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A unifying framework for designing distributed semi-linear and nonlinear state-dependent 

protocols to control the behavior of multiagent systems over communication networks is 

presented. The building blocks of the proposed framework are detailed, and its generality 

is demonstrated through comparing it to some major results available in the related 

literature. The applicability of the framework in producing several behaviors that govern 

the interaction among the connected spatial agents is demonstrated through mainly 

simulation where proofs of stability and convergence are provided. Various behaviors of 

the connected agents, mainly on undirected graphs, are achieved by well-designed 

couplings where consensus, clustering, shape consensus, formation, deployment, 

containment and escorting are some examples of the achievable behaviors. Composite 

behaviors stored in a behavior bank can be selected by a suitable behavior selection 

mechanism that is controlled directly by the agent’s embedded artificial intelligence or 

indirectly through a mission planning utility. 

The integration of first integrals and nonlinear eigenvalue problems constitute the core of 

this framework. Stability issues are mainly handled using properties of M-matrices and 

Lasalle’s principle. The relation between consensus protocols and potential fields are 

explained and utilized. Simple examples to show the applicability of the proposed 

framework in designing bounded controls that meet a prescribed performance are also 

provided. 
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Using state-dependent parameterization to control the switching between the various 

behaviors is also presented. The multitude of primitive behaviors are used to build more 

sophisticated behavioral banks that reside in each agent permitting each agent to choose or 

follow this chosen behavior. Designing connectivity-preserving protocols is also 

addressed. The result is a sophisticated distributed coordination motion planner. 

The agents under consideration could be maritime, airborne or ground robots. Both 

kinematical and kino-dynamical trajectory-generator systems are developed and integrated 

with reactive and hybrid-model-based-reactive intelligent controllers to facilitate 

interacting with more realistic working spaces. Harmonic potential fields are utilized to 

model the environment to enable collision-avoidance. Both collision-avoidance and 

connectivity-preserving behaviors are combined in a simple, yet, efficient way. 

Second-order, general linear time-invariant, nonlinear systems, and other models with 

higher dimensions are presented, where a special representation methodology reveals the 

usefulness of the proposed framework when dealing with such systems. The design steps 

presented can be easily upgraded to deal with systems of heterogeneous dynamical 

features.  

The framework provides the means to facilitate building robust behaviors that can handle 

disturbances, noise and uncertainties in the decision-making process and the involved 

agents’ dynamics. In the latter case, the integration with a robust local controller is made 

possible under the proposed framework. 
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 ملخص الرسالة

  
  

  يزن محمد سليمان الرواشده :الاسم الكامل
  

  متعددة الأطرافم في سلوك الأنظمة كَ حْ التحكم المُ  :عنوان الرسالة
  

  هندسة الأنظمة و التحكم التخصص:
  

   ٢٠١٨آذار ٢٦ :تاريخ الدرجة العلمية
 

يتم تقديم إطار موحد لتصميم البروتوكولات شبه الخطية وغير الخطية المعتمدة على الدوال للتحكم في  في هذه الدراسة

أيضاً تفصيل اللبّنات الأساسية للإطار المقترح ، يتم  .سلوك الأنظمة متعددة الأطراف المتصلة عبر شبكات الاتصالات

إن قابلية تطبيق  .ويتم إثبات عموميتها من خلال مقارنتها ببعض النتائج الرئيسية المتوفرة في الأدبيات ذات الصلة

المحاكاة  الإطار في إنتاج العديد من السلوكيات التي تحكم التفاعل بين الأنظمة المكانية المتصلة يتم إثباتها من خلال

إن السلوكيات المختلفة للأنظمة المتصلة ، وبشكل رئيسي  .بشكل أساسي حيث يتم توفير إثباتات الاستقرار والتقارب

عبر الشبكات ثنائية ا¢تجاه ، يتم تحقيقها بواسطة متغيرات التوصيل الجيدة التصميم حيث التوافق و التجميع و تكوين 

يمكن اختيار  .لاحتواء والمرافقة هي بعض الأمثلة على السلوكيات القابلة للتحقيقالإجماع و التشكيل و ا¢نتشار و ا

السلوكيات المركبة و المخزنة في بنك السلوك عن طريق آلية اختيار السلوك المناسبة التي يتم التحكم فيها مباشرة 

  .ط المهمةبواسطة الذكاء ا¢صطناعي الداخلي للنظام أو بشكل غير مباشر من خلال آلية تخطي

يتم التعامل مع قضايا  .جوهر هذا الإطار linear eigenvalue problems-non و first integralsويشكل دمج 

   Lasalle.ومبدأ matrices -Mالاستقرار بشكل رئيسي باستخدام خصائص
ࣧ
شرح العلاقة بين بروتوكولات  يتم ٲيضا

تقديم أمثلة بسيطة لإظهار قابلية تطبيق الإطار المقترح في تصميم كما يتم  .واستخدامها potential fieldsالإجماع و

  .دة التي تفي بأداء محددوعناصر التحكم المحد

يتم استخدام العديد من  .كما يتم تقديم استخدام الدوال المعتمدة على الحالة للتحكم في التبديل بين السلوكيات المختلفة

كثر تطوراً يتم تخزينها في كل نظام مما يسمح لكل نظام باختيار أو اتباع السلوك السلوكيات البدائية لبناء بنوك سلوكية أ

  .المختار
ࣧ
  .والنتيجة هي مخطط حركة و منسق متطور تصميم البروتوكولات للحفاظ على الاتصال يتم أيضا
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الكينماتية والكينامية  يتم تطوير أنظمة المولدات .قيد النظر أن تكون روبوتات بحرية أو جوية أو أرضية للأنظمةيمكن 

الديناميكية على حد سواء وتكاملها مع وحدات تحكم ذكية تفاعلية ونموذجية مبنية على نماذج تفاعلية لتسهيل التفاعل 

 .لنمذجة البيئة للتمكين من تجنب ا¢صطدام harmonic potential fieldsيتم استخدام  .مع أماكن عمل أكثر واقعية

  .ا¢تصال بطريقة بسيطة ، ولكنها فعالةعلى لوكيات تجنب التصادم و المحافظة يتم الجمع بين كل من س

يتم تقديم النظام الديناميكي من الدرجة الثانية ، و الخطي غير الثابت ، والأنظمة غير الخطية ، والنماذج الأخرى ذات 

 .المقترح عند التعامل مع هذه الأنظمةالأبعاد الأعلى ، حيث توضح منهجية التمثيل الخاصة المقدمة مدى فائدة الإطار 

  .يمكن ترقية خطوات التصميم المقدمة بسهولة للتعامل مع الأنظمة الديناميكية غير متجانسة السمات

يوفر الإطار الوسائل لتسهيل بناء سلوكيات قوية و محكمة يمكنها التعامل مع الاضطرابات والضوضاء والشكوك في 

في الحالة الأخيرة ، أصبح التكامل مع وحدة محلية ذات تحكم قوي  .الديناميكية المشاركةعملية صنع القرار و الأنظمة 

 .و محكم ممكناً في إطار العمل المقترح
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1 CHAPTER 1 

INTRODUCTION 

Due to the desperate needs of human beings to make up for their lack of abilities in doing 

certain important tasks under some severe conditions, the usage of robots has emerged 

rapidly to the extent where hundreds or even thousands of these robots are being deployed 

to achieve the entitled missions. As these missions may vary, the types of robots used must 

be suitably selected to suit the prescribed goals. For example, soft-robots may serve well 

over the World Wide Web (www) as agents responsible for collecting or distributing 

information. However, physical robots, i.e., comprising mechanical and electronics parts, 

are most suited when physical interaction with the real world is desired. Swarms of 

submarines, un-manned aerial vehicles (UAVs), un-manned ground vehicles (UGVs) are 

some good examples of such physical robots. 

Usually, the increase in the number of deployed robots comes to compensate for the 

inability of an individual robot to function properly by itself due to its on-board power 

limitations or due to its insufficiency to interact with loads because of its limited structural 

rigidity, for example. Inspired by nature, themes of bio-inspired robots have been brought 

to peoples’ attentions to overcome limited robots’ capacities. One inspiration was the 

cooperation among various creatures, ants for example, to handle a heavy load. 

From engineering perspective, describing a collective activity or behavior of hundreds or 

even thousands of interacting systems may not be easy. However, engineers alleviated that 
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complexity by establishing the needed frameworks and mathematical tools through 

bridging various fields together. Classical control, switched-systems control, finite field, 

and networked control theories are some examples of what has been used to facilitate the 

diversity of such frameworks. Having that in mind, it will be obvious to the interested 

reader that dealing with multi-robots collectively is a serious challenge. As a result, 

covering every aspect concerning this area is far beyond the capacity of a single study.  

One way of enabling the multi-agents, i.e., robots, to interact collectively is by establishing 

a communication network. One should not limit the definition of a network to a wire/less 

network where the exchange of information is conveyed by communication protocols such 

as ATX or ZigBee, for instance. In fact, nature tells us more about that; for example, among 

the fireflies, the light is a way of communication to achieve synchronization among the 

males to give an uncluttered view for the females to choose their mates during the season, 

whereas to humans reading, writing, and body gestures are more evolved means of 

communication. In the engineered systems, i.e., robots, lights, beeps, and even machine 

vision can serve as good examples of their ability to communicate properly. From the 

aforementioned discussion, it should be clear that the main entrance to the cooperative 

robots’ world is through the understanding of the underlying communication networks. 

Next, some preliminaries needed throughout the thesis are presented. 

1.1 Algebraic Graph Theory 

In many cases, it is convenient to visually represent the connections among interconnected 

dynamical systems, or agents, using a graph. A graph consists of a collection of labeled 

vertices �L� that are connected via edges �ℰ�. Thus, a graph (N) can be given as N = )L, ℰ*. 
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The vertex L� represents the .67 agent while ℰ�� represents the edge connecting both L� and 

L� agents. Each edge facilitates the exchange of flow back and forth the two ends. The flow 

could be unidirectional, i.e., directed, or bidirectional, i.e., undirected, with different 

magnitudes. Therefore, an edge is represented visually using single-arrow or double-arrow 

headed line associated explicitly with weights  O��! reflecting the magnitude of the flow, 

if desired. Thus, a graph can be given more specifically as N = )L, ℰ, P* where P is the 

set of the corresponding edges weights in the graph. Several directed and undirected edges 

may join two vertices which results in a mixed multigraph as shown in Figure 1.1. The 

flow nature could be anything, based on the application, ranging from a conceptual effect 

to a real physical one. It is worth noting that the nature of the flow among agents is not 

necessarily like the nature of the edge through which the flow is conveyed. For example, 

the spatial speed of one agent may get transferred to another agent via a wireless 

communication and the vibration experienced by an agent may get propagated to another 

via a rigid rod. Consequently, it is not surprising to see a graph with real or complex 

numbers associated with the edges’ weights. The use of complex edge weights is useful in 

many cases as can be found in [2], for example. Moreover, depending on the application, 

self-loops or buckles, i.e., O�� ≠ 0, may exist which indicates that an agent is more 

concerned about its own status than it does about those of other agents. More information 

about the graph types and their associated theories can be found in the literature, e.g. [3]. 

In our work, we will be using real weights of simple undirected graphs only and therefore 

multiple edges and loops are not allowed, unless otherwise explicitly stated.  

Note 1.1: Using mainly undirected networks should not limit the applicability of the 

proposed framework; since we are interested in understanding how agents affect and get 
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affected by each other. Some examples showing directed links are also included as can be 

seen in formation related behaviors where a leader or multiple leaders affect the followers. 

This will introduce the concept of non-cooperating leader by which the leader is not 

affected by its followers meaning that it will not slow down if the followers are unable to 

follow or obey its lead, for examples. In contrary, a cooperative leader will consider the 

states of its followers which means that it is interacting with them over undirected links. In 

this work, the leaders are selected randomly, and no voting or similar algorithms are used. 

 

Figure 1.1. A mixed multigraph consists of three connected agents. 

Mathematically, a graph N can be represented using a special type of square matrices called 

the adjacency matrix [3]   R = SO��T ! that shows the relation among agents where the .67 

row of the matrix reflects how the .67 agent is affected by its in-neighbors while the .67 

column reflects the effect of the .67 agent on its out-neighbors. The interaction among 

agents is governed by certain rules denoted by the used network protocols. These protocols 

should not be confused with the communication network protocols usually used in the 

handshaking of data over a wireless communication link, for instance. 

Based on the network protocol used - as will be explained in this thesis-, the analysis of the 

response, i.e., behavior, of the interconnected agents will be different. The diffusive-

coupling network protocol is widely used in the literature (see e.g. [4], [5]) and it deals 

with the relative differences between the connected agents states over the edges of their 

associated graph. Using this protocol, another important diagonal matrix known as the in-
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degree matrix [3] �U� is obtained whose .67 diagonal element represent the summation of 

the weighted flows entering the .67 agent. The mathematics for this is delayed to the next 

section. Both R and U are used to formulate- as will be shown shortly- a special matrix 

known as the Laplacian matrix, i.e., ℒ��N�, associated with the graph N whose spectral 

properties are of significant value in the design and analysis of network protocols, in 

general. The subscript in ℒ� denotes that all O�� in N are fixed constants.  

Note 1.2: It is desired in this thesis to allow for variations in the edges’ weights to 

accommodate variations in context. Note that fixed weights do not allow for such 

flexibility. 

 

In many applications, the interaction among the connected agents may vary explicitly over 

time or based on their status and operating conditions. Thus, dealing with varying edge 

weights is inevitable. In this thesis, mainly state-dependent variable weights will be used 

as will be explained in the coming section while the case of both explicit time and state-

dependent weights will be investigated in a future work. 

1.2 Non-negative Matrices 

The non-negative matrices, known for short as M-matrices, were used extensively in 

studying the stability of systems appearing in various fields like in polytopic systems [6], 

genetic regulatory networks [7]-[8] and most importantly- in our case- the cooperative 

control of multi-agent systems [9]. In control theory, both M-matrices and Hurwitz 

matrices relate to each other when studying the stability of feedback systems though the 

analysis using each type of these matrices is different.  An M-matrix may be singular or 
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nonsingular. Several characterizations of nonsingular M-matrices are available in the 

literature, such in [10], as well as singular ones, such in [11]. In the proposed framework, 

herein, it is desired to use the theory of singular M-matrices to formulate the stability of 

Multi-Agent Systems (MAS) under general network consensus protocols in a unified way. 

A unified framework to study the stability problem of composite systems using nonsingular 

M-matrices was presented in [12]. The main difference between the aforementioned 

frameworks is that in the one presented herein the M-matrix is directly related to the 

Laplacian matrix representing the underlying communication network connecting agents 

while the M-matrix presented in [12]- or similar approaches- is related to the coupling 

weights and it is generally nonsingular.  

Several classes of singular M-matrices in ℜW×W based on their stability types were 

explained in [11] like being an s-semistable (denoted by M), D-semistable (denoted by K), 

diagonally semistable (denoted by J), weak semistable (denoted by W) and semistable 

(denoted by L) matrices. The following theorem states the relations among the previous 

classes: 

Theorem 1.1: [11] In ℜW×W  

Y ⊆ ; ⊆ [ ⊆ \ ⊆ ] 

while 

Y ∩ _W×W ⊆ ; ∩ _W×W = [ ∩ _W×W = \ ∩ _W×W = ] ∩ _W×W = ` 

where the inclusion of  Y ∩ _W×W in ` is strict for a ≥ 2. 
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The _W×W is a subset of ℜW×W consisting of the matrices with non-positive off diagonal 

entries. Thus, the set of all M-matrices is strictly contained in _W×W [11]. The matrices 

denoted by ` are a special class of singular M-matrices that shares several important 

characteristics enjoyed by the nonsingular M-matrices. Such a class is called M-matrices 

with “property c” where the following theorem states their properties. 

 Theorem 1.2: [13] Let I ∈ ℜW×W be a singular, irreducible M-matrix of order a. Then: 

1. I has rank �a − 1�. 

2. There exists a vector 	 ≫ 0 such that I	 = 0. 

3. I has “property c”. 

4. Each principal submatrix of I other than I itself is a nonsingular M-matrix. 

5. I is almost monotone, i.e., I	 ≥ 0 ⟹ I	 = 0. 

Now, if the Jacobian of the MAS dynamics is acting as a point-wise singular M-matrix in 

the desired manifold of the state space- as per the proposed framework, it is desirable to 

investigate which type of stability it exhibits. For example, in [9] and [14], the diagonally 

semistable property, i.e., Y, was used to prove the stability of the involved systems 

incorporating M-matrices. This property is defined as follows: 

Definition 1.1: [11] A matrix I ∈ ℜW×W is diagonally semistable, i.e., I ∈ Y,  if there exists 

a positive diagonal matrix f such that If + fI& ≥ 0. 

A good candidate for establishing the f matrix is to use the left eigenvector elements such 

that f = h.G�ij�, ⋯ , jWl�. Note that the left and right eigenvectors of a balanced digraph 

and undirected graphs are the all-one vector, i.e., 1m
 . However, other types of M-matrices 

stability might also be needed, like the D-semistablity, which is defined as follows: 
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Definition 1.2: [11] A matrix I ∈ ℜW×W is D-semistable, i.e., I ∈ ;,  if for every positive 

diagonal matrix f, the matrix If is positive semidefinite. 

If the diagonal matrix f happens to be non-positive, then the MAS may become unstable. 

Some other issues related to D-stability can be found in [15].   

1.3 Thesis Motivation 

The rapid spread of the multi-agent systems has addressed several challenges on the last 

decades. Among those important challenges are the agents’ cooperation and coordination. 

The importance of cooperation and coordination may be clearly seen in Search and Rescue 

Missions (SRM). Figure 1.2 shows a proposed SRM in a devastating environment. Unlike 

most of the available literature, this dissertation proposes a new perspective of agents’ 

cooperation and coordination. In this perspective, mainly three- may be more- types of 

agents are assigned different, yet interacting, tasks that they must accomplish. The 

communication agent (CA) is responsible for maintaining the connectivity of the other 

types despite their spatial distribution. While a scout agent (SA) is responsible for 

discovering and mapping the environment which is most likely believed unknown. With 

the aid of CAs, SAs can pinpoint valuable information about the environment and 

survivors. The pinpointed targets can then be communicated back to the user who is 

responsible for dispatching the active agents. Active agents (AA) are a special type of 

agents under the proposed SRM perspective; because they are equipped with special tools 

and equipment that enable them to directly interact with the targets. 
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As in most unknown environments, a devastating one can have static or moving obstacles. 

In the related literature, this is equivalent to structured and unstructured environments, 

respectively. 

 
Figure 1.2. Search and Rescue Team in an unknown devastating environment. 

These agents are organized in several hierarchical structures with different mathematical 

complexities. The first structure contains different levels or layers as shown in Figure 1.3. 

 
Figure 1.3. First hierarchical structure of agents according to the proposed SRM perspective. 



10 
 

The first structure assumes different numbers of CAs, SAs and AAs. This structure 

introduces couplings among the dynamic motion of all agents especially after the AAs are 

deployed by the user. However, this structure offers an increased degree of freedom since 

all agents can move freely when compared to the second structure discussed next. 

A cluster-based hierarchical structure is shown in Figure 1.4 where agents are placed into 

clusters such that: 

1- A cluster must contain at least one CA. 

2- A cluster may contain a SA without AAs. 

3- A cluster may contain AAs if and only if it contains a SA. 

4- A cluster may evolve dynamically according to the context. 

5- In a cluster, the SA is considered as the leader. 

6- A cluster may allow AAs without a leader to pass through it temporarily.  

Remark 1.1: These criteria are subjected to future modifications once the problem is 

thoroughly addressed since new requirements could take place. 

 

Figure 1.4. Second hierarchical structure of agents according to the proposed SRM perspective. 
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According to the second structure, the coupling is only introduced at the CAs level. As a 

result, a reduced degree of freedom is offered by the second structure when compared to 

the first one.  

Another structure is shown in Figure 1.5. This structure assumes dealing with an equal 

number of SAs and AAs with- may be- a different number of CAs. If the CAs layer is 

omitted, then this structure will have the same structure as ordinary node-to-node 

consensus problem formulation if both the SAs and AAs are having the same network 

structure, see [8] for example.  

 

Figure 1.5. Third hierarchical structure of agents according to the proposed SRM perspective. 

In the following subsection, various types of controllers that will be utilized mainly in 

Chapter 5 are presented. Using these controllers, an agent is most likely to situate itself 

within its surrounding under different working conditions. 

1.4 Context-aware Intelligent Controllers 

Agents navigating through unknown or dynamic environments require fast reflexes. As in 

the human body, reflexes take place in several situations almost daily. These reflexes help 
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in avoiding dangers and responding quickly to threats unconsciously. To mimic such a 

precious aspect of the human body, a Reactive Controller (RC) can be hard-wired into the 

lowest-level part of the agent, i.e., the actuators. 

Figure 1.6 shows the general structure of a RC in which sensors feed their readings to, 

usually, static activation functions to generate the most appropriate actions or reflexes. 

 

Figure 1.6. General structure of a Reactive Controller. 

Imagine a robot in the x-y plane approaching an obstacle. It is intuitive that the robot should 

turn away from it. This reflex can be implemented simply using a RC. The RC can fit in 

the control loop as shown in Figure 1.7. Under the shown integration between the robot 

controller and RC, the latter will be acting as a disturbance to the robot. So, it is essential 

not to sacrifice the stability of the closed loop system. The stability issue under the 

integration of RC or behavior control in general motivates another objective of this thesis. 

Figure 1.7 shows the integration between the robot local and reactive controllers.  
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Figure 1.7. Integration between the robot local and reactive controllers. 

Note 1.3: The RC is acting as a feedforward controller to avoid disturbances (obstacles). 

 

The mathematical representation of the reactive control signal acting as a disturbance can 

be obtained, for example, as a function of sensory data approximating the distance between 

the robot and the obstacle in a primary direction, say x-axis. Figure 1.8 shows the graphical 

representation of the reactive force used in the RC which simply states robots should move 

away from the obstacle. 

 

Figure 1.8. Graphical representation of the reactive force used in the reactive controller. 

In more complex environments, a richer set of behaviors should be involved to bring the 

robot closer to context-aware realm. Model-based Motor Schema (MMS) intelligent 
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controller, shown in Figure 1.9, maps the context obtained using the Know step to a set of 

possible behaviors. Only the allowed behaviors under the current context can be triggered 

and then the results are passed to the Plan step. In this thesis, we are only interested in 

studying specifically the motion-related behaviors. Some of the covered behaviors are 

shown in Figure 1.10 where a selection mechanism chooses the most suitable behavior that 

is going to dominate a given context. 

 

Figure 1.9. Structure of Model-based Motor Schema intelligent controller. 

 

Figure 1.10. Some of motion-related behaviors under MMS intelligent controller. 

As example, consider the case where a robot is intended to behave in a way that can be 

described verbally as follows: 



15 
 

 Move only along the positive x-axis. 

 Maintain the distance from the y-axis as small as possible, i.e. y=0. 

As suggested in Figure 1.11, the needed forces to be applied are shown. The overall force 

field will exert a behavior command based on the combination of the two primitive actions. 

The combination of the primitive actions or behaviors is what gives the strength to the 

MMS intelligent controller structure. Mathematically, we may write: 

nA��� = ?opq�Gp� = G = 	r���  (1.1) 

nB��� = −'���= 'r ��� (1.2) 

where: nA and nB are forces resulting as gradients of suitable potential fields. Both 	 and ' 

denote the states of the trajectory generated using the planner under MMS structure. The 

planner equation is given as follows: 

sr ��� = t	r'r u = v G−'w  (1.3) 

 

Figure 1.11. Desired force fields along the x and y axes. 

Now, the resulting trajectory, i.e., the reference signal to the low-level controller, is shown 

in Figure 1.12. More details will be provided in Chapter 5. 
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Figure 1.12. Resulting reference signal generated by the motion planner under MMS intelligent controller. 

To combine the benefits of both RC and MMS intelligent controllers, the Hybrid Model-

based Reactive (HMR) controller is presented as shown in Figure 1.13. The 

implementation of HMR controller is shown in Figure 1.14 using one preferred 

configuration. 

Under HMR, the known part of the robot context is handled by the MMS while the 

unknown part of the robot context is handled by the RC. In case of unforeseen situation, 

the RC will directly affect the robot behavior to keep it safe. This intervention from the RC 

will result in a change of the overall robot context that is most likely sensed by the know 

part inside the MMS controller when time advances. 

 

Figure 1.13. Hybrid schema integrating both the RC and the MMS intelligent controllers. 
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Figure 1.14. The implementation of HMR controller using one preferred configuration. 

Now, let us assume that a multi-agent system of a group of robots as shown in Figure 1.15 

is used. The main purpose of this gathering is to behave cooperatively. If the working space 

is obstacle-free- as shown in Figure 1.15, then this will be a typical problem in the related 

literature. However, if the previous multi-agent system exits in a working space filled with 

obstacles- as shown in Figure 1.16-, then the problem becomes more involved; since both 

cooperative and obstacle-avoidance behaviors must co-exist together. So, it is desirable to 

investigate the collective behavior of agents when operating in a real situation under 

behavioral control. 

  

Figure 1.15. Multi-agent system in obstacle-free context. Figure 1.16. Multi-agent system in obstacle context. 

Figure 1.17 shows the relation between the distributed control law and a communication 

channel based on ZigBee protocol. In this thesis, we are targeting the application layer of 

the used communication protocols. 
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Figure 1.17. Relation between distributed control and communication protocols. 

1.5 Thesis Layout 

The presentation of this thesis is organized as follows: In Chapter 2, a thorough literature 

review to cover the needed topics of this thesis are presented. In Chapter 3, the state-

dependent semi-linear protocols are introduced to reflect upon the similarities between the 

notion of state-dependent and constant Laplacian matrices. Then, it will be shown how the 

state-dependent Laplacian matrix can be modified to achieve a special type of consensus, 

namely: cluster consensus. After that, various types of consensus available in the literature 

are upgraded to the be state-dependent. Having some of the main results shown, the 

proposed framework will be presented where the interplay of its pillars is detailed. Next, 

the applicability of the framework mainly for nonlinear protocols is demonstrated where 

several protocols appeared in the literature were verified using the framework. Issues 

related to stability and performance are then handled followed lastly with revealing the 

relation between consensus protocols and potential fields where it can be used to design 

and analyze the desired protocols.  

In Chapter 4, the applicability of the framework in producing several motion-related 

behaviors that govern the interaction among the connected agents is demonstrated through 
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mainly simulation examples where proofs of invariance, stability and convergence are 

presented when needed. Using state-dependent parameterization to control the switching 

between the various behaviors is presented. The multitude of primitive behaviors are used 

to build more sophisticated behavioral banks that reside in each agent permitting each agent 

to choose or follow this behavior. Designing connectivity-preserving protocols is also 

addressed. The result is a sophisticated distributed coordination motion planner. 

In Chapter 5, more sophisticated behaviors that are mainly directed to mobile agents are 

provided. These agents could be maritime, airborne or ground robots. Both kinematical and 

kino-dynamical trajectory-generator systems are developed and integrated with reactive 

and hybrid-model-based-reactive intelligent controllers to facilitate interacting with more 

realistic working spaces. Harmonic potential fields are utilized to model the environment 

such that collision-avoidance is made possible. Both collision-avoidance and connectivity-

preserving behaviors are combined in a simple, yet, efficient way. Also, second-order, 

general linear time-invariant, nonlinear systems, and other models with higher dimensions 

are presented, where a special representation methodology reveals the usefulness of the 

proposed framework when dealing with such systems. The design steps presented can be 

easily upgraded to deal with systems of heterogeneous dynamical features. Using 

simulation, the strength of the kinematical trajectory-generator is demonstrated by guiding 

a group of non-holonomic front-wheel steered robots through a working space where 

obstacles exist. Another example demonstrating the use of the developed kino-dynamical 

trajectory-generator systems in controlling the behavior of a MAS consisting of six 

quadrotors is presented. Lastly, In Chapter 6, some of the recommended future work is 

listed. 
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The main contributions of this thesis are as follows: 

1- Presenting a unifying framework under which state-dependent semi-linear and 

nonlinear consensus protocols can be designed in a systematic manner. 

2- Providing a clear link between the fixed-weight and state-dependent Laplacian matrices 

through adopting nonlinear eigenvalue problem under which the fixed-weight 

protocols proof to be a special case of the proposed framework. 

3- Focusing mainly on MAS consisting of N single-integrator dynamical agents 

interacting over undirected graphs. 

4- Handling the stability, convergence and performance issues using singular M-matrices, 

Lasalle’s principle and vector calculus-related theories. 

5-  Demonstrating the strength of the proposed framework through the possible 

achievable types of consensus and through the performance metrics applicable. 

6- Formulating the problem of consensus protocol design as a general system of partial 

differential equations which relates generally the consensus protocols to potential 

fields. 

7- Extending and analyzing some of the related consensus protocols using the proposed 

framework. 

8- Designing connectivity-preserving protocols under the proposed framework. 

9- Designing sophisticated kinematical and kino-dynamical trajectory-generator systems 

that can provide the guidance to agents while conducting a specific mission in a 

working space filled with obstacles. 
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2 CHAPTER 2 

LITERATURE REVIEW 

In cooperative systems, knowing the number of the interconnected agents (nodes) on a 

graph is very important in almost all the distributed control and sensing protocols. In fact, 

this number can be estimated using dedicated communication protocols, statistical 

inferences or through system-identification based methods. This number may vary over 

time, which indicates the state of having new agents joining or leaving the network. Such 

variation is typical in Mobile Ad hoc networks (MANET) in which even the agents’ types 

may vary significantly resulting in a heterogeneous network structure. Any provided 

solution that depends on communication to identify the number of agents on a graph will 

consume about 15 to 35% of the energy available in each agent [16]. 

A distributed mobile agent based topology discovery framework is presented in [17].  

Usually, a centralized approach with a predetermined range of IP addresses that are used 

to ping the agents on a regular basis is used. This centralized approach is impractical from 

MANET point of view; since it requires the knowledge of the IP addresses of all agents in 

advance which may violate the privacy of the interconnected agents. Besides the previous 

points, such centralized approach uses the available power resources at each mobile agent 

intensively resulting in a shorter life of the agents and consequently that of the network 

connecting them. Topology discovery can be done using different approach such as power 

control approaches which adjusts the power at each node to keep network connectivity or 

cluster-based approach which emphasizes a certain hierarchical topology organization 
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where each cluster is managed by an elected head based on different factors such as its 

communication quality and the available power [16]. Most of these topology discovery 

approaches are mainly ad-hoc network (ANT) based approaches in which the mobile 

agents collect and update the information about the visited nodes by traveling from node 

to node [17]. The ANT based approaches are purely proactive and uses huge bandwidth 

even if there are no changes occurring in the network. Besides that, the agents under such 

approaches may get lost once the host node is disconnected. However, the approach 

presented in [17] ensures that such problems do not exist and it also does not require a 

predefined set of IPs to be available a priori; because it depends solely on the beacons sent 

by the nodes over the network and it is also reactive since it sends topology updates when 

there is a change in the network. This approach divides the network nodes logically into 

two hierarchical groups, namely cluster heads containing the manager agents and cluster 

members containing the service agents. Each service agent in a cluster reports to its 

manager agent in the same cluster. Mangers at each cluster got elected based on their ability 

to communicate with other cluster heads as well as other factors such as their available 

power. This results in a more efficient and stable topology discovery approach. More 

details about the system design can be found in [17]. 

3 Estimating the network size in a distributed fashion is important in realizing generally all 

distributed protocols. As it will be clear from the coming chapter, starting with a complete 

knowledge of the network topology and agents number is a pre-assumption that must be 

satisfied. Of course, dedicated protocols can be run in the preparation stages of the MAS 

creation. In [18], a distributed network size estimation that preserves privacy based on 

system-identification is presented. This approach depends on the locally available 
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information at the agent level and requires no leader or centralized agent to implement its 

functionality. Privacy-preserving algorithms are very important for anonymous networks 

where the connected agents are unable or not willing to provide a unique ID labels telling 

their identities. Moreover, providing an algorithm that can be suitably used when the agents 

are with limited resources, and with almost no knowledge of the network structure is very 

important. Basically the approach presented in [18] requires all agents to run a suitable 

linear dynamical system and then identify the order of an associated Hankel matrix (�) 

which can be considered as the minimum possible number of connected agents. This lower 

bound will converge to the exact number of agents when the communication network is 

strongly connected and when each agent has a self-loop, and the algorithm is implemented 

using real-valued numbers and when the size of the network is small, i.e. less than few tens. 

The used dynamical system is shown next: 

	�� + 1� = I	��� (2.1) 

4 Where: I is a matrix describing the graph, i.e. Ixy = 0 if �j, z� is not an edge in it. In real-

valued implementation of this approach, the identification of a large size system causes 

numerical issues resulting from the stability or instability of the I matrix; since the entries 

of 	��� will become smaller as time passes if I is stable and get larger when I is unstable. 

Even if I was chosen to be marginally stable, it will not help; since the entries of 	��� will 

remain in the convex hull of the initial conditions. However, this problem can be solved by 

implementing this approach using finite field representation of numbers which will then 

provide a lower bound of the agents’ number with a probability less than one given by:  
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5{o|}{Gp� �~��� = p� ≥ 1 − p��  (2.2) 

5 as estimated in the {67 agent, where: � is the size of the finite field used, i.e. ℱ�, and � ≥ 

p�.  

6 Moreover, defining h = 0.5�p3 + p�, if � ≥ h, then:  

5{o|}{Gp� �~��� = p � ≥ 1 − h� , ∀{ = 1, … , p (2.3) 

7 With a detailed proof available in [19] inspired by [20]. 

8 However, this bound requires a field size that is very large when p is medium-size, e.g. 

when p is a few hundreds, which consequently demands a huge amount of memory 

quadratically increasing with p. As a result, a slightly modified version of Hankel-Lanczos 

factorization algorithm [18] was presented which ensures the reusability of the evaluated 

� matrix in previous steps. This gives the possibility of only using a memory size which 

is linear in p instead of being quadratic. Simulation results indicated that the algorithm 

presented in [21] which is based on statistical inference and on max-consensus has a 

comparable memory requirement as the algorithm provided by [18] and much higher 

transmission complexity (p times larger). Also, the algorithm presented in [21] has a 

performance much worse in terms of probability of exact computation of p, slightly better 

in terms of average p, and much better in terms of average quadratic error once compared 

to the algorithm presented in [18]. 

9 The method proposed in [22] requires two key assumptions to effectively estimate the 

global network topology in a distributed manner, namely: the network must be slowly 

varying, and the estimating agent can measure or estimate the states of all its neighbors, 
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otherwise the global network topology cannot be estimated using only one estimating 

agent. Mainly, three system-identification approaches were investigated in [22], namely: 

concurrent, traditional gradient descent method and least squares based approaches. It was 

noted that regardless of what the identification method used to solve the network discovery 

problem, there must exist some amount of excitation to ensure convergence to the right 

solution. 

10 Remark 2.1: In general, persistent excitation is essential in improving the identifiability 

and convergence of the involved parameters estimates. 

11  

12 After identifying the network topology along with the number of agents sharing it- if they 

are not already known- one can proceed to have a look at the overall properties associated 

with the multi-agent system on graph in terms of controllability and observability. 

Structural Controllability and Structural Observability of the multi-agent system are used 

to distinguish them from the ordinary structural controllability and observability at the level 

of each agents. In the following context, it is desirable to reveal the relationship between 

these terms and the network topology used and to provide a way by which they can be 

obtained mathematically using a graph-theoretic perspective under several conditions.  

13 In [23], the problem of weight assignment for point mass agents comprising a single leader 

and multi followers under weighted undirected and connected graphs was discussed and 

formulated using the optimal control theory. The weights are assumed to be time-varying 

and freely assigned as well. The main objective was to minimize the control effort given 

to the whole system, so that the provided index function was solved with the aid of 

Hamilton-Jacobi-Bellman (HJB) equation. However, this approach depends only on the 
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leader to solve the optimal problem and to provide the optimal control and weights to the 

followers, so the global optimal problem is not solved in a distributed fashion among the 

agents. Therefore, a delay in the response is most likely to take place. 

14 Now, let us discuss in more details the structural properties of dynamical multi-agent 

systems on graphs. In [24], the structural controllability of multiple leader multiple 

followers on a weighted and directed graph was investigated and its conditions are given 

algebraically and from graph-theoretic perspective. In [25], the relaxed equitable partition 

was used to investigate structural controllability under un-weighted graphs where the 

controllable subspace is based on characteristic vector when the system is not completely 

controllable was identified. However, this method cannot be used with weighted graphs 

[24]. It was shown in [24] that the system is not completely controllable if the leaders set 

is not globally reachable from the followers. According to [26], an algebraic 

characterization of structural controllability is to have none of the left eigenvectors of the 

adjacency matrix orthogonal to any column of the leader-follower pinning matrix. From a 

graph-theoretic perspective, it was shown that the system is structurally uncontrollable if 

it is symmetric with respect to leaders and the controllable subspace [24], i.e. leader 

symmetry is a sufficient but not necessary condition for system uncontrollability except for 

a Path graph it is necessary and sufficient condition for uncontrollability [27]. In such 

cases, the controllability may be restored either by weight assignment of the 

communication links or by adding more agents if a special condition is satisfied [24]. 

15 In [28], the structural controllability of a single leader multi-follower systems under 

absolute and relative protocols was investigated and some states could have different 

network topology which can be used to model more general classes of complex systems in 
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practical applications. The effect of the selected leaders on the overall structural 

controllability was examined in [29] via a constructive design procedure for an 

uncontrollable multi-agent system with a given communication graph. Also, in [29], a 

design procedure under which new communication graphs can be constructed by adding or 

deleting new nodes and new edges between follower and leader nodes, respectively, was 

proposed. Such approaches are very important to be used especially when the networks are 

dynamically created. Considering the previous discussion, it is crucial to study both the 

structural controllability and observability under state-dependent protocols which is a 

recommended future of this thesis.  

Another approach to extend the concept of structural controllability to the multi-leader 

configuration was investigated in [27] where network equitable partitions were used. It was 

also shown, in the case of single leader, if the followers Laplacian matrix associated with 

the graph of the follower nodes does not have distinct eigenvalues or at least one of the 

eigenvectors is orthogonal to 1m� then the overall system is uncontrollable. In such a case, 

one can tell that there exists an eigenvector of the leader-follower Laplacian matrix that 

has a zero entry on the index that corresponds to the leader. Hence; if none of those 

eigenvectors has a zero component, then the leader-follower system is controllable for any 

choice of the leader. This result is very important when it comes to select the leader for the 

system and it will be interesting if such a property of the graph associated with eigenvectors 

can be investigated in a distributed manner which will give a basis for leader nomination 

among the agents. Moreover, having more connections among agents may increase the 

chances of having a symmetric graph with respect to the leader, like the case in a complete 

graph. However, sometimes this problem can be avoided by keeping the links on the 
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longest path between a leader and other nodes and deleting the unnecessary communication 

links which will result in breaking its inherited symmetry. Considering these results, having 

only one leader in a Ring graph will make it uncontrollable. In a Path graph- whose vertices 

can be listed in the order �j�, j�, ⋯ , jW� such that the edges are )j� , j���* where . =
1,2, ⋯ , a − 1-, the system is always controllable for all choices of the leader if and only if 

it is of an even order. 

