114 research outputs found

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Cooperative Control of Port Controlled Hamiltonian Systems

    Get PDF

    Cooperative Control of Port Controlled Hamiltonian Systems

    Get PDF

    Formation control of nonholonomic mobile robots: the virtual structure approach

    Get PDF
    PhDIn recent years, there has been a considerable growth in applications of multi-robot systems as opposed to single-robot systems. This thesis presents our proposed solutions to a formation control problem in which mobile robots are required to create a desired formation shape and track a desired trajectory as a whole. In the first instance, we study the formation control problem for unicycle mobile robots. We propose two control algorithms based on a cascaded approach: one based on a kinematic model of a robot and the other based on a dynamic model. We also propose a saturated controller in which actuator limitations are explicitly accounted for. To demonstrate how the control algorithms work, we present an extensive simulation and experimental study. Thereafter we move on to formation control algorithms in which the coordination error is explicitly defined. Thus, we are able to give conditions for robots keeping their desired formation shape without necessarily tracking the desired trajectory. We also introduce a controller in which both trajectory tracking and formation shape maintenance are achieved as well as a saturated algorithm. We validate the applicability of the introduced controllers in simulations and experiments. Lastly, we study the formation control problem for car-like robots. In this case we develop a controller using the backstepping technique. We give conditions for robots keeping their desired formation shape while failing to track their desired trajectories and present simulation results to demonstrate the applicability of the proposed controlle

    Robust Behavioral-Control of Multi-Agent Systems

    Get PDF

    Network connectivity tracking for a team of unmanned aerial vehicles

    Get PDF
    Algebraic connectivity is the second-smallest eigenvalue of the Laplacian matrix and can be used as a metric for the robustness and efficiency of a network. This connectivity concept applies to teams of multiple unmanned aerial vehicles (UAVs) performing cooperative tasks, such as arriving at a consensus. As a UAV team completes its mission, it often needs to control the network connectivity. The algebraic connectivity can be controlled by altering edge weights through movement of individual UAVs in the team, or by adding and deleting edges. The addition and deletion problem for algebraic connectivity, however, is NP-hard. The contributions of this work are 1) a comparison of four heuristic methods for modifying algebraic connectivity through the addition and deletion of edges, 2) a rule-based algorithm for tracking a connectivity profile through edge weight modification and the addition and deletion of edges, 3) a new, hybrid method for selecting the best edge to add or remove, 4) a distributed method for estimating the eigenvectors of the Laplacian matrix and selecting the best edge to add or remove for connectivity modification and tracking, and 5) an implementation of the distributed connectivity tracking using a consensus controller and double-integrator dynamics
    corecore