conclusion
	Why the Forms of Smith and Kronecker?
	Faster Algorithms
	Truly Global Convergence
	NP Hardness of Problems
	Nearest Singular Matrix Polynomial
	Approximate Smith Normal Form and Related Problems

	References