16 Using sampling is widely used when dealing with MAS. As a result, investigating the effect 

of sampling on mainly the structural controllability is of great value. It was shown in [30] 

that the structural controllability of multi-agent systems under weighted and undirected 

graphs is preserved if the corresponding un-sampled system is controllable and the 

sampling time 0 is not pathological, i.e. satisfies the following condition: 

�� − �� ≠ 2��0 /, � = ±1, ±2, … (2.5) 

17 For every two eigenvalues �� , �� of the system dynamical matrix. 

18 Assuming all agents are clock-synchronized, and a zero-order-hold is used in the actuation 

of agents, it can be shown that sampling does not affect the controllability of multi-agent 

systems with single-integrator, generic systems with scalar state, and generic systems with 

vector states, i.e. the controllability is invariant under these cases [30]. 

19 The structural controllability is needed to build a feasible distributed control protocol that 

governs the collective behavior of all nodes on the graph. To build this protocol, usually 

states feedback of the agents is distributed over the network to the neighboring agents. This 

exchange of information may result in increased size of information needed to implement 

this protocol which demands an increase in the communication bandwidth which will be 
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eventually reflected as a decrease in the service life of individual agents. So, there is a need 

to reduce the size of exchanged information without affecting the used sensing/controlling 

protocols. Having identical dynamical agents on the graph, i.e. having a homogeneous 

multi-agent system on a graph, helps in reducing the communication links bandwidth by 

estimating the needed information to build a distributed sensing/controlling protocols 

among the agents. One main requirement to implement such solution is to have the 

interconnected system observable.  

20 A different perspective of multi-agent systems consensus is presented in [31]. According 

to this perspective, two levels of agents are involved, namely: leaders’ and followers’ 

levels. Unlike traditional consensus distributed laws, the law presented in [31] seeks 

consensus between the agents from the followers level with their corresponding leader 

from the leaders level. More specifically, it is assumed that the number of leaders is equal 

to the number of followers. So that each follower is entitled to have consensus with its 

corresponding leader. Also, the networks in the two levels are assumed identical. 

21 The challenging point in this perspective is that some of the agents, at a time, can have 

direct connections with their corresponding leaders. So that a suitable choice of those 

followers can solve the problem. Leaders are only affected by their neighbors in the 

leaders’ level while followers are affected by their neighbors and their corresponding 

leaders. Necessary and sufficient conditions are also presented. 

22 The consensus problem among several first-order dynamical systems is considered in [32] 

where agents can cooperate or compete among each other. These behaviors, i.e., competing 

or cooperating, can be modeled mathematically by positive or negative weights, 

respectively. Based on the assigned weights, the whole network is sub-divided into mainly 
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two parts, namely: cooperation and competition sub-networks. By introducing a delayed 

control input to the competing agents, consensus can be achieved among the two sub-

networks. This paper emphasizes the fact that a delay can be sometimes helpful when 

dealing with multi-agent systems. As a continuation of [31], [33] proved that each follower 

can get into consensus with its corresponding leader if this follower is influenced either 

directly or indirectly by a leader from the leaders level even under a switching leader-

follower pinning gains. As in [33], the same authors are interested in node-to-node 

consensus among leaders and their corresponding followers as found in [34]. However, in 

this paper it is required for a follower to directly sense its corresponding leader to achieve 

node-to-node consensus. 

23 In [35], the tracking consensus in the mean-square sense under node-to-node paradigm is 

considered. The interacting agents are nonlinear with non-identical dynamics. Due to the 

uncertainties that may occur in the sampling devices, the node-to-node consensus is studied 

under stochastic sampling. Input-delay method is useful in designing the distributed law. 

Figure 1.5 can be used to visualize the concept of node-to-node consensus when the 

communication agents’ layer is removed. In fact, the node-to-node consensus has 

interesting applications as can be found in the case where troopers are accompanied with 

supporting robots. 

24 Sampled data can be utilized to reduce the communication load over the network while 

achieving node-to-node consensus as can be found in [36]. An algorithm was designed to 

estimate the maximum value of the sampling period that can be used in the node-to-node 

consensus distributed law. Note that if such period is violated, then the whole MAS system 

comprising the two layers will suffer from instability. 
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25 Another way to reduce the communication load is achieved using the event-triggered 

controller approach. In [37], controller’s signals are updated only when a triggering 

condition is fired. This approach can also save a considerable amount of energy when 

agents are equipped with limited resources. When communication range is limited, agents 

must stay close enough to cooperate. Additionally, the rendezvous problem is solved in 

this paper by designing a controller with bounded signals that ensures the connections 

among the agents to be preserved. Zeno phenomenon is also excluded under this controller 

so that the control signal will not experience an infinite number of jumps in any finite 

amount of time. Avoiding this phenomenon is important to maintain stability. 

26 Unlike many distributed event-triggered control systems, [38] presents a self-trigged 

controller by which it is possible to avoid monitoring the measurements errors 

continuously. The self-triggered controller depends on the information available locally to 

determine the next instant to retrigger. Self-triggered controller can also reduce the 

communication bandwidth used. 

27 Alternatively, reducing the amount of data shared reduces the needed communication 

bandwidth. In many cases, this can be achieved by relying only on the outputs of the 

interacting agents instead of using their full states information. Suitable state-observers can 

also be used. In [39], global robust regulation based on the outputs of a group of nonlinear 

systems, namely: Lorenz systems, is presented. The main idea behind this work is to use 

the internal model approach to formulate a global and robust stabilization of agents under 

switched networks and distributed output feedback controller.  

28 In [40], a dynamic event-triggered control approach is introduced. This approach 

introduces a dynamic variable that get affected not only by recent agents’ errors but also 
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by those of the previous ones. In contrast to the classical event-triggered controllers, this 

dynamical event-triggered controller considers the evolution of the errors into its triggering 

mechanism. Unfortunately, it is centralized and not distributed.  

29 Based on discretized version of general linear and continuous-time dynamical systems, 

[41] presents a periodic event-triggered consensus controller. The only restriction on the 

used discretization period is not to be pathological relative to the continuous-time system 

matrix. This means that the discretization period must be chosen such that the local 

controllability of the agent is preserved. However, its effect on the overall multi-agent 

system is not investigated. 

30 Solving the conflicts among agents when shared resources are acquired simultaneously is 

a must. In [42], a cooperative and decentralized approach that ensures balanced utilization 

of resources through advanced decision making was presented. This approach is very 

helpful in establishing the relation between multi-agent behaviors and their mathematical 

representations. The developed approach was used to solve the conflict between four agents 

sharing the same highway. In this thesis, we will present the concept of behavior banks that 

store primitive behaviors that can be selected by any suitable means like the one found in 

[42].  

31 Unlike many distributed consensus protocols, the one developed in [43] is independent of 

the global information about the underlying network topology connecting the agents. The 

developed protocol adopts an adaptive scheme that ensures leader-follower consensus if 

the graph- representing the communication network- contains a directed spanning tree with 

the leader as the root node. This is equivalent to running a network discovery protocol in 
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parallel. Such adaptive approach may prove useful under situations where followers are 

added or removed dynamically.  

32 Recalling Figure 1.9, any input delay caused by latency in decision making for example 

can affect the action taken. In [44], an event-triggered controller to achieve consensus 

between a leader and a group of followers was presented. The followers were assumed to 

have general linear dynamics subjected to input delay between the actuator and the 

controller. Such latency is related to timeliness issues considered by the Robotics 

community. 

33 The containment of several followers by a group of dynamic leaders using a robust 

controller based on high-frequency feedback was presented in [45]. These agents were 

assumed to have an unknown- yet bounded- nonlinearities. It was shown in this paper that 

under the proposed controller that the said multi-agent behavior can be achieved if all 

followers are accessed directly by at least one leader over a directed communication path. 

The connections among the followers must be undirected. Such a behavior can be found in 

autonomous surface vessels acting as coast guards and warships escorting, for examples.    

34 In [46], a group of nonlinear dynamical systems achieve consensus under unreliable 

communication and switching network topology. A leader-follower structure under the 

previously stated conditions is brought to consensus in a convergence rate and 

communication rate adjustable using the feedback gain. Both linear matrix inequality 

method and Lyapunov theory are used to derive the sufficient conditions of convergence. 

35 As stated previously, in this thesis the concept of behavior banks can be controlled using 

suitable selection mechanisms where a specific behavior can be paired with a specific 

network topology. So, by switching the topology then the behavior will also change. In 
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[47], the concept of state-controlled switching topology is used. Under such switching law, 

multi-agent states play a significant role in choosing the appropriate network topology. The 

used states can represent the signal strength, position or velocity of the involved agents. 

Other network switching laws may depend on time or even on a random process that 

describes the working environment, for example. 

36 Multi-agent systems are widely used in many applications like computation, exploration, 

rescuing, sensing and various military applications, just to name few. These connected 

agents relate to each other via an underlying connectivity means referred to as a 

communication network. Depending on the application, such networks may vary in nature 

from being logical, chemical or even up to the extent of being physically realized using 

rigid or soft links. One example of a physically realizable soft link is the wireless 

communication where no hard-wires are used. Similarly, one may consider cams or gear 

chains as kinds of physically realizable rigid links. In the gear chains example, the 

behavior, i.e., the response, of the attached objects at the ends of the chain will vary 

depending on the engaged gears, consider a vehicle gear box as an example where the 

transmission shaft rotational speed varies depending on the engaged gears. Thus, inspired 

by these facts, engineers sparked the utilization of homogeneous replicas of the same 

objects or heterogeneous objects to maximize the utilization of the available resources and 

to speed up meeting timely-manner needs. One interesting example is the Programmable 

Logic Gates (PLGs) where changing the connections among the available logic units will 

result in a new response of the used PLGs. 

37 More specifically, in the field of physical MAS over soft links, engineers have studied the 

relations between the used agents, mainly of dynamical features, and the communication 
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network used to connect them. Starting from the simple cases to more complex situations, 

magnificent efforts available in the literature testify to the vast progress in this study. As a 

result, the spectrum of approaches used to solve mainly designing network protocols to 

control even the simplest dynamical system, namely: the single-integrator, is wide and 

scattered. It does not take much time to realize that in each contribution in the stated 

direction, different approaches to state the stability and convergence conditions do vary 

significantly. 

38 A group of identical or non-identical agents connected over a graph form what is called a 

MAS. These agents may have different role to play in the overall MAS behavior. For 

example, an agent acting as a leader will provide commands to other agents on the graph 

most likely over unidirectional links. Other agents acting as followers may cooperate or 

compete over bi-directional links. More details on this will be provided in this thesis. 

39 The inter-agent interaction over the graph is governed by a set of protocols designed 

specifically to orchestrate certain behaviors. For example in [2], relative positions among 

sensing agents in the 2-D plane were used to realize self-localization among these agents 

in a distributed fashion. In the same area, in [48] consensus protocols were designed to 

build consensus filters that facilitate fusion of the distributed measurements of sensing 

agents. Distributed frequency and phase consensus among clocks can be found in [49].  A 

general overview of consensus protocols can be found in [50]. 

40 Consensus behavior is widely studied in the research community, both linear and nonlinear 

consensus protocols were introduced in the related literature. For instance, in [51], [52] 

nonlinear consensus protocols over directed networks was studied. Other linear consensus 

protocols can be found in [50], [53]. Several types of consensus have also been studied, for 
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example, average [54], [55] and geometric [56] types of consensus were handled. Other 

behaviors like cluster consensus [1], formation [57] and coordination [58] were also 

studied.  

41 Issues related to the stability of interconnected dynamical systems under the designed 

network protocols are very important, for instance in [12], a special class of positive 

matrices was used to study the stability of composite dynamical systems. Even recently, 

different areas have benefited from the same approach like found in [7], [8], [14]. 

Convergence of protocols is another concern which was investigated in [59], for example. 

In [60], bounded control of distributed protocols were designed. Prescribed performance 

[54], invariance [61] and connectivity preserving [57], [58], [62] were also studied. 

Introducing state-dependent weights into the network protocols was also handled in [63], 

[64], for instance. 

42 Behaviors in dynamical systems have received a lot of attention from several communities. 

Enabling robots to interact with their surroundings is a demand in various applications. 

Unavoidably, the very basic definition of a behavior can be easily argued, nevertheless, a 

behavior does relate to the way an action is initiated or conducted while interacting with 

internal or external stimuli based on collected data using onboard sensory data for example 

or processed data that was previously available. Being interested in collective behaviors, 

i.e., of a group of robots or agents comprising a MAS, several tools to model, design, 

simulate and synthesize behaviors are needed. Depending on the perspective, expertise is 

usually needed to design and realize behaviors related to actual motion in the working 

space. Issues like stability, latency, collision avoidance and control effort are usual 

concerns in the robotics field. 
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43 From the modelling point of view, a behavior can be modelled using hierarchical Finite 

State Machine [65] or based on the interconnections among the involved elements [66]. A 

behavior can be designed according to specific structures and hierarchies like found in 

[67]–[70]. Various simulation platforms can be used to simulate a behavior, for example 

XABSL [71], ROS, OpenRDK and YARP. Detailed comparison among these utilities can 

be found in [70].  Control aspects under behavioral control were also studied, for example 

in [60], network connectivity in MASs was controlled using a bounded input signal. 

Saturated control signals under behavioral control were investigated in [72]. The MAS 

stability under time-dependent communication links was investigated in [73], [74]. The 

ability of the MAS to avoid collision, including self-collision, is very important so as to 

preserve the assets and to ensure performance. Collision avoidance was discussed- for 

example- in [75], [76]. 

In [77], coupled dynamics with multiple time-scales over state-dependent graphs has been 

studied. Two cases were mainly investigated in which the network dynamics act as the fast 

and slow dynamics in the overall coupled system. Singular perturbation theory has been 

used to obtain reduced order models helping in stability analysis under such coupling. The 

stability is ensured by quantitative bounds describing the underlying graph topology.  

Comparing the approach presented in [77] to what will be presented in this thesis, it is 

interesting to note that in [77] the tracking error is also used to affect the consensus 

protocol. In addition, like what is proposed in this thesis, the same concepts of desired 

(ideal) and true (actual) states were used in [77]. A simulation example of steering eight 

unicycle-type robots was provided in [77]. These results can be compared to a similar 

example provided at the end of this thesis. 



38 
 

The leader-following consensus problem for a special class of nonlinear MASs was studied 

in [78]. The consensus protocol depends on sampled and delayed version of the output 

feedback signals. Such technique can reduce the needed communication bandwidth of the 

communication network. This can also be done using other techniques such as event-

triggered as can be found in [79] where a cluster formation behavior was realized using 

also sampled data. Other types of event-triggered approaches can also be used like the one 

found in [80] where the containment behavior over directed graphs was realized using 

event-triggered broadcasting. Additionally, using periodic event-triggering and quantized 

data was used in [81] to solve the consensus problem among several agents. A thorough 

review of sampled-data distributed consensus protocols is available in [82]. Recent reviews 

of distributed protocols can be found in  [83] and [84]. 

No doubt, great efforts were reported in the literature concerning the field of robotics in its 

variant disciplines. Here, in this thesis, a proposed framework that suits various situations 

and dynamical behaviors usually addressed by the robotics community is presented. 

Dynamical behaviors like consensus, clustering, formation, leader-follower, 

communication-aware, deployment, connectivity-preserving, flocking, shape consensus, 

containment and escorting under state-dependence are presented in a systematic way that 

emphasizes upon the strength, effectiveness, correctness, consistency while keeping the 

simplicity of the proposed framework.  Aspects like stability, bounded control signals, 

connectivity-preservation validation and design, and switched behavior control are also 

discussed in more details. Using simple hybrid automatons in two examples show the 

framework interface to the behavioral control from algorithmic point of view, on one hand. 

On the other hand, providing the dynamical aspects like stability, control boundedness, 
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connectivity preservation and switching stability proofs shows the applicability of the 

proposed framework under realistic scenarios where obstacles can be stationary or moving 

and the mission is conducted under varying contexts.  

Other details are covered based on the need during the sequel of this thesis.  
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3 CHAPTER 3 

The Fundamentals of the Proposed Framework 

In this chapter, details related to the structure of the framework are provided, where the 

integration of first integrals and nonlinear eigenvalue problems that constitute its core is 

presented. It will be clear in the sequel that the nonlinear protocols can be converted into 

their equivalent semi-linear protocols by applying a simple transformation, in general. 

However, the needed conditions will be rendered the same in both cases. Consensus 

protocols- both semi-linear and nonlinear- to achieve arithmetic, geometric, harmonic 

means are derived. A generalization to the mean-of-order-p is also provided. Stability 

issues are mainly handled using properties of M-matrices and Lasalle’s Invariance 

principle. The relation between consensus protocols and potential fields are explained and 

utilized. Simple examples to show the applicability of the proposed framework in designing 

bounded controls that meet a prescribed performance are provided. Simulation results show 

the feasibility of this framework. 

3.1 Consensus and Clustering of N-identical Single-Integrator MAS 

over State-dependent Network Protocols 

Starting with a MAS system with fixed number of agents whose dynamics are modeled as 

follows: 

	r���� = z����  ∈  ℜ, ∀. = 1,2, ⋯ , a (3.1) 

Let z�, i.e., the diffusive-coupling network protocol, be given as follows: 
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z� = − � ���	
�F	� − 	�H�∈��
 

���	
� = ����	
�  > 0, / ∈ ��0, / ∉ �� 
(3.2) 

where: ���	
�: ℜW → ℜ�� is a general bounded weighting vector-valued functional of the 

global state vector 	
 = i	�, 	�, ⋯ , 	Wl& ∈ ℜW and / ∈ �� denotes that the /67 agent is an 

in-neighbor of the .67 agent. Note that �� was used instead of O�� to highlight that the 

edges’ weights are dependent on the agents states and they are not fixed any more. Note 

also that the used network protocol must be designed in accordance with the prescribed 

tasks desired, for example protocol (3.2) can be used to achieve mainly the average 

consensus among the connected agents as will be clarified soon. 

Remark 3.1: The weighting function given in (3.2), namely ���	
�, must depend on local 

information available only at the agent level to make the protocol distributed. Thus, it can 

be written as ���	�, 	�� instead which indicates that it depends only on the states of the 

agent itself and its neighbor, i.e., ���	
�: ℜ� → ℜ��. Note that �� must be strictly positive 

to ensure the stability of the MAS as will be explained later in this chapter. 

Thus, (3.1) can be rewritten for short- by dropping the explicit time dependency- as 

follows: 

	r� = − � �� 	� , 	�!F	� − 	�H�∈��
 

= −	� � �� 	� , 	�!�∈��
+ � �� 	� , 	�!	��∈��

 

(3.3) 

Simplifying (3.3) more, yields: 
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	r� = −	�h� + � �� 	� , 	�!	��∈��
= z� (3.4) 

where: h� = ∑ �� 	�, 	�!�∈��  is the in-degree of the .67 agent. Taking U =
h.G�ih�, h�, ⋯ , hWl�, we can write the global dynamics of the connected MAS using the 

following deterministic system model: 

	r
��� = − U�	
� − R�	
�!	
 = −ℒ�	
�	
��� = �
�	
� (3.5) 

where: �
 is a smooth function with  �
 0m
! = 0m
, R = S��T is the adjacency matrix 

associated with the graph representing the available communication network among 

agents, and ℒ�	
�- or ℒ8 for short- is the resulting state-dependent Laplacian matrix. Notice 

that when all �� functions do not depend on states or time, then the resulting Laplacian 

matrix will be fixed, i.e., the network topology and the associated edges weights are 

invariant, with respect to states and time. Therefore, the resulting Laplacian matrix can be 

denoted by ℒ� to differentiate it from the state-dependent one. Later, an interesting relation 

between the fixed and state-dependent Laplacian matrices will be a corner-stone in the 

proposed framework presented in this thesis. 

Remark 3.2: One of the main objectives of the proposed framework is to establish a relation 

between the theory of the fixed and state-dependent Laplacian matrices of the same 

network graph. This allows borrowing some of the available work and theories of the fixed 

Laplacian matrix to deal with the state-dependent one, on the one hand, and to deal with 

more realistic and complex situations on the other hand since networks are allowed to 

depend explicitly on agents’ states. Moreover, other parameters representing the working 

environment for instance can also be incorporated within the structure of the Laplacian 
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matrix through the �� functions- as it is the case of communication-aware robotics e.g. 

[85]- which is beyond the scope of this chapter.  

The differential equation given in (3.5) is nonlinear in general and thus a special 

consideration of its elements must take place since it affects the stability of the MAS. 

Consensus among agents, is one of the important behaviors investigated in the literature. 

Motivated by the application, several types of consensus do exist such as arithmetic, 

geometric and harmonic means. These types of consensus- among others as well- can be 

encapsulated into a general type called the mean-of-order-5, see [86] for example. Other 

interesting versions of these means are their corresponding weighted means which are 

important in understanding the MAS behavior over a special type of communication 

networks represented by directed graphs, or digraphs for short, which are not thoroughly 

covered here. 

Clustering can be viewed as a special case of consensus where several partial consensuses 

among some agents within the MAS are established. Thus, several subgroups or clusters 

can be obtained at steady-state response of the MAS. More technically, the mean difference 

between consensus and clustering is the nature of the null-space spanned in both cases. In 

a complete consensus among the agents, the null-space is spanned using the vector 

associated with �� = 0, namely: ?1m
 where ? ≠ 0 ∈ ℜ which indicates that all agents are 

cooperative. In contrast, in cluster consensus, the null-space can be spanned by a non-

positive vector whose elements are other than 1 which indicate that some agents are 

cooperative while others are competitive. In such a case, the complete consensus protocol 

(3.4) is modified as follows: 
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	r� = −	�h� + � h���� 	� , 	�!	��∈��
= z� (3.6) 

where: h�� ∈ ℛ is the fixed competitive or cooperative weight that is usually given as a real 

number whose sign is positive or negative, respectively. This weight will convert the 

unsigned network graph into a signed graph [87] which is a special case of a gain graph. 

To maintain the in-degree, i.e., h�, and therefore the stability of the resulting MAS, it is 

required to have h�� = 1 h��⁄ = �� ��⁄  where �� reflects the desired behavior of the .67 agent 

with respect to the /67 agent- either competitive or cooperative. If �� = ��, then both agents 

are in the same cluster.  Mathematically, the relation between both (3.4) and (3.6) is 

reflected on their corresponding Laplacian matrices so that the resulting MAS dynamics 

can be given as follows: 

	r
��� = −�fJ�ℒ�	
�f�	
��� = ℎm
�	
� (3.7) 

where: f = h.G���, ��, ⋯ , �W�. Note that multiplying a matrix with vectors / matrices 

with similar signs will not change its sign. To eliminate any notational ambiguity, the 

complete consensus is referred to as consensus while cluster consensus will be explicitly 

used when needed.   

To make it possible to compare the proposed framework to the results available in the 

related literature, it is desired to provide detailed derivations of the previously mentioned 

consensus types over mainly state-dependent undirected graphs. These derivations will be 

used later to reveal the link between various types of MAS consensus over state-dependent 

and fixed communication graphs. It is worth noting that these derivations followed a certain 

methodology that reflects an important ingredient of the proposed framework. 
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3.1.1 Arithmetic Mean Consensus  

In some applications, like distributed sensor fusion [88], the arithmetic mean is the best 

estimate of the measured quantity if sensors have identical noise characteristics [9]. If the 

communication graph is weight-balanced, i.e., weighted in-degree equals weighted out-

degree for all agents [9], then the associated Laplacian matrix will have the elements of 

each row add up to zero. The same can be said about the elements of each column of such 

graphs if they are undirected. Note that the in-degree of the .67 agent is the sum of the .67 

row while its out-degree is the sum of the .67 column. The arithmetic mean (��), i.e., the 

average, of a measurements, or states, is given as follows: 

����� = 1a � 	����W
��� , ∀� ≥ �� (3.8) 

If the average at �� is to be achieved and maintained, then (3.8) must be time-invariant. 

Thus, it is straight forward to show that: 

h�����h� = 1a � h	����h�W
��� = 0, ∀� ≥ �� (3.9) 

Substituting (3.1), i.e., the system dynamics, into (3.9) yields the following: 

i1 1 ⋯ 1liz�, z�, ⋯ zWl& = 0 (3.10) 

where: i∙l& denotes the transpose. 

Having in mind that the average value is to be estimated in a distributed fashion, a 

nontrivial input z� must be carefully designed such that it utilizes the measurements 

originating only from the agent itself and from its in-neighbors. One possible state-

dependent semi-linear protocol that can achieve, yet to be verified, the desired goal is given 
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by (3.2). It should be kept in mind that there might be other candidates, nonlinear in 

principle, that can achieve the same goal as will be shown later. 

From (3.4), it is possible to rewrite (3.10) as follows: 

−	�h� + � �� 	�, 	�!	��∈��
− ⋯ − 	WhW + � W� 	W , 	�!	��∈��

= 0 (3.11) 

which can be stacked in a more compact form as follows: 

i1 ⋯ 1l �−h� 	�, 	�∈��! ⋯ �W�	�, 	W�⋮ ⋱ ⋮W��	W, 	�� ⋯ −hW 	W, 	�∈��!¡ ¢	�⋮	W£ = 0 (3.12) 

or simply as: 

1m
&ℒ�	
�	
��� = 0, ∀	
, � ≥ �� (3.13) 

A sufficient condition to solve (3.11) algebraically is:  

�� = �� , ∀., / ∈ ��, ∀	
, � ≥ �� (3.14) 

However, solving (3.12) needs more attention, in general. When the graph is fixed, ℒ�	
� 

can be given as ℒ� and (3.13) can be written as follows: 

1m
&ℒ�	
��� = 0, ∀� ≥ �� (3.15) 

which indicates that the 1m
& = i1 1 ⋯ 1lW×� is simply a left eigenvector of ℒ� associated 

with the zero-eigenvalue resulting from the fact that the row-sum of the Laplacian matrix 

is always zero [89] if it is weight-balanced. To elaborate more on this point, let the global 

model of the MAS consisting of N-identical single-integrator agents interacting over a 

fixed and undirected communication graph be given as follows: 

	r
��� = −ℒ�	
��� (3.16) 

In linear algebra, the left and right eigenvalue problems can be given respectively as 

follows: 
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j
�& ��< + ℒ�! = 0m
 (3.16.1) 

 ��< + ℒ�!1
� = 0m
 (3.16.2) 

where: < ∈ ℜW×W is the identity matrix, j
�& and 1
� are the linear left and right eigenvectors, 

respectively. For �� = 0, it is straightforward to see the relation between the left eigenvalue 

problem (3.16.1) and (3.15). The stability of the linear time-invariant system (3.16) can be 

guaranteed if and only if �� = 0 is simple which- from a graph theoretic point of view- 

requires the underlying graph associated with ℒ� ≥ 0 to be always connected, i.e., |��| >
0. 

Remark 3.3: The similar structure of both (3.13) and (3.15) motivates one design method 

as proposed in this framework. However, (3.15) is a linear eigenvalue problem while (3.13) 

is a nonlinear one. In the coming section, the nonlinear eigenvalue problem will be handled. 

The null-space vector of (3.16) is given as: 

	
¥� = ��1m
& , �� ∈  ℜ (3.17) 

If the Laplacian matrix has a simple, i.e., not repeated, zero-eigenvalue, then its rank will 

be a − 1 and the 1m
& will belong to its null-space, i.e., 	
¥� = ��1m
& ∈ az¦¦�ℒ��. It was 

shown in [89] that if the graph is connected, then it has a simple zero-eigenvalue. Moreover, 

it was also shown in [89] that when ℒ� is positive semidefinite and ��1m
& is the only 

equilibria set- or point-, then the network protocol (3.2), when �� functions are all 

constants with 0-1 weights, will globally and asymptotically drive the MAS (3.16) to the 

average-consensus, i.e., the arithmetic mean value, given by (3.8). 

In [90], it was shown that a necessary and sufficient condition for ℒ� to have 1m
& as a left 

eigenvector is that the communication graph must be a balanced digraph, i.e., a graph 
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whose rows and columns sum up to zeros. In [91], it was shown that ℒ� will have a simple 

zero-eigenvalue if and only if the associated communication graph has a spanning tree, i.e., 

includes all the graph vertices with the least number of edges. However, for such graphs, 

the average consensus is not straightforward and requires special treatment like the one 

found in [55]. For a connected undirected graph, the  1m
& is a left eigenvector associated 

with the zero eigenvalue of ℒ� [89] and this will be the main type of graphs treated in this 

thesis. 

3.1.2 Geometric Mean Consensus  

In some applications, like in distributed Bayesian consensus filtering [92], the geometric 

mean plays an important role and it is required to be estimated in a distributed fashion. 

Following the same approach presented in deriving the arithmetic mean consensus 

protocol, a geometric mean consensus protocol can be derived knowing that the geometric 

mean is given as follows: 

�§��� = ¨© 	����W
���

� , ∀� ≥ ��, 	���� ≠ 0   ∀. (3.18) 

If the geometric mean at �� is to be achieved and maintained, then (3.18) must be time-

invariant. Thus, it is straightforward to show that ∀� ≥ ��: 

h�§���h� = ª© 	�
W

��� «�WJ�¬®¯~°~JC¥�°
)	r�	� ⋯ 	W + ⋯ + 	�	� ⋯ 	rW*a = 0   (3.19) 

A possible candidate protocol that can be used is given as follows: 



49 
 

z� = −	� � �� 	� , 	�!F	� − 	�H�∈��
 (3.20) 

Substituting (3.1) and (3.20) into (3.19) yields the following: 

± � �� 	�, 	�!F	� − 	�H�∈��
+ ⋯ + � W� 	W , 	�!F	W − 	�H�∈��

² = 0 (3.21) 

which can be stacked in a more compact form as (12) and (3.13) which indicates that the 

1m
& = i1 1 ⋯ 1lW×� is simply a left eigenvector of �
�	
� given in (3.5). 

Remark 3.4: It should be noted that all 	� must have the same sign for the geometric mean 

to be defined. 

3.1.3 Harmonic Mean Consensus  

In clock synchronization [49] for example, the distributed estimation of the harmonic mean 

of some variables is crucial. Following similar steps as done previously, the harmonic mean 

consensus protocol can be derived knowing that the harmonic mean is given as follows: 

�7��� = a∑ 1	����W��� , ∀� ≥ ��, 	���� > 0,   ∀. 
(3.22) 

If the harmonic mean at �� is to be achieved and maintained, then (3.22) must be time-

invariant. Thus, it is straight forward to show that ∀� ≥ ��:  

h�7���h� = a ³	r�	�� + 	r�	�� + ⋯ + 	rW	W� ´
³∑ 1	����W��� ´�¬®¯~°~JC¥�° = 0, ∀� ≥ �� 

(3.23) 

A possible candidate protocol obtained by educated guessing is given as follows: 

z� = −	�� � �� 	�, 	�!F	� − 	�H�∈��
 (3.24) 
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Substituting (3.1) and (3.24) into (3.23) yields the following: 

± � ��F	� − 	�H�∈��
+ ⋯ + � W�F	W − 	�H�∈��

² = 0 (3.25) 

which can be stacked in a more compact form as (3.12) and (3.13) which, again, indicates 

that the 1m
& = i1 1 ⋯ 1lW×� is simply a left eigenvector of �
�	
� given in (3.5). In (3.25), 

�� 	� , 	�! was written as �� for sake of compactness. 

3.1.4 Mean-of-order-� Consensus  

This mean is a generalization of the previous means plus other types of mean, like 

minimum and maximum means [86]. It is also known as the Hölder [93] or power mean 

for only positive values and is given as follows: 

�µ��� = ¨1a � 	�µ���W
���

¶ , ∀� ≥ ��, 	���� > 0   ∀. (3.26) 

If the mean-of-order-5- where 5 is an integer number- at �� is to be achieved and 

maintained, then (26) must be time-invariant. Thus, it is straight forward to show that ∀� ≥
��: 

h�µ���h� = 1a ª1a � 	�µ���W
��� «�µJ�¬®¯~°~JC¥�°

� 	�µJ�	r�W
��� = 0   (3.27)  

A possible candidate protocol that can be used is given as follows: 

z� = −	��Jµ � �� 	� , 	�!F	� − 	�H�∈��
 (3.28) 
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Substituting (3.1) and (3.28) into (3.27) yields an equation like (3.25) which can be stacked 

in a more compact form as (3.12) and (3.13) which, again, indicates that the 1m
& =
i1 1 ⋯ 1lW×� is simply a left eigenvector of �
�	
� given in (3.5). 

Remark 3.5: It should be noted that even though (3.11) and (3.12) are mathematically 

equivalent, yet they may direct the mind into two different directions to find a solution. 

Notice that (3.11) is more general yet less structured once compared to (3.12). Moreover, 

(3.12) can be brought into a specific structure that will facilitate a systematic way of 

designing �� functions and to maintain a visible relation with the already available theories 

of fixed graphs in the related literature. More discussion regarding these issues will be 

provided in the coming section. 

  Observing (3.26), the value of the order-5 can be chosen as 1, 0 and -1 such that the 

arithmetic, geometric and harmonic means are obtained, respectively [86]. Moreover, if the 

value of the order-5 is chosen as 2, ∞ and −∞, then quadratic mean, maximum and 

minimum of 	
��� can be obtained, respectively [86]. 

Remark 3.6: Even though the previous protocols are available in the literature, like [94] 

for instance,  their derivations are extended herein to the case of state-dependent Laplacian 

matrices. 

Remark 3.7: The conditions obtained mainly in (3.11), (3.12), and (3.13) motivates the 

framework proposed in this thesis where the concept of eigenvalues and eigenvectors were 

borrowed from linear algebra to provide some important results in the domain of MAS on 

a graph. Following the same concept, nonlinear eigenvalues and eigenvectors are used 

herein to extend the work for state-dependent graphs while maintaining a clear and 

structured approach for the design process. 
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3.2 The proposed framework 

In this section, the proposed framework consisting of a combination of two design steps is 

presented. The two steps are the nonlinear eigenvalue-based and the first integral design 

approaches. Using this framework, various semi-linear and nonlinear protocols can be 

designed in a systematic way while keeping a clear connection between state-dependent 

and fixed Laplacian matrices associated with the same graph topology. This relation can 

be realized through the preservation of the eigenvalue and eigenvector concepts between 

the two types of the Laplacian matrices. This preservation is also projected onto keeping 

certain properties of the fixed Laplacian matrices even after upgrading them to be state-

dependent ones. This implies preserving the M-matrix properties which plays a significant 

role once the stability and convergence of the designed protocols are considered. Other 

details are provided in the coming subsections. 

3.2.1: Nonlinear Eigenvalue-based Design Approach 
Here, the main tool used in forming the proposed framework is presented. First, the desired 

properties of the state-dependent Laplacian matrix to retain are stated followed by the 

introduction of nonlinear eigenvalues and eigenvectors. 

3.2.1.1: Properties of the state-dependent Laplacian matrix 

To ease the analysis of the stability of (3.5) and to preserve a clear link with the fixed 

Laplacian matrices-related theories, the following structure of the state-dependent 

Laplacian matrix is proposed: 

1- ℒ�	
� must be a point-wise, i.e., ∀	
���, singular M-matrix. 

2- ℒ�	
� must have the same spectral properties of the desired fixed Laplacian matrix at 

consensus and at origin if the latter is included in the equilibria set. 
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3- ℒ�	
� must always have the �� = 0 as a simple eigenvalue irrespective of the states 	
��� 

values, i.e., the graph must always be connected which implies also that |��| > 0,
∀	
���. 

Definition 3.3: An M-matrix · is a diagonally dominant matrix with non-positive off-

diagonal elements which can be given mathematically as follows [13]: 

· = q< − ¸, q ≥ ¹�¸�, ¸ ≥ 0 

where: < is the identity matrix and ¹�¸� is the spectral radius of ¸. If q > ¹�¸�, then · is 

called a nonsingular M-matrix. If q = ¹�¸�, then · is a singular M-matrix. The general set 

of positive numbers, denoted by _W×W, has q > 0. Thus, · ⊂ _W×W. 

A Laplacian matrix is an M-matrix having both the rows and columns sum up to zero if it 

is associated with an undirected graph. Thus, ℒ� ∈ · ⊂ _W×W.  

Note 3.1: It will be assumed that the edges of the graph of concern, represented by ℒ�, have 

only 0-1 weights and the �� functions can be written as linear combinations of the elements 

of  ℒ� unless otherwise clearly stated. In other words, ℒ�	
� can be written as a linear 

combination of another state-dependent Laplacian matrix and ℒ�, i.e., ℒ�	
� = ℒ»�	
� + �ℒ�, 

if the needed conditions are satisfied. In such a case, it is possible to have �� ≥ 0 and to 

obtain a prescribed connectivity performance under state-dependent networks as will be 

shown later. Figure 3.1 shows a regular undirected link and Figure 3.2 shows how an edge 

may look like under such circumstance where the parallel state-dependent edge will 

increase the strength of coupling between the connected agents if �� > 0 and thus might 

increase the MAS convergence rate. So, practically speaking, this means that the link is 

always ensured. However, this might be possible when designing a controller rather than 

modeling a realistic communication network which may break under some conditions.   
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Figure 3.1. A regular undirected link. 

 

 

Figure 3.2. The effect of having ℒ�	
� linearly dependent on ℒ� . 

In general, the previously stated properties can be achieved using carefully crafted 

�� 	� , 	�! functions in such a way that when time is sufficiently large, the state-dependent 

Laplacian matrix will converge to the desired fixed Laplacian matrix designed to meet the 

requirements of a specific task. 

Unlike [63] where the desired fixed Laplacian matrix is explicitly entered in the protocol 

designed, the structure of the proposed state-dependent Laplacian matrix can embed the 

desired fixed Laplacian matrix through  �� 	� , 	�! functions implicitly- mainly- if they are 

nonlinear. 

Referring back to (3.5), it is clear that �
�	
� is a nonlinear vector-valued function that 

exhibits a semi-linear structure, namely −ℒ�	
�	
���, under the proposed protocol shown in 

(3.3). So, to obtain the desired properties of the state-dependent Laplacian matrix, one must 

ensure the following: 

1- The �� 	�, 	�! ≥ 0, ∀., /. This is to ensure the properties of M-matrices, considering 

Note 3.1. 

2- The �� 	�, 	�! must be locally Lipschitz.  
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3- The ones vector, i.e., 1m
, must be a left eigenvector associated with the simple eigenvalue 

�� = 0 of �
�	
�, i.e., each column in the Laplacian matrix must sum up to zero. In other 

words, the matrix must be symmetric. This agrees with (14). 

4- The spectrum of ℒ�	
� must be such that �� = 0 < |��| ≤ ⋯ ≤ |�W|, ∀	
 ∈ Ω ⊆ ℜW 

which indicates that the underlying undirected graph must always be connected. More 

details will be provided when the concept of prescribed connectivity is presented. 

It is well-known that the concepts of eigenvalues and eigenvectors are associated with 

linear systems. However, these concepts got extended to include nonlinear functions as can 

be found in [95]–[99]. 

According to [95], the nonlinear left eigenvalue problem can be given as follows: 

jr
 = ¿j
¿	
 �
�	
� = ��	
�j
 − À¿�
�	
�¿	
 Á& j
 (3.29) 

where: j
 is the associated left eigenvector and in general it is a function of the states, i.e., 

j
�	
�. Similarly, the nonlinear right eigenvalue problem can be given as follows [95]: 

1r
 = ¿1
¿	
 �
�	
� = −��	
�1
 + ¿�
�	
�¿	
 1
 (3.30) 

Before solving (3.29), the relation between the fixed and state-dependent Laplacian 

matrices should be made clear. Since a fixed Laplacian matrix associated with a specific 

graph- whether directed or undirected- is a singular M-matrix, the resulting equilibria set, 

or the agreement space [89], can be characterized as follows:  

Â = F	
��� ∈ ℜW | 	
 = ?1m
H (3.31) 

where ? ∈ ℜ is the collective decision of the group of agents [89], which is assumed to be 

time-invariant. 
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It is desirable, as per the proposed approach, to establish the relation between the fixed and 

the state-dependent Laplacian matrices not only about the origin and consensus but also 

for the whole state space, if applicable. The fixed Laplacian matrix ℒ� can be viewed as a 

special case of the state-dependent Laplacian matrix ℒ�	
� at the equilibria set. However, 

certain attributes of the origin under ℒ�	
� will be more difficult to investigate once 

compared to the case under ℒ� like the region of attraction and stability where initial 

conditions and �� functions play significant roles in the consensus problem as will be 

investigated later. Mathematically, it is desired to have: 

¿�
�	
�¿	
 |Â = −ℒ�	
�|Â  = −ℒ� (3.32) 

where ℒ� is imposed originally by the designer based on the ultimate application objectives. 

By design, a connected ℒ� has �� = 0  as a simple eigenvalue with j
� = 1m
? as an associated 

linear left eigenvector. Considering the previous discussion, (3.29) can be given as follows 

when generally evaluated at ���	
� = 0 and j
�	
� = 1m
? ∀	
 ∈ Ω ⊆ ℜW: 

À¿�
�	
�¿	
 Á& 1m
 = 0m
 (3.33.1) 

¿�
�	
�¿	
 1m
 = 0m
 (3.33.2) 

Note 3.2: If both (3.33.1) and (3.33.2) are satisfied, then ���	
� = 0 will be a nonlinear 

eigenvalue for both in-system and out-system as will be explained later in this chapter. 

Consequently, both systems will also have j
�	
� = 1m
? ∀	
 ∈ Ω ⊆ ℜW and therefore they 

will possess the same invariant quantity ∀	
. The in-system is related to the in-

neighborhood of agents in the MAS while the out-system is related to the out-neighborhood 

of agents in the same MAS. In simpler words, the Jacobian will be symmetric and the in-
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flow and the out-flow of information at each agent level will be the same. If only (3.33.1) 

is satisfied, then the out-flow of agents may not reach average consensus in the out-system 

∀	
. Similarly, if only (3.33.2) is satisfied, then the in-flow of agents may not reach average 

consensus in the in-system ∀	
. However, since (3.32) is forced by the proposed framework, 

the two systems will achieve the same average consensus value inside Â.   

Theorem 3.3: A sufficient condition to have j
& = 1m
& as a nonlinear left eigenvector 

associated with ���	
� = 0 ∀	
  is to design the �� 	�, 	�! functions as follows: 

¿�� 	�, 	�!¿	� = ¿�� 	�, 	�!¿	� , ∀., / ∈ �� , 	
��� (3.34) 

Proof: Let the dynamics of a single-integrator MAS over a state-dependent graph 

Laplacian be given as follows, assuming a fully connected complete undirected graph: 

	r
��� = −ℒ�	
�	
��� = �
�	
� (3.34.1) 

	r
��� =
ÃÄÄ
ÄÄ
ÄÄÄ
ÄÅ −	� � ��

W
��� + 	��� + ⋯ + 	W�W

	��� − 	� � ��
W

���,�Æ� + ⋯ + 	W�W⋮
	�W� + 	�W� + ⋯ − 	W � W�

WJ�
��� ÇÈÈ

ÈÈ
ÈÈÈ
ÈÉ
 (3.34.2) 

So, the Jacobian of �
�	
� is evaluated as follows: 

¿�
�	
�¿	 =
ÃÄÄ
ÄÅ¿��¿	� ⋯ ¿��¿	W⋮ ⋱ ⋮¿�W¿	� ⋯ ¿�W¿	WÇÈÈ

ÈÉ
 (3.34.3) 
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Now, solving (3.33.1) is equivalent to solving the following equations, which states that 

any /67 column in the Jacobian must sum up to zero: 

� ¿��¿	� = 0W
��� , ∀/ = 1,2, ⋯ , a (3.34.4) 

Since all columns must satisfy (3.34.4), the first column is only solved as follows: 

� ¿��¿	� = ±− � ��
W

��� + Ê� ¿��¿	�
W

��� �	� − 	��Ë²W
��� + ±�� + Ê � ¿��¿	�

W
���,�Æ� �	� − 	��Ë² + ⋯

+ ±W� + Ê� ¿W�¿	�
WJ�
��� �	� − 	��Ë² = 0 

 (3.34.5) 

Which can be simplified as follows: 

� ¿��¿	� = Ì− � �� + �� + ⋯ + W�
W

��� ÍW
��� +

ÎÏÏ
ÐÏ
ÏÑÊ� ¿��¿	�

W
��� �	� − 	��Ë + Ê � ¿��¿	�

W
���,�Æ� �	� − 	��Ë + ⋯

+ Ê� ¿W�¿	�
WJ�
��� �	� − 	��Ë ÒÏÏ

ÓÏ
ÏÔ

= 0 

 (3.34.6) 

The first bracket in (3.34.6) is equal to zero- by forcing (3.14). The second bracket however 

can be made equal to zero ∀	
 only if certain conditions are forced. Since, by design, a 

given �� function depends only on the states of the .67 and the /67 agents, one possible 

sufficient condition to satisfy (3.34.6) is by forcing: 

¿�� 	� , 	�!¿	� = ¿�� 	�, 	�!¿	� , ∀., / ∈ �� , 	
��� 
 

∎ 
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It is worth noting that under the proposed framework, (3.34) presents a sufficient condition 

to reach consensus among connected agents of dynamics given in (3.1) under network 

protocol (3.3). This is totally a different approach once compared to [59] in which a similar 

problem was handled. In [59], a general class of consensus protocols of single-integrator 

MAS acting over static and fixed directed graphs under state-dependent combination of 

relative positions of an agent neighbors is handled. Sufficient conditions for convergent 

consensus protocols were provided based on the contracting properties of the convex hull 

initially containing agents. A sufficient condition that can be used to force em
 = 1m
 as a 

nonlinear right eigenvalue problem is given by the following theorem. 

Theorem 3.4: A sufficient condition to have em
 = 1m
 as a nonlinear right eigenvector 

associated with ���	
� = 0 ∀	
  is to design the �� 	�, 	�! functions as follows: 

¿�� 	� , 	�!¿	� = − ¿�� 	�, 	�!¿	� , ∀., / ∈ �� , 	
��� (3.35) 

Proof: Equating the sum of each .67 row of the Jacobian given by (3.34.3) to zero, yields:   

� ¿��¿	� = 0W
��� , ∀/ = 1,2, ⋯ , a (3.35.1) 

Since all rows must satisfy (3.35.1), the first row is only solved as follows: 

� ¿��¿	� =W
��� ±− � ��

W
��� + Ê� ¿��¿	�

W
��� �	� − 	��Ë² + ��� + ¿��¿	� �	� − 	��×

+ ⋯ + ��W + ¿�W¿	W �	W − 	��× = 0 

(3.35.2) 

One sufficient condition to equate (3.35.2) to zero is by forcing (3.35). 

∎ 
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Each edge on the graph connecting two agents may have a different �� function. This 

possibility will enrich the behavior of the MAS in which neighbors may behave differently 

towards each other not only based on their relative distance for example, but also due to 

other designed properties like hierarchical roles in a specific application. This is depicted 

in Figure 3.3 and is given mathematically as follows: 

z� = − � ���  	� , 	�!F	� − 	�H�∈���
− ⋯ − � ��Ø 	� , 	�!F	� − 	�H�∈��Ù

 (3.36) 

where: ���, � = 1,2, ⋯ , Ú are the neighborhoods defined such that �� =
��� ⋃ ��� ⋃ ⋯ ��Ø. In general, under behavioral control, it might be desirable to directly 

affect the behavior of an agent towards one of its neighbors based on the information 

available to the agent not only from that individual neighbor but also from agents in their 

common neighborhood as well. In such a case, the �� functions- considering Note 3.1- can 

be written as follows: 

��� }	� , 	� , 	Ü∈��Ý� = Þ��� ≥ 0, / ∈ ���0, / ∉ ��� (3.37) 

where: ��� : ℜ��Ý → ℜß�. 

Remark 3.8: In the following, the �� functions are assumed to be given as ��: ℜ� → ℜ�� 

unless otherwise explicitly stated. 

Note 3.3: The stability of the nonlinear system (3.5) near the equilibria set Â, given in 

(3.31), cannot be investigated using the linearized version (3.32) in which the Jacobian 

evaluated at the equilibria set is negative semi-definite with simple zero eigenvalue as 

forced by design and thus the stability test using linearization fails.  
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In a later section, the stability of (3.5) will be investigated using mainly LaSalle’s 

invariance principle and the properties of M-matrices. If the necessary condition, i.e., �� >
0, ∀., /, 	
���, and the sufficient conditions (3.14) are met, then the protocols (3.3), (3.20), 

(3.24) and (3.28) can locally and asymptotically achieve their corresponding consensus 

types. Moreover, if the necessary condition (3.32) and the sufficient condition (3.34) are 

met, then the previous behaviors can be guaranteed globally for any initial conditions- 

within the domain of interest- under the previously stated state-dependent protocols.  

 

Figure 3.3. MAS with multiple neighborhoods. 

Note 3.4: The proposed framework prohibits the state-dependent weights from altering the 

consensus value, obtained using ℒ�, under undirected graphs with 0-1 weights.  

Remark 3.9: Even though the nonlinear eigenvalues are variant when their associated 

nonlinear eigenvectors are multiplied by scalar, i.e., ?, it was shown in [95] that as the 

origin being an equilibrium point, ��0m
� will be the same. Moreover, since ? is a scalar 

independent of the states, the eigenvector  j
 = 1m
? is still associated with ���	
� = 0 of ℒ8 

∀	
 and it is the only left eigenvector associated with it due to the structure of the Jacobian 

imposed by the framework. 

3.2.1.2: Average consensus value of MAS over state-dependent Laplacian matrix 

The �� = 0 eigenvalue and its associated left eigenvector are very important in evaluating 

the consensus value of the MAS over fixed directed and undirected communication graphs. 
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Fortunately, due to the proposed framework presented in this thesis, this will be also the 

case for state-dependent communication graphs.  

In this subsection and the one that follows, it is desired to use the concept of eigenvalue 

and eigenvector to prove the motion-invariance behavior of the MAS under the previously 

designed protocols and to derive the consensus value achieved by the agents when time is 

significantly large. This is given by the following theorem. 

Theorem 3.5: The initial conditions average value of a single-integrator MAS who is 

acting over connected undirected graphs and controlled using semi-linear state-dependent 

consensus protocols is time-invariant if and only if 1m
& is a nonlinear left eigenvector 

associated with ���	
� = 0 ∀	
 and moreover, the average value is given as follows: 

�� =  1m
&	
����!/a (3.38) 

Proof: Let ' = j
&	
 be the motion constant [9] of (5). So: h'h� =  jr
&	
 + j
&	r
! (3.38.1) 

Substituting (5) and (29) into (38.1), yields: 

h'h� = áÊ��	
�j
�	
� − À¿�
�	
�¿	 Á& j
Ë& − j
&ℒ�	
�â 	
��� = 0 (3.38.2) 

In state-dependent connected undirected graphs and balance digraphs, each row and 

column sum up to zero ∀	
��� considering (3.14), (3.34) and (3.35). Thus, �� = 0 is always 

a simple eigenvalue and one eigenvector associated with it is j
& = ?1m
& along which the 

solution is desired to evolve. So, (3.38.2) can be rewritten as follows: 

h'h� = ?1m
& Ì− ¿�
�	
�¿	 	
��� + �
Í = 0 (3.38.3) 
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Which can be solved using the trivial solution 	
��� = 0m
, or at consensus 	
��� = 1m
?, ∀� ≥
�ã°~8¥~8x8. So, to keep the consensus value ? time-invariant ∀� ≥ ��, one sufficient 

condition is given in (3.34) that ensures 1m
& to be a left eigenvector of �
 associated with 

�� = 0. Notice that forcing (3.35) is unnecessary. Thus, the value of ? can be obtained as 

follows: 

'���� = j
& 	
����!	
���� = ?1m
&	
���� (3.38.4) 

'��ä� = j
& 	
��ä�!	
��ä� = 1m
&1m
?� = a?� (3.38.5) 

Since '���� = '��ä�, solving for ? using (3.38.4) and (38.5) yields: 

? =  1m
&	
����!/a (3.38.6) 

Which equals (3.38). Note that a connected undirected graph has ���	
� > 0 ∀	
  and 

therefore ���	
� = 0 ∀	
 is simple. 

∎ 

Remark 3.10: Under the proposed protocol given by (3.3), the MAS connected via an 

undirected state-dependent graph has a rich behavior by which consensus value is reached 

at each time instant; being time-invariant. This behavior enables the agents to 

accommodate any temporary disturbances acting on a portion of the connected agents in a 

way that maintain the consensus value. 

3.2.1.3: Other types of MAS consensus over state-dependent undirected graphs 

The results obtained using protocol (3) can be extended to include other types of consensus- 

stated in section II- using a modified version of it given as follows:  

z� = −$�	�� � �� 	� , 	�!F	� − 	�H�∈��
 (3.39) 
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where: $ > 0 is a real and fixed scalar that determines the speed of convergence and �	�� 

is given as 1, 	�, 	�� and 	��Jµ to achieve arithmetic, geometric, harmonic and the power 

mean-of-order-5, respectively. Note that $ value will not affect the achieved consensus 

value. 

Thus, the global dynamics of the MAS of a connected single-integrator dynamical systems 

under (39) can be given as follows: 

	r
��� = −$å�	
�ℒ�	
�	
��� (3.40) 

where: å�	
� is a positive definite matrix that embeds the consensus type desired and is 

given as follows: 

å�	
� = ¢�	�� ⋯ 0⋮ ⋱ ⋮0 ⋯ �	W�£ (3.41) 

Since å�	
� is a positive definite matrix- by design requirements explained previously-, it 

will not change the null space of ℒ�	
�	
 = �
�	
� and its associated eigenvectors thus the 

same conditions given by (3.34) are sufficient to achieve all the previous types of consensus 

over a state-dependent undirected graph using the modified protocol (3.39). This is stated 

by the following Theorem. 

Theorem 3.6: The MAS given by (3.40) acting over connected undirected graphs and 

controlled using semi-linear state-dependent consensus protocols has the arithmetic, 

geometric, harmonic and the power mean-of-order-5 means of the agents initial conditions 

as time-invariant quantities if and only if 1m
& is a nonlinear left eigenvector of (3.5) 

associated with ���	
� = 0 ∀	
 and å�	
� is chosen appropriately. 

Proof: Consider the geometric mean given in (3.18), which can be rewritten as follows 

[100]: 
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�§��� = exp �j
&ç
� (3.42) 

where j
& is the normalized nonlinear left eigenvector of �
�	
� associated with the simple 

eigenvalue ��	
� = 0 and ç
 = i¦p�	��, ¦p�	��, ⋯ , ¦p�	W�l&. The network protocol given in 

(20) can be used to achieve (3.42). 

Taking the time-derivative of (3.42) and equate it to zero, one can show that- using (3.29) 

and (3.39) with ��	�� = 	�- the geometric mean is time-invariant if and only if the  j
& =
?1m
& is a left eigenvector of (3.5), i.e., ℒ�	
�	
��� = �
�	
�, associated with ��	
� = 0. This 

can be shown from the following: h�§h� = Fjr
&ç
 + j
&çr
Hexp �j
&ç
� = 0 
(3.42.1) 

h�§h� = j
& Ì− ¿�
�	
�¿	 ç
 + �
Í = 0 (3.42.2) 

Substituting j
 = ?1m
 in (3.42) and evaluate it at �� and �ä, the consensus value ? can be 

found as follows: 

�§���� = © 	�ã����W
���  (3.42.3) 

�§��ä� = ?Wã (3.42.4) 

Since �§���� =  �§��ä�, solving for ? using (3.42.3) and (42.4) yields: 

? = ¨© 	�����W
���

�
 (3.42.5) 

Which equals (3.18).  

In general, let the weighted power, i.e., generalized, mean-of-order-5 be given as follows 

∀� ≥ ��, 	���� > 0   ∀.: 
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�µ��� = ¨1a � j�	�µ���W
���

¶ = 1	5 è¦p ³j
&ç
a ´5 é   (3.42.6) 

where: j
 = ij�, ⋯ , jWl& and ç
 = S	�µ, ⋯ , 	Wµ T&
   

Taking the time derivative of (3.42.6) and equate it to zero, yields: 

h�µh� = a  jr
&ç
 + j
&çr
!5�j
&ç
� �µ��� = 0 (3.42.7) 

Now, by substituting (3.1) and (3.39) into (3.42.7)- after choosing the desired type of 

consensus in �	�� as shown previously-, yields: 

çr
 = 5�
 (3.42.8) 

where: �
 is shown in (3.5). Thus, (3.42.7) can be given as: 

h�µh� = j
& Ì− ¿�
�	
�¿	 ç
 + 5�
Í = 0 (3.42.9) 

Which simply indicates that j
&, for the undirected graphs the j
& = ?1m
&, must be a left 

eigenvector of �
 which agrees with (3.55). Note that a connected undirected graph has 

���	
� > 0 ∀	
  and therefore ���	
� = 0 ∀	
 is simple. 

                                                                                       ∎ 

3.2.2: First Integral Design Approach 
In this subsection, the second designing approach included in the proposed framework is 

presented. Recalling Remark 3.5, this method is considered less structured since it deals 

directly with the solution of the desired consensus value as being time-invariant, i.e., as a 

first integral, motion constant or conserved quantity, to facilitate designing the required 

protocols. Mainly, this method is suitable to deal with situations where energy of the 
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mechanical systems, for example, is said to be conserved. Mathematically, a first integral 

of a differential equation is a special function- say <�	
�: ℜW →  ℜ- once evaluated over the 

solution of that differential equation it proves to be constant. This last feature of the first 

integral function makes it suitable to be used as a designing tool as proposed in this 

framework in a way that we are forcing- rather than identifying- it as a first integral of 

mainly the N-identical single integrator MAS by choosing certain structures of the desired 

protocols, i.e., semi-linear or nonlinear, that ensures the problem to be solved in a 

distributed fashion. When the system of differential equations is of the first order, then a 

first integral is an algebraic relation that expresses the solution [101]. What was 

demonstrated earlier in this thesis starting with (3.6) up to (3.28) was a realization of the 

first integral designing method and the way it can be integrated with the nonlinear 

eigenvalue-based method under the proposed framework. However, in this subsection, the 

first integral design approach will be discussed. 

In many applications, the first integral and its modified version, i.e., the first integral 

increment, play significant roles in investigating the behaviors of periodic and chaotic 

flows in 2-dimensional Hamiltonian systems with a time periodically perturbed vector field 

once the initial conditions are specified [102]. Also, the use of first integral in studying the 

behavior of discontinuous dynamical systems in different domains of the state space is 

evident such that when the first integral quantity is determined for each sub-domain, the 

flow in the corresponding sub-domains can be measured [103]. In the area of dynamical 

MAS on graphs, the use of the first integral is not new, see for example [104], and also is 

widely used, however in most cases referred to implicitly or explicitly as being a time-

invariant [53] or a conserved [14] quantity. 
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In this thesis, a unifying framework that includes various results available in the literature 

with the ability to extend them further without much effort to study other types of behaviors 

is presented. Interestingly, the first integral design method can be easily used to deal with 

fixed, time-varying or state-dependent graph topologies as well as with the design of linear, 

semi-linear and nonlinear network protocols. For example, In [105] the first integral 

method was used to deal with non-autonomous cooperative systems. In this thesis, mainly 

the state-dependent graphs and the design of semi-linear and nonlinear network protocols 

will be handled. Other cases will be the subject of a future work. 

To mathematically demonstrate the first integral design method, let the result given by 

(3.10) be rewritten as follows: 

ê<�	
����i	r�, 	r�, ⋯ , 	rWl& = 0 (3.43) 

where: ∇<�	
���� = i1 1 ⋯ 1l denotes the gradient of the desired first integral of the 

autonomous system 	r
��� = �
�	
�. 

Definition 3.4: [106] A first integral of an autonomous system is a real-valued function 

<�	
���� which is constant on solutions. 

Definition 3.5: [106] A system that does have a nontrivial first integral is a conservative 

system. 

Obviously, any constant function can be considered as a trivial first integral. Definition 3.4 

suggests that all solutions 	
��� are constrained to move along the same level set- defined 

by the initial conditions- say of <�	
���� = ������ ∀� ≥ ��. Due to the invariance property 

of the first integral, one can write the following using the chain rule: hh� <�	
���� = ∇<�	
����. 	r
��� = [�
�� = 0 (3.44) 
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where: [�
�� is the Lie derivative, i.e., the directional derivative of ����� in the direction 

of the vector field �
�	
�. <�	
� always exists in a neighborhood of a point where �
�	
� is 

Lipschitz. Moreover, if �
 is globally Lipschitz, then <�	
� will be unique and global as well. 

It should be noted that the first integrals form a subset of the so-called constants of motion; 

since the former do not depend explicitly on time [107]. 

3.2.3: Relation between first integral and nonlinear eigenvalue approaches 
In general, the nonlinear eigenvalue and eigenvector concepts presented in this thesis are 

special cases of their general concepts widely used in various applications like nonlinear 

accessibility/observability of nonlinear systems [108] or solving the differential Riccati 

equation [109]. Whenever the Jacobian matrix is used in the nonlinear eigenvalue 

problems, as in (3.29) and (3.30) for example, then they relate to invariant co-distributions 

[95]. Using the first integral design approach to achieve a desired behavior- namely: mean 

consensus, it is possible to design the network protocols and therefore the structure of the 

nonlinear mapping �
 appearing for instance in (3.5). Doing so, the nonlinear eigenvalue 

approach can be used such that the elements of �
 are customized; to ensure that ���	
� = 0 

always corresponds to the desired constant of motion and thus the solution 	
��� evolves as 

desired along j
& = 1m
&. The same thing can be found in quantum mechanics, for example, 

where the eigenvalue equations help in finding the states corresponding to the constants of 

motion.  

One major implication of (3.33.1), if satisfied, is that the consensus type is guaranteed to 

be achieved globally irrespective of any non-persistent disturbance, thus the notion of 

robust behavior can be used. While depending only on (3.44) to achieve consensus may 

not be sufficient because even a non-persistent disturbance can force the MAS, or at least 



70 
 

a portion of it, to leave the subset Ω formed by the initial conditions. In other words, 

(3.33.1) guarantees that the constant of motion is globally associated with  ���	
� = 0 while 

(3.44) only guarantees that near the equilibria set. Figure 3.4 shows an example of three 

agents willing to come to consensus in the 3D space over Ω ⊆ ℜì. 

 

Figure 3.4. First Integral subset formed by the initial conditions of three dynamical agents in 3D space. 

Next, the use of the proposed framework to design nonlinear network protocols is 

demonstrated. 

3.2.4: Nonlinear Distributed Consensus Protocols over undirected graphs 
using the proposed framework 
Here, additional nonlinear distributed protocols will be derived. Unlike (3.3), which is a 

semi-linear protocol, the newly derived protocols will allow for completely nonlinear 

relations between the states used. Notice that in (3.3) states are used- multiplied by �� 

functions- in a linear fashion to facilitate building the state-dependent Laplacian matrix as 

was shown for example in (3.5). This simply suggests that only the edges weights of the 

communication graph are, in general, nonlinearly dependent on the states as explained 

before. However, this should not be the case anymore. 

By and large, nonlinear protocols are important due to the true nature of applications that 

requires nonlinear relationships among parameters and variables. Moreover, nonlinear 

protocols can be used to facilitate rich behaviors that cannot be- in many cases- achieved 

using their linear counterparts. Dealing with bounded inputs and generating dynamical 
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friendly signals might inspire the use of such protocols. In the state-dependent semi-linear 

network protocols, the concept of Laplacian matrix is preserved, thanks to the diffusive-

coupling used, which is not the case in the nonlinear version of these protocols. Therefore, 

special attention must be taken when dealing with this version of protocols. Next, some 

major classes of such protocols are suggested. The main goal is to investigate the possibility 

of achieving different types of consensus using general classes of nonlinear protocols and 

to show the necessary and sufficient conditions when applicable. 

Remark 3.11: Note that the edges weights can be chosen to be state-dependent either 

separate from or totally fused within the nonlinear functions used. From analysis point of 

view, the choice made will affect mainly the proofs methodologies. 

3.2.4.1: Class 1: Consider the nonlinear consensus protocol given as follows: 	r� = z� = $ � í�� 	� , 	�!�∈��
= �� (3.45) 

where: $ > 0 is a real and fixed scalar that determines the speed of convergence. í���0� =
0. Such a protocol was used in [110] and [52]. By substituting (3.45) into (3.44), we may 

write the following: 

� í�� 	�, 	�!�∈��
+ ⋯ + � íW� 	W , 	�!�∈��

= 1m
&�
 = 0 (3.46) 

where: �
 = i��, ��, ⋯ , �3l& with �� given by (3.45). Usually, such equations can be solved 

using physics, educated guessing or luck [106]. Assuming an undirected communication 

graph, one candidate solution may be characterized as follows, ∀., / ∈ ��, 	
��� ∈ Ψ ⊆ ℜW:  

í�� 	� , 	�! = −í�� 	� , 	�!,   (3.47) 
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which means that the functions used must be anti-symmetric. This is in agreement with 

what was proposed in [94].  

At this point, it is important to notice that either the function used, i.e., í��, is selected 

based on the application or the desired behavior and then Ψ follows or the function used is 

designed such that it is defined for a specific domain Ψ of interest. In some cases, both 

conditions must be satisfied as found in [56], for example.  

Using the nonlinear eigenvalue-based approach, the necessary conditions needed for (3.45) 

to achieve the average consensus over ï can be given as follows- obtained by solving 

(3.33.1):  

¿í�� 	�, 	�!¿	� = − ¿í�� 	� , 	�!¿	� , ∀., / ∈ ��, 	
��� ∈ ï (3.48) 

If the nonlinear right eigenvector 1
 = 1m
 is to be forced as well, then the following 

conditions must be satisfied- obtained by solving (3.33.2): 

¿í�� 	�, 	�!¿	� = − ¿í�� 	�, 	�!¿	� , ∀., / ∈ �� , 	
��� ∈ ï (3.49) 

By making use of the following lemma, other types of mean consensus can be achieved 

using (3.45). 

Lemma 3.1: The following Class 1 nonlinear protocol can be used to achieve various types 

of consensus over connected undirected graphs if and only if 1m
& is a nonlinear left 

eigenvector of (3.46) associated with ���	
� = 0 ∀	
 and å�	
� is chosen appropriately. 

z� = $�	�� � í�� 	�, 	�!�∈��
 (3.50) 

Proof: See (3.42.1) -(3.42.9) with �
 given as in (3.46). 

            ∎ 
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As an example, consider the following entropic protocol that was used to achieve the 

geometric mean [56]: 

z� = −	� � O��¦p À	�	�Á�∈��
 

  ∀., / ∈ ��, 	
���� ∈ ℜ��W , 	
��� ∈ ð ⊆ ℜ��W  

(3.51) 

where: O�� = O�� is the weight of the edge connecting the .67 and /67 agents- assumed to 

be a 0-1 weight- and ¦p�∙� is the natural logarithm function.  

3.2.4.2: Class 2: Consider the nonlinear consensus protocol given as follows: 	r� = z� = −$ � Fñ�	�� − ñ 	�!H�∈��
= �� (3.52) 

where: $ > 0 is a real and fixed scalar that determines the speed of convergence. ñ�0� =
0. Such a protocol was used in [52] and [51].  

Protocol (3.52) deals with a 0-1 weight for an edge explicitly by depending on ��. Now, 

the derivation of the previous consensus types for a MAS of single-integrator agents 

connected using (3.52) over mainly an undirected graph is presented.  

 Different Types of Mean Consensus  

Using the first integral approach, it is easy to show the following: 

� Fñ�	�� − ñ 	�!H�∈��
+ ⋯ + � Fñ�	W� − ñ 	�!H�∈��

= 1m
&�
 = 0 (3.53) 

which is valid for a general ñ�	�� function. However, the function structure must ensure 

the stability of the MAS. The same result about ñ�	�� can be obtained by solving (3.33.1) 

which indicates that the nonlinear left eigenvector associated with ��	
� = 0, i.e., j
& =
?1m
&, is forced which is not the case for the right eigenvector unless ñ�	�� = 	� resulting in 
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the standard protocol used with fixed Laplacian matrices, in general. One example of (3.52) 

can be found in [56] and is shown here as follows: 

z� = � O�� }¦p 	�! − ¦p�	����∈��
, ∀., /, 	
��� ∈ ℜ��W  (3.54) 

which is used to achieve average consensus over an undirected graph. Multiplying and 

dividing by  	� − 	�! yields a �� = }¦p 	�! − ¦p�	���  	� − 	�!ò , 	
 ≠ 0m
 ∀� ≥ �� function 

equal to the inverse of the logarithmic mean which is symmetric and positive in both 	� 
and 	� and therefore  j
& = ?1m
& can be forced as a left eigenvector- but not the right 

eigenvector 1
 = 1m
- of the resulting ℒ�	
� in the semi-linear protocol. This simple 

transformation can be used in most classes of nonlinear protocols presented herein which 

makes them special cases of the semi-linear protocols in terms of their design and stability 

analysis.  Another way to write (3.52) in a semi-linear form is given as follows: 

	r
��� = −$ℒ�ñ
�	
� = �
�	
� (3.55) 

Such a model was presented in [14]. Other types of consensus under (3.52) are guaranteed 

by the following lemma. 

Lemma 3.2: The following Class 2 nonlinear protocol can be used to achieve various types 

of consensus over connected undirected graphs if and only if �	�� is chosen appropriately. 

z� = −$�	�� � Fñ�	�� − ñ 	�!H,�∈��
   ∀., /, 	
��� ∈ ð ⊆ ℜW (3.56) 

Proof: Let �
 = iz�, ⋯ , zWl& where z� is given in (3.52). Clearly, 1m
& is always a left 

eigenvector of �
. So, the rest of the proof follows as in (3.42). 

∎ 
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From (3.56), it is obvious that both (3.51) and (3.54) belong to the same class, namely: 

Class 2, which is a general structure usually arises in chemical reactions, see [111] for 

example. 

3.2.4.3: Class 3: Consider the nonlinear consensus protocol given as follows: z� = $ � í�� }� 	�! − ��	����∈��
 (3.57) 

where: $ > 0 is a real and fixed scalar that determines the speed of convergence and 

í���0� = 0. Such a protocol was used in [94] where ��	��: ℜ → ℜ is differentiable and 

h��	�� h	�⁄  is locally Lipschitz and strictly positive. 

A similar version of (3.57) was used in [53] with ��	�� = 	�. Now, by using the first 

integral method, the sufficient conditions for (3.57) to be time-invariant over ð ⊆ ℜW will 

be given by algebraically solving: 

� í�� }� 	�! − ��	����∈��
+ ⋯ + � íW� }� 	�! − ��	W���∈��

= 0 (3.58) 

Assuming a 0-1 weighted undirected graph, (3.57) will be a candidate solution if the 

following conditions are satisfied: 

í�� }� 	�! − ��	��� = −í�� }��	�� − � 	�!� 

  ∀., / ∈ �� , 	
��� ∈ Ω 

(3.59) 

where í�� must be odd, continuous, locally Lipschitz, and strictly increasing [94]. One 

widely used example of (3.57) over the open interval }− ó� , ó�� is [56]: 

z� = � q.p 	� − 	�!�∈��
 (3.60) 
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The nonlinear protocol (3.60) can be used for phase averaging. Using the nonlinear 

eigenvalue-based design approach, the needed conditions to force the 1m
 as a nonlinear left 

eigenvector associated with ��	
� = 0 are listed as follows- irrespective of ��∙� ≠ 0: 

¿í�� 	� , 	�!¿	� = − ¿í�� 	�, 	�!¿	� , ∀., / ∈ �� , 	
��� ∈ Ω (3.61) 

Moreover, to force the 1m
 as a nonlinear right eigenvector associated with ��	
� = 0, the 

following conditions are needed when solving (3.33.2) ∀., / ∈ ��, 	
��� ∈ ℜW: 

h��	��h	� . ¿í�� 	� , 	�!¿	� = h� 	�!h	� . ¿í�� 	� , 	�!¿	�  (3.62) 

Noticeably, under (3.60) the resulting Jacobian is symmetric and acts as a negative singular 

M-matrix over }− ó� , ó�� which will ensure the stability of the resulting MAS as will be 

explained later. 

A generalized version of (3.57) to achieve several types of consensus is given by the 

following lemma. 

Lemma 3.3: The following Class 3 nonlinear protocol can be used to achieve various types 

of consensus over connected undirected graphs if and only if 1m
& is a nonlinear left 

eigenvector associated with ���	
� = 0 ∀	
 of the dynamics �
 = iz�, ⋯ , zWl& where z� is 

given in (3.57), and �	�� is chosen appropriately. 

z� = $�	�� � í�� }� 	�! − ��	����∈��
 (3.63) 

Proof: Which can be used if and only if the 1m
& is a left eigenvector of �
 = iz�, ⋯ , zWl& 

associated with ��	
� = 0 where z� is given in (3.57). This can be shown by following the 

same steps taken to proof (3.42) earlier. 
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∎ 

3.2.4.4: Class 4: Consider the nonlinear consensus protocol given as follows: z� = $�	�� � �� 	� , 	�!. í�� 	� , 	�!�∈��
 (3.64) 

where: $ > 0 is a real and fixed scalar that determines the speed of convergence and 

í���0� = 0. It is easy now to show that (3.64) can be used to achieve several types of 

consensus discussed previously, using the first integral method and solving (3.33.1), if and 

only if the following conditions are met: 

í�� 	� , 	�! = −í�� 	� , 	�!, ∀., / ∈ ��, 	
��� ∈ Ω ⊆ ℜW (3.65) 

�� 	� , 	�! = �� 	� , 	�!, ∀., / ∈ �� , 	
��� ∈ Ω ⊆ ℜW (3.66) 

Obviously, (3.3) is a special case of (3.64) where í�� 	�, 	�! = 	� − 	�. The consensus 

protocol (3.64) combines state-dependent weights of the communication links as well as a 

general nonlinear update of the states.  

To extend these results of, mainly, the arithmetic average consensus under (3.64) to the 

whole ï ⊆ ℜW space, the nonlinear eigenvalue-based design method is used. The 

following simple example shows the derivation steps in more detail. 

Example 3.1: Assume an undirected link exists among two single-integrator agents as 

shown in Figure 3.5. The overall dynamics of the MAS can be written as follows: 

t	r�	r�u = vz�z�w = t���	�, 	��. í���	�, 	�����	�, 	��. í���	�, 	��u = t����u = �
 (3.67) 

 

Figure 3.5. two single-integrator agents interacting over an undirected link. 
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Calculating the Jacobian of �
 in (3.67), yields:  

¿��¿	� = ¿��¿	� . í�� + ��. ¿í��¿	�  (3.67.1) 

¿��¿	� = ¿��¿	� . í�� + ��. ¿í��¿	�  (3.67.2) 

¿��¿	� = ¿��¿	� . í�� + ��. ¿í��¿	�  (3.67.3) 

¿��¿	� = ¿��¿	� . í�� + ��. ¿í��¿	�  (3.67.4) 

Having evaluated the Jacobian of �
, the 1m
 can be forced as a left/right eigenvector of (3.67) 

associated with ��	
� = 0. This is again to maintain the relation between the nonlinear 

function and the Laplacian matrix usually used in MAS design. To do so, both the row-

sum and column-sum of each row and column in the Jacobian must equate to exactly zero. 

Remark 3.12: Equating both the row-sum and column-sum of each row and column in the 

Jacobian to exactly zero is possible in single-integrator MAS because there are no actual 

dynamics associated with the agents. In other words, the agents can accelerate in each 

direction instantaneously. This will not be the case once real systems are examined, 

however the resulting protocols herein can be used for coordination [50]. A modified 

version of the proposed framework will be covered in later to deal with more realistic 

models of dynamical systems. Later in Chapter 5, an example that demonstrate the use of 

mainly the first integral method to deal with MAS consisting of N double-integrator 

systems will be presented where the angular momentum is used as the constant of motion. 

Doing the Math only for the first row of the Jacobian, i.e., by solving (3.33.2), and column, 

i.e., by solving (3.33.1), yields the following: 
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¿��¿	� + ¿��¿	� = í��. �¿��¿	� + ¿��¿	� × + ��. �¿í��¿	� + ¿í��¿	� × = 0 (3.67.5) 

¿��¿	� + ¿��¿	� = �¿��¿	� . í�� + ¿��¿	� . í��× + ���. ¿í��¿	� + ��. ¿í��¿	� × = 0 

 (3.67.6) 

From (3.67.5), a possible solution that yields a symmetric Jacobian can be given when: ¿��¿	� = − ¿��¿	� , ∀	
��� ∈ ℜ� (3.67.7) 

¿í��¿	� = − ¿í��¿	� , ∀	
��� ∈ ℜ� (3.67.8) 

As for (3.67.6), we may write a generalized solution as follows:  

�� = ��, ∀	
��� ∈ ℜ� (3.67.9) 

¿í��¿	� = − ¿í��¿	� , ∀	
��� ∈ ℜ� (3.67.10) 

and either: ¿��¿	� = − ¿��¿	� , ∀	
��� ∈ ℜ� (3.67.11) 

í�� = í��,            ∀	
��� ∈ ℜ� (3.67.12) 

or: ¿��¿	� = ¿��¿	� , ∀	
��� ∈ ℜ� (3.67.13) 

í�� = −í��, ∀	
��� ∈ ℜ� (3.67.14) 

In case that the state-update function, i.e., í��, is bounded to certain domain Ω ⊆ Ψ, we 

may rewrite the previous conditions, (3.67.7) – (3.67.14), by simply replacing ℜ� with Ψ ⊆
ℜ�. 
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Conditions (3.67.13) and (3.67.14) can be used along with (3.67.9) and (3.67.10) to extend 

the use of (3.60) to include state-dependent weights under the proposed framework and it 

is given as follows: 

z� = � �� 	�, 	�! q.p 	� − 	�!�∈��
, ∀., /, 	
��� ∈ Ψ (3.67.15) 

where Ψ: }− ó� , ó��.                                                                                                                □ 

3.2.4.5: Class 5: Consider the nonlinear consensus protocol given as follows: 

z� = " õ Ê$ � O�� 	� − 	�!�∈��
Ë (3.68) 

where: $, " > 0 are real and fixed scalars that determine the speed of convergence, 

õ 0m
! = 0 and O�� = O�� is the weight of the edge connecting the .67 and /67 agents- 

assumed to be a 0-1 weight. 

This class may represent very useful functions where the used inputs are bounded to certain 

values for instance. Consider the case when õ = �Gpℎ�∙�, i.e., the hyperbolic function, then 

" can represent the magnitude of the bounded input assuming its bound to be symmetric, 

i.e., ±". The �Gpℎ�∙� function is usually used as a smooth approximation of the q.p�∙� 

function to get rid of the chattering in the control signal usually available in sliding-mode 

controllers, in general. Interestingly, if $ is very large, then the resulting behavior of (3.68) 

is equivalent to a bang-bang controller. On the contrary, if it is too small, then the 

convergence will be too slow, however the control signal will be bounded. Therefore, $ 

should be somehow chosen in an appropriate way which is beyond the scope of this 

investigation. Using õ = �Gpℎ�∙�, (3.68) can be rewritten as follows: 
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z� = " �Gpℎ Ê$ � O�� 	� − 	�!�∈��
Ë = �� (3.69) 

It is straightforward to show that the Jacobian ( Y) of (3.69) is given as follows:  

Y = −$" h.G�iq1?ℎ�����, ⋯ , q1?ℎ���W�l� ℒ� ≤ 0 (3.70) 

where: �� = $ ∑ O�� 	� − 	�!�∈�� , ∀. = 1,2, ⋯ , a. 

Solving (3.33.1) and (3.33.2) using the Jacobian given in (3.70), it is evident that 1
 = 1m
 is 

a nonlinear right eigenvector associated with ���	
� = 0 and not j
& = ?1m
&, therefore only 

consensus is possible but not average consensus. The invariant quantity associated with 

��	
� = 0 can be found by solving (3.44). Obviously, the average mean- given in (3.8)- is 

not a constant of motion and therefore ? ≠ ��. To find the value of ?, we need to identify 

the motion of constant, i.e., <�	
�, so (3.44) can be used to formulate the following needed 

partial differential equation: ¿<¿	� �Gpℎ���� + ⋯ + ¿<¿	W �Gpℎ��W� = 0 (3.71) 

whose solution is not attempted in this thesis. Note, however, that once $ ⟶ 0, then 

q1?ℎ����� ⟶ 1 in (3.70), and therefore Y → −$"ℒ� and the average consensus can almost 

be achieved. Interestingly, the time to consensus is affected by " which helps addressing 

the finite-time consensus problem as will be shown in a coming section. Another approach 

to address the average consensus problem with bounded input will be presented later as 

well. 

Remark 3.13: In what proceeded Class 5, all the protocols – both semi-linear and 

nonlinear- were designed based on the desired constant of motion and afterwards the 

nonlinear eigenvalue problems were solved to make sure that this constant of motion is 
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globally associated with ���	
� = 0. In Class 5, we have revered that order deliberately to 

emphasize the fact that the two design steps in the proposed framework can be used 

separately based on the designated goals set by the designer. 

3.2.4.6: Class 6: Consider the nonlinear consensus protocol given as follows: 

z� = −õ� Ê � ���∈��
Ë 	� + � ��	��∈��

 (3.72) 

where: õ� 0m
! = 0 and �� is the .67 agent in-neighborhood designed originally by the 

designer through ℒ�. It is assumed that the �� ∈ �0,1l ∀., / otherwise the problem becomes 

more complicated and Class 6 cannot stand in its current form and a modification is needed. 

If −õ� ∑ ���∈�� ! = − ∑ ���∈�� , then the average consensus is achieved; since both 

(3.33.1) and (3.33.2) are satisfied. In general, for (3.33.2) to be satisfied, the following 

relation must hold- using (3.35): 

−õ� Ê � ���∈��
Ë + � ���∈��

= 0, ∀	
��� ∈ Ω ⊆ ℜW , ∀. = 1,2, ⋯ , a (3.73) 

Solving (3.33.1) requires much involved conditions which are not reported herein. 

Captivatingly, the network protocol (3.72) can be used to control the behavior of the .67 

spatial agent according to its neighborhood in a special way. Say for example, if it is fully 

or partially isolated from its neighborhood, then it can individually move towards a specific 

point in the phase space- usually stationary and determined by the designer (a rendezvous 

point ÷�) the origin in our case- to achieve what may be called a trivial consensus [112], 

[113] which give a chance for agents to dynamically establish connections that allow them 

to reach a non-trivial consensus cooperatively later on. For example, consider the case 
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where the �� functions are used to model the communication signal strength between the 

.67 agent and its in-neighbors. Therefore, õ�∙� can be given as follows: 

õ��ç� = �ø� , ç < �ℎ�ç,         ç ≥ �ℎ� , ∀. = 1,2, ⋯ , a (3.74) 

where: ø� and �ℎ� are fixed, real and positive scalars denoting the self-centered convergence 

rate and the signal strength threshold- specified by the designer- based on which agents 

decide to be self-centered or cooperative. Based on (3.74), the condition (3.73) can be met 

whenever ∑ ���∈�� ≥ �ℎ�  which indicates that the .67 agent can establish reliable 

connections among its neighbors. Should the .67 agent select its neighbors individually 

based on their reputation, power level, signal strength or the like, then (3.72) can be 

modified- considering (3.74)- such that each link is assessed separately. Therefore, a 

modified version of (3.72) can be given- for example- as follows: 

z� = −õ� Ê � �� ��!�∈��
Ë 	� + � �� ��!	��∈��

 (3.75) 

where: 

���ç� = �0, ç < 0��ç ,         ç ≥ 0�� (3.75.1) 

and 0�� ≤ �ℎ� |��|⁄  is a fixed, real and positive scalar reflecting the desired connection 

quality modelled by the �� functions and |��| is the .67 agent in-neighbors number as 

imposed by ℒ�. In general, only some agents within the MAS may be successful to establish 

connections with each other when approaching the meeting point while the others are still 

on their ways. The stability of (3.72) can be guaranteed outside Ω~6 -which is an attracting 

positively invariant set or a trapping region in Ω- by making the gradient of the dynamical 

system nonpositive. To ensure this, we must have: 
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øã ≥ ÚG	 h�,�! ≥ ø� ≥ h�,� (3.75.2) 

to make the matrices diagonally dominant where øã is the common convergence rate and 

h�,� is the in-degree of the .67 agent imposed by the designer through ℒ�. Notice that the 

trajectories of the dynamical system starting outside Ω~6 will hit its boundary, i.e., ¿Ω~6, 

at the same time when (3.73) is satisfied. This moment (��Øµ�ã6), in fact, is the birth 

moment of this invariant set. Being invariant with also a nonpositive Jacobian, the 

trajectories of the system after switching from Ω6 into Ω~6 will evolve inside Ω~6 only ∀� ≥
��Øµ�ã6. Thus, the switching is happening once, and the Zeno phenomenon will not occur. 

Note 3.5: The network protocol (3.3) is a special case of (3.72) when õ� ∑ ���∈�� ! =
∑ ���∈�� . The main difference between them is that (3.3) deals with the whole universal 

and connected domain of interest (Ω ⊆ ℜW) to achieve the non-trivial (Ω~6) consensus 

while (3.72) splits Ω into two accessible sub-domains, namely: trivial (Ω6) and non-trivial, 

where the flow of MAS dynamics switches while enjoying time-continuity. For simplicity, 

a 2-D illustration is depicted in Figure 3.6. Note also that even if the same initial conditions, 

i.e., 	
����, are used under both protocols the consensus values might be different unless 

	
���� originally belong to Ω~6. The usefulness of both (3.72) and (3.75) will be emphasized 

in Chapter 4. 

  

Using (3.3): Ω = Ω~6  Using �3.72�: ð = ð~6 ∪ ð6 
Figure 3.6. Effect of using protocols (3.3) and (3.72) on the domain of interest. 
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3.2.5: Importance of the nonlinear right eigenvector  

As was shown in (3.38.3), forcing the 1m
 as a right vector associated with �� = 0 of the 

nonlinear function (3.5) under network protocol (3.3) is not necessary. This is due the fact 

that the semi-linear structure of (3.5) claims a symmetric structure owing to the underlying 

undirected communication graph used. In general, this is not true especially with nonlinear 

protocols whose Jacobian may not be symmetric ∀	
��� ∈ ℜW, consider (3.54) as an 

example. The unnecessity of forcing 1m
 as a nonlinear right eigenvector associated with 

�� = 0  is demonstrated as follows:   

Let the weighted power, i.e., generalized, mean-of-order-5 be given as follows ∀� ≥
��, 	���� > 0   ∀.: 

�µ��� = ¨1a � j�	�µ
W

���
¶ = 1	5 è¦p ³j
&ç
 + ç
&j
2a ´5 é   (3.76) 

where: j
 = ij�, ⋯ , jWl& and ç
 = S	�µ, ⋯ , 	Wµ T&
.  

Taking the time derivative of (3.76) and equate it to zero, yields: 

h�µh� = a  jr
&ç
 + j
&çr
 + çr
&j
 + ç
&jr
!5�j
&ç
� �µ��� = 0 (3.77) 

Now, by substituting (3.1) and any previous network protocol into (3.77)- after choosing 

any type of consensus in �	�� as shown before-, yields a similar equation to (3.50.4). 

Thus, (3.77) can be given as: 

5Fj
&�
 + �&j
H − ±ç
& À¿�
�	
�¿	 Á& j
 + j
& ¿�
�	
�¿	 ç
² = 0 (3.78) 
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Obviously, it is sufficient to have j
& = ?1m
& as a left eigenvector of �
 associated with 

���	
� = 0 to equate both brackets to zero. Thus, forcing 1
 = 1m
 as a right eigenvector is not 

needed; because the consensus value does depend on the left null space, i.e., the columns 

space, and not on the null space, i.e., rows space. This will be highlighted shortly.  

Remark 3.14: Note that the Jacobian structure is affected by the underlying communication 

graph and the network protocol used especially if it is nonlinear. Thus, having undirected 

graph is not sufficient for the Jacobian to be symmetric, in general. The advantage of 

having a symmetric Jacobian is demonstrated by the following example. 

Example 3.2: To understand Remark 3.12, consider for example the Jacobian associated 

with (3.54) connecting three agents over an undirected graph, as shown in Figure 3.7, and 

is given as follows: 

¿�
�	
�¿	 = −
ÃÄÄ
ÄÄÄ
Å 2	�

−1	�
−1	3−1	�

2	�
−1	3−1	�

−1	�
2	3 ÇÈÈ

ÈÈÈ
É
 (3.79) 

Which is asymmetric and have 1m
&as a left but not as a right eigenvector ∀	
��� ∈ ℜ��W  

except at the equilibrium point 	
¥� = i1 1 1l& at which the Jacobian will be equal to the 

Laplacian matrix ℒ�. The existence of �� = 0 is guaranteed by having ?1m
& as a left 

eigenvector or right eigenvector of �
. It is possible to understand this in more depth by 

looking at the problem from an energy perspective. The overall dynamics of (3.5), for 

example, over a connected undirected graph can be viewed as two, in-neighbor and out-

neighbor, subsystems as follows: 
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Figure 3.7. three single-integrator agents interacting over an undirected graph under (3.54). 	r
�~��� = −ℒ�	
�~�	
�~��� (3.79.1) 

	r
°x6��� = −ℒ&�	
°x6�	
°x6��� (3.79.2) 

Let ��~/°x6�  be the in/out generalized energy [114], i.e., may not be the total mechanical 

energy, of the .67 agent. Thus, the residual energy at this agent will be given as such: 

��¥8��x�Ü� = ��~� − �°x6�  (3.79.3) 

If ��¥8��x�Ü� > 0 then the .67 agent is acting as a sink at that time instant. Similarly, if 

��¥8��x�Ü� < 0 then the .67 agent is acting as a source at that time instant. If ��¥8��x�Ü� = 0 

then the energy is conserved at the .67 agent level at that time instant. The system (3.79.2) 

was used in [14] to achieve consensus among a sensor network. More information about 

the energy of a graph can be found in [115]. Notice that if the Jacobian is symmetric, i.e., 

ℒ = ℒ& , ∀	
,- which is indeed the case for an undirected graph and a semi-linear protocol, 

then ��¥8��x�Ü�  will be exactly zero. 

□ 

Remark 3.15: Even though forcing the ?1m
 as a left nonlinear eigenvector of �
 is sufficient 

to achieve consensus as explained previously, forcing also ?1m
 as a right eigenvector  ∀	
 

will make the Jacobian symmetric and thus the energy will be conserved within each agent 

and not only at the level of the MAS.  

For a general nonlinear system and from the perspective of vector fields, the divergence 

and curl are measures of how the field changes its magnitude and direction about a point 
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in the phase space, respectively. Knowing that a symmetric Jacobian corresponds to an 

irrotational or a curl-free field; since its curl is identically zero. Therefore, this vector field 

is conservative, and the total energy is conserved- assuming it is continuous over a simple 

connected domain. This is again the advantage of having a symmetric Jacobian structure. 

In general, if it is impossible to have �� = 0 using (3.29), then (3.30) must be used to 

achieve a non-trivial consensus like encountered in (3.69). If both failed, then trivial 

consensus will be achieved if only the system is stable. So, having only  1
 = 1m
 will ensure 

consensus, but having only j
& = ?1m
& will ensure the average consensus, for example. 

Note 3.6: Notice that the eigenvalues of a constant matrix will be equal to those of its 

transpose. However, this is not necessarily the case for a nonlinear system, in general unless 

it is diagonalizable [95]. 

3.2.6: The concept of prescribed connectivity 
The algebraic connectivity of the underlying network connecting the dynamical MAS is a 

vital element in both the stability and the performance of the overall system. It can be 

usually characterized using the second smallest eigenvalue, i.e., |��|, of the associated 

Laplacian matrix which is also called the Fiedler eigenvalue. If the graph is not connected, 

then �� = 0 and the cooperative behavior is not achieved and might become unstable. 

Other indicators about the connectivity of a communication network can be given using 

the end-to-end bit error rate (BER), for example, which is sometimes preferred over the 

Fiedler metric of connectivity simply because the latter is a high-level measure and does 

not measure the communication reception quality [85]. However, in this thesis, we will be 

using the Fiedler eigenvalue as a connectivity metric under the proposed framework. 
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In general, the algebraic connectivity depends on the edges weights. Consequently, under 

state-dependency, where the notion of eigenvalues and eigenvectors is still valid, �� will 

be a function of the states and can be given as ���	
�. Thus, there is a possibility to lose 

connectivity within a region of the state space. To avoid such a possibility, the following 

theorem can be used: 

Theorem 3.7: (Theorem 4.1.2) [3] Let N» be a graph on a vertices, and let N be a graph on 

a vertices created from N» by adding a weighted edge joining two nonadjacent vertices in 

N», or by increasing the weight of an existing edge in N». Then for all . = 1, ⋯ , a, we have 

�� }ℒ N»!� ≤ �� ℒ�N�!. 

where N» is assumed to be undirected. Considering Theorem 1 in conjunction with Note 3.1, 

the semi-linear protocols can be designed such that ℒ�	
� = ℒ»�	
� + �ℒ� with � > 0 ∈ ℜ 

is a constant which denotes the prescribed connectivity that ensures the algebraic 

connectivity of ℒ�	
� to be bounded below ∀	
 if and only if ℒ� is associated originally with 

a connected undirected graph. 

The notion of prescribed connectivity proposed herein can be viewed as the f-stability 

theory [116] used in robust systems to obtain a desired performance irrespective of the 

uncertainties involved. Figure 3.8 shows a utilization of the previous theorem where 

additional edges might be added dynamically. The resulting MAS, using the averaging 

semi-linear protocol, can be given as follows: 

	r
��� = − ℒ»�	
� + �ℒ� !	
��� = −ℒ�	
�	
��� = �
�	
� (3.80) 

Note 3.7: Notice that if the ?1m
 was not forced either as a left or right eigenvector, then the 

resulting state-dependent matrix may not have �� = 0 as an eigenvalue at all. This justifies 
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the introduction of nonlinear eigenvalues and eigenvectors when dealing with state-

dependent matrices. Moreover, Theorem 3.1 indicates that the eigenvalues of ℒ�	
� will 

increase with respect to �ℒ� or remain the same but never decrease if and only if both 

matrices are positive semi-definite [3]. Also, notice that the lower bound is not only a 

function of the state’s initial conditions as it was the case in [64] and [61], but also of �ℒ�. 

The prescribed connectivity will not change the consensus value. 

Using such a concept of prescribed connectivity indicates that the communication links 

represented by �ℒ� are persistent, i.e., maintained, irrespective of the working environment 

or agents’ states- positions for example- and more importantly ℒ� is assumed initially 

connected. The initial connectedness of ℒ� was an essential assumption in [54], [57], [60], 

[62] where various controllers were designed to ensure connectivity preservation. Notice 

that even though the initial connectedness of the graph is required, it might be lost under a 

dynamically changing graph as was shown in [58]. Therefore, a suitable controller/protocol 

is needed may be like (3.72) or (3.75). Adopting the same assumption of initial 

connectedness of ℒ�, the herein proposed framework can be used to design the �� 

functions such that ℒ»�	
� is strictly increasing. Notice that (3.80) may not be applicable 

especially when dealing with more realistic situations where the notion of communication-

aware MAS is inevitable [85] or while navigating through a working space filled with 

obstacles, for examples. However, it is possible to incorporate the signal-strength in the �� 

functions and apply the concept of distance-dependent coordination in the designed 

controllers to overcome any shortcomings of (3.80) as will be shown in Chapter 4. 
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Figure 3.8. A MAS with permanent and intermittent link connecting agents within multiple neighborhoods. 

Idea: Figure 3.8 may represent several moving molecules- such that each neighborhood 

represents one molecule having permanent links or strong forces- connected by weak 

forces, i.e., intermittent links.   

For nonlinear protocols where the resulting MAS of single-integrators can be given as 

	r
��� = �»
�	
�, Theorem 3.7 can also be used to achieve a prescribed connectivity. In such 

a case, the overall dynamics of the modified MAS can be given as follows: 

	r
��� = �»
�	
� − �ℒ�	
��� = �
�	
� (3.81) 

The implication of Theorem 1 on the algebraic connectivity of (3.80) and (3.81) can be 

shown as follows: 

Corollary 3.1: Considering Theorem 3.7 and by taking . = 2, all possible values, see 

Remark 3.2, of the modified Fiedler eigenvalue under a prescribed connectivity of � are 

given as follows: 

���ℒ� ≥ �� ℒ»! + ��»� ℒ�! (3.81.1) 

Proof: Since by design ℒ»�	
� is a positive semi-definite matrix ∀	
��� its second smallest 

eigenvalue can either be positive or identically zero if its associated graph get disconnected 

at any time instant, i.e., �� ℒ»! ≥ 0, ∀	
���. So, if ℒ� is associated- originally- with a 

connected undirected graph chosen by the design engineer or achieved by an appropriate 
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algorithm like [117], then it is straight forward to see that ���ℒ� ≥ ��� ℒ�! > 0, ∀	
���. 

Thus, the MAS will always stay connected while achieving the designated behavior. 

Another way to proof both (3.80) and (3.81) can be given as follows: 

�� �
! = �� À�»
�	
� − �ℒ�	
���Á (3.81.2) 

Using (3.29)- or (3.30)- and by finding the extrema points of j
��	
�, i.e., by setting jr
��	
� =
0m
, it is straight forward to show that- when the Jacobian is symmetric: 

���	
� = j
�&�	
� Ì¿�»
�	
�¿	
 − �ℒ�Í j
��	
�
j
�&�	
�j
��	
�  

(3.81.3) 

where: j
��	
� is the normalized nonlinear left eigenvector associated with ���	
� of �
�	
�. 

Evaluating (3.81.3) at initial time and at consensus, i.e., at the boundary points 	
 = 	
� , 	
 =
1m
? using (3.32) and j
� 1m
? ! = j
�� ℒ�!, yields: 

���	
�� ≥ �� }ℒ»�	
��� + ��»� ℒ�! (3.81.4) 

���1m
?� = �1 + ���»� ℒ�! = �1 + �� j
��& ℒ�j
��j
��& j
��  (3.81.5) 

where Weyl’s monotonicity theorem [118] was used in (3.81.4). Note that to have both 

matrices in (3.81.3) positive semi-definite, the Jacobian of �»
�	
� must be symmetric and ℒ� 

is associated with a connected undirected graph. 

∎  

It is important to understand that the evolution of �� �
! depends mainly on the Jacobian 

of �»
�	
� such that if it is increasing then both (3.81.4) and (3.81.5) can be used as lower and 

upper bounds, respectively. The Jacobian structure depends on the underlying network 
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topology and the network protocol used. Inspired by the previous proof, one may consider 

achieving a predetermined evolution of �� �
! and then solve (3.32) and/or (3.33) such that 

�� �
! = 0, ∀	
���, � ≥ �� simultaneously with desired �� �
!. This will result in finding the 

needed structure of �
 and its Jacobian to achieve the desired connectivity. In general, this 

problem can be hard to solve, and it is left for a future investigation.  However, in Chapter 

4, a way to preserve the connectivity will be presented. It is worth mentioning that the 

prescribed connectivity will not affect the consensus value; since the matrices involved 

have 1m
 as a left eigenvector. 

Remark 3.16: The concept of prescribed connectivity presented in this section is a special 

case of connectivity-preserving protocols covered in Chapter 4 where more discussion 

about how to judge the connectivity of a nonlinear MAS using the concept of eigenvalues, 

namely ���	
�, despite being non-unique is presented. Besides, the simulation results 

shown in this part involving the algebraic connectivity were obtained using the MATLAB 

1. ℒ�	
�! function which is going to be justified in Chapter 4, see Note 4.12. 

3.2.7: Stability and Convergence Analysis 

The stability of the previous continuous-time autonomous nonlinear systems, i.e., 	r
��� =
�
�	
� , 	
���� ∈ Ω ⊆ ℜW, can be investigated in various ways depending on the way it is 

dealt with. For example, if the whole MAS dynamics is considered as one system, then it 

is straight forward to think of using the Lyapunov stability methods like first and second 

Lyapunov methods, the Krasovskii, or other methods as summarized neatly in [119], for 

example. In general, nonlinear systems may exhibit a set of equilibria or an isolated 

equilibrium point. If applicable, local or global stability whether exponential or asymptotic 

are usually of main concern. Recently in [95],  a criterion using nonlinear eigenvalues was 
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proposed to check the global asymptotic stability of a nonlinear system having a unique 

equilibrium point if it is diagonalizable. It is, by far, difficult to construct or analyze the 

stability of nonlinear systems in a unified way. So, usually certain classes are proposed, 

and a general stability criterion can be assigned to each one separately.  

From another perspective, it is helpful to treat a nonlinear system, mainly the MAS, as a 

collection of composite, i.e., interconnected, systems. This will simplify the analysis of 

stability by constructing a separate Lyapunov function for each system which can then be 

grouped into a composite Lyapunov function through their weighted sum. In such a case, 

the problem of finding feasible weights is the main concern [120]. Usually, these weights 

result in a special type of matrices called the M-matrices. 

Now, since �
�	
� has its Jacobian acting as a point-wise singular M-matrix in the desired 

manifold of the state space- as per the proposed framework, it is desirable to investigate 

which type of stability it exhibits. For example, in (3.40), the D-semistablity is needed. The 

conditions stated when (3.18), (3.22) and (3.26) were introduced, certainly to ensure this 

type of stability.  Moreover, since the Laplacian matrix associated with any undirected 

graph is symmetric, it is easy to show that å�	
�ℒ�	
� in (3.40) is indeed D-semistable. 

Thus, there is no need to find a stronger type of stability of the involved singular M-

matrices appearing in the protocols presented so far.  

In the previous nonlinear functions, the equilibria set can be defined as follows: 

Â = F	
 ∈ ℜW| �
�	
� = 0m
H ∪ F	
 ∈ ℜW| j
&�
�	
� = 0m
H ∪ F	
 ∈ ℜW| �
�	
�1
 = 0m
H (3.82) 

where: j
 and 1
 are the nonlinear left and right eigenvectors associated with ��	
� = 0 of 

�
�	
�, respectively. 
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The stability of the previous continuous-time autonomous nonlinear systems, i.e., 	r
��� =
�
�	
� , 	
���� ∈ ℜW, can be investigated using the LaSalle’s theorem [120] as follows: 

Let the following be a candidate Lyapunov function of a general nonlinear protocol: 

��	
� = �
&�
 (3.83) 

Evaluating the time derivative, yields: 

�r �	
� = �
& ±À¿�
¿	
Á& + À¿�
¿	
Á² �
 ≤ 0 (3.84) 

Per the proposed framework, the Jacobian of �
�	
� is the negative of a point-wise singular 

M-matrix. So, from Definitions 4 and 5 it is clear that �r �	
� ≤ 0. Let Â be the largest 

invariant set in ℜW such that Â ⊆ � where � = F	
 ∈ ℜW| �r �	
� = 0H. Let Ω be a compact 

positively invariant set such that Ω = )	
 ∈ ℜW| ��	
� ≤ |*, | ∈ ℜ. Thus, from LaSalle’s 

theorem, every trajectory starting in Ω will converge to Â asymptotically as time reaches 

infinity. These findings are global when ��	
� → ∞ as ‖	
‖ → ∞, so the design of the 

network protocol must also ensure that ��
�	
�� → ∞ as ‖	
‖ → ∞ or more specifically as 

�	� − 	�� → ∞ ∀., / ∈ ��. This means that the network protocol must provide sufficient 

energy to each agent such that the consensus is achieved.  

For any protocol that can be written in a semi-linear format, like (3.5) or (3.64) for example, 

let the following Lyapunov candidate function of (3.5) be used as follows: 

��	
� = 	
&	
 (3.85) 

Thus, the time-derivative of (3.85) can be given as follows: 

�r �	
� = −2	
&ℒ�	
�	
 ≤ 0 (3.86) 
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where ℒ�	
� is associated with a state-dependent undirected graph, and is thus symmetric. 

For example, let us consider two single-integrator agents connected via an undirected link 

where both (3.85) and (3.86) are used to study the properties of the network protocol (3.3) 

used to connect them. In such a case, it is easy to show that (3.86) can be given as follows: 

�r �	
� = −2�	� − 	����� ≤ 0 (3.87) 

Now, let �� be a distance-dependent weighting function given by: 

�� = 1i1 + �	� − 	���l�        , � > 0 (3.88) 

which is the Cucker-Smale (C-S) flocking model [64]. 

So, for (3.87) to be valid ∀	
��� ∉ Â and ∀� ≥ �� where |	����� − 	�����| → ∞, it is 

sufficient to have 0 < � ≤ 1 which agrees with [64]. A necessary condition for reaching 

consensus under a general state-dependent network protocol is to have: 

�r �	
� < 0   Gq ‖	
‖ → ∞,     ∀	
��� ∉ Â, ∀� ≥ ��  (3.89) 

Under state-independent network protocol, (3.89) is naturally satisfied. Moreover, all the 

previous conditions for global stability must be restricted to the domain of interest if it is 

other than ℜW. Note that if (3.89) is not satisfied, then the consensus is not achieved while 

the invariant quantity is achieved. This can be seen from Figure 3.7 in [64] where the 

arithmetic mean was achieved but not the consensus. This observation- which was not 

pointed out in [64]- can be justified by the fact that if agents do not have sufficient energy, 

then they will maintain the invariant quantity by utilizing the available energy in all agents 

even if it means that they keep their initial values. So, a consensus protocol that is stable 

might be non-converging. 

To analyze the convergence of the connected systems to the general time-invariant 

consensus value, i.e., ?, let the disagreement vector be defined as follows [53]: 
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��� = 1m
? + �
��� (3.90) 

where: 	� − 	� = �� − ��, and ∑ ��� = 0.  

So, the disagreement dynamics can be given as follows- after a change of variables: 

�r
��� = �
 �
! (3.91) 

Note that for a symmetric Laplacian matrix, (3.91) will also be valid for a semi-linear 

protocol since 1m
 is a left and right eigenvector. Let the following be a candidate Lyapunov 

function for (3.91): 

� �
! = �
&�
 (3.92) 

Evaluating the time derivative, yields: 

�r  �
! = �
& ±À¿�
¿	
Á& + À¿�
¿	
Á² �
 ≤ 0 (3.93) 

Intuitively, if (3.93) is satisfied globally, then (3.92) is indeed a Lyapunov function of 

(3.91) since � �
! > 0 and � 0m
! = 0 and thus the consensus is globally asymptotically 

achieved for all initial conditions if and only if (3.89) is satisfied as well. In case (3.93) is 

satisfied only in a local neighborhood of the origin, then the convergence is also local. In 

general, for nontrivial dynamics, the consensus may be reached even though the MAS is 

unstable. This can be clearly seen in connected double-integrator systems as shown in [64] 

for example. Note that the proposed Lyapunov functions are not unique. So, other 

Lyapunov candidates could be used to establish the global stability and convergence of any 

developed network protocols. 
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3.2.8: Performance Analysis 
Specifically, the convergence rate towards consensus can be given as a function of the 

second smallest eigenvalue associated with the state-dependent Laplacian matrix, i.e., the 

Fiedler eigenvalue denoted by ��. Using (3.92), this convergence rate can be characterized 

as follows- assuming a general nonlinear protocol: 

�r �	
� = −�� èÀ¿�
¿	
Á& + À¿�
¿	
Áé��	
� ≤ 0 (3.94) 

Which depends on the symmetric part of the Jacobian that needs not be of monotonic type. 

Similarly, for a semi-linear network protocol, the convergence rate can be given as follows 

based on (3.92)- assuming a symmetric Jacobian: 

 �r �	
� = −�� }��
�A
���	
� ≤ 0 (3.95) 

Considering (3.81.1), we may conclude that the convergence rate obtained in (3.94) and 

(3.95) is at least as fast as ��»� ℒ�!.  

Interestingly, if �
�	
� is diagonalizable, then both left and right eigenvalues will be the same 

[95].  Thus, by adding (3.29) and (3.30) and solving for ��	
� assuming a symmetric 

Jacobian, then ���	
�, in specific, can be given as follows: 

���	
� = j
�& ÊÀ¿�
¿	
Á& + À¿�
¿	
ÁË j
�
2j
�&j
� = j
��& À¿�
¿	
Á j
��j
��& j
��  

(3.96) 

where the left and right nonlinear eigenvectors are element-wise similar but with opposite 

signs. 

Theorem 3.8: If the Jacobian of 	r
��� = �
�	
� is symmetric, then we may use the linear left 

and right eigenvectors, i.e., j
��&  and 1
��, associated with the second smallest eigenvalue, 
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i.e., ���, to monitor the connectivity, i.e., ���	
� of �
�	
�, ∀	
 in the domain of interest using 

(3.96).  

Proof: The result given by (3.96) can be shown as follows: 

Definition 3.5: [99] A system 	r
��� = �
�	
� is said to be in a diagonal form if its Jacobian, 

i.e., ¿�
 ¿	
⁄ , is given as: 

¿�
¿	
 = h.G�i��, ⋯ , �Wl� (3.96.1) 

where: ��, . = 1, ⋯ , a are the set of eigenvalues from the field of meromorphic functions 

of variables 	
 denoted by 	. Moreover, we have: 

Theorem 3.9: [99] The eigenvalues of 	r
��� = �
�	
� are invariant with respect to a change 

of coordinates 
 = õ�	
� where õ ∈ 	. 

So, the transformation of �
�	
� into the diagonal form, which is a special case of the 

feedforward form, can be studied through the following: 

Theorem 3.10: [99] Given a system 	r
��� = �
�	
�, there exists a change of coordinates 
 =
õ�	
� that transforms the system into a diagonal form if and only if there exist a 

eigenvalues ��, ⋯ , �W associated with a eigenvectors 1�, ⋯ , 1W such that: 

0J� = �1
�|1
�|⋯ |1
W� 

is nonsingular and 0d	 = �O�|O�|⋯ |OW�& where the one-form [95] �O�|O�|⋯ |OW� is 

exact. 

Now, if the 1m
 is forced as a left and right eigenvector associated with ��	
� = 0, ∀	
 using 

(3.33.1) and (3.33.2), then the resulting Jacobian of �
�	
� is pointwise symmetric in the 

desired subset of the state-space. Knowing that a real symmetric matrix is always 

diagonalizable [121], then there exists a coordinate transformation at each point in the 
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state-space that can be used to transform �
�	
� into a diagonal form, however calculating 

these transformations as functions in 	 is beyond the scope of this thesis. 

As pointed out in [95], it is possible to show that the sets of nonlinear left and right 

eigenvalues of �
�	
� are equivalent when the system is in a diagonal form. However, the 

relations between the left and right eigenvectors can be investigated as follows- where ?o¦ 
and {oO indicate the column-wise and row-wise stacking operations, respectively: 

 Let I = ¿�
 ¿	
⁄ . Then [99], using (3.30): 

I0J� = ?o¦�I1
�|I1
�|⋯ |I1
W� = ?o¦ ��1
� + 1
r����1
� + 1
r�|⋯ |�W1
W + 1
rW! 

= 0J�Λ + h�0J��h� = 0J�Λ− 0J�0r 0J� 

 (3.96.2) 

where: Λ = h.G�i��, ⋯ , �Wl�. Since 0J� is nonsingular, we may write: 

Λ = 0I0J� + 0r 0J� (3.96.3) 

Similarly, using (3.29) we may write: 

\I = {oO�j
�&I|j
�&I|⋯ |j
W&I� (3.96.4) 

where: \ = ij
�, j
�, ⋯ , j
Wl&. So: 

\I = {oO j
�&�� − jr
�&�j
�&�� − jr
�&|⋯ |j
W&�W − jr
W& ! = Λ\ − \r  (3.96.5) 

Knowing that I is symmetric, Λ is a diagonal matrix, and \J� is nonsingular, we may 

write: 

Λ = \I\J� + \r \J� (3.96.6) 

Since the Jacobian is symmetric, its left and right eigenvectors are identical, i.e., j
& = 1
, 

and therefore \ = 0. This also can be seen by pre-multiplying (3.29) and (3.30) with  1
& 

and j
&, respectively, and then adding them we will have: 
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1
&jr
 + j
&1r
 = 0 (3.96.7) 

Indicating in fact that both vectors are orthogonal, knowing that the left and right 

eigenvalues are identical.  

Taking jr
 = j
� and 1r
 = 1
�- see Remark 3.9, as possible eigenvectors of each eigenvalue, 

consequently, (3.96.7) is still valid and therefore we can monitor, or even design, the 

connectivity of the nonlinear system based on the variations in the linear signature of the 

underlying dynamical system involved, mainly ���. Remember that in the proposed 

framework we have built the protocols on top of its linear counterpart. 

  ∎ 

Lemma 3.4: If the Jacobian of 	r
��� = �
�	
� is asymmetric, then the results of Theorem 3.5 

applies only in a small neighborhood of the equilibria. 

Note 3.8: To find the values of ���	
� given in (3.96), one needs to solve (3.33.1) to get j
� 

which is difficult, in general. So, in this part, (3.96) will be used mainly to characterize the 

values of ���	
� rather than finding it analytically. However, a special case where we are 

interested in finding ���	
� is presented in Chapter 4.  

3.2.8.1: The concept of prescribed performance revisited 

When it comes to performance, one may expect that it is desired to control the evolution 

of the states over time in a certain manner by imposing suitable constraints as found for 

example in [54]. However, in our case we are interested in imposing certain invariance and 

performance metrics on the structures of the designed protocols to achieve desired 

characteristics- such as prescribed connectivity, divergence, curl and volume- required by 

various applications. Later in this section, we will show- through a simple example- how 
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the concept of prescribed performance devised in [54] can be used under the herein 

proposed framework.  

Motivated by (3.96) and Theorem 3.5, the following design procedure by which a 

prescribed performance that ensures the connectivity preservation, can be stated as follows:  

Average Consensus Protocol under state-dependent networks with prescribed 

performance: 

Given �� Ø�~ and �� Ø�A, design �
�	
� such that the following is true: 

�� Ø�~ ≤ min� ���	
�  ≤ �� Ø�A 

 ∀	
 ∈ Ω ⊆ ℜW , . = 2, ⋯ , a. 
Subjected to: 

¿�
�	
�¿	
 |Â = −ℒ�	
�|Â  = −ℒ� 

À¿�
�	
�¿	
 Á& 1m
 = 0m
   Gph/o{     ¿�
�	
�¿	
 1m
 = 0m
 

(3.97) 

□ 

If both �� Ø�~ and �� Ø�A are linearly dependent, then one way to solve (3.97) is to first 

design �ℒ�- assuming a semi-linear protocol- to make sure about ��� ℒ�! using [122] for 

example and making sure that the �� functions used are strictly increasing. Doing so, then 

(3.81.4) and (3.81.5) will be the lower and upper bounds of the algebraic connectivity, 

respectively. Note that by multiplying (3.32) by a constant �� ∈ ℜ, then �� Ø�A becomes 

�� Ø�A = ��� + �  ��� ℒ�! instead of �1 + ���� ℒ�! and therefore can be chosen more 

freely. Generally, we may write- by dropping min�  from (3.97): 
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�� Ø�~ ≤ −1�a − 1� �{G?1 À¿�
�	
�¿	
 Á ≤ �Ø�A (3.98) 

under the previously stated conditions where �� = 0 and �Ø�A is the upper bound of 

spectral radius of the Jacobian matrix ∀	
 such that: 

�� = 0 < �� Ø�~ ≤ |��| ≤ |�3| ≤ ⋯ ≤ |�W| ≤ �Ø�A 

Notice that the �{G?1 ¿�
 ¿	
⁄ ! is nothing but the divergence of �
 (h.j �
!) which gives a 

measure about the change in magnitude of the vector field �
 about a point in the state-

space. Note that h.j �
! = �o¦ �
! which is the volume of the flow of the vector field �
. 
Also notice that the diagonal elements of the Jacobian matrix represent the negative of the 

in-degree of each agent, i.e., −h�, plus the negative of a scalar function of partial 

differential quantities (-∆�	
�) when a semi-linear protocol is used as will be explained in 

the coming section. So, we may look at the problem from a graph theoretic view as bounds 

on the graph in-volume �o¦�N� as follows: 

0 < �� Ø�~ ≤ −1�a − 1� F�o¦ N�	
�! + ∆�	
�H ≤ �Ø�A (3.99) 

where: �o¦ N�	
�! = ∑ h�� �	
� and �o¦ �
! =  �o¦ N�	
�! + ∆�	
�. Since h��	
� is affected 

by the initial conditions, we may use the concept of prescribed connectivity presented in 

section E to avoid this effect as follows- assuming a semi-linear protocol:  

�� Ø�~ ≤ −1�a − 1� Ì−�{G?1 À¿�
�	
�¿	
 Á + �{G?1 �ℒ�!Í ≤ �Ø�A (3.100) 

Imposing �� Ø�~ by design requirements, both � and ℒ� can be planned in advance 

assuming �{G?1 }��
�A
��A
 � = 0, for example, while the �� functions should be designed as 
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strictly increasing to have �� Ø�A given by (3.81.5) and �Ø�A could be taken as 

�1 + ���»W ℒ�!. 

To see the importance of h� on the algebraic connectivity- and therefore the importance of 

(3.99)-, let ℒ� be associated with an undirected graph, then its algebraic connectivity is 

bounded above by [123]: 

�� ℒ�! ≤ aa − 1 hØ�~ (3.101) 

where: hØ�~ = Ú.p�h�� is the minimum in-degree or vertex degree in the graph. So, by 

increasing hØ�~ in ℒ�	
�, consensus might be reached more rapidly. A lower bound of 

�� ℒ�!- not necessarily tight- is given as follows [124]: 

�� ℒ�! ≥ 2a2 + a�a − 1�h − 2Úh (3.102) 

where: h is the graph diameter, i.e., the maximum distance between any two vertices in the 

connected graph [3], and Ú is its size, i.e., the number of edges. Note that equality in 

(3.102) holds when the graph is complete or `3 [124]. Other lower bounds on �� ℒ�! that 

includes a connected undirected graph in-volume is given as follows [9]: 

�� ℒ�! ≥ 1�o¦ N�! h (3.103) 

Or [125]: 

�� ℒ�! ≥ 4a h (3.104) 

It is clear from (3.104) that a disconnected graph with �� = 0 corresponds to an infinite 

diameter, i.e., h = ∞. So, to have a connected graph, i.e., �� > 0, h must be minimized. A 

comparison between (3.102) and (3.104) is available in [124] which also includes lower 

bounds of �»W. 
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Relating the vector calculus of flow vector fields to planar digraphs theoretic sense can be 

traced back to [126]- or even earlier- for example where it showed that any network may 

be decomposed into three networks, namely: potential component having divergence-free 

and curl-free, solenoidal component having divergence-free but not curl-free, and 

irrotational component having curl-free but not divergence-free.  

For example, using the semi-linear consensus protocol (3.5) will result in a curl-free flow 

over undirected graphs with symmetric structure when assuming a simple connected 

domain, however, the resulting divergence will be varying. Using (3.51) over the same 

undirected graph, will result in a constant negative divergence however the resulting flow 

will have vorticity, i.e., rotational. The consensus protocol given in (3.51) is indeed an 

entropic protocol [56]. Other possibilities will be investigated in the coming section. 

Recalling the concept of prescribed performance given in [54], the applicability of the 

herein proposed framework can be demonstrated as follows: 

Let the time-dependent constraint that governs the evolution of the MAS states towards 

consensus is given as follows: 

". � +min�  	�����! ≤ 	� ≤ −". � +max�  	�����! 

∀	
 ∈ Ω ⊆ ℜW , . = 1,2, ⋯ , a Gph � ∈ i��, �ãl (3.105) 

where: � denotes the time, �ã denotes the consensus time (unknown a prior) and " > 0 is 

a real constant. After �ã, the inequality in (3.132) flips. Taking the derivative of (3.132) 

with respect to time, yields: 

−" ≤ z� ≤ ",   ∀ . = 1,2, ⋯ , a. (3.105.1) 

Or simply as: 

 |z�| ≤ ",   ∀ . = 1,2, ⋯ , a. (3.105.2) 
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Which can be solved using a well-designed version of (3.69). In the future, other time-

dependent constraints will be investigated once the proposed framework is upgraded to 

include both time and state dependencies. If 	����� ∈ i	Ø�~, 	Ø�Al ∀ ., then (3.105) can be 

relaxed, i.e., there is no need to know min�  	�����! and max�  	�����! a prior, as follows: 

". � + 	Ø�~ ≤ 	� ≤ −". � + 	Ø�A (3.106) 

where: � ∈ i��, �ãl and �ã ≤ �� such that �� is determined by the designer. In such a case, 

" can be designed or estimated as follows: 

" = 	Ø�A − 	Ø�~2��  (3.106.1) 

Note that (3.106) may be violated after �ã, i.e., after reaching consensus. The results 

obtained using (3.69) will be shown in the simulation section. 

3.2.9: Analyzing consensus protocols using vector calculus 
Treating spatial dynamical agents as particles is an oversimplification that makes building 

navigation systems or path planners quite easy. Usually, the open environment is modelled 

as a potential field which the navigation system tries to wander in the most desirable way. 

Usually, these potential fields are used to generate the velocity field, or the artificial force, 

that will govern the evolution of the navigation system through time. So far, the dynamics 

of the navigation systems are given by (3.1), i.e., assuming massless particles that can 

accelerate instantaneously in every direction.  

Considering the previous discussion, what we were trying to do is to find a suitable 

potential field that can be used to achieve the desired task while imposing certain 

conditions on it that will ensure the performance and stability of the designed protocols. 

So, motivated by the requirements, different types of potential fields can be considered as 
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candidates while issues related to the applicability of the principle of superposition, 

boundedness, local/global minima/maxima and smoothness must be considered. Being 

mostly interested in spatial agents having their working space in 2-D or 3-D, we may refer 

to the fundamental theorem of vector calculus also known as Helmholtz representation or 

Helmholtz decomposition to develop a methodology that helps finding suitable weighing-

functions, i.e., protocols, rather than randomly check them one by one. This of course will 

be handled according to the framework we are proposing. 

Considering Remark 3.8, the edges weighting function are assumed to be in ℜ� → ℜ��. 

Therefore, let us have a general force vector field denoted by �
�	�, 	��: ℜ� → ℜ� which 

according to Helmholtz decomposition can be written as a combination of two vector field 

as follows [127]: 

�
�	�, 	�� = ∇ℎ�	�, 	�� + ∇ × �mm
�	�, 	�� (3.107) 

where: ∇= v ��A� , ��A�w is the gradient operator, ℎ is a scalar map, i.e., ℎ: ℜ� → ℜ, �mm
 is a 

vector field, i.e., �mm
: ℜ� → ℜ�, and × denotes the cross product. If the force filed �
 is 

associated with a conservative field, then its curl, i.e., ?z{¦ �
! = ∇ × �mm
�	�, 	��, is zero 

everywhere in its domain. In such a case, �
 will only be associated with a potential function 

5 such that ℎ�	�, 	�� = −5�	�, 	�� and consequently can be written as �
 = −∇5. This is 

exactly the equation used to solve the consensus problem as will be shown shortly. Given 

that, now it is obvious how network protocols do relate to the realm of vector calculus. 

To elaborate more on this point in specific, consider the MAS shown in Figure 3.9 

consisting only of two dynamical agents modelled by (3.1) connected by two edges whose 

weighting functions are �� and �� and let a semi-linear protocol be used.    



108 
 

 

Figure 3.9. A MAS of two agents connected by two links (edges). 

Let each node in Figure 3.9 has its own potential function, namely: 5�� and 5�� where the 

superscript denotes the sink/ source node index. Being interested in understanding the 

mutual effect of these potential functions, let us assign an observer at each node and 

evaluate the gradient of each potential function in the direction of the other node to 

establish the in-systems of both agents. Thus, the dynamics of this MAS is given as follows: 

	r
 = t	r�	r�u = �
 = t����u = − �5A���5A���� = − t�� �	� − 	���� �	� − 	��u = − v �� −��−�� �� w v	�	�w (3.108) 

where: 5A��� and 5A��� are the partial derivatives of 5�� and 5�� in the directions of 	� and 	�, 

respectively. Now, since we have assumed �
 to be conservative, then its curl must equal 

zero. This last requirement imposes certain conditions on the weighting functions to be 

designed or selected. So: 

?z{¦ �
! = ��
	̅� 	̅� 	̅3¿¿	�

¿¿	�
¿¿	35A��� 5A��� 0 �� = À¿5A���¿	� − ¿5A���¿	� Á 	̅3 (3.109) 

where: 	̅�, 	̅� and 	̅3 are three unit-vectors in the three-perpendicular direction assuming 

Cartesian coordinates. Using (3.108) to solve (3.109) we will have the following: 

?z{¦ �
! = �� − �� + �	� − 	�� t¿��¿	� + ¿��¿	� u (3.109.1) 
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Which can be made zero ∀	
 if �� = �� and 
�§���A� = �§���A� = − �§���A�  which agrees with both 

(3.34) and (3.35). Similarly, h.j �
! can be found by taking the trace of the Jacobian as 

follows: 

h.j �
! = −��� + ��� + �	� − 	�� t¿��¿	� − ¿��¿	� u (3.110) 

Using (3.34), (3.35) and �� = ��,  we may write (3.110) as follows: 

h.j �
! = −2 ³�� + �	� − 	�� ¿��¿	� ´ (3.110.1) 

So, �� > 0 must dominate the other term if it happens to be negative.  

Note 3.9: The negative divergence is necessary to have a stable MAS system even if it is 

not convergent to consensus. As a result, for the consensus problem we may have only 

vector fields with negative divergence whose curl could be zero. That is, we may use 

conservative and non-conservative force fields to construct the consensus protocols. Note 

that a vector field whose divergence and curl are zeros is a Laplacian field and it is 

associated with a harmonic potential function- not necessarily unique. A non-constant 

harmonic function 5: ℜ� → ℜ is unbounded (Liouville’s Theorem). A deeper analysis of 

the gradient flow, i.e., 	r
 = −∇5, of a harmonic function 5 in ℜ3 can be found in [128]. 

From consensus point of view, having a positive divergence means MAS instability, while 

having a zero divergence indicates that the MAS is disconnected.  

To understand the relation between the divergence and convergence mentioned in Note 

3.7, let us have the �� function in (3.108) given by (3.88), then the resulting divergence 

is given as follows- for an arbitrary � > 0: 
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h.j �
! = −2 Þ1 + �1 − 2���	� − 	���i�	� − 	��� + 1l��� �  (3.110.2) 

Let 1� = 	����� − 	�����, then: 

lim¥�→ä h.j �
! = 0  (3.110.3) 

even for � = 1. This result does not contradict with [64]; because what (3.110.3) simply 

says is that the MAS will have less tendency to leave its current position. 

3.2.10: Constructing consensus protocols using the proposed framework: 
So far, we have used the proposed framework to test existing consensus protocols available 

in the literature or constructing major classes using educated guessing. However, in this 

section, we will show how to utilize the proposed framework to help us constructing the 

protocols- mainly nonlinear- by solving a system of second-order linear and homogeneous 

Partial Differential Equations (PDEs) with constant coefficients. 

Adopting the principle of superposition and the notation presented in (3.108), let us have a 

MAS consisting of N single-integrator agents. Therefore, its dynamics can be given as 

follows: 

	r
 = ¢	r�⋮	rW£ = �
 = ¢��⋮�W£ = −
ÃÄÄ
ÄÄÅ � 5A���

�∈��⋮� 5A�W�
�∈�� ÇÈÈ

ÈÈÉ (3.111) 

Since we are interested in solving the consensus problem in specific, we need to have �� =
0, ∀	
. So, we must solve (3.33.2) or both (3.33.1) and (3.33.2) to have average consensus 

and a curl-free force field. Solving (3.33.1) alone ensures having average consensus but 

not a curl-free force field. These cases are handled separately as follows- after evaluating 

the Jacobian: 
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3.2.10.1: Solving (3.33.2) alone: 

This case is equivalent to forcing 1
 = 1m
 as a nonlinear right eigenvector associated with 

�� = 0. So, the resulting system of PDEs is: 

5A�A��� + 5A�A��� = 0, ∀., / ∈ �� (3.112) 

3.2.10.2: Solving (3.33.1) alone: 

 This case is equivalent to forcing j
& = 1m
& as a nonlinear left eigenvector associated with 

�� = 0. So, the resulting system of PDEs is: 

5A�A��� + 5A�A��� = 0, ∀., / ∈ �� (3.113) 

3.2.10.3: Solving both (3.33.1) and (3.33.2): 

This case is equivalent to forcing both 1
 = 1m
 and j
& = 1m
& as nonlinear right and left 

eigenvectors associated with �� = 0. This is also equivalent to solving the following scalar 

problem: 

1m
& �À¿�
�	
�¿	
 Á& + ¿�
�	
�¿	
 ¡ 1m
 = 0 (3.114) 

So, the resulting PDEs are: 

� � �25A�A��� + 5A�A��� + 5A�A��� ��Æ�∈���Æ�∈��
= 0 (3.114.1) 

To simplify (3.114.1), we may manipulate the indices . and / if all 5��: ℛ� → ℛ have the 

same structure- with similar parameters- such that it is possible to rewrite it as follows: 

�5A�A��� + 5A�A��� � + �5A�A��� + 5A�A��� � = 0, ∀., / ∈ �� (3.114.2) 

Note that the first bracket is Laplace’s equation if it is identically zero implying that the 

divergence is zero which is not desired when solving the consensus problem as stated 
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before. Since the stability of the MAS using consensus protocols requires a negative 

divergence, then the second bracket must be positive for (3.114.2) to be true. More 

elegantly, (3.114.2) can be written as follows for arbitrary . and /: 

¿�5¿	�� + ¿�5¿	�¿	� + ¿�5¿	�¿	� + ¿�5¿	�� = 0 (3.114.3) 

which is the parabolic PDE. All the previous PDE systems should make use of (3.32) and 

assume general initial conditions. Note that for the semi-linear protocol (3.5), it is sufficient 

to consider (3.34) and (3.35) instead of (3.114.3). After finding the potential function 5, 

we can construct our consensus protocol as shown in (3.111). 

The general form of second-order linear and homogeneous PDE with constant coefficients 

is given as follows: 

I ¿�5¿	�� + 2¸ ¿�5¿	�¿	� + 2 ¿�5¿	�� + f ¿5¿	� + � ¿5¿	� + n = 0 (3.115) 

which can be characterized using the following matrix: 

_ = vI ¸¸ 2w (3.115.1) 

If _ > 0, then (3.115) is an elliptic PDE. Laplace’s equation is a simple example of such 

PDE. If _ < 0, then (3.115) is a hyperbolic PDE. The wave equation is an example of 

hyperbolic PDEs. If _ = 0, then (3.115) is parabolic which is indeed; since I = ¸ = 2 =
1 with f = � = n = 0. Heat conduction equation and other diffusion equations are 

examples of parabolic PDEs. The difference among the three types of PDEs is that the 

elliptic PDEs describes steady-state processes while the other two described time-evolving 

processes. Note that (3.114.3) do fit into the general form (3.115); because the curl-free 
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conditions- imposed by the left and right nonlinear eigenvectors associated with �� = 0- 

guarantee that 
��µ�A��A�  and 

��µ�A��A� are equal. 

Before solving (3.114.3), one must ensure that the problem is well-posed. Issues related to 

the existence and uniqueness of analytic solutions of (3.114.3) are beyond the scope of the 

current investigation.  

Note 3.10: Handling (3.114.3) in more than two variables is related to solving the 

consensus problem when considering (3.37). The response of the resulting MAS is delayed 

to Chapter 4. 

3.2.11: Analyzing the C-S model using the proposed framework 
Designed semi-linear protocols, in general, can satisfy (3.114.3) so easily and therefore are 

considered good candidates to solve the average consensus problem and others as well. For 

reasons that will be revealed through the sequel, we are interested in using the C-S model 

and hence this section is devoted to analyzing it considering the proposed protocol. A 

parameterized version of the C-S model presented in [64] is given as follows:   

�� 	� , 	�! = �}� 	� − 	�!� + ��� (3.116) 

where: �, �, �, � > 0.  

Using (3.108) and (3.116), (3.114.3) is satisfied with: 

¿�5¿	�¿	� = ¿�5¿	�¿	� = { (3.116.1) 

¿�5¿	�� = ¿�5¿	�� = −{ (3.116.2) 

where:  
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{ = � Þ� + ��1 − 2���	� − 	���i��	� − 	��� + 1l��� � (3.116.3) 

To understand the effect of parameters existing in (3.116), Figure 3.10 shows the control 

signal 	r� = z� in (3.108) for different values of � > 0 when � = � = � = 1. Interestingly, 

setting � = 0.5 results in a special response of z�. 

 

Figure 3.10. The control signal of (3.108) when �� being the C-S model with different values of �. 

Note 3.11: Observing the response of −1 ≤ z� ≤ 1 when � = 0.5 inspires us to reconsider 

the problem of average consensus with bounded input. But before that, we should 

understand the effects of the other parameters appearing in (3.116). 

Let us- in a simplified way- investigate the limiting response of z� when 1�� = 	� − 	� →
±∞ and 1�� → 0 to have a glimpse about the contribution of the involved parameters. This 

could be done as follows: 

lim¥��→±ä z� = �1����1��� + � = ± �√� (3.117) 

So, by always keeping the ratio between � and √� equal to ±1, we can easily adjust the 

limits of the control signal as desired. Similarly, the limiting decaying rate of z� is related 

to its gradient (∇z�). So: 

limA�JA�→� ∇z� = limA�JA�→�! ∇z� = �√� �−	̅� + 	̅�� (3.118) 
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From which the relation between � and � is clear. Figure 3.11 shows the response of z� 

when different values of �, � and � are used with � = 0.5 in all cases. 

 

Figure 3.11. The control signal of (3.108) when �� being the C-S model with different values of �, � and � are used 

with � = 0.5 in all cases. The values are given for the upper part of the graph from left to right. 

3.2.11.1.1: The average consensus problem with bounded input 

After understanding the effect of the parameters appearing in the C-S model on the 

response of z� in (3.108), it is time to propose a bounded control strategy whose bounds 

can easily be adjusted. The idea is to use a semi-linear protocol with 1
 = 1m
 and j
& = 1m
& 

as right and left nonlinear eigenvectors associated with �� = 0. Moreover, the �� functions 

used should be the C-S model with � = 0.5 and appropriately designed parameters such 

that � √�⁄ = 1. The resulting MAS dynamics are governed by the following system: 

	r
��� = − "ℒ�	
�	
���max� h�,� = �
�	
� (3.119) 

where: ±" are the symmetric control bounds and max� h�,� is the maximum in-degree of 

ℒ� all known a-priori. Note that in (3.119), we mainly control the convergence rates of �
 
such that the control bounds are not debased. Note also that dividing by max� h�,� will 

normalize all control signals with respect to the largest signal. This will benefit in 

maintaining mainly j
& = 1m
& as a nonlinear left eigenvector associated with �� = 0 on one 
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hand, and on the other to activate the desired control bounds ∀	
, � ≥ ��. The use of max� h�,� 

can be seen from the following relation between the control signal, its bounds, the in-degree 

of an agent and the maximum in-degree of agents in the MAS: 

|z�| ≤ " h��	
�max� h�,� , ∀. = 1,2, ⋯ , a (3.119.1) 

where: h��	
� ≤ h�,� ≤ max� h�,�. So, h��	
� max� h�,�ò ≤ 1, ∀	
 and therefore the control 

limits are not violated using (3.119).  

Note 3.12: Dividing each control signal by its in-degree, i.e., h�,�, instead of max� h�,� will 

result in a left eigenvector associated with �� = 0 other than j
& = ?1m
&  and thus the average 

consensus will not be achieved. Considering this, variants of (3.119) cannot be used to 

achieve other types of consensus with bounded inputs unless it is redesigned, if possible. 

Should the parameters �, � and � be selected according to some criteria in general, we may 

benefit from the knowledge of the associated potential field given as follows: 

ℎ�	�, 	�� = −5�	�, 	�� = − �� ���	� − 	��� + � + ?opq�. (3.120) 

Additionally, solving the average consensus problem using bounded input with prescribed 

performance is also possible and it will follow the same steps presented previously. 

The benefit of having (3.120) can be appreciated once we know that path planning, and 

consensus problems can be studied more thoroughly using the concept of potential fields 

as will be shown in other parts of this thesis. 

3.2.12: Different Types of ��� Functions 

In general, these functions can be used to model the underlying communication network 

such as its signal strength, or to exert a calculated behavior among agents based on the 
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available context. One example of the latter case is the distance-dependent functions [64] 

which can be used to reduce the controller effort needed to achieve a certain objective. 

However, these functions should not create new equilibrium points unless it is desired to 

create systems with multiple invariant sets that might be used in realizing a mode-switching 

control strategy or like what is found in formation control, in general. The �� functions 

could be polynomials, rational or trigonometric functions, for examples. Consider also the 

following logistic activation function used in neural networks (NN) which can be useful in 

designing a consensus protocol as depicted partially in Figure 3.12: 

�� 	� , 	�! = 11 + 1"���A�JA��� (3.121) 

.  

Figure 3.12. Visualization of ��  being as an activation function used in NN. 

 �� as Polynomials: 

The general form can be given as follows: 

�� 	� , 	�! = O�� � $� 	� − 	�!��~
���  (3.1.122) 

where: $� is positive coefficient with $� = 1 and p is the desired order of the weighting 

function. It should be clear that, for the same initial values and order, if $� is too large then 

�� may become infeasible while if it is too small then �� may become negligible.  



118 
 

In Chapter 4, various forms of �� will be used to realize behaviors directly related to the 

relative distance among agents. Next, simulation results obtained during the evaluation of 

the previous consensus protocols are presented. 

3.3 Simulation Results 

In this part, the results obtained while simulating various semi-linear and nonlinear 

consensus protocols over a complete graph of six agents are displayed. For the semi-linear 

protocols, several �� functions are used. All the results were run under the same initial 

conditions when applicable so that their effects on the MAS response can be made clear. 

A general undirected graph, shown in Figure 3.13, will also be used to demonstrate the 

generality of the proposed framework and to highlight the effect of the underlying 

communication network on the MAS behavior when the same protocol is used. 

 

Figure 3.13. A general undirected graph comprising six agents. 

3.3.1: Behaviors using semi-linear network protocols 
The following examples were originally designed to work mainly with the semi-linear 

consensus protocol (3.4) and their applicability under the proposed framework can be 

easily checked. These examples deal with the distances among agents. 

3.3.1.1: The ��� as Rational Functions 

The general form can be given as follows: 
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�� 	� , 	�! = 5 	� − 	�!� 	� − 	�! (3.123) 

One example is given as follows: 

�� 	� , 	�! = O�� ��� 	� − 	�!� + 1# A�JA�!��
}�� 	� − 	�!� + 1��  (3.124) 

where: G = 2 ≥ 0 must be even, ñ = −0.8 ≤ 0 and �� = 0.1, �� = 0.02, � = 4 ≥ 0. 

Observe the eigenvalue interlacing shown in Figure 3.14 under the distance-dependent 

protocol. This is in fact what justifies the slower states response and the lower control effort 

once compared to the results obtained using the fixed Laplacian matrix. Figure 3.15 shows 

the results of various types of means and the effect on the algebraic connectivity obtained 

using (3.124) and (3.39). 

 

Figure 3.14. Arithmetic mean consensus among agents using protocol (3.5) utilizing (3.124). The first row from left to 

right: states responses, control signal and eigenvalues. The second row is their corresponding distance-dependent 

quantities, where eigenvalue interlacing is discussed in Remark 3.16. 
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Note 3.13: The effect of state-dependent weights can be seen by observing the slower MAS 

response when compared to the fixed weights. However, the control effort needed under 

state-dependent weights is considerably lower that that needed under fixed weights. 

 

(a) 

 

(b) 

Figure 3.15. Different types of mean consensus among agents using protocol (3.39) utilizing (3.124). (a): states responses. 

(b): Algebraic connectivity |��|, in red, with upper bound, in black, evaluated using (3.101) at each time instance for 

different types of means. The eigenvalue evolution is discussed in Remark 3.16. 

Using the network graph depicted in Figure 3.13 and the same initial conditions, arithmetic, 

geometric and harmonic means are obtained using (3.39) utilizing (3.124) as shown in 

Figure 3.16. Even though (3.124) seems physically meaningless, it was provided to 
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emphasize the fact that the �� functions could generally be anything if the needed 

conditions are met. One famous example of �� being a rational function is the Cucker-

Smale (C-S) flocking model [64]. 

 

Figure 3.16. States responses while achieving consensus to different types of mean using protocol (3.39) utilizing (3.124) 

and the graph shown in Figure 3.13. 

3.2.1.2: The ��� as the Activation Function used in Neural Networks (NN) 

One example can be given as shown in (3.121) where the simulation results are shown in 

Figure 3.17. The resulting convergence rates are lower than shown in Figure 3.16. 

3.2.1.3: Clustering 

The distance-dependent protocol (3.6)- utilizing (3.88) with � = 1- is used to solve the 

simulation example found in [1] under the same initial conditions and network graph. This 

shows the applicability of the proposed framework to clustering application by which the 

original Laplacian matrix must be designed before applying the desired cooperative-

competitive weights. The results are shown in Figure 3.18.  
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Figure 3.17. States responses while achieving different types of mean consensus among agents using protocol (3.39) 

utilizing (3.121). 

3.2.1.4: The Prescribed Connectivity using semi-linear protocols 

As stated before, adjusting the controller structure by introducing an additional term 

reflecting the worst allowed connectivity level helps improving the response of the MAS. 

Figure 3.19.a shows the effect of the prescribed connectivity- on the response of the MAS- 

despite its tiny values, while Figure 3.19.b justifies the necessity of using a prescribed 

connectivity if large initial conditions are expected during the interaction of agents. It is 

worth noting that by introducing the concept of prescribed connectivity, the resulting �� 

functions are treated as controller gains rather than as signal strength models of the 

underlying communication network. Doing so helps in avoiding the estimation of the 

domain of attraction of the equilibria set. However, the agents should be initially connected 

or another protocol must be run to make them connected, like the nearest neighbor protocol 

found in [117], (3.72) or (3.75) for examples. 



123 
 

 

Figure 3.18. Clustering example available in [1] solved here using protocol (3.6) utilizing (3.88) with � = 1. 

3.3.2: Behaviors using nonlinear network protocols 
In this part, the simulation results obtained while simulating the nonlinear protocols (3.54) 

and (3.67.15) are presented. Under the proposed framework, it is obvious that both (3.51) 

and (3.54) refer to the same family of nonlinear protocols, namely: Class 2, whose results 

are shown in Figure 3.20. Note that achieving the harmonic mean was not reported in [56] 

which makes the results reported therein a special case of the proposed framework 

presented in this thesis.  

 

(a) 
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(b) 

Figure 3.19. MAS response with or without prescribed connectivity levels over a complete graph and under (a): relatively 

small initial conditions and (b): large initial conditions cause the expected time for consensus to occur as � → ∞. 

The results of using the nonlinear protocol (3.54) over the graph shown in Figure 3.13 are 

shown in Figure 3.21. Notice the difference from the ones shown in Figure 3.20. 

The simulation results of protocol (3.67.15) are shown in Figure 3.22 over a complete 

graph. 

The effect of the underlying communication network and the protocol- mainly the �� 

functions- used can be understood by comparing the results shown in figures 1.15, 1.16 

and 1.17 while fixing the initial conditions. Notice that in figures 1.15 and 1.17, the same 

complete graph was used however with different �� functions while similar �� functions 

were used to obtain figures 1.15 and 1.16 however with different network topologies. 

 

Figure 3.20. States responses while achieving different types of mean consensus among agents using nonlinear protocol 

(3.54) over a complete graph. 
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Figure 3.21. States responses while achieving different types of mean consensus among agents using nonlinear protocol 

(3.54) over the graph shown in Figure 3.13. 

 

Figure 3.22. States responses while achieving different types of mean consensus among agents using nonlinear protocol 

(3.67.15) over a complete graph. To achieve the harmonic mean, the convergence rate was 30 times larger than what was 

used with the other two types. 

Clearly, the network shown in Figure 3.13 has a lower algebraic connectivity compared to 

the one obtained using a complete graph and hence the slower rate of consensus obtained 

using the undirected graph shown in Figure 3.13. Interestingly, using the complete graph 

and protocol (3.39) utilizing (3.121) gave a slower consensus rate once compared to the 

case where the incomplete graph- shown in Figure 3.13- was used with different �� 

functions. Despite these differences, the same value of consensus for each mean type was 

reached in the three cases. The same discussion is also valid for the nonlinear protocols as 

shown in figures 1.20 and 1.21. Consequently, it should be kept in mind that there might 

be different combinations of network topologies and protocols that can be used to achieve 
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the same behavior and it is up to the designer to decide what to use provided that the design 

requirements are met. 

Note 3.14: The differences in colors of the compared figures are insignificant; since the 

initial conditions for each agent were the same.  

Figure 3.23.a shows the MAS response over the graph shown in Figure 3.13 under the 

semi-linear protocol utilizing the C-S model with � = � = � = � = 1 and a prescribed 

connectivity of 0.006 while Figure 3.23.b shows the evolution of |��| where (3.81.4) and 

(3.81.5) served as lower and upper values, respectively. 

 

(a) 

 

(b) 

Figure 3.23. (a): States responses while achieving the average consensus among agents using the graph shown in Figure 

3.13 utilizing a semi-linear protocol with C-S model and a prescribed connectivity of 0.006 with � = � = � = � = 1. 

(b): Point-wise calculation of �� ℒ�	
�! to have an insight about the propagation of the algebraic connectivity of the MAS 

as will be justified in Part II. See Remark 3.16. 
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Figure 3.24 shows the MAS response over the graph shown in Figure 3.13 under the action 

of the semi-linear protocol (3.68) while achieving consensus using a bounded control signal 

as given in (3.105). The protocol (3.68) utilizing the sign function (top) and the tanh 

function (bottom)- with " = 0.3 and $ = 0.1- were used where the two black dashed lines 

represent the constraints. Note the differences in the control signals and the consensus 

values where the one achieved using the sign function was 2.066 and 2.054 using the tanh 

function and compare these to the arithmetic mean value which was 1.6046. The constraints 

where slightly violated just before the consensus and that is why their consensus values 

were different. Note that since the 1m
 vector is not a left eigenvector associated with �� = 0, 

the average consensus was not achieved in both cases. The consensus protocol realized 

using the sign function introduced chattering which is undesirable especially in a reference 

signal generator whose other dynamical systems are going to track. Thus, the benefit of 

using an approximate version of the sign function, namely the tanh function, is obvious. 

 

Figure 3.24. States responses while achieving consensus among agents using the graph shown in Figure 3.13 utilizing 

(3.68) with sign function (top) and tanh function (bottom), with " = 0.3 and $ = 0.1, where the two black dashed lines 

represent the constraints. 
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The average consensus protocol with bounded inputs, i.e., (3.119), will be utilized in Part 

II to design mainly bounded connectivity-preserving protocols. 

3.4 Conclusion 

In this chapter, a unifying framework for synthesizing continuous-time distributed semi-

linear and nonlinear state-dependent consensus network protocols in a systematic way was 

presented. In this framework, the use of both the first integrals and nonlinear eigenvalues 

was set into interplay such that the needed protocols can be designed. This design process 

kept a clear link to what is available in the literature regarding the static-gain protocols 

usually related to constant Laplacian matrices. General stability proofs using M-matrices 

were also presented which make designing new protocols with guaranteed stability a 

straightforward process under the proposed framework. Several network protocols 

available in the literature were shown to be special cases of the general classes proposed 

herein. Besides stability, performance issues were also handled where the concepts of 

prescribed connectivity and prescribed performance were introduced. Considering 

bounded inputs in conjunction with finite-time consensus problem was also detailed. The 

relation between consensus protocols and potential fields was highlighted. The utilization 

of the proposed framework in designing new protocols that will generate interesting 

behaviors of the MAS will be covered in the next chapter of this thesis. 
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4 CHAPTER 4 

State/Distance-dependent Behaviors 

In Chapter 3, a unifying framework for distributed semi-linear and nonlinear state-

dependent protocols to control multiagent systems over communication networks was 

presented. The building blocks of the proposed framework were also covered in Chapter 3 

where its generality was demonstrated through comparing it to some major results available 

in the related literature. In this chapter, the applicability of the framework in producing 

several motion-related behaviors that govern the interaction among the connected agents 

is demonstrated through totally simulation examples where proofs of invariance, stability 

and convergence are presented when needed. Using state-dependent parameterization to 

control the switching between the various behaviors is presented. The multitude of 

primitive behaviors are used to build more sophisticated behavioral banks that reside in 

each agent permitting each agent to choose or follow the selected behavior. Designing 

connectivity-preserving protocols is also addressed. The result is a sophisticated distributed 

coordination motion planner. 

4.1 The framework Utilization in state-dependent and motion-related behaviors 

realization 

In Chapter 3, we have developed a semi-linear protocol to control the behavior of a MAS 

system with fixed number of agents whose dynamics are modeled as follows: 

	r���� = z����  ∈  ℜ, ∀. = 1,2, ⋯ , a (4.1) 

with z�, i.e., the network protocol, given as follows: 
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z� = − � ���	�, 	��F	� − 	�H�∈��
 

���	� , 	�� = ����	�, 	��  > 0, / ∈ ��0, / ∉ �� 
(4.2) 

where: �� 	� , 	�!: ℜ� → ℜ�� is a general and usually bounded weighting vector-valued 

functional and / ∈ �� denotes that the /67 agent is a neighbor of the .67 agent. Let the global 

state vector 	
 = i	�, 	�, ⋯ , 	Wl& ∈ ℜW, thus, (4.1) can be rewritten for short- by dropping 

the explicit time dependency- as follows: 

	r� = − � �� 	�, 	�!F	� − 	�H�∈��
= −	� � �� 	�, 	�!�∈��

+ � �� 	� , 	�!	��∈��
 (4.3) 

Simplifying (4.3) more, yields: 

	r� = −	�h� + � �� 	� , 	�!	��∈��
= z� (4.4) 

where: h� = ∑ �� 	�, 	�!�∈��  is the in-degree of the .67 agent. Taking U =
h.G�ih�, h�, ⋯ , hWl�, we can write the global dynamics of the connected MAS as 

follows: 

	r
��� = − U�	
� − R�	
�!	
 = −ℒ�	
�	
��� = �
�	
� (4.5) 

where: �
 0m
! = 0m
 and R = S��T is the adjacency matrix associated with the graph 

resembling the available communication network among agents, and ℒ�	
�- or ℒ8 for short- 

is the resulting state-dependent Laplacian matrix. 

To achieve clustering among agents in a MAS, the consensus protocol (4.4) is modified as 

follows: 

	r� = −	�h� + � h��A �� 	� , 	�!	��∈��
= z� (4.6) 
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where: h��A ∈ ℛ is the fixed competitive or cooperative weight that is usually given as a real 

number whose sign is )−1,1*, respectively. This weight will convert the unsigned network 

graph into a signed graph [87] which is a special case of a gain graph. To maintain the in-

degree, i.e., h�, of the original network graph, it is required to have h��A = 1 h��A⁄ = �� ��⁄  

where �� is the desired behavior of the .67 agent. Clearly, if �� = ��, then both agents are 

in the same cluster.  This relation will preserve the stability of the resulting MAS under 

cluster consensus. Mathematically, the relation between both graphs as reflected on their 

corresponding Laplacian matrices, so the resulting MAS dynamics can be given as follows: 

	r
��� = −�fJ�ℒ�	
�f�	
��� = �
�	
� (4.7) 

where: f = h.G���, ��, ⋯ , �W�. 

Practically speaking, certain applications demand the usage of different communication 

networks for different states; may be due to security issues or simply because some agents 

do not require direct measurements of other agents of specific states. Nevertheless, by 

extending the agents states dimensions from ℜ to ℜ3 for example, we may write the overall 

MAS dynamics in 3-D as follows: 

çr
��� = − �$�å��ç
��ℒ��ç
�, ç
�, ç
3�ç
����$�å��ç
��ℒ��ç
�, ç
�, ç
3�ç
����$3å3�ç
3�ℒ3�ç
�, ç
�, ç
3�ç
3���¡ (4.8) 

where: ç
 = Sç
�& , ç
�& ,  ç
3&T&
 and ç
� = i	��, 	��, ⋯ , 	W�l& while 	
� = S	��, 	��, 	�3T& , / =

1, ⋯ , a, . = 1,2,3. The state-dependent Laplacian matrices ℒ�, $� > 0 and å� may not be 

similar. The å��ç
�� are given as follows: 

å��ç
�� = ¢��	��� ⋯ 0⋮ ⋱ ⋮0 ⋯ ��	W��£ (4.9) 
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Where ��	��� is given as 1, 	�� , 	���  and 	���Jµ to achieve arithmetic, geometric, harmonic 

and power mean-of-order-5, respectively.  

In this chapter, the proposed framework is utilized to generate various behaviors of 

interacting spatial-agents using mainly the semi-linear protocol with �� being distance-

dependent. Note that the �� functions used may represent a communication link model or 

a part of the behavior controller. Each behavior is assumed to be fully dominant, i.e., no 

combinations among different behaviors are allowed. This dominance ensures that the null-

space of the corresponding matrix representing a behavior is preserved. Mathematically, 

this can be seen from the fact that the addition, for example, of two general matrices cannot 

guarantee the preservation of their null-spaces if they were distinct. Note that each behavior 

may enjoy different spatial dimensions as shown in (4.8), for example.  

Having several behaviors residing in a local behavior bank- which is identical in each 

agent- as shown in Figure 4.1, an intelligent agent can decide individually or collectively 

how to react to different situations or contexts by switching among these embedded 

behaviors. However, as far as this thesis is concerned, the switching mechanism among the 

proposed set of behaviors is designed to be time-dependent where a central monitoring 

unit, a human-in-the-loop for example, issues the switching command to all agents. 

Though, practically speaking, this mechanism is not suitable for various situations, it is 

used herein to convey the concept, mainly. Other behavior-selection mechanism that are 

event-driven (including self-triggering), Finite-State-Automata [129] or sequential-based 

mechanisms can also be utilized. 
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Figure 4.1. An agent behavior-bank consists of �-motion-related behaviors. 

4.1.1: Consensus using the common neighborhood approach 
The merits behind this behavior are the ability of agents interaction not only at the edge 

level but also on the neighborhood level that might represent a preferred selection of an 

operator controlling the MAS behavior. An example is depicted in Figure 4.2 in which an 

operator is creating two complete neighborhoods and a partial one. We refer to a complete 

neighborhood as such all agents are fully-connected like �� and �3 in Figure 4.2 while �� 

is a partial neighborhood where these types can be decided dynamically at agents level or 

imposed by the operator using a supervisory front-end software, for instance. It is 

permissible for neighborhoods to overlap. 

Having the neighborhoods selected- as in Figure 4.2-, it is essential to decide next what the 

task is. Let us consider achieving the average consensus among the agents. Therefore, the 

corresponding control signals are given as follows: 

	r� = ��3)	� + 	3 − 2	�* 

(4.10) 

	r� = ��3)	� + 	3 − 2	�* + �%&)	% + 	& − 2	�* 

	r3 = ��3)	� + 	� − 2	3* + 3')	' − 	3* 

	r% = �%&)	� + 	& − 2	%* 

	r' = '3)	3 − 	'* + '&)	& − 	'* 
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	r& = �%&)	� + 	% − 2	&* + &')	' − 	&* 

where: 

��3 = 1 i�	� − 	��� + �	� − 	3�� + �	� − 	3�� + 1l⁄  

(4.10.1) 
�%& = 1 i�	� − 	%�� + �	� − 	&�� + �	% − 	&�� + 1l⁄  

3' = 1 i�	' − 	3�� + 1l⁄  

&' = 1 i�	' − 	&�� + 1l⁄  

 

Figure 4.2. MAS with multiple neighborhoods created by the operator. 

Solving (3.33.1) and (3.33.2), the MAS given by (4.10) is indeed capable of achieving the 

average consensus as desired ∀	
. The results shown in Figure 4.3 can be used to compare 

the response of (4.10) with what was shown in Figure 3.23.a where both systems used a 

prescribed connectivity of 0.006 and the same underlying network. The slower version of 

(4.10) is due to the additional elements appearing at the denominator of ��3- acting on the 

complete neighborhood level- compared to &' acting at the edge level, for example.  

 

Figure 4.3. Response with prescribed connectivity 0.006 using the concept of multi-neighborhood. Compare it with 

Figure 3.23.a. 
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Having random initial conditions, there might be a possibility of physical neighboring 

between two agents that are not originally designed to be neighbors on the graph associated 

with the communication network. Therefore, enabling dynamic edge creation is a plus for 

the overall cooperative behavior of MAS especially if it consists of spatial agents. Figure 

4.4.a shows a possible integration among permanent links forced by the designer and 

intermittent links dynamically created on the fly.  

Interestingly, the intermittent links creation could be due to physical nearness of agents 

and therefore can be realized based on onboard sensory measurements, for example. The 

effect of the intermittent links on the overall performance of MAS can be seen through 

comparing figures 2.4.b and 2.4.c where the effect of the intermittent link established 

between agents 1 and 5 is clear. This can be read from Theorem 3.7 available in Chapter 

3. Although the creation of intermittent links could be controlled in many ways, the ones 

used in Figure 4.4.a are created using the following function: 

�� = � }v 	� − 	�!� + 1w − 0�� v 	� − 	�!� + 1wò  (4.11) 

where: ��∙� is the unit-step function and 0� is a threshold set as 0.1. 

 

(a) 



136 
 

 

(b) 

 

(c) 

Figure 4.4. A MAS with permanent and intermittent link connecting agents within multiple neighborhoods and no 

prescribed connectivity. (a): illustration. (b): response with intermittent links enabled with threshold equals 0.1 and (c): 

disabled. 

Let all agents be well-informed about each other, i.e., agents relate to each other over a 

complete undirected graph, then there will be one global neighborhood which is also 

complete. In such a case, the overall MAS dynamics can be given as follows: 

	r
��� = −$ ª 11 + ∑  	� − 	�!�W�,�,�Æ� + �« ℒ�	
��� 

= −$�?�	
� + �� ¢ℎ�⋮ℎW£ = −$�?�	
� + ��ℎm
�	
� = �
�	
� 

(4.12) 

 where: ∑  	� − 	�!�W�,�,�Æ�  denotes the summation of all possible and unique combinations 

p from 	
, ℒ� is the fixed Laplacian matrix imposed originally by the designer, and $ > 0 
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is a fixed and real scalar controlling the convergence rate and the prescribed connectivity 

is denoted by �. Figure 4.5 shows the results obtained using (4.12) when the graph shown 

in Figure 4.4.a is complete. Note that in (4.12), $ = 1 was used with prescribed 

connectivity � = 0.006. Note also the hump in the control signal right before consensus is 

achieved. The effect of the global neighborhood can be seen by comparing Figure 3.19.a 

with Figure 4.5.   

 

Figure 4.5. A MAS response while achieving the average consensus under the global neighborhood. 

Let us reconsider the problem described in Figure 4.2 and solve the average consensus 

problem in an actual 2-D working space assuming a global neighborhood. This can be 

simply done by introducing another dynamical system in the other direction, say the y-

direction, as given in (4.8). The results are shown in Figure 4.6. Note that agents responded 

in a linear fashion due to equal efforts, i.e., control signal magnitude. Note also that the 

control signal in both Cartesian coordinates were totally decoupled as suggested in (4.8). 

 

Figure 4.6. A MAS response under the global neighborhood while achieving the average consensus on 2-D working 

space. 



138 
 

Note 4.1: In (4.12), the relation between the evolution of the MAS eigenvalues under state-

dependent convergence rate and the constant eigenvalues of ℒ�- imposed by the designer- 

is interesting, which motivates the following sub-section. 

4.1.1.1: Linear dynamics contribution in the global neighborhood response 

In Chapter 3, Theorem 3.7 is used to present the concept of prescribed connectivity mainly 

by scaling the desired ℒ� using a scalar, namely: �, and then add a states-dependent weight 

for each edge in ℒ� through the used �� functions. So, the previous concept of prescribed 

connectivity is operating at the edge level and not on the MAS level. Inspired by (4.12), 

the whole ℒ� matrix can be scaled by a well-designed scalar functional such that the 

evolution of the connectedness of agents in MAS is pre-controlled or pre-known under 

state-dependence. 

Recalling Theorem 3.8, the modified Fiedler eigenvalue of (4.12) for a system of N single-

integrator systems can be given as follows: 

���	
� = 2$?��	
, ���j
��& ℎm
��� − $ ?�	
, �� ��� (4.13) 

where: ?��, 	
� > 0 is a scalar function that might depend on both time and states, and ��� 

is the Fiedler eigenvalue of the fixed Laplacian matrix ℒ�. Because time is not supported 

yet in the proposed framework, we assume that ? is time-independent, i.e., ?�	
�. Which 

leads to the following: 

Proposition 4.1: The modified Fiedler eigenvalue of (4.12) for a system of N single-

integrators is given by (4.13). 

Proof: The Jacobian of (4.12) is given as follows assuming � = 0: 
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¿�
¿	
 = ¢ ℎ� ∇?�	
� + ?�	
� ∇ℎ�⋮ℎW ∇?�	
� + ?�	
� ∇ℎW£ (4.13.1) 

where: ∇ is the row vector gradient operator. Solving (3.33.1) and (3.33.2) to force a 

symmetric Jacobian resulted in the following condition: 

∇?�	
�. 1m
 = 0 (4.13.2) 

Therefore, the Jacobian will act as a point-wise singular M-matrix whose sign nearby the 

equilibria set can be examined as will be shown in the coming subsection. Note that for a 

complete graph where agents are all connected to each other, we have: 

� ℎ�W
��� = 0 (4.13.3) 

Having a symmetric Jacobian, we may use (3.96) so that the second smallest eigenvalue of 

(4.12) is given as follows: 

���	
� = j
�& À¿�
¿	
Á j
�j
�&j
�  
(4.13.4) 

where: j
� = �?�	
�, 	
�j
�� with j
��& j
�� = 1 and �?�	
�, 	
� > 0 is a general scalar 

function of the nonlinear scaling ?�	
�.  

In general, a nonlinear system might have many eigenvalues- possibly infinitely- which are 

not unique [99]. Each eigenvalue among those might have several eigenvectors as well 

[99]. Being interested in observing the signature of the linear mode, i.e., ���, we choose 

j
� = ?�	
�j
�� with j
��& j
�� = 1, among many, as a nonlinear unity left eigenvector- yet to 

be verified- associated with ���	
�. This relation between the eigenvectors is desired such 

that ?�	
� > 0 will only change the length of the vector j
�� and not its direction so that the 

contribution of the linear dynamics in the MAS response can be extracted. So: 
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���	
� = $ j
��& ª¢ ℎ� ∇?�	
� + ?�	
� ∇ℎ�⋮ℎW ∇?�	
� + ?�	
� ∇ℎW£« j
�� 

= $ j
��& ¢ℎ� ∇?�	
�⋮ℎW ∇?�	
�£ j
�� − $ ?�	
� j
��& ℒ�j
�� 

= $ j
��& ¢ℎ� ∇?�	
�⋮ℎW ∇?�	
�£ j
�� − $ ?�	
� ��� 

= $ j
��& ℎm
 ∇?�	
�j
�� − $ ?�	
� ��� 

(4.13.5) 

Now, knowing that the Jacobian is symmetric and after calculating its needed elements, we 

find that ∀ ., /: 

¿?¿	� ℎ� = 2?��	
�ℎ�� 

¿?¿	� ℎ� = 2?��	
�ℎ�ℎ�  

(4.13.6) 

Therefore, (4.13.5) can be rewritten as follows: 

���	
� = 2$?��	
� j
��& ℎm
ℎm
&j
�� − $ ?�	
� ��� (4.13.7) 

or: 

���	
� = 2$?��	
��j
��& ℎm
��� − $ ?�	
� ��� (4.13.8) 

which equals (4.13).   

 ∎ 

Note that the ?�	
� used in (4.12) does indeed satisfy (4.13.2). Now, to prohibit the scalar 

function ?�	
� from changing the direction of j
��, the latter should be selected from the 

generalized eigenspace associated with ��� whose algebraic multiplicity over a complete 

undirected graph is greater than 1. This should be done at the initial time, ��, using the 
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known initial conditions. Doing so, j
�� will, almost, be perpendicular to ∇?�	
� and 

therefore we will have: 

���	
� ≈ −$ ?�	
� ��� (4.14) 

Otherwise, (4.12) is true.  

Note 4.2: Finding all possible values of ���	
� is beyond the scope of this work. Notice that 

(4.13) should not give the indication that the algebraic connectivity will be lost; because 

this relation is introduced to investigate the contribution of ��� in the MAS response. 

Remark 4.1: In Chapter 3, the linear modes contributions found in the figures were 

investigated by calculating, in a point-wise fashion, the eigenvalues of ℒ�	
� in the semi-

linear protocols using the MATLAB function 1. ℒ�	
�!. More details will be provided 

later. 

Remark 4.2: Investigating the linear signatures in nonlinear systems can be found in many 

fields, e.g., [130] in which the linear signature is used to interpret the plasma turbulence 

using pseudospectra.  

4.1.1.2: Stability analysis of global neighborhood 

It was shown in (3.83) that if the Jacobian is a negative singular M-matrix outside the 

equilibria set then this equilibria-set will be attractive, and the MAS is stable. Therefore, 

the sign of (4.13.1) is examined as follows: 

 
��
�A
 = 2$?��	
� ℎm
ℎm
& − $ ?�	
�ℒ� (4.15) 

So: 

	
& ¿�
¿	
 	
 = 2$?��	
�	
& ℎm
ℎm
&	
 − $ ?�	
�	
&ℒ�	
 (4.15.1) 
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= 2$J�	
& �
�
&	
 + 	
&�
 
And we have: 

	
& �
 = −?�	
�)� (4.15.2) 

where: 

)� = �  	� − 	�!�W
�,�,�Æ�  (4.15.3) 

So, we have: 

0 < ?�	
� = 11 + )� ≤ 1 (4.15.4) 

and therefore, it will compress the length of the vector j
��. We may write (4.15.1) as 

follows: 

	
& ¿�
¿	
 	
 = 2$J� )%�1 + )��� − )�1 + )� = i�2 − $�)� − $l)�$�1 + )���  (4.15.5) 

Now, evaluating (4.15.5) in the near vicinity of the equilibria set, i.e., ℑ =
F	
 ∈ ℜW|	
 = �1m
H, � ≥ 0 , results in a negative value, and therefore the equilibria set is 

attractive, and the MAS is stable.  

Before concluding this section, let us first revisit the concept of the global neighborhood 

which is defined as the neighborhood of all complete neighborhoods. A generalization of 

this type of neighborhoods is given as follows: 

 Definition 4.1: A universal neighborhood is the one that includes all partial, complete and 

global neighborhoods. 

A universal neighborhood is depicted in Figure 4.7. The universal neighborhood itself may 

belong to a constellation of universes, and so on. These types of neighborhoods will aid 
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significantly in constructing structured Laplacian matrices that will be helpful in analyzing 

the behavior of interacting systems in the whole. 

 

Figure 4.7. A universal neighborhood comprising multiple complete and partial neighborhoods among which permanent 

and persistent links may exist. 

4.1.2: Formation in obstacle-free working environment 

4.1.2.1: The first formation protocol 

In various situations, a spatial MAS is expected to maintain specific arrangements or 

formations in 2-D or 3-D while interacting with the working environment. This behavior 

can be realized for example in the x-direction using the steepest decent law [131] given as 

follows: 

z� = �  h��∗� − h��� !F	� − 	�H�∈��
 (4.16) 

where: h��∗� is the desired Euclidean distance between the .67 and the /67 agents. Comparing 

(4.16) to (4.3), this consensus protocol is indeed semi-linear, moreover �� =  h��� −h��∗�! 

satisfies both (3.33.1) and (3.33.2) and therefore fits within the framework proposed in 

Chapter 3. However, note that �� used in (4.16) introduces a new equilibria set besides 

(3.31). Thus, several non-isolated equilibria may result under formation control, in general. 

Among these equilibria, the correct equilibrium is the one at which the specified distances 

are attained and is always attractive [131]. This fact will make the analysis of formation 
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control much involved when attractive incorrect equilibria do exist or under arbitrary 

formation switching; since no single globally attractive equilibria exists among the 

resulting switched systems, in general. Treatment of such systems can be found in [132] 

and [133], for examples. Using (4.16), the overall MAS dynamics in the x-direction can be 

given as follows: 

	r
��� = −ℒ�	
, '
, ç
, q
�	
��� = �
A�	
, '
, ç
, q
� (4.17) 

where: q
 is a vector whose elements are all possible h��∗�. 

Similarly, the MAS dynamics in the y and z directions can be given as follows: 

'r
��� = −ℒ�	
, '
, ç
, q
�'
��� = �
B�	
, '
, ç
, q
� 

çr
��� = −ℒ�	
, '
, ç
, q
�ç
��� = �
C�	
, '
, ç
, q
� 
(4.18) 

Both (4.17) and (4.18) introduce couplings among agents when h��� =  	� − 	�!� +
 '� − '�!� +  ç� − ç�!�

 is used; however, if h��� =  	� − 	�!�
 in (4.16)- the same goes for 

h��∗� as well-, then there will be no coupling between (4.17) and (4.18). Either way, (4.8) 

follows. The difference between the two cases is the quality of the generated reference 

trajectory such that in the first case a smother trajectory is most likely to happen while in 

the second case a zig-zag like trajectory with sharp corners might happen which is not 

welcomed from the tracking agents point of view. This will be obvious when h�� is used 

instead of h���  and therefore (4.16) becomes: 

z� = �  h��∗ − �	� − 	��!F	� − 	�H�∈��
 

= � �h��∗  	� − 	�! − q.p 	� − 	�! 	� − 	�!���∈��
 

(4.19) 
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where the q.p function introduces a jump at its zero which may compromise the 

smoothness usually required in reference trajectory signal. So, introducing couplings in 

(4.8) is sometimes inevitable. Various inter and intra couplings in (4.8) result in interesting 

behaviors as will be introduced in the coming chapter. 

To examine the effect of the internal coupling in a more depth, let h��∗� = F∆��,A� ,∆��,B� ,∆��,C� H, 

then (4.17), for example, can be rewritten as follows: 

	r
��� = SI�A − ℒ�	
�T	
��� + SI�B − ℒ�'
�T'
��� + SI�C − ℒ�ç
�Tç
��� (4.20) 

where: I�A,B,C ∈ ℜW×W denotes the fixed matrix comprising all ∆��,A,B,C�  elements in the three 

Cartesian coordinates x, y and z, respectively. We refer to I� as the shape matrix associated 

with the shape graph [131]. Note that I�A,B,C follows the structure of the Laplacian matrix 

ℒ associated with an undirected graph, generally, with different entries.  

If h��∗� = ?�� is provided instead, then (4.17) can be given as: 

	r
��� = FI� − ℒ�	
, '
, ç
�H	
��� (4.21) 

which can be written as (4.17). Note that (4.21) reveals the link between consensus and 

formation control; in a way that (4.21) introduces new equilibria through I� besides those 

introduced by ℒ�	
, '
, ç
�. The overall equilibria set is defined, for the x-direction, as 

follows: 

ÂA = F	
 ∈ ℜW| 	
 = �1m
H ∪ F	
 ∈ ℜW| j
&�
�	
� = 0m
H 

∪ F	
 ∈ ℜW| �
�	
�1
 = 0m
H ∪ F	
 ∈ ℜW|  �
�	
� = 0m
H 
(4.21.1) 

where � ≥ 0 ∈ ℜ, j
&�	
� and 1
�	
� are the nonlinear left and right eigenvectors, 

respectively. Then, the overall equilibria set is: 

Â = ÂA ∪ ÂB ∪ ÂC (4.21.2) 
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So, as stated in [131], several non-isolated equilibria may result under formation control 

(4.21) and the correct equilibrium is the one at which the specified distances are attained 

and is always attractive [131]. However, consider for example the case when all agents 

start exactly at the same initial conditions, i.e., 	
 = ?1m
, then they will stay there forever 

unless some sufficient perturbation will get them out this state.  

Interestingly, a parameterized version of (4.21) can be used to control the behavior of the 

MAS such that it switches between consensus and formation. This observation reveals the 

relation between formation and consensus which can be thought of as the general case. 

Moreover, the formation is achieved about its moving coordinate system that is attached to 

the average value of agents’ initial conditions. Therefore, (4.21) can be parameterized as 

follows: 

	r
��� = F?�I� − ℒ�	
, '
, ç
�H	
��� (4.21.3) 

where: ?� ≥ 0 ∈ ℜ is the parameter used. Note that ?�  and other existing parameters are 

usually controlled by a centralized, decentralized or distributed decision-making 

mechanism that governs the behavior of the MAS from a global perspective. Such 

parametrization enables the MAS to be semi or fully-autonomous while interacting with 

its surrounding. In general, analyzing the MAS behavior from global perspective allows 

grasping the big picture of interacting MAS systems, if they are many. 

Clearly, ?� can be used to realize average consensus and formation among the connected 

agents; such that when ?� > 0- usually 1-, then formation is achieved, and when it is zero, 

then the consensus is achieved. Shape uniform-scaling can also be controlled using ?� if it 

is other than zero or one. This procedure is equivalent to creation and destruction of the 

additional equilibria set introduced by the formation protocol. 



147 
 

Note 4.3: In (4.21.3), when switching occurs from formation to consensus, one might 

expect that it is impossible to switch back; because at consensus all states will be 	
 = �1m
 

and therefore (4.21.3) will stay in that equilibria. However, the time for consensus using 

(4.21.3) is too large and consequently switching back to formation might be possible unless 

consensus is already reached. 

Enlightened by (4.21.3), another modified version of (4.21) can be developed in which 

switching between multiple formations is possible. It is given as follows: 

	r
��� = F?��I�� + ⋯ + ?��I�� − ℒ�	
, '
, ç
�H	
��� (4.21.4) 

where: ?�� > 0 is the parameter of the �67 formation. 

Remark 4.3: The parameters in (4.21.4) can be used to assign a preferred formation to a 

specific situation or context occurring at the MAS or working environment levels, for 

example. To avoid stability or performance problems, only one ?�� parameter is nonzero 

at any given time instance so that there will be only one attractive equilibria at a given time. 

This is related to the indication function 

Recalling Chapter 3, if the formation is desired to have its coordinate system attached to a 

point other than that corresponding to the average value of its initial conditions, then 

(4.21.4) can be modified as follows: 

	r
��� = å�	
�F?��I�� + ⋯ + ?��I�� − ℒ�	
, '
, ç
�H	
��� 

= å�	
��
A�	
, '
, ç
, q
� 

(4.21.5) 

where: å�	
� is like å� given in (4.9).  

Theorem 4.1: As � → ∞, the leaderless parameterized MAS given in (4.21.5) will achieve 

the desired formation in the working space about the point �ã corresponding to the desired 

mean type selected by å�	
� along with appropriate initial conditions if and only if 
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�
A�	
, '
, ç
, q
� has j
& = 1m
& as a nonlinear left eigenvector associated with ���	
� = 0,
∀	
���. 

Proof: Since the shape matrices involved, i.e., I��, follows the same structure of ℒ, so they 

are symmetric and- along with their parameters- which are state-independent and generally 

constant, then the conditions (3.34) and (3.35) are still valid, and therefore the Jacobian of 

�
�	
� in (4.21.5) will have 1m
 as both nonlinear left and right eigenvectors associated with 

���	
� = 0, ∀	
���. So, (4.21.5) can achieve the desired formation about the desired 

consensus point in the working space. For more details, see (3.42).  

Note that ���� = �h��∗� − h��� � → 0 as �	� − 	�� → 0, therefore the control signal becomes 

smaller and smaller and convergence to right formation is expected to occur as � → ∞. 

∎  

Note 4.4: Theorem 4.1 applies also to y and z directions. 

Lemma 4.1: Let the conditions specified by Theorem 4.1 be satisfied, then the parameters 

?�� to ?�� can all be nonzero at the same time provided that ∑ ?��� = 1, . = 1,2, ⋯ , �. So, 

the resulting formation will be centered at the same point �ã and contained within the 

convex hull of all formations. 

Proof: Let I� in (4.21) be given such that: 

I� = � ?��I��
�

���  

Then, the equilibrium points of (4.21) are in the convex hull of all I��. 

∎ 

Proposition 4.2: By slowly varying the parameters such that ∑ ?��� = 1, ∀�, then a smooth 

morphing among formations can happen. This will suppress the abrupt changes in the 
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control signal which results in a smoother trajectory to be followed. In this case, the 

parameters will be sliding on a hyperplane in ℜ� where � is the number of formations. 

Other relations among the parameters are also possible. 

□ 

Remark 4.4: By carefully examining the formation protocol given by (4.16), when h��∗� −
h��� ≡ h��∗� −  	� − 	�!� −  '� − '�!� −  ç� − ç�!� = 0 is used, then the equilibria set is 

basically the solution of all points residing on spheres surfaces centered at  	� , '� , ç�! that 

can be used to realize the desired formation. This is equivalent to the graphical procedure 

followed to draw polygons on a paper using compass. These points are determined based 

on agents’ initial conditions and that is what really makes the formations realized using 

(4.16) geometrically flexible where reflection and rotation can occur. Therefore, more 

geometrical constraints may be required to have the desired formation. 

4.1.2.2: The second formation protocol 

Another formation control protocol that can be used is given as follows: 

z� = − � ��F	� − 	� − ∆��A H�∈��
 (4.22) 

where: �� can be constant as in [9] or state-dependent as explained previously in Chapter 

3, and ∆��A  is the fixed relative distance between the two agents- in the x-direction- 

according to the desired formation. Note that in (4.22), the elements in the equilibria set 

given in (3.31) are shifted by the corresponding ∆�� specified and no additional equilibria 

are introduced. Thus, studying the formation convergence of (4.22) seems more appealing 

than (4.16). However, a comparison between the stated formation protocols will be 

provided in the coming subsection. 
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In fact, it is straight forward to examine the stability and convergence of the overall MAS 

under (4.22) following the same steps presented in Chapter 3.  

The essence of using protocol (4.22) to achieve formation starts by adopting a moving or 

shifting reference frame, i.e., coordinate system, based on which the relative distances 

among agents comprising the desired formation are determined. This is illustrated in Figure 

4.8. 

 

Figure 4.8. An illustration of the essence of formation protocol (4.22) showing two agents and the relative distances 

among them using a moving reference frame. 

In Figure 4.8, the relative distance among both agents in the x-direction for example is ∆��A =
∆�A − ∆�A which equals −∆��A . Consequently, the overall MAS dynamics in the x-direction 

can be given as follows: 

	r
��� = −ℒ�	
, '
, ç
�	
��� + ¸�	
�1m
 (4.23) 

where: ¸�	
� is a skew-symmetric matrix with zero diagonal elements. 

A modified version of (4.23) can be introduced such that the formation is realized around 

a point �ã corresponding to the desired mean type. This can be given as follows for � 

formations: 

	r
��� = å�	
�F−ℒ�	
, '
, ç
�	
��� + ?�� �̧��	
, '
, ç
�1m
 + ⋯ + ?�� �̧��	
, '
, ç
�1m
H 

= å�	
��
A�	
, '
, ç
� (4.24) 
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Theorem 4.2: The leaderless parameterized MAS given in (4.24) will achieve the desired 

formation in the working space about the point �ã corresponding to the desired mean type 

selected by å�	
� along with appropriate initial conditions if and only if �
A�	
, '
, ç
, q
� has 

j
& = 1m
& as a nonlinear left eigenvector associated with ���	
� = 0, ∀	
���. Moreover, the 

convergence to the desired formation will occur in a finite-time if the �� functions used 

C-S model with 0 < � ≤ 1. 

Proof: Let å�	
� = <, i.e., the identity matrix of appropriate size, then for �
A to have 1m
& as 

a nonlinear left eigenvector associated with ���	
� = 0, ∀	
���, the �� functions in (4.22) 

must verify (3.34). Also, note that 1m
& �̧�1m
 ≡ 0, ∀. = 1,2, ⋯ �; since �̧� is a skew-

symmetric matrix. For other types of means, i.e., å�	
� ≠ <, the proof follows as in (3.42). 

It was shown in (3.88) that a convergent �� utilizing the C-S model occurs when 0 < � ≤
1 and therefore a finite-time convergence to the desired formation is expected to happen 

with � < ∞. 

∎ 

Note 4.5: Theorem 4.2 applies also to y and z directions.              

4.1.2.3: Comparison between the two formation protocols 

The main differences among the two formation protocols can be summarized as follows: 

1- The protocol given in (4.16) is geometrically more flexible than (4.22). 

2-  Switching from formation to consensus, agents controlled using (4.21.5) will not be 

able to switch back to formation if consensus is reached which is not the case with 

(4.24). Note that once consensus is approached under (4.21.5), the control signal will 

remain zero afterwards. 
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3- Because of the above, the switching- if possible- using (4.21.5) will occur about a 

slightly different point in the working space while this is not the case with (4.24).  

4- Knowing that each behavior whether formation or consensus takes its initial conditions 

from the previous one, protocol (4.24) will fail to maintain the same reference point if 

behaviors are not fully achieved. 

5- The control signal under protocol (4.22) is directly proportional to  h��∗� − h��� !, while 

the control signal under (4.24) is inversely proportional to the relative distances 

between agents when a C-S model is used.  

The results of formation control of three single-integrator agents to form an equilateral 

triangle based on (4.16) and (4.22) are shown in Figure 4.9.  The triangle has a side length 

of 1 in length units. The C-S model was used to build the �� functions in (4.22). The 

undirected communication network shown in Figure 3.7 is used. Both the communication 

and formation graphs were identical. Notice that in Figure 4.9.a, the equilateral triangle is 

rotated about the average value of initial conditions, which were 	
���� = i2, 3, −2l& and 

'
���� = i3,1,8l&, while the equilateral triangle in Figure 4.9.b followed the desired 

orientation- set at the design stage of formation- about the average point of initial 

conditions. These results demonstrate the level of geometric flexibility of formations under 

the two protocols especially in 3-D where additional constraints are needed when using 

(4.16). In general, other behaviors might accompany the formation behavior like leader 

following, collision avoidance and preserving connectivity as found in [134]. However, the 

example provided herein showed the relation between the proposed framework and the 

formation problem. In a coming subsection, the relation of leader following while 

preserving the formation under the proposed framework is discussed in more detail. 
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Note 4.6: Switching back and forth between consensus and formation can be found in 

nature where the petals of Mimosa pudica opens and closes based on the environmental 

conditions. In robotics engineering, such behavior might be useful in controlling the 

actuators responsible for the robot movement in the robotic jellyfish, for instance.  

4.1.2.4: State-dependent parameters in formation protocols 

Here, we extend the previous two formation protocols, namely: (4.21.5) and (4.24), to 

include state-dependent parameters that can be used to semi-autonomously or 

autonomously switch among formations- including complete consensus- based on a given 

context. This will be done using the proposed framework of Chapter 3. 

 

(a) 

 

(b) 

Figure 4.9. Formation control of three single-integrator agents interacting over an undirected graph under: (a) protocol 

(4.16). (b) protocol (4.22). 
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A short version of (4.21.3) under state-dependent parameters will be used by which it is 

desired to investigate the behavior of MAS in a 3-D global neighborhood, i.e., in which all 

agents are interacting over a complete undirected graph in 3-D. This version is given as 

follows: 

-	r
���'r
���çr
���. = � / i0lW×W i0lW×Wi0lW×W / i0lW×Wi0lW×W i0lW×W / ¡ �	
���'
���ç
���¡ 

/ = ?���	
, '
, ç
�I�� + ⋯ + ?���	
, '
, ç
�I�� − ?�	
, '
, ç
�ℒ� 

(4.25) 

Or as: 

-	r
���'r
���çr
���. = � /� i0lW×W i0lW×Wi0lW×W /� i0lW×Wi0lW×W i0lW×W /3 ¡ �	
���'
���ç
���¡ 

/� = ?���	
, '
, ç
�I�� + ⋯ + ?���	
, '
, ç
�I�� − ?��G
��ℒ� 

(4.25.1) 

where: G
� = )	
, '
, ç
* and i0lW×W is a block of a × a zeros with a as the number of agents 

in the global neighborhood. 

The main difference between (4.25) and (4.25.1) is the nature of the weighting function 

used, i.e., ?; where in (4.25) it depends on the states in all directions of the 3-D space and 

in (4.25.1), it depends only on the states in one direction. As a result, the MAS moves in 

the working space in a way that suits all agents in the involved directions.   

Theorem 4.3: The parameterized MAS given in (4.24) will achieve the desired formation 

in the working space about the point �ã corresponding to the desired mean type selected 

by å�	
� for all state-dependent switching parameters ?�7�	
, '
, ç
�.  
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Proof: Working in the x-direction, let us analyze the formation protocol (4.24) to check the 

conditions needed for the state-dependent parameters to work under the proposed 

framework. The Jacobian of (4.24) is given as follows: 

¿�
A�	
, '
, ç
�¿	
 = � Y7
�

7�� + Yℒ (4.26) 

where: Yℒ is the Jacobian associated with −ℒ�	
, '
, ç
�	
��� which has been dealt with 

extensively in Chapter 3 and therefore the needed conditions to force the 1m
 as a nonlinear 

left and right eigenvector associated with ���	
� = 0, ∀	
��� are given in (3.34) and (3.35), 

respectively. The Y7 is given as follows: 

Y7 =  �̧7�	
, '
, ç
�1m
!∇?�7 + ?�7∇ �̧7�	
, '
, ç
�1m
! (4.26.1) 

Let �̧7�	
, '
, ç
�1m
 = Omm
7 such that: 

Omm
7 =
0
12ÃÄÄ

ÄÅ 0 |�� |�3−|�� 0 |�3−|�3 −|�3 0 ⋯ |�W|�W|3W⋮ ⋱ ⋮−|�W −|�W −|3W ⋯ 0 ÇÈÈ
ÈÉ

ÃÄÄ
ÄÅ111⋮1ÇÈÈ

ÈÉ
3
45

7= iO� O� O3 ⋯ OWl7& 

(4.26.2) 

where: |�� = ��∆��A  with ∆��A  a real fixed scalar denoting the required relative distance in 

the formation among the .67 and /67 agents and �� = � v� 	� − 	�!� + �w�ò  is the C-S 

model with its parameters designed as was shown in (3.116); however, here they are all 

assumed to be 1. 

So, we may write Y7 as follows: 
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Y7 =
ÃÄÄ
ÄÄÄ
ÄÅ O� ¿?�¿	� + ?� ¿O�¿	� O� ¿?�¿	� + ?� ¿O�¿	�O� ¿?�¿	� + ?� ¿O�¿	� O� ¿?�¿	� + ?� ¿O�¿	�

⋯ O� ¿?�¿	W + ?� ¿O�¿	WO� ¿?�¿	W + ?� ¿O�¿	W⋮ ⋱ ⋮OW ¿?�¿	� + ?� ¿OW¿	� OW ¿?�¿	� + ?� ¿OW¿	� ⋯ OW ¿?�¿	W + ?� ¿OW¿	W ÇÈÈ
ÈÈÈ
ÈÉ

7

 

 (4.26.3) 

Now, to force the 1m
& as a nonlinear left eigenvector associated with ���	
� = 0, ∀	
���, 

we need to solve the following: 

1m
& ¿�
A�	
, '
, ç
�¿	
 = � 1m
&Y7
�

7�� + 1m
&Yℒ = 0m
 (4.26.4) 

In Chapter 3, we have established the conditions to have 1m
&Yℒ = 0m
 and here we turn our 

attention to solve the following equation: 

ª� 1m
&Y7
�

7�� «� = � ª¿?�¿	� � O�
W

��� + ?� ¿¿	� � O�
W

��� «7
�

7�� = 0 (4.26.5) 

where: / = 1,2, ⋯ , a denotes the /67 column in Y7. Knowing that Omm
7 is associated with a 

skew-symmetric matrix as given in (4.26.2), then the sum of its elements is zero and hence 

(4.26.5) is true. Therefore, 1m
& is naturally a left eigenvector of ���	
� = 0 irrespective of 

the structure of the state-dependent switching parameters used.  

∎ 

Should 1m
 be a nonlinear right eigenvector associated with ���	
� = 0, ∀	
��� as explained 

in Chapter 3, then certain conditions on the structure of the state-dependent switching 

parameters used in (4.24) must be imposed. This is detailed in the following lemma. 
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Lemma 4.2: Utilizing a C-S model to build the �� functions, a MAS whose agents are 

interacting over a global neighborhood under the formation control (4.24) can switch 

formation using state-dependent parameters while preserving the 1m
 as a nonlinear right 

eigenvector of ���	
� = 0, ∀	
��� if 

∇?�7. 1m
 = 0, ∀ℎ = 1,2, ⋯ , � 

Proof: Forcing the 1m
 as a nonlinear right eigenvector of ���	
� = 0 is equivalent to solving 

the following equation: 

¿�
A�	
, '
, ç
�¿	
 1m
 = � Y71m
�
7�� + Yℒ1m
 = 0m
 (4.26.6) 

In Chapter 3, we have established the conditions to have Yℒ1m
 = 0m
 and here we turn our 

attention to solve the following equation: 

ª� Y71m
�
7�� «� = � ÊO� � ¿?�¿	�

W
��� + ?� � ¿O�¿	�

W
��� Ë

7
�

7�� = 0 (4.26.7) 

where: . = 1,2, ⋯ , a denotes the .67 row in Y7. Knowing that the elements of Omm
7 are 

utilizing the C-S model which verifies the conditions given in (3.35), then it is 

straightforward to verify that: 

Ê� ¿O�¿	�
W

��� Ë
7

= 0, ∀. = 1,2, ⋯ , a (4.26.8) 

Therefore, (4.26.7) becomes as follows: 

ª� Y71m
�
7�� «� = � ÊO� � ¿?�¿	�

W
��� Ë

7
�

7�� = � O�∇?� . 1m
!7
�

7�� = 0 (4.26.9) 

One possible solution is given as follows: 
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∇?�7. 1m
 = 0, ∀ℎ = 1,2, ⋯ , � (4.26.10) 

∎ 

Having only one formation active at a given context is very crucial; so that the MAS can 

respond- as planned- to the variation in the working conditions. This requires imposing 

activation rules on the state-dependent switching parameters. This is explained as follows: 

Proposition 4.3: The parameterized MAS given in (4.24) will have only one formation 

active at any given instant if and only if the state-dependent switching parameters satisfy 

the following generalized composition condition: 

 ?�� ∘ ?��!�	
, '
, ç
� = 0, ∀., / ≠ . 
Indicating that both parameters cannot be active at the same instant. 

□ 

The simplest realization of Proposition 4.3 is the Heaviside unit-step function such that: 

?�� ≝ z���	
, '
, ç
� − G� = �0, �	
, '
, ç
� < G1, �	
, '
, ç
� ≥ G 

?�� ≝ z� G − �	
, '
, ç
�! = �1, �	
, '
, ç
� < G0, �	
, '
, ç
� ≥ G 

(4.27) 

where: �	
, '
, ç
� is a general function of states that might model a certain variable in the 

working environment and G is a fixed constant. Relation (4.27) can be extended to any 

number of state-dependent switching parameters. A future work will be directed towards 

investigating the use of mainly orthogonal polynomials to realize the state-dependent 

parameters. Another possibility is to have  ?�� ⊕ ?��!�	
, '
, ç
� = 1, ∀., / ≠ . which can be 

realized by having ?�� 1 − ?��! +  1 − ?��!?�� = 1. 

Note 4.7: In (4.27), finite state-machines can be used instead of the Heaviside unit-step 

functions as will be demonstrated in the following subsection. 
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4.1.2.5: Communication-aware Formation control 

In this subsection, mainly the utilization of the formation protocol (4.24) with å�	
� = < is 

demonstrated by autonomously switching the formation based on the communication 

signal strength in the working space using the state-dependent parameters. Finite state-

machine is used in conjunction with the state-dependent parameters to decide about the 

suitable formation used in any region in the working space. The communication signal 

strength was modeled based on the 2-D simulator available in [85]. We assume a stationary 

router- residing at the origin of the x-y plane- through which agents are communicating.  

The communication signal strength (%%��	
, '
�) model sensed by the .67 agent includes both 

the path loss and shadowing effects. Because agents are interacting over a global 

neighborhood, the decision variable %%& of the total %% sensed by the MAS is used to 

autonomously decide between complete consensus and a circle formation. Figure 4.10 

shows the communication %% in the working space with 30 dBm shift along the figure z-

axis.   

The decision variable %%& ∈ i0,1l is given mathematically as follows: 

%%& = ª� �Gpℎ�%%� − 0��W
��� + 8« 169  (4.28) 

where: 0� = −30 h¸Ú is the minimum %%� threshold and a = 8 indicates the number of 

single-integrator agents involved.  Figure 4.11 shows the finite state-machine with 

continuous states- forming what is called a hybrid automaton- used in decision making 

based on which the ?�� = )0,1* is set, while the evolution of %%& over time is shown in 

Figure 4.12. 
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Figure 4.10. Communication signal power in the working space. 

Figures 4.11-4.13 are related to the case where the agents initial conditions are <2A =
i−6, 14, −2,6, −3,4,6, 5l& and <2B = i3, 14, 8, 3, 8, 1, 2, −5l&. Note that the average 

value of these initial conditions, i.e., �3,4.25�, is outside the prescribed region of desired 

%%� and therefore consensus outside this region is achieved. 

 

Figure 4.11. A hybrid automaton used in autonomous decision making. 

 

Figure 4.12. Evolution of %%& over time using the finite state-machine shown in Figure 4.11. 
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Figure 4.13. Control signal of the overall MAS during the whole switching. 

 

Figure 4.14. Final behavior of the MAS is consensus; since the average value of agents initial condition was outside the 

desired region of %%��	
, '
�.  

The result of another case where the previous initial conditions are scaled down by 0.2 is 

shown in Figure 4.15.  

 

Figure 4.15. Final behavior of the MAS is formation; since the average value of agents initial condition was inside the 

desired region of %%��	
, '
�.  

So, using the finite state-machine shown in Figure 4.11, agents are unable to tell how 

formation could be possible inside the prescribed region of %%��	
, '
� and that is left for the 

initial conditions to decide, which is unacceptable, in general.  
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To solve this problem, we introduce another simple behavior that drives agents towards a 

rendezvous point, i.e., the origin of the plane, while monitoring the %%� values ∀. before 

switching to the formation behavior. The related finite state-machine is shown in Figure 

4.16. 

 

Figure 4.16. Finite state-machine used to drive agents towards desired region of %%��	
, '
� where formation is required. 

The Move to Base behavior could be realized by any suitable linear Hurwitz matrix or a 

stable nonlinear one involving damping. Figure 4.17 shows the time evolution of %%& using 

the finite state-machine shown in Figure 4.16. Note that the initial conditions were <2A =
i−6, 14, −2,6, −3,4,6, 5l& and <2B = i3, 14, 8, 3, 8, 1, 2, −5l&. The MAS- under the finite 

state-machine shown in Figure 4.16- achieved formation in the desired region of %%��	
, '
� 

about a point other than the average value of the initial conditions; because of the Move to 

Base behavior used. 

 

Figure 4.17. Evolution of %%& over time using the finite state-machine shown in Figure 4.16. 

More information about the leader following effects on formation control is detailed in the 

following subsection. 
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Note 4.8: At the formation design stage, i.e., when assigning the values for ∆��A,B, of the 

previous examples, it was known in a-priori that the formation will fit within the desired 

region of %%��	
, '
�. This knowledge may not be available all the time, so there should be a 

way to enable agents to decide on the fly about the- most- suitable formation among 

possible formations that can fit within a prescribed region, if they are many, or to scale 

down the dimensions of the only existing formation. 

4.1.2.6: Formation control while following a leader 

In real robotics applications, at least one leader- whether a real or a virtual one- is 

introduced to the MAS and it is required to follow that leader while maintaining the 

designed formation. These competing requirements may not be always satisfied along the 

course of the planned mission. Therefore, in this section, it is desired to investigate the 

effect of introducing a, generally state-dependent, pinning gain on both the formation 

quality and the equilibria set when the MAS is interacting over a global interaction 

neighborhood. 

Let us start by first examining the formation protocol (4.24) under the influence of a leader, 

state-dependent formation switching parameter and one possible formation. 

Mathematically, this is given as follows- in the x-direction: 

	r� = z�A = ��,�z�,�A + ��,Üz�,ÜA  (4.29) 

where: z�,�A  and z�,ÜA  are the .67 agent formation and following control signals, respectively 

and ��,� , ��,Ü > 0 are tuning parameters by which the preference of the .67 agent towards 

formation or following the leader is displayed. The control signals in both y and z directions 

follow the same approach. The control signals in (4.29) are given as follows: 
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z�,�A = − � ��F	� − 	� − ?���	
, '
, ç
� ∆��A H�∈��
 

(4.29.1) z�,ÜA = −5��	� − 	Ü� 

where: 5� is the pinning gain assumed to be state-dependent. The overall dynamics of the 

MAS under (4.29) is given as follows- using short-hand notations about state-dependence: 

	r
��� = −FΓµ + E�ℒ8H	
��� + ?��Γ� �̧�1m
 + Γµ1m
	Ü��� (4.29.2) 

where: ℒ8 is the state-dependent Laplacian matrix, Γµ = h.G S��,Ü5�, ⋯ , �W,Ü5WT! and  

Γ� = h.G S��,�, ⋯ , �W,�T!. 

Mathematically, when �{G?1 Γµ! > 0, then Γµ + E�ℒ8 > 0, ∀	
 is a non-singular M-matrix 

and therefore the notion of null-space does not exist anymore and ���	
� > 0, ∀	
���. 

Therefore, 1m
 does not belong to the equilibria set and the formation is achieved about the 

leader position rather than a mean of the agents initial conditions. This also applies to the 

first formation protocol which can be given under a leader action as follows: 

	r
��� = �Γ� }?��I�� − ℒ�	
, '
, ç
�� − Γµ�	
��� + Γµ1m
	Ü��� (4.29.3) 

Let the pinning gain in 3-D be given as follows: 

5� = 5�,8�	Ü − 	��� + �'Ü − '��� + �çÜ − ç��� + 1 (4.29.4) 

or: 

5� = 5�,8i�	Ü − 	��� + �'Ü − '��� + �çÜ − ç��� + 1l (4.29.5) 

where: 5�,8 > 0 ∈ ℜ is a fixed constant, set by the designer, which determines the value of 

the pinning gain when tracking error is zero. Note that this pinning gain approach is like 

the proportional gain found in a regular proportional-derivative-integral (PID) controller. 

So, for any pinning gain, i.e., 5� = 5�,8, and slowly varying leader, then the forced equilibria 
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can be used to approximate the deformation in the formation due to the leader pinning gain. 

This is stated in the following theorem. 

Theorem 4.4: For any given positive pinning gain matrix Γµ, uniform Γ� and a slowly 

varying leader, the deformation in the formation ∆% under (4.29.2) and (4.29.3) can be 

predicted, to a certain accuracy, at any position of the leader in the working space by 

solving the following problem:  

1m
&Γµ 	
¥� − 1m
	Ü! = 0 

1m
&Γµ '
¥� − 1m
'Ü! = 0 

1m
&Γµ ç
¥� − 1m
çÜ! = 0 

(4.30) 

Then, ∆% = −ℒ 	
¥� , '
¥� , ç
¥�!	
¥� + �̧� 	
¥�, '
¥� , ç
¥�!1m
 under (4.29.2) and ∆% = I�� −
ℒ 	
¥� , '
¥� , ç
¥�! under (4.29.3). 

Proof: By evaluating the forced equilibria of (4.29.2), we end up having the following- in 

the x-direction: 

1m
&0m
 = −1m
&FΓµ + ��,�ℒ8H	
¥� + ?����,�1m
& �̧�1m
 + 1m
&Γµ1m
	Ü �¥�! 

= 1m
&Γµ 	
¥� − 1m
	Ü! = 0 (4.30.1) 

where: �̧� is a skew-symmetric matrix. Doing the same with (4.29.3), yields: 

1m
&0m
 = 1m
&F��,� ?��I�� − ℒ8! − ΓµH	
¥� + 1m
&Γµ1m
	Ü �¥�! 

= 1m
&Γµ 	
¥� − 1m
	Ü! = 0 (4.30.2) 

Note that 	
¥� − 1m
	Ü = 0m
 is not a solution; because under a leader pinning gain the 1m
 is no 

more in the equilibria set, i.e., ���	
� > 0, ∀	
���. The evaluation of ∆% is straightforward.  

∎ 
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Under a leaderless situation, agents still have the possibility to issue their own pinning 

gain; however, in such a situation it is called a self-loop by which an agent tends to the 

origin about which the formation is achieved in a similar manner under a leader. In other 

words, a self-loop is equivalent to a virtual leader at the origin. 

4.1.2.7: Should I follow or abandon the leader? 

In the previous subsection, the pinning gain Γµ is distance-dependent with a static gain, i.e., 

5�,8, set by the designer. Under strict conditions, it might be desirable to empower agents 

with the choice to follow or abandon the leader autonomously. Consider for instance the 

case where the leader is moving towards a communication denied region, then agents 

should not indulge themselves in that region simply to avoid getting lost. This is most clear 

when the leader is an actual pursuit or unfriendly agent. Nevertheless, agents may still be 

able to monitor the leader even without taking actions, i.e., separating the awareness from 

action. 

Note that in (4.29.2) and (4.29.3) the value of ?�� is decided for at the MAS level as 

explained before; however, for Γµ it is mainly determined at the agent level. Let the leader 

motion be independent from the state of all agents, so the conditions needed for Γµ1m
	Ü��� 

to have 1m
& as a left eigenvector associated with ���	
� = 0, ∀	
��� are given as follows- 

see (4.26) where the superposition principle is used and recalled here: 

Y:¶ = ¿¿	  Eµ1m
	Ü! = 1m
	Ü  ∇Eµ (4.31) 
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=
ÃÄÄ
ÄÄÄ
ÄÅ ��,Ü ¿5�¿	� ��,Ü ¿5�¿	���,Ü ¿5�¿	� ��,Ü ¿5�¿	�

⋯ ��,Ü ¿5�¿	W��,Ü ¿5�¿	W⋮ ⋱ ⋮�W,Ü ¿5W¿	� �W,Ü ¿5W¿	� ⋯ �W,Ü ¿5W¿	WÇÈÈ
ÈÈÈ
ÈÉ
 

Now, to force the 1m
& as left eigenvector associated with ���	
� = 0, ∀	
��� when the whole 

MAS is not pinned to any leader, we need to make sure that the following is true for each 

/67 column ∀	
���: 

}1m
&Y:¶�� = ¿¿	� � ��,Ü5�
W

��� = 0 (4.31.1) 

Which can be controlled by setting all �� to zero. Similarly, to force 1m
 as a right eigenvector 

of ���	
� = 0, ∀	
��� the following should always be true for each .67 row ∀	
���: 

}Y:¶1m
 �� = ��∇5�1m
 = 0 (4.31.2) 

Now, to appreciate the usefulness of having state-dependent pinning gains parameters, let 

us have the following mission where agents are required to follow the leader, stay 

connected with the base station, i.e., the wireless router, and to change formation based on 

the signal strength in the region they are navigating. Such competing requirements can be 

tackled in a systematic way under the proposed framework. 

This mission is demonstrated through two examples. In Example 4.1, the mission is 

simplified such that the leader will stay nearby the base station and therefore the situation 

whether agents should decide to follow the leader or not is never encountered. On the 

opposite, Example 4.2 will emphasize this situation and will explain how such 

contradicting requirements can be addressed simultaneously. In both examples, the 
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following modified version of (4.16) is used due to its associated geometrical flexibility 

and it is given as follows: 

z� = �  h��∗� − h��� ! h��∗� − h��� !� + 1 F	� − 	�H�∈��
 (4.32) 

The main advantage of this version is the reduction of the control signal when h��∗� − h���  is 

too large. It can be shown that (4.36) satisfies both (3.34) and (3.35). 

Example 4.1: Autonomous leader-follower and adaptive formation scaling based on 

communication signal strength 

In Figure 4.18, the working space and the leader path along with the available signal 

strengths levels are shown. Agents should decide autonomously about the best formation 

scale to have in any region. This is a realization of Proposition 4.2. Agent 2 is pinned to 

the leader while others maintain the formation. It is assumed that agents are interacting 

over a complete interaction neighborhood. 

 

(a) 
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(b) 

  

(c) (d) 

Figure 4.18. Example 4.1: (a) the 2-D working space and the leader path along with the available signal strengths contours 

with zero level at -30 dBm. (b): 3D view of the working space overlapped with the received signal power including path 

loss, shadowing and multipath fading effects. (c): communication network topology connecting agents through the router. 

(d): the global interaction neighborhood, i.e., shape, graph used. 

Unlike (4.28), using the wireless channel simulator [135] with the multipath fading effect 

involved results in a noisy received signal strength, therefore %%& ∈ i0,1l will inherit this 

noise. Consequently, depending on the noisy %%& to determine the scale of the formation 

for instance is not recommended; since changes will be demanded almost at each time 

instant and the MAS will act hesitant about the radius to achieve.  
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To gain some level of confidence about the decision to make, i.e., to have a robust behavior 

within sufficient margin, the %%& calculated using (4.28) is filtered over some period to 

make sure that the decision taken is convenient. This resulted in %%&(((((. 

Remark 4.5: Besides the robustness in decision making, other features are usually required 

in any intelligent controller such as completeness, i.e., to know in advance that the behavior 

taken is sufficient for the current context and therefore can be fully conducted, and 

timeliness of the decision such that latency between decision making and action taken is 

minimum. Unfortunately, these requirements are not addressed in this thesis; since they 

require sufficient level of perception which is beyond the scope of the current work. 

 

To filter this noisy signal, we have used the average mean of a collected number of samples 

over a period. Using other means such as the median is also possible. Figure 4.19.a shows 

the results obtained when averaging different number- of-samples-before-scaling-or-

switching (a%¸%) of %%& with/out the multipath effects (noise) being active. The formation 

radius ()) was taken either as ) = %%&((((( or ) = )Ø�~ + �)Ø�A − )Ø�~� %%&((((( as shown in 

Figure 4.19.b. The pinning gain given in (4.29.5) was used with 5�,8 = 0.5. 

 

(a) 
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(b) 

Figure 4.19. Example 4.1: (a) the value of %%&((((( obtained for different NSBS with/out incorporating the multipath fading 

effect as a noise source. (b) the corresponding formation radii. 

The effect of introducing %%&((((( in ) gives the advantage of using onboard proximity sensors 

to connect agents together in case the wireless link with the base station is cut.  

□ 

Remark 4.6: To ensure the connectivity of the MAS connected via a wireless router as used 

in Example 4.1, then the magnitude of the modified Fiedler eigenvalue, i.e., ���	
�, 

associated with must be greater than zero. More specifically, one must examine ���	
� 

associated with the graph given in Figure 4.18.c, i.e., the communication graph, and not 

that given in Figure 4.18.d, i.e., the shape graph. This is generally applicable for all cases 

where different behaviors are possible over a common communication network.  

Example 4.2: Autonomous leader-follower and adaptive formation scaling based on 

communication signal strength with the ability to follow or abandon the leader 

In this example, the leader is designed to move along a trajectory where  %%&((((( falls down a 

predetermined value set by the designer. This value acts as a constraint on the connectivity 

of the whole MAS. Here, agent 2 is pinned to both the leader and the base station and 

therefore has two contradicting goals to achieve, namely: follow the leader and stay 
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connected to the base station. Furthermore, we will challenge the MAS to decide for the 

formation radius based on a noisy %%&((((( resulting from incorporating the multipath fading in 

the simulated wireless channel. The pinning gains connecting agent 2 to the base station 

and the leader are given as follows: 

5�J;�8¥,A =  �Gpℎ ��%%&((((( − 0��! − 1!�	� − 	;�8¥���	� − 	;�8¥�� + 1  

(4.33) 

5�J;�8¥,B =  �Gpℎ ��%%&((((( − 0��! − 1!�'� − ';�8¥���'Ü − '��� + 1  

5�JÜ¥��¥�,A = �	Ü¥��¥� − 	����	Ü¥��¥� − 	��� + 1 

5�JÜ¥��¥�,B = �'Ü¥��¥� − '����'Ü¥��¥� − '��� + 1 

Where we have used the results obtained in (3.116) about the C-S model [64]. 0� ≥ 0 

denotes the required signal strength threshold. So, agent 2 is responsible for solving the 

contradicting requirements while other agents are focused on maintain the formation 

according to the radius determined by the whole MAS. It is known that the �Gpℎ�∙� ∈
i−1,1l, therefore by selecting � > 0 large enough, then the pinning to the base station is 

active only when %%&((((( is below 0�. On the contrary, when � is selected small enough, then 

the pinning to the base station is always active. These two cases result in an interesting 

behavior of the MAS where in the first case the MAS will be acting as being reactive while 

in the second case it will act as being proactive. The two cases are explained shortly. Note 

that the value of � is specified according to the application. 

Case 1: The MAS being reactive 
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Here, it is assumed that the states used in decision making are noise-free, i.e., deterministic, 

and thus can be used directly without extra precautions. So, in (4.33), � = 50 was used. 

Case 2: The MAS being proactive 

Here, it is assumed that the available information, i.e., states, are uncertain, noisy or the 

like. So, the MAS must cope with this situation assuming worst case scenario, i.e., be 

robust. Here, the noisy %%&(((((  is our decision variable and therefore we have chosen � = 0.5 

to be used.  

In both cases, we have 0� = 0.4, a%¸% = 300 and ) = )Ø�~ + �)Ø�A − )Ø�~� %%&((((( with 

)Ø�~ = 1 Ú1�1{ and )Ø�A = 2 Ú1�1{q. The working space and the leader path are shown 

in Figure 4.20. 

 

Figure 4.20. Example 4.2: the 2-D working space and the leader path along with the available signal strengths contours 

with zero level at -30 dBm. 

Figure 4.21 shows the results obtained when simulating the previous two cases from which 

one may conclude that having a proactive MAS will result in better dynamical-friendly 

trajectories and therefore a reduced control signal chattering. 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 4.21. Example 4.2: (a) the total received signal power and the resulting formation radius. (b)-(e) agents positions 

and corresponding control signals without and with incorporating the multipath fading effects as noise. (f) a close view 

on (e) at 346 seconds which looks like the control signal in (d).  
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Note 4.9: When online measurements are used in the state-dependent parameters, the trace 

of their variance could be used to reflect upon the value of � in case agents have to decide 

its value autonomously. General filters can also be used as found in [136]. 

□ 

4.1.3: Deployment in obstacle-free 3-D space 
In this section, the deployment behavior of the MAS in an obstacle-free 3-D space is 

introduced. Such a behavior is crucial in many applications where agent may represent 

communication routers, repeaters or mobile sensing nodes that can be used in the working 

environment. During deployment, each agent should maximize the Euclidian distance 

between itself and its neighbors while preserving the connectivity that can be modelled as 

a function of the signal strength among agents or as a distance threshold that should not be 

exceeded. Unlike the previous subsections, in this section, the wireless channel simulator 

presented in [135] cannot be used; because it is only applicable to 2-D. Therefore, the 

specified threshold will be a function of the maximum agents’ separation allowed. 

Assuming a fully-connected undirected graph, the state-dependent network graph 

responsible for achieving the deployment in the x-direction for example can be given as 

follows- utilizing the concept of hysteresis switching [137]: 

	r� = −$ � �� 	� , 	�!F	� − 	�H�∈��
 

(4.34) �� 	� , 	�! = �Gpℎ }� 0� − <��!� <�� 

<�� = �v� 	� − 	�!� + �w�        , �, �, �, � > 0 
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where: $ > 0 ∈ ℜ is a fixed constant to control the speed of convergence, 0� ∈ �0, +∞� 

and � > 0. Note that <�� ∈ �0, � ��⁄ l and therefore it is more useful to limit 0� by the 

same bound, i.e., 0� ∈  0, � ��⁄ !. The dynamics of the .67 agent in the other Cartesian 

coordinates can be given in a similar manner. For now, let � = � = � = � = 1. 

Note 4.10: The <�� function used in (4.34) could be any function in general if it satisfies 

the condition (3.34) and (3.35). 

In (4.34), new equilibria set is produced besides the one already existing in the simplest 

semi-linear consensus protocol (4.5). This is like (4.16) in which new equilibria set is 

intentionally introduced to (4.5). So, the stability of the MAS resulting from (4.34) is 

guaranteed by the following theorem. 

Theorem 4.5: The 3-D MAS resulting from the deployment protocol (4.34) is always stable 

and the average value of agents positions is time-invariant. 

Proof: The new equilibria set- a lamina Â)�,�*A  – of each edge, i.e., )., /* ∈ ℇ, introduced by 

the term �Gpℎ }� 0� − <��!� is given as follows:  

Â)�,�*A = ±	�, 	�|	� ≤ 	� ±= 10� − 1 ² (4.34.1) 

Which is depicted in Figure 4.22. Note that when 0� = 0, then the MAS becomes unstable, 

and when 0� = 1, then a complete average consensus is achieved.  
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Figure 4.22. The equilibria set (the lamina in red) introduced by (4.34). 

The overall equilibria set of all edges are given by the union of equilibria sets at edge level. 

Mathematically, it is given as follows: 

Â>¥µÜ°BØ¥~6A = ? Â)�,�*A)�,�*∈ℇ  (4.34.2) 

Similarly, the Â>¥µÜ°BØ¥~6B  and Â>¥µÜ°BØ¥~6C  can be found. Note that 	� = 	� ∈ Â)�,�*A  for 

each edge, and therefore the 1m
 ∈ Â>¥µÜ°BØ¥~6A  and is stable/unstable if Â>¥µÜ°BØ¥~6A  is 

stable/unstable, respectively. 

By examining the Jacobian of the resulting MAS utilizing (4.34), it is straightforward to 

see that once all agents are on or outside the boundary of the overall equilibria set, i.e.,  

¿Â>¥µÜ°BØ¥~6A , then the Jacobian is a negative M-matrix, i.e., a Metzler-matrix usually used 

in stability analysis of time-delayed differential equations and positive linear dynamical 

systems. Therefore, the stability of the MAS resulting from (4.34) can follow the steps 

found in (3.83). 

The time-invariance of the MAS under (4.34) can be easily seen from the fact that the 

resulting state-dependent Laplacian matrix has 1m
& as a nonlinear left eigenvector associated 

with ���	
� = 0 ∀	
 which is sufficient for the MAS to preserve its average value for ∀� ≥
�� as explained in (3.13) and the discussion that followed. 
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∎ 

If the application requires the deployment to preserve another type of mean other than the 

average value of the agents initial conditions, then this will be possible using a modified 

version of (4.34) according to the following theorem. 

Theorem 4.6: The 3-D MAS resulting from the following deployment protocol can have 

any type of mean as time-invariant with �	�� given as 1, 	�, 	�� and 	��Jµ to achieve 

arithmetic, geometric, harmonic and power mean-of-order-5, respectively. 

	r� = −$ �	�� � �� 	� , 	�!F	� − 	�H�∈��
 (4.35) 

Proof: Having (4.34) modified as given in (4.35), it is possible to proof Theorem 4.6 by 

following the steps shown in (3.39) – (3.42.9) which simply requires (4.34) to have 1m
& as 

a nonlinear left eigenvector associated with ���	
� = 0 ∀	
 which is indeed the case since 

�� in (4.34) satisfies both (3.34) and (3.35).  

Note that the remaining Euclidean directions follow in the same manner.  

∎ 

Before examining the effect of the deployment protocol (4.34) on the connectivity of the 

overall MAS, it is convenient to first have a look- from an agent perspective- on the 

contribution that each connected edge affords to the overall connectivity of the MAS. This 

is the subject of the following subsection. 

4.1.3.1: An edge contribution in MAS connectivity preservation 

Recalling Figure 3.5, the edge connecting agents 1 and 2 is undirected and it is how the 

action-reaction between the two agents is displayed. Among all edges available in a graph, 

the so-called critical links [138]- which are not unique [139]- are decisive in studying the 
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structural controllability of a MAS under leader-follower setup that suffers from concurrent 

failure of both agents and links. According to [140], a MAS is structurally controllable if 

and only if its fixed graph is connected. Knowing that ��� is a measure of graph 

connectivity [85], it is incorporated in various studies of MAS like structural controllability 

and observability and- most importantly in our case- the state-dependent networks.  

Recently, in [61], a robust connectivity preservation control law for MAS has been 

presented. In that study, as well as in [64], it was shown that the modified Fiedler 

eigenvalue associated with the state-dependent Laplacian matrix is bounded from below as 

follows:  

���	
� = $ 	
����! ��� (4.36) 

where: $ 	
����! is the value of the state-dependent weights evaluated at initial conditions 

such that [61]: 

0 < $ 	
����! ≤ max)�,�*∈ℇ  $ �	� − 	��! (4.36.1) 

Clearly, for (4.36) to be true ∀	
, $ �	� − 	��! must be increasing. This is similar to what 

was proposed in (3.97) like which semidefinite programming in [141] was used to 

maximize ���	
� of a state-dependent graph. Compare (4.36) to (3.81.1) which is given as 

a linear combination of a scaled ��� and initial state-dependent weight. 

Motivated by the previous discussion, we would like to examine the role each edge has in 

the overall MAS connectivity under state-dependent semi-linear behavioral protocols 

�
�	
�.  

Recalling Theorem 3.8, it is straight forward to show that ���	
� of �
�	
�, consider (3.67) 

with í���	�, 	�� = 	� − 	�, is given as follows: 
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	r
��� = t	r�	r�u = $ t���	�, 	��)	� − 	�*���	�, 	��)	� − 	�*u = �
�	
� (4.36.2) 

Therefore, the Jacobian of �
�	
� is given as: 

¿�
¿	
 = $ ÃÄ
ÄÅ¿��¿	� �	� − 	�� − �� ¿��¿	� �	� − 	�� + ��¿��¿	� �	� − 	�� + �� ¿��¿	� �	� − 	�� − ��ÇÈ

ÈÉ (4.36.3) 

As forced by the proposed framework, we have �� = ��- by the first integral method- 

and 
�§���A� = − �§���A�  and 

�§���A� = �§���A�  both by the nonlinear eigenvalue approach. So, the edge 

contribution can be found by calculating the following: 

��)�,�* = j
��& ¿�
¿	
 j
�� (4.36.4) 

After simplification, ��)�,�* is given as follows: 

��)�,�*�	
� = $ �¿��¿	� )	� − 	�* − ��× �j� − j��� (4.37) 

where: j�,� are the elements of the linear left eigenvector associated with ��� = −2. 

Having N agents in the MAS, (4.37) can be extended to include the contribution of these 

graph edges in the overall MAS connectivity as follows- assuming all edges are using the 

same parameters and structure of �� function: 

���	
� = $ � ��)�,�*
)�,�*∈ℇ  

= $ � �¿��¿	� F	� − 	�H − ��×  j� − j�!�
)�,�*∈ℇ  

(4.38) 

This result is given by the following theorem. 

Theorem 4.7: A MAS dynamical system whose Jacobian is symmetric has its ���	
� given 

by (4.38). 
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Proof: Having a × a symmetric Jacobian is guaranteed if and only if both (3.34) and 

(3.35) are satisfied. Therefore: 

���	
� = $j
��& ¿�
¿	
 j
�� (4.38.1) 

 can be written as follows: 

���	
� = $ � j� � j� ¿��¿	������� , ∀)., /* ∈ ℇ (4.38.2) 

where: j
��& = ij�, j�, ⋯ , jWl. Dealing with undirected graphs, then we may break down 

(4.38.2) into pairs indicating that we came back to the edge level instead of the MAS level. 

Therefore, (4.38.2) can be rearranged and written with respect to any edge )., /* ∈ ℇ as 

follows: 

�� = $ � Þj�� ¿��¿	� + j�j� ¿��¿	� + j�j� ¿��¿	� + j�� ¿��¿	�� ∀)�,�*∈ℇ  (4.38.3) 

From (3.34) and (3.35), we find that:  

¿��¿	� = ¿��¿	� = − ¿��¿	� 

¿��¿	� = ¿��¿	� 
(4.38.4) 

So, (4.38.3) becomes: 

���	
� = $ � ��)�,�*
)�,�*∈ℇ = $ � ¿��¿	�  j� − j�!�

)�,�*∈ℇ  (4.38.5) 

which is valid for general nonlinear protocols. If a semi-linear protocol is used, then 

(4.38.5) can be written as follows: 

$ � ��)�,�*
)�,�*∈ℇ = $ � �¿��¿	� F	� − 	�H − ��×  j� − j�!�

)�,�*∈ℇ  (4.38.6) 
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and consequently (4.38) follows.                                                                                          ∎ 

If the �� function uses the C-S model (3.116) with � = � = � = � = 1, then �� will be 

strictly increasing and consequently (4.36) is indeed sufficient to proof the connectivity of 

the MAS under the resulting semi-linear state-dependent protocol. Moreover, (4.37) can 

be given as follows: 

��)�,�*�	
� = 2$ �	� − 	��� − 1i�	� − 	��� + 1l� (4.39) 

where: j� = 1 √2⁄  and j� = − 1 √2⁄ . The result is shown in Figure 4.23 where $ = 1. 

 

Figure 4.23. The value of ��)�,�*�	
� of edge )1,2* ∈ ℇ using C-S model. 

In general, we are more interested in the invariance of the ��)�,�*�	
� sign than in its value to 

prove edge connectivity. If the sign does not change, then ��)�,�*�	
� is never zero and the 

edge remains connected. However, the value of ��)�,�*�	
� can be related to the stability of 

edge )1,2* ∈ ℇ, for example, as follows: 

¿�
¿	
 = 0.5 ¢ ��)�,�* −��)�,�*−��)�,�* ��)�,�* £ (4.39.1) 

From which when 	
 = ?1m
, ? ≥ 0 ∈ ℜ, then (4.39.1) will be negative semi-definite and the 

edge is stable, and when �	� − 	��� = 1, then the edge becomes inactive or disconnected 

and agents will reside stationary unless at least one of them is connected to a third agent 
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over an active edge. Figure 4.24 shows the phase portrait of (4.36.3) with �� function uses 

the C-S model (3.116) with � = � = � = � = 1. 

 

Figure 4.24. The phase portrait of (4.36.3) with C-S model used in ��  functions. 

At this stage, it is good to examine the parameterized version of the C-S model given in 

(3.116). This will give a clear insight about how the parameters involved get to interplay 

with the connectivity of an edge. Such knowledge helps us optimizing the parameters to 

maximize the connectivity, if desired. Doing the Math, yields: 

��)�,�*�	
� = 2�$ ��2� − 1��	� − 	��� − �i��	� − 	��� + �l���  (4.39.2) 

Clearly, setting � = 0.5 will cancel the zero from (4.39.2) and therefore the edge will 

always remain active or connected. The result is shown in Figure 4.25. This leads us to the 

following theorem. 

 

Figure 4.25. The value of ��)�,�*�	
� of edge )1,2* ∈ ℇ using C-S models, (solid): (4.39), (dashed): (4.39.2) with � = 0.5, 

(dotted): (4.39.2) with � = 0.5 and neglecting the higher-order-terms (H.O.T), all with � = � = � = $ = 1. 
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Theorem 4.8: A MAS controlled using a semi-linear protocol comprising the 

parameterized C-S model with � = 0.5 will always remain connected if and only if the 

initial graph is connected. 

Proof: The state-dependent graph connectivity is measured by ���	
� given by (4.38) as a 

sum of all edges contributions using their own connectivity measures. Governed by 

(4.39.2) with � = 0.5, then all edges are always active and therefore |���	
�| > 0, ∀	
��� if 

and only if ∀., / ∈ ℇ we have  j� − j�! ≠ 0. 

∎ 

Generalizing (4.39.2), we may calculate in advance the expected value of algebraic 

connectivity at average consensus. This is given as follows: 

��)�,�* 1m
! =  − ��$��  j� − j�!�
 (4.39.3) 

and the parameters can be chosen as desired. Note that (3.32) is a special case in the sense 

of (4.39.3). 

Relaxing the conservative condition given by Theorem 4.8, the following lemma can be 

used to ensure the connectivity of a MAS utilizing the same protocol. It reads as follows: 

Lemma 4.3: Borrowing the definition of critical links from [138], a MAS controlled using 

a semi-linear protocol comprising the parameterized C-S model with � = 0.5 over 

unsigned graphs will always remain connected if and only if all critical links remain active. 

 Proof: Using (4.39.2), an edge has its ��)�,�* > 0 when it is active, and ��)�,�* = 0 when it is 

inactive. So, focusing only on the contributions of all critical links to be greater than zero 

allows us to have an insight about the true value of ���	
� whether being zero or not. 

Mathematically, this can be done by taking the geometric mean of the connectivity of all 

critical edges as follows: 
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��§�	
� = ¨ © @��)�,�*�	
�@�
)�,�*∈ℇ

Ý
 (4.40) 

where: � is the number of critical edges in the graph. Thus, if ��§�	
� > 0, then 

consequently ���	
� > 0 and the MAS is connected, else the MAS is disconnected.   

∎ 

Note 4.10: Designing a distributed protocol to achieve (4.40) is beyond the scope of this 

investigation. 

Proposition 4.4: The signature of the linear eigenvalues of the fixed Laplacian matrix, i.e., 

ℒ� , can be used along with their associated linear left or right eigenvectors, i.e., j�& , 1
�, to 

monitor their nonlinear eigenvalues counterparts in the state-dependent Laplacian matrix, 

i.e., ℒ8, ∀	
���, � ≥ ��, as follows: 

���	
� = $ � ��)�,�*
)�,�*∈ℇ  

= $ � �¿��¿	� F	� − 	�H − ��×  j� − j�!��)�,�*∈ℇ  

(4.41) 

where: { = )1,2, ⋯ , a* denotes the eigenvalue index. In (4.41), it is assumed that all edges 

are using the same parameters and structure of the �� function. If this is not the case, then 

each different edge should be treated separately. 

∎ 

Note 4.11: Note that in (4.41), when { = 0, then we have j�& = 1m
& and 1
� = 1m
, and 

therefore ���	
� = 0 ∀	
���, � ≥ ��, as expected. 

Note 4.12: In Part I, figures 2.14 and 2.23.b displayed the point-wise evolution of ���	
� 

using the 1. ℒ�	
�! MATLAB function. This can be justified knowing the fact that the 
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�� functions used were all according to C-S model, i.e., strictly increasing. Therefore, 

1. ℒ�	
�! can be considered- in worst cases- as a lower bound of the actual ���	
� 

according to (4.36). 

Remark 4.7: Having Note 4.12 in mind, one may wonder about the reason why we have 

discussed in more details the contribution of an individual edge in ���	
� if we have (4.36) 

in hand from the first place. Well, among other benefits that might emerge in future 

investigations, the most immediate response to such a question arises from the need to 

understand the behavior of ���	
� when its evolution is not strictly increasing, i.e., when 

(4.36) fails to lower bound ���	
�. Such cases do exist in applications, consider the case in 

Figure 3.15 where the evolution of ���	
� was not increasing ∀	
��� while achieving the 

harmonic and geometric means. So, there is a need to understand the situation for a general 

��- like (4.34)- and mean type- or general  �	�� function that might be needed- such that 

a lower bound of ���	
� can be certain.  

Under (4.35), the evolution of ���	
� is given as follows: 

���	
� = $ � ��)�,�*
)�,�*∈ℇ = $ � �¿��¿	� F	� − 	�H − ��× Ú�� + ��F	� − 	�HÚ��)�,�*∈ℇ  

 (4.42) 

where: 

Ú�� = j�,�� �	�� − j�,�j�,�F�	�� +  	�!H + j�,��  	�! (4.42.1) 

Ú�� = j�,�� ¿�	��¿	� − j�,�� ¿ 	�!¿	�  (4.42.2) 

Now, we are in position to state the following corollary: 
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Corollary 4.1: A MAS controlled using a semi-linear protocol (4.35) comprising the 

parameterized C-S model with � = 0.5 will always remain connected while achieving the 

arithmetic, geometric and harmonic means if and only if the initial graph is connected. 

Proof: Utilizing (4.42), it is straight forward to see that when �	�� =   	�! = 1, then the 

MAS will achieve the average consensus while always being connected as a direct 

consequence of Theorem 4.8. The general form of (4.42) under (4.35) when � = 0.5 is 

given as follows:  

��)�,�*�	
� = −$� � 	��Jµ + 	��Jµ!� + Ú3�i��	� − 	��� + �l3  (4.43) 

where: 

Ú3 = 0.5�	� − 	���1 − 5� 	��Jµ − 	��Jµ!i��	� − 	��� + �l (4.43.1) 

For the geometric mean, we have 5 = 0 and therefore (4.43) can be given as follows: 

��)�,�*�	
� = −$� ��	� + 	����i��	� − 	��� + �l3 (4.43.2) 

Considering (3.18) and Remark 1.4, it is clear that (4.43.2) has no zeros, and therefore an 

edged will stay connected while achieving the geometric mean under (4.35) when � = 0.5. 

For the harmonic mean, we have 5 = −1 and therefore (4.43) can be given as follows: 

��)�,�*�	
� = −�$� �	�� + 	���� + Ú%�i��	� − 	��� + �l3 (4.43.3) 

with Ú% = �	� − 	���i��	� − 	��� + �l and � �⁄ = 1. Considering (3.22), it is clear that 

(4.43.3) has no zeros, and therefore an edge will stay connected while achieving the 

harmonic mean under (4.35) when � = 0.5. 

∎ 
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Remark 4.8: Considering Corollary 4.8, the conditions needed, if possible, to achieve the 

general power mean-of-order-5 can be investigated using the same steps shown earlier in 

(4.43). 

4.1.3.2: The deployment protocol and MAS connectivity 

In the previous subsection, we have investigated in detail the contribution of an edge in the 

overall MAS connectivity during consensus. During consensus, agents must come closer 

to each other as time passes till they reach the consensus. On the contrary, during the 

deployment protocol, agents may come closer or move apart before reaching their steady 

states behaviors. Therefore, unlike the case with consensus, edges are expected to have 

some periods where their dynamics can be labeled unstable and ��)�,�* could be positive, 

negative or instantly zero.  

To avoid repetition of mathematical derivation, here we will depend on the graphical 

visualization to grasp on the differences between the deployment and consensus protocols. 

Of course, the needed mathematical equations to facilitate understanding will be presented. 

Figure 4.26 depicts a mechanical analogy of the deployment protocol. In this analogy, the 

massless spring whose stiffness is nonlinear in general plays the role of the deployment 

protocol where its two ends represent the connected agents over that edge. When the spring 

is initially extended, it is expected that the two ends, i.e., agents, will move inwardly to 

consume the initial energy put into the system. On the opposite, when the two ends are 

nearby each other, then it is expected to observe outward movement of the two ends till 

they come back to the natural length of the spring. It happens that the parameters in a way, 

yet to be explained, specify this length. 
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The dynamics of the edge )., /* shown in Figure 4.26 are governed by �
�	
� given in 

(4.36.3), and �� functions given by (4.34). Its phase portrait is shown in Figure 4.27. 

 

Figure 4.26. Mechanical analogy of edge )., /* under deployment protocol with the reference exactly at the average 

value of the two agents. 

 

(a) 

 

(b) 

Figure 4.27. Phase portrait of: (a) the first agent. (b) the second agent both under deployment protocol (4.34) with 

0� = 0.1, � = � = � = 1 and � = 10. 

Overlapping figures 2.27.a and 2.27.b yields the lamina-shown in Figure 4.22- whose width 

(∆) is controlled via the parameters available in (4.34) and can be given as follows: 
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∆= 2=1� ³ �0� − �´ (4.44) 

where the borders of the lamina at which agents will settle is given as follows: 

	� = 	� ± 0.5∆ (4.44.1) 

Note 4.13: Choosing the parameters in (4.44) such that ∆= 0 results in a complete 

consensus among agents. Note also that the 1m
 is inside the lamina. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 4.28. Phase portrait of: (a) the first agent. (b) the second agent both under deployment protocol (4.35) with �	�� =
	�, i.e., geometric mean deployment. (c) the first agent. (d) the second agent both under deployment protocol (4.35) with 

�	�� = 	��, i.e., harmonic mean deployment all with 0� = 0.1, � = 10 and � = � = � = 1. 

The phase portrait under (4.35) is given in Figure 4.28 where it is obvious how �	�� 

shapes the lamina while achieving the geometric and harmonic deployment, i.e., these 

means are preserved under the final positions of the deployed agents in the working space. 

Empowered by this knowledge, here, in this section, the effect of the deployment protocol 

(4.34) on the overall MAS connectivity can be unswervingly addressed. Using (4.35) with 

the �� functions given in (4.34), the contribution of the edge )1,2* in ��)�,�*�	
� of �
�	
� 

given in (4.36.3), can be given as follows: 

���	
� = $ � ��)�,�*
)�,�*∈ℇ = $ � p�Ú�� + � �Gpℎ�∙� 	� − 	�!h� Ú��)�,�*∈ℇ  (4.45) 

where: 

p� = 2��� 	� − 	�!�h��� Þ�� q1?ℎ��∙�h��J� + �Gpℎ�∙��− � �Gpℎ�∙�h�  

Ú�� = j�,�� �	�� − j�,�j�,�F�	�� +  	�!H + j�,��  	�! (4.45.1) 

Ú�� = j�,�� ¿�	��¿	� − j�,�� ¿ 	�!¿	�  (4.45.2) 
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h = � 	� − 	�!� + � 

The basis function of an edge connectivity, i.e., ��)�,�*, as a function of the relative distance 

	� − 	� is shown in Figure 4.28. An edge connectivity basis function is given by p� in 

(4.49). 

 

Figure 4.29. The basis function of ��)�,�*�	
� of edge )., /* ∈ ℇ using (4.49) with 0� = 0.1, � = � = � = � = 1 and � =
10.  

Using � = � = � = � = 1, $ = 20 and � = 10 in (4.45) results in a lamina width of ∆=
1.8974. Notice that, unlike the C-S model, in (4.45) we are unable to attain further 

simplification due to the complexity involved and the parameters must be tuned manually 

or via dedicated equation solving routines such that ��)�,�* > 0, ∀	�, 	�  in the domain of 

interest. Here, we have tuned the parameters manually. As a result, the connectivity of the 

MAS in 3-D under the deployment protocol given in (4.34) is always ensured. This is stated 

in the following theorem. 

Theorem 4.9: The 3-D MAS resulting from the deployment protocol (4.34) is always 

connected if and only if its associated graph is initially connected. 

Proof: Having an initially connected graph results in ��� > 0 and therefore the associated 

eigenvectors of ���, i.e., j
�� is other than the 1m
. Along with j
��, a good parameterized 

deployment protocol (4.34) can be used when the involved parameters are tuned such that 
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(4.45) is positive in the domain of interest. Thus, each edge whether critical or not will 

always stay connected. This will result in ���	
� > 0, ∀	
 and therefore, from a graph 

theoretic point of view, the MAS will stay connected. 

∎ 

Note 4.14: Using j
�� to monitor the evolution of ���	
� is not restrictive. In fact, we may 

keep the general nonlinear eigenvector j
��	
� and use it in place of j
�� and still obtain the 

same deduction about the connectivity of the MAS when �	�� = 1. Otherwise, if for any 

reason j
��	
� must be used, then solving the nonlinear differential equations (3.29) and 

(3.30) is unavoidable.  

Observing the similarity between (4.16) and (4.34), modified versions of both (4.16) and 

(4.32) can be used to deal with situations where a prescribed performance is required, or 

bounded control is inevitable. This is given as follows:  

Proposition 4.5: Inspired by (4.34), the formations controls (4.16) and (4.32) can be 

modified to accommodate the requirements of bounded control and prescribed 

performance as follows: 

z� = � " �Gpℎ }� h��∗� − h��� !� F	� − 	�HB h��∗� − h��� !� + 1�∈��
 (4.16’) 

z� = � " �Gpℎ ª � h��∗� − h��� ! h��∗� − h��� !� + 1« F	� − 	�H
B h��∗� − h��� !� + 1�∈��

 (4.32’) 

where: � is appropriately small- to avoid chattering nearby the equilibria- and |z�| ≤ " ∈
ℜ. 

Proof: By examining the conditions (3.34) and (3.35), we can straightforwardly see the 

applicability of (4.16’) and (4.36’) to be further used in (3.105) and (3.106). Therefore, 
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both (4.16’) and (4.32’) can be used when control effort is bounded or when a prescribed 

performance is required. 

∎  

In (4.34), the �Gpℎ function was used as a smooth approximation of the q.p function to 

avoid chattering in the time-domain response of the MAS [142]. The .67 agent will slide 

along the sliding surface formed by the .67 and /67 agents. The resulting MAS can be 

classified as a variable structure system (VSS) that uses a distributed sliding mode 

controller (SMC) to slide along the surface given by 0� − <��. A detailed survey of VSS 

and SMC for motion control is available in [143]. A recent work on distributed SMC of 

MAS can be found in [144]. Note that (4.34) meets both (3.34) and (3.35). 

When agents are deployed in 3-D, they are expected to maximize their separations in a way 

that ensures their connectivity and average value to be maintained. Thus, the optimization 

of these separations is constrained only by the variable 0� that reflects the desired 

connectivity level. When obstacles exist in the working space, then they will act as 

additional constraints to the optimization problem solved in a distributed fashion using 

(4.34). Figure 4.30 shows the deployment results of six single-integrator agents with 0� =
0.1 and ¹ = 0.01 where the communication network used is shown in Figure 3.13. 

Depending on the initial conditions, agents will move inwards- as shown in Figure 4.30.a- 

or outwards- as shown in Figure 4.30.d- with respect to a ball containing all the initial 

conditions while maintaining their average value and connectivity. If other means are 

desired, other than the arithmetic mean, then (4.8) can be used. In this deployment example, 

N�, N�, N3 were the identity matrix and ℒ�, ℒ�, ℒ3 were identical. The final connectivity 

level reflected by  �� 	
���! will be the same irrespective of the agents’ initial positions as 
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shown in Figure 4.30.i when � → ∞. However, the agents are assumed to be initially 

connected or another protocol must be run to make them connected, like the nearest 

neighbor protocol found in [117], for example. 

Note 4.15: In Figure 4.30.e, the final value of ���	
� is not equal to ��� = 6 of the complete 

undirected graph used simply because this is not a consensus problem. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

 

(g) 
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(h) 

 

(i) 

 

(j) 

Figure 4.30. Deployment of six single-integrator agents in obstacle-free 3-D space. (a): Case 1 without disturbance. (b)-

(c): Disturbance acting only on agent 1 at 100 second for 15 second duration under Case 1. (d): Case 2 deployment 

response when agents are initially close to each other. (e): the corresponding overall connectivity of Case 1. (f): edges 

contributions in the overall connectivity of Case 1. (g): the corresponding overall connectivity of Case 2. (h): edges 

contributions in the overall connectivity of Case 2. (i) connectivity of the two cases. (j) control signals in the two cases. 

Note that in (4.34), if 0� = 0- or negative, then the MAS will become unstable and if 

0� → +∞, then the desired type of consensus is achieved. Thus, we may conclude that the 
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consensus behavior of the MAS is affected by 0� since it changes the equilibria set and its 

characteristics. It was observed through numerical simulation that if each agent uses a 

different value of 0�, then the MAS will behave in an interesting way as shown in Figure 

4.31.a simply because the left eigenvector, i.e., 1m
, is not preserved. This behavior is 

believed to be related to the bifurcation phenomenon occurs within nonlinear systems, in 

general. If the same was done to agents in the y-direction, then a heading for the whole 

MAS can be specified. However, studying such behaviors is beyond the scope of this thesis. 

If different values of 0� were used such that the 1m
 remains as a left eigenvector under the 

same communication network, then more separation can be achieved while maintaining 

the connectivity of agents and their desired mean value as shown in Figure 4.31.b and c. 

 

(a) 

 

(b) 
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(c) 

Figure 4.31. MAS response when agents have different 0� values in (4.34) along the x-axis. The 1. ℒ�	
�! MATLAB 

function was used. 

In the previous section, the formation control was introduced in which less detailed 

geometry was given using (4.16) resulting in more geometric flexibility once compared to 

(4.23) in which detailed geometry must be provided. In this section, the deployment 

process can be viewed as an additional type of formation in which even lesser geometric 

constraints are provided once compared to (4.16). Both (4.16) and (4.34) impose geometric 

constraints on agents’ separations; however, in a following section, the formation problem 

will be viewed from a different perspective in which the resulting formation, i.e., shape 

consensus, is constrained in the direction of separation rather than in its magnitude.   

4.1.4: Connectivity-preserving protocols 
In the previous section, the issue of MAS connectivity preservation was highlighted and 

useful equations that can be used to examine whether the protocols are connectivity-

preserving or not were introduced. In this section, more details about the conditions needed 

for a behavioral protocol to be connectivity-preserving are provided.  

Recall that a general single-edge system whose dynamics are given in (4.36.2) and the edge 

connectivity is given by (4.36.4) which can be other than zero ∀	
 if the edge weighting 

function used, i.e., ��, is designed according to the following theorem.  
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Theorem 4.10: A behavioral semi-linear protocol satisfying both (3.34) and (3.45) and 

acting over an initially connected network graph is connectivity-preserving if and only if 

the following is true ∀	
 in the domain of interest. 

¿��¿	� F	� − 	�H − �� ≠ 0, ∀., /, 	
  (4.46) 

Proof: Having an initially connected graph results in ��� > 0 and therefore the associated 

eigenvectors of ���, i.e., j
�� is other than the 1m
. So, in (4.41),  j� − j�!�� ≠ 0. Thus, each 

edge whether critical or not will always stay connected if and only if (4.46) is true. This 

will result in ���	
� > 0, ∀	
 and therefore, each edge will stay connected. Having �� that 

satisfies both (3.34) and (3.35) results in a symmetric Jacobian that made it easy to derive 

(4.46) as a sufficient condition for connectivity preserving under general semi-linear 

protocols. 

∎ 

Note 4.16: For asymmetric Jacobians resulting from semi-linear and nonlinear protocols, 

the same steps can be followed as shown in the previous section, and emphasized here, to 

decide whether such protocols can be connectivity-preserving or not. 

To demonstrate the strength of Corollary 4.1 and Theorem 4.10, the following subsections 

are provided in which deployment, formation and consensus protocols are revisited from a 

connectivity preserving point of view. 

4.1.4.1: A connectivity-preserving deployment-formation-consensus-collision-
avoidance (universal) behavioral protocol 

Consider a deployment-formation-consensus protocol that is given as follows: 
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	r� = $ ¢ 0��� 	� − 	�!� − 1£ F	� − 	�H = $�� F	� − 	�H (4.47) 

where: $ > 0 is a scalar that determines the speed of convergence and 0��� ≥ 0 is a real 

scalar parameter that plays a significant role in the behavior of the behavioral protocol 

(4.47). Obviously, 	� = 	� is a singular point in (4.47) that can be removed if 0��� = 0. 

Then, (4.47) becomes a consensus protocol. When 0��� ≠ 0, then collision is avoided 

whenever 	� − 	� → 0. When 0��� = 0� ∀., /, then (4.47) becomes a deployment protocol 

with separation at maximum equals √0�. Lastly, when 0��� is specified for each edge 

)., /* ∈ ℇ, then (4.47) becomes a formation protocol. It is straightforward to show that �� 

in (4.47) satisfies both (3.34) and (3.35) and therefore according to Theorem 4.10 it can be 

used as a connectivity-preserving protocol. 

According to (4.37), the edge )., /* ∈ ℇ connectivity is given as follows: 

��)�,�*�	
� = $ Ì 0��� 	� − 	�!� + 1Í  j� − j�!� > 0, ∀	
 (4.47.1) 

Observe the similarities between (4.47) and the formation protocol (4.16), and between 

(4.47) and the deployment protocol (4.34). As 	� − 	� → 0, the value of ��)�,�*�	
� in (4.52.1) 

increases drastically, which is logical since the maximum connectivity occurs when the 

two agents reside on top of each other. 

Being concerned about having bounded control signal, let us modify (4.47) by introducing 

the C-S model and generalize it to a MAS of N agents as follows: 

	r� = $� � ¢ 0��� 	� − 	�!� − 1£
v� 	� − 	�!� + �w� F	� − 	�H�∈��

 (4.47.2) 
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where: �, �, �, � > 0. According to (4.47.2), Figure 4.32 shows the response of a single-

edge MAS system and the corresponding control signal when 0��� = )1,0,0.6* varied 

according to a multistep function filtered through a suitable low-pass filter and $ = � =
1, � = 0.01, � = 0.5 and � = 1000. 

 

Figure 4.32. Single-edge response due to a multistep input under (4.52.2). 

Examining the structure of (4.47.2), we may rewrite it in the following form: 

	r� = $ � {�� 	�, 	�!F	� − 	�H − � F	� − 	�Hv� 	� − 	�!� + �w��∈��
 (4.47.3) 

where: 

{�� 	� , 	�! = � ¢ 0��� 	� − 	�!�£
v� 	� − 	�!� + �w� (4.47.4) 

Clearly, the numerator of {�� 	� , 	�! is related to a repulsive potential field, i.e., a source, 

whose strength is localized using the parameters involved as will be explained shortly. 

When 0��� ≠ 0, it is expected from the edge )., /* ∈ ℇ- along with its two connected 

agents- to undergo a deployment or formation behavior. This behavior, however, cannot 
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be realized except about the average consensus value of agents’ initial conditions. Now, it 

is possible to rewrite (4.47.3) as follows: 

	r� = $ � {�� 	� , 	�!F	� − 	�H − <�� 	�, 	�!F	� − 	�H�∈��
 (4.47.5) 

where: <�� is given by the parameterized C-S model given in (4.34). Then, the overall 

dynamics of the MAS can be given as follows: 

	r
��� = $))��	
� − ℒ�	
�*	
��� (4.47.6) 

where: )��	
� = S{�� 	� , 	�!T and has the same structure as the state-dependent Laplacian 

matrix ℒ�	
�. As a result, comes the following corollary. 

Corollary 4.2: A MAS, which acts over an initially connected network graph, under the 

universal protocol (4.47.2) with � = 0.5 is connectivity-preserving ∀	
 in the domain of 

interest. 

Proof: Following the same discussion presented in proofing Theorem 4.10, and after doing 

the Math, we end up having the following condition ∀., /, 	
: 

 �0��� + � + 2��0���!1� + ��1 − 2��1% + �0��� ≠ 0    (4.47.7) 

 where: 1 = 	� − 	�. Taking � = 0.5 results in a positive quantity for all state-independent 

parameterization of �, � and 0��� and therefore all edges remain connected. 

∎ 

At this point, one cannot resist the temptation of introducing the �	�� function; so that 

other types of consensus can be used instead of the average consensus. In this way, we can 

handle a more sophisticated situation of agents’ deployment with less mathematical burden 

compared to (4.45), in which parameters tuning to maintain edge connectivity seems 

challenging when �	�� ≠ 1. In such a case, agents are deployed in the working space 
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while always maintaining the desired type of mean. The resulting MAS dynamics is given 

as follows: 

	r
��� = $å�	
�))��	
� − ℒ�	
�*	
��� (4.47.8) 

where: å�	
� is given by (4.9). Other Euclidean directions follow the same steps. This gives 

rise to the following corollary. 

Corollary 4.3: A MAS, which acts over an initially connected network graph, whose 

dynamics are given by (4.47.8) with � = 0.5 is connectivity-preserving ∀	
 in the domain 

of interest while achieving a collision-free average, geometric, harmonic and mean-of-

order-5 deployment, formation and consensus in the working space with appropriate choice 

of 0��� values. 

Proof: Following the same discussion presented in proofing Theorem 4.10, Corollary 4.2 

and (3.42), it is straight forward to see that Corollary 4.3 is true. Note also that both )��	
� 

and ℒ�	
� have the 1m
& as a nonlinear left eigenvector associated with ���	
� = 0 ∀	
, 

therefore all the needed conditions to proof the connectedness of the MAS and achieving 

the desired type of mean are satisfied if 0��� values are adequately chosen as discussed 

before. 

 ∎ 

The proof of agents’ consensus under (4.47.8) is straightforward, and the similarity 

between (4.47.8) and the formation protocol (4.21.5) is obvious. The following figures 

show the results obtained when using (4.47.8) to achieve average, geometric and harmonic 

deployment of six agents in the 3-D space using the network graph shown in Figure 3.13. 

Observe the difference between agents’ responses under (4.34) and (4.47.8) while 

achieving the average deployment task. This can be read from figures 4.33.b and 4.33.c. 
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To address the formation control in 3-D using (4.47.8), it is best to include all the Euclidean 

directions in )��	
�, i.e., to have )��	
, '
, ç
� instead without affecting the C-S part of {��. 

This will inherit the easiness and geometric flexibility offered by (4.16). Therefore, the 

overall MAS dynamics in 3-D under the modified version of (4.47.8) is given as follows: 

	r
��� = $�å��	
�))�A�	
, '
, ç
� − ℒ�	
�*	
��� 

(4.48) 'r
��� = $�å��'
�F)�B�	
, '
, ç
� − ℒ�'
�H'
��� 

çr
��� = $3å3�ç
�))�C�	
, '
, ç
� − ℒ�ç
�*ç
��� 

where: å� is given in (4.9) and therefore could be different. Figure 4.43.a shows the 

simulation results obtained during formation control of six agents using (4.48) with 

å��	
� = <, $� = 10, . = 1,2,3 and complete consensus along the z-axis, i.e., 

)�C�	
, '
, ç
� = i0l. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 4.33. Simulation results of agents’ deployment in 3-D using the universal protocol (4.47.8). (a) agents’ positions 

under average deployment. (b) average deployment using (4.34) with disturbance enables- only agents positions along 

the x-axis are shown. (c) another experiment of average deployment using (4.47.8) with disturbance enables- only agents 

positions along the x-axis are shown. (d) the three types of mean deployment shown along with the needed control signals 

with 20 times increase in the convergence rate for the last two types. (e) average deployment of the same agents using 

(4.47.8) over a complete graph with identical 0��� values. 
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 The communication network used matched the shape graph and both were complete 

undirected graphs. The intended separation between two successive agents was 2 length 

units; however, there was some scaling as expected, in general. Figure 4.34.b shows the 

minimum distance among agents during the whole formation sequence and it is evident 

that there was no collision among agents while navigating the 3-D working space. In 

addition, if agents have finite sizes, then it can be reflected directly into )��	
, '
, ç
� as 

follows: 

{�� 	� , 	� ,∆��A ! = � ¢ 0��� 	� − 	� − ∆��A !�£
v� 	� − 	� − ∆��A !� + �w� 

(4.48.1) 

and the C-S part is modified in the same way. Therefore, the overall control structure 

becomes: 

	r� = $ � F{�� 	� , 	� ,∆��A ! − <�� 	� , 	� ,∆��A !HF	� − 	� − ∆��A H�∈��
 (4.48.2) 

Interestingly, after accommodating the physical dimensions of agents into (4.47.3), its 

similarity with the second formation protocol, i.e., (4.22), becomes obvious. Despite this 

similarity, in (4.48.2), ∆��A = −∆��A  denotes the physical dimension rather than the desired 

formation distance between the two agents. 

Accidentally, while simulating (4.48) we obtained orbiting-like behaviors of agents while 

keeping the formation shown in Figure 4.34.a. It turned out that changing a specific 

undirected edge weights, see Figure 3.9, or making it directed is the cause behind such 

behaviors over a general network graph. Figure 4.35 shows some of these results with a 

brief explanation provided in a coming subsection. Examining such behaviors in detail will 
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be a subject of a future investigation. Note, however, that this approach is different from 

the one which depends on the conservation of angular momentum.  

The ability to change 0��� at the edge level makes the formation protocol (4.21.5) a special 

case of (4.53). The conditions needed to parameterize 0��� will be the subject of the 

following subsection. 

4.1.4.2: State-dependent parameterization at edge-level using the universal 
behavioral protocol 

Working at the edge-level gives more in-depth understanding about the various ways a 

MAS behavior could be controlled. 

 

(a) 

 

(b) 
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(c) 

Figure 4.34. Simulation results of agents’ formation in 3-D using the universal protocol (4.47.8). (a) trajectories. (b) 3-D 

minimum distance among agents during the whole course of formation. (c) agents’ positions in 3-D and the needed 

control signals. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure 4.35. Simulation results of agents’ formation in 2-D using the universal protocol (4.48) over a general network 

while changing the undirected weights, i.e., unbalanced, or making an edge directed. (a)-(e) agents’ positions. (f) 

minimum distance to collide. 

For example, introducing the partial, complete and global neighborhoods enables 

controlling the behavior of a MAS from a holistic view, so that individual agents’ 

contribution is not much of a concern from the designer point of view whose presumption 

of full-submission of agents is of no doubt. Having this in mind, we study the individual 



212 
 

agents’ participation in achieving the overall behavior and also enable them with self-

awareness- up to an extent- so that they consciously participate with other agents. 

Using (4.48), the overall MAS dynamics in the x-direction can be given as follows where 

state-dependent parameterization at edge-level is introduced: 

	r
��� = $�å��	
�))�A�	
, '
, ç
, q
� − ℒ�	
�*	
��� (4.49) 

where: q
 is a vector whose elements are all possible values of 0���. Similarly, the MAS 

dynamics in the y and z directions follow.  

Note 4.17: When 0��� }q���	
, '
, ç
�� = 0� q�	
, '
, ç
�!, then the whole MAS is affected by 

one state-dependent parameterization. This is exactly what happens in complete, global 

and- to an extent- partial neighborhoods. 

Since (4.49) is a semi-linear protocol, we may use the conditions stated in Part I, i.e., (3.34) 

and (3.35), so that we design the structure of 0��� }q���	
, '
, ç
��.  Working mainly with the 

x-direction, we have the following lemma: 

Lemma 4.4: The MAS given in (4.49) with å��	
� = < will achieve the formation-

deployment-consensus about a point in the working space corresponding to the arithmetic 

mean of agents’ initial values if and only if the initial graph is connected and the following 

is true: 

0��� > 0 (4.49.1) 

¿0���¿�� = − ¿0���¿��  (4.49.2) 

¿0���¿�� = ¿0���¿��  (4.49.3) 

Moreover, it will be always connected if and only if for � = 0.5 the following is true: 
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¿0���¿��  �� − � ! ≥ 0 (4.49.4) 

where: �� = )	�, '� , ç�*. 

Proof: Recalling (3.34) and (3.35), it is straight forward to show, by direct differentiation 

of (4.47.4), that the needed conditions to satisfy both (3.34) and (3.35)- using {��- is to have 

(4.49.1) and (4.49.2) true. Note that the other term in (4.49), i.e., the C-S model, already 

satisfies (3.34) and (3.35).  

In addition to (4.47.7), the additional term that ensures the connectivity of ��)�,�*�	
� ∀	
 is 

given by (4.49.4). This is shown as follows: 

Given �� as follows: 

�� = ¢0��� 	�, 	�! 	� − 	�!� − 1£
v� 	� − 	�!� + �w� (4.49.5) 

Then, it is easy to find ¿�� ¿	�⁄  which is then used in (4.38). So, we have: 

��)�,�*�	
� = �¿��¿	� F	� − 	�H − ��×  j� − j�!�
 (4.49.6) 

=  j� − j�!� �¿0���¿	� v� 	� − 	�!3 + � 	� − 	�!w + Ú%×
 	� − 	�!� v� 	� − 	�!� + �w���  

where: Ú% =  �0��� + � + 2��0���!1� + ��1 − 2��1% + �0���. This equation can be 

made positive ∀	
 and all parameterization if  j� − j�!� ≠ 0 ∀., / indicating that the initial 

graph is connected, and by taking 0 < � ≤ 0.5- here we prefer � = 0.5, and by making 

sure that (4.49.4) is satisfied. 

∎ 
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4.1.4.3: Designing connectivity-preserving protocols 

In previous subsections, we mainly were interested in examining the nature of a given 

protocol whether it is connectivity-preserving or not. In this subsection, we will continue 

from that point on and show how a connectivity-preserving protocol can be designed and 

localized such that it helps other behaviors to complete their tasks with minimum 

intervening once agents are connected. The idea behind this approach is to have a strategy 

that ensures the connectivity of agents under various behaviors. Once a behavior is acting 

against the well-being of connectedness, then the connectivity-preserving protocol will 

take over assuming behaviors with known bounded control signals irrespective of what the 

actual behavior is. It is at this point that the reason why being interested in behaviors with 

bounded control signals becomes more obvious. 

 In Chapter 3, the concept of prescribed connectivity was presented and displayed to be 

always persistent and therefore will be only useful in situations where complete or partial 

consensus is required. However, that concept is indeed a special case of the connectivity 

preservation concept introduced here.  

In [145], a Lyapunov function was used to design a connectivity-preserving flocking 

behavior of a group of mobile robots assuming that ���	
� is a nondecreasing function of 

each edge weight. In this subsection, we mainly depend on Corollary 4.1 and Theorem 

4.10 to design a semi-linear control signal that utilizes the gradient of the ���	
� in a general 

yet systematic fashion once compared to [145]. Nonlinear connectivity-preserving 

protocols will be a subject of future work. 

Starting with any �� that- preferably- yields a connectivity-preserving protocol, ��)�,�*�	
� 

can be found using (4.41) or (4.42). In order to maximize the edge connectivity, we 
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suggest- as also done in [145]- to move along the gradient of ��)�,�*�	
�. Being connected to 

several edges, an agent should move in a way that satisfies all its neighbors, and therefore 

the agent should move towards the instantaneous center of its neighborhood. This can be 

clearly seen form Figure 4.36. 

Among the various possibilities existing, let us use mainly (4.41) to design our 

connectivity-preserving protocols. Therefore, one component of the gradient connectivity 

of an edge can be given as follows: 

 

Figure 4.36. A communication graph showing the links and edges connectivity gradients from the perspective of agent 

2.  ¿��)�,�*¿	� = Þ¿���¿	�� F	� − 	�H − 2 ¿��¿	� �  j� − j�!�� (4.50) 

The other component of gradient can be found similarly. 

Having (4.50) as a template, various semi-linear based connectivity-preserving protocols 

can be designed. Recalling specifically the C-S model and the result obtained earlier in 

(4.39.2) with � = 0.5, we may design our desired protocol as follows: 

¿��)�,�*¿	� = 3��$� 	� − 	�!v� 	� − 	�!� + �w'/�  j� − j�!�� = ℎ�� 	� , 	�!F	� − 	�H (4.50.1) 

which has its maxima 1∗ = �	�∗ − 	�∗� at: 
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1∗ = = �4� (4.50.2) 

The peak value of (4.55.1) at this point is given as follows: 

`�1∗� = 3$� j� − j�!��= 4%�5'�� (4.50.3) 

It is desired to bound (4.50.1) such that its value is always less or equal to 1. So, by 

normalizing it with respect to the convergence rate used and the elements of the eigenvector 

involved, i.e., $ j� − j�!��, we have: 

� = 13=5'��4%�  (4.50.4) 

At this point, it is the responsibility of the design engineer to decide the values of 1∗and to 

build as many as needed of these connectivity-preserving protocols to cover the expected 

range of agents’ spatial separations.  Figure 4.37 shows three of such protocols along with 

a consensus protocol realized using the C-S model with � = 2 with a convergence rate $ =
100 and the contribution of eigenvector elements was ignored. 

Figure 4.37 recalls the radial basis functions (RBF) used in neural networks. In fact, the 

radial basis function has been used in connectivity preservation as can be found in [146], 

for example. However, the RBF are centered bell-shaped curved and not like those in 

Figure 4.37. 
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Figure 4.37. The control signals under multi connectivity-preserving protocols running in parallel with another consensus 

protocol realized using the C-S model with � = 2 with a convergence rate $ = 100 and the contribution of eigenvector 

elements was ignored. 

Figure 4.38 shows the simulation results of the MAS depicted in Figure 4.36 with and 

without the connectivity-preserving protocols. The maximum separation was between 

agents 1 and 3 along the x-axis and was equal to 955 length units, 1∗ = )400, 800, 2000* 

and � = 64 for all bases functions of connectivity-preserving protocols. 

Note 4.18: The multi connectivity-preserving protocols are running in parallel at agent 

level. 

Clearly, the following is true: 

¿��)�,�*¿	� = − ¿��)�,�*¿	�  (4.50.5) 

The overall dynamics of the MAS shown in Figure 4.36 is given as follows- in the x-

direction: 

	r
��� = −$F2"&�	
�1m
 + ℒ�	
�	
���H (4.50.6) 

where: 
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2"&�	
� =
ÃÄÄ
ÄÄÄ
ÄÄÅ 0 ¿��)�,�*	�¿��)�,�*¿	� 0 ⋯ ¿��)�,W*¿	W¿��)�,W*¿	W⋮ ⋱ ⋮¿��)�,W*¿	�

¿��)�,W*¿	� ⋯ 0 ÇÈÈ
ÈÈÈ
ÈÈÉ
 (4.50.7) 

Other Euclidean directions follow in a similar way. 

 

Figure 4.38. The simulation results of the MAS shown in Figure 4.36 with and without the connectivity-preserving 

protocols while achieving the average consensus. The maximum separation was between agents 1 and 3 along the x-axis 

and was equal to 955 length units. 

Note 4.19: When there is no edge between the .67 and the /67 agents, then ¿��)�,�* ¿	�ò = 0. 

Note also that 2"& = −2". 

Clearly, in (4.50.6), the average consensus will be achieved. By introducing the å��	
� 

matrix- as we have done in (4.49) for example- we may achieve various types of consensus. 

Therefore, (4.50.6) can be written as follows: 

	r
��� = −$å��	
�F2"�	
�1m
 + ℒ�	
�	
���H (4.51) 

where å��	
� is given in (4.9). This is stated by the following lemma. 
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Lemma 4.5: The 3-D MAS under (4.51) will stay connected, maintain and converge to, 

average, geometric, harmonic and the general mean-of-order-5 at consensus if at least one 

of the following is true: 

1- The �� functions used in the consensus protocol are originally connectivity-preserving 

and achieve (3.34) and the initial network graph is connected. 

2- The maximum initial separations between agents is within the connectivity-preserving 

protocols range of action.    

Proof: If ℒ�	
� is constructed from connectivity-preserving functions, then all its edges will 

remain connected if they were in the first place. Moreover, if the �� functions used achieve 

(3.34), then 1m
& will be associated with ���	
� = 0 ∀	
 and therefore the desired type of 

consensus selected by å��	
� is achieved, see (3.42). 

If ℒ�	
� is constructed from non-connectivity-preserving functions, and single or multi 

connectivity-preserving protocols are used, then the MAS will be acted upon by these 

functions if and only if the agents maximum separation is within their range of actions. 

∎ 

In Chapter 3, we have presented the concept of prescribed connectivity which turned to be 

both global and persistent based on the current argument. Moreover, that concept of 

prescribed connectivity is a special case of the connectivity-preserving concept presented 

here. This is shown by the following lemma. 

Lemma 4.6: The protocol with prescribed connectivity presented in Chapter 3 is a special 

type of connectivity-preserving protocols. 

Proof: Let us have the following �� function: 
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�� 	� , 	�! = � 	� − 	�!~
 (4.52) 

where: p > 0. Now, it should be easy to show that: 

¿��)�,�*¿	� = p�p + 1�� j� − j�!�� 	� − 	�!~J�
 (4.52.1) 

indicating that (4.52) is a connectivity-preserving function when the edge is connected and 

	� ≠ 	�. Taking p = 2, yields: 

¿��)�,�*¿	� = 6� j� − j�!�� 	� − 	�! (4.52.2) 

Writing (4.52.2) ∀)., /* ∈ ℇ edges and evaluating −2"&�	
�1m
 = 2"�	
�1m
, we obtain the 

following: 

z�"� = � ¿��)�,�*¿	��∈��
= � � ℎ��F	� − 	�H�∈��

 (4.52.3) 

where: � = 6�, ℎ�� =  j� − j�!�� and z�"�  is .67 agent connectivity-preserving control 

signal. Note that (4.52.3) is like (4.2). Following the steps taken in (4.3) to (4.5), we may 

write the global connectivity-preserving control signal as follows: 

zm
"� = −�ℒC�	
 (4.52.4) 

In Chapter 3, we have taken ℒC�, i.e., the fixed Laplacian matrix with weighted edges, as 

ℒ�, i.e., the fixed Laplacian matrix with )0,1* weights for simplicity. So, (4.51) can be 

rewritten as follows when å��	
� = <: 

	r
��� = −$F�ℒC� + ℒ�	
�H	
��� (4.52.5) 

which agrees with (3.80). 

∎ 
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Remark 4.9: Note that not every connectivity-preserving protocol can be written in a semi-

linear form, i.e., as ��	
�	
, unless it has ± 	� − 	�! as a factor. This is stated by the 

following lemma. 

Lemma 4.7:  A connectivity-preserving protocol that maintains the time constant of the 

MAS, i.e., its average value for example, can be written in a semi-linear form zm
"� =
−��	
�	
 if and only if it has ± 	� − 	�! as a factor and the resulting ��	
� = Sℎ�� 	� , 	�!T 
matrix has 1m
 as a nonlinear left eigenvector associated with ���	
� = 0 ∀	
. 

Proof: Following the same steps shown in (4.52) to (4.52.4), we will end up with the 

following: 

z�"� = � ¿��)�,�*¿	��∈��
= � � ℎ�� 	� , 	�!F	� − 	�H�∈��

 (4.53) 

Which after simplification can be written as: 

zm
"� = −���	
�	
 (4.53.1) 

which maintains the MAS invariance if and only if it has 1m
& as a nonlinear left eigenvector 

associated with ���	
� = 0 ∀	
. This of course can be checked using (3.34). 

∎ 

According to Lemma 4.7, we may put (4.50.1) into a semi-linear form. 

Remark 4.10: Having a desired evolution of an edge connectivity, one may find the 

corresponding needed weighting functions, i.e., ��, by solving (4.50) if it is well-posed. It 

is true that general functions that are not related to the diffusive-coupling �� functions can 

be used; however, may lose the clear picture of the relation between the MAS connectivity 

and the functions used, or at best the picture will be too complicated to grasp. Using non-

diffusive coupling under the proposed framework is a subject of future work.  
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4.1.4.4: The universal protocol and the Solar system 

Looking carefully at the universal protocol in 3-D, it is possible to recognize its similarity 

to the differential equation that models the motion of the planets in our Solar system. 

Taking � = 0.5, yields: 

�� = � ¢ 0��� 	� − 	�!� +  '� − '�!� +  ç� − ç�!� − 1£
v� �� − ��!� + �w�.'  

(4.54) 

where: �� = )	�, '� , ç�*. Describing the motion along the x-axis, let � =  '� − '�!� +
 ç� − ç�!�

 and � = 1. Compare this to the following law of motion of planets [147] when 

� = 0.5: 

Ú� h�{
�h�� = å̅Ú� � Ú� {
� − {
��{
� − {
��3�Æ�  (4.54.1) 

where: å̅ is the universal constant of gravitation, the masses are denoted by Ú�,� and {
� is 

the position vector in 3-D space. It is straightforward to see the similarity; however, in 

(4.54) there is an additional term responsible for achieving consensus among the agents. 

The following figures were generated using a mixed multigraph- whose structure and 

relation to physics are yet to be understood- with � = 1, � = 10J% and � = 10J� and the 

formation shown in Figure 4.34.a. 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure 4.39. Simulation results of agents formation in 3-D using the universal protocol (4.54) over a general network 

while changing the undirected weights, i.e., unbalanced, or making an edge directed. (a) -(c) agents positions. (d) agents 

positions versus time and the needed control signal for (c). 

4.1.5: Shape consensus and clustering behaviors 
Under various protocols of formation and deployment, additional equilibria sets are usually 

introduced to the MAS dynamics to facilitate its behavior. In this section, the original 

equilibria set will be modified such that agents at steady-state will be partitioned into 

clusters in which agents will reach consensus. That is why we refer to clustering as partial 

consensus in this work. 

4.1.5.1: The clustering behavior 

Partial consensus can be looked at as a generalization of the complete consensus among 

agents. The main difference appears in the way weights are assigned when building the 

consensus or clustering protocols. In (4.6), the h�� weights determine the relation between 

the .67 and /67 agents; such that when h�� > 0 then the two agents will cooperate and when 

h�� < 0 then the two agents will compete. It is when h�� = 1 ∀., /, then the whole MAS 
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will reach the complete consensus, or consensus for short. Therefore, we may define h�� in 

the x-direction as follows: 

h��A ≡ h��A  	� , 	�!: ℜ� → ℜ/)0* (4.55) 

Examining (4.6), the equilibria given in (3.31) is affected by the value of h��A  as follows: 

0 = � �� 	�, 	�!Fh��A  	� − 	�H�∈��
, ∀. = 1,2, ⋯ , a (4.55.1) 

Knowing that �� > 0- see Remark PI-8, satisfying at least (3.35) and by assuming that 

	� ≠ 0, (4.55.1) can be rewritten as follows: 

0 = � �� 	� , 	�!Fh��A  	� 	�⁄ − 1H�∈��
, ∀. = 1,2, ⋯ , a (4.55.2) 

from which it is obvious that the ratio 	� 	�⁄ = 1 h��A⁄  which- unlike the complete consensus 

case- might be different ∀., /. This ratio governs the elements of the equilibria set. In other 

words, the additional weights, i.e., h��A , steer the line of interaction between the .67 and /67 

agents. At this point, we may equip the agents with the ability to autonomously decide for 

themselves about the way they should interact with their neighbors based on some criterion. 

So, for the .67 agent, we may write the following: 

	r� = � �� 	�, 	�!Fh��A  	�, 	�! 	� − 	�H�∈��
 (4.55.3) 

where: h��A  	�, 	�! ∈ ℜ/)0* denotes the criterion based on which the .67 agent decides the 

level of cooperation or competition with the /67 agent. Note that (4.55.3) is closely related 

to the general class given by (3.72) and (3.75). 
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Let us consider the case shown in Figure 4.40 in which an operator has created two clusters- 

may be with different types of assets in each- and assigned a virtual leader / target in the 

working space. Agent 1 is pinned to that virtual leader. 

 

Figure 4.40. Two clusters 2� and 2� with agent 1 pinned to the virtual leader / target point (triangle) selected by an 

operator. 

In such a scenario, we are faced with three tasks that the MAS must be able to 

simultaneously conduct, namely: clustering, leader following and maintaining a sufficient 

separation between agents in the same cluster to avoid collision. Not as easy as it may 

seem, once a cluster starts moving, its size starts changing. This effect can be read from 

the equilibria element that governs the .67 and /67 agents, i.e., 1 h��⁄ , along which the 

movement is not constrained, see Figure 4.41.e. Fortunately, (4.55.3) can be modified such 

that the previous tasks can be satisfied at once. This can be done as follows using clustering 

size control- written in a short notation: 

	r� = � ��Fh��A  	� − 	�H�∈��
+ 5�)	Ü − 	�* (4.55.4) 

where: 5� ≥ 0 is the pinning gain and 	Ü is the leader state, and h��A  is given as follows: 

h��� = 2��D h��,�� , ��, ��∈��! = 12 h��,��  1 + �Gpℎ�G{�! + 12  1 − �Gpℎ�G{�! (4.55.5) 

where: 2��D denotes a general scalar function, real or complex, �� could be one or more of 

)	�, '�, ç�*, h��,�A  is the fixed h��A  value given when the cluster is designed, the   G{ =
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� }0� − �{����� with � ≫ 1, 0� > 0 and, in general, �{���� =  	� − 	�!� +  '� − '�!� +
 ç� − ç�!�

. 0� denotes the maximum desired distance between intra-cluster neighbors. The 

simulation results of this case are shown in Figure 4.41 where: f =
h.G�1, 1.2, 1.3, 3, 3.5,4�, see (4.7). 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

Figure 4.41. The simulation results of the example shown in Figure 4.40 using the 3-D version of the C-S model with 

� = 1, � = 10, � = 0 and � = 0.5. (a) agents’ positions along the x-axis. (b) agents’ positions in 3-D versus time. (c) 

agents’ positions in the working space. (d) min-max distance among neighboring agents on the graph shown in Figure 

4.36. (e) the equilibria of (4.55.4) where all equilibria can be easily written in terms of 	� starting with 	� and 	3. 

The same scenario is simulated using (4.55.5) to reflect upon the advantage of the state-

dependent clustering weights. Figure 4.42 shows the results obtained when 0� = 81 where 

the final intra cluster separation is √0�. 

 

(a) 
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(b) 

 

(c) 

 

(d) 
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(e) 

Figure 4.42. The simulation results of the example shown in Figure 4.40 using the 3-D version of the C-S model with 

� = 1, � = 10, � = 0 and � = 0.5 and the modified clustering weights given by (4.55.5). (a) agents’ positions along the 

x-axis. (b) agents’ positions in 3-D versus time. (c) agents’ positions in the working space. (d) min-max distance among 

neighboring agents on the graph shown in Figure 4.40. (e) the equilibria of edge )1,2* ∈ ℇ written in terms of 	� and 	� 

when (4.55.5) is used. 

To appreciate the modified clustering weights given by (4.55.5), let us have the scenario 

shown in Figure 4.40 however with the modification of ramp command input issued by the 

virtual leader. Figure 4.43 shows the results obtained with and without the cluster sizing 

control offered by (4.55.5). It is easy to read from the figures that if the ramp continues for 

a longer period, i.e., the target point is far away, then the agents will become increasingly 

distant from each other and therefore there is a possibility to lose the connectivity of the 

MAS. However, this is not the case under (4.55.5). 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 4.43. The simulation results of the example shown in Figure 4.40 using the 3-D version of the C-S model with 

� = 1, � = 10, � = 0 and � = 0.5 and the modified clustering weights given by (4.55.5). (a)-(b) and (c)-(d) agents 

positions along the x-axis and the minimum and maximum distance among neighboring agents on the graph shown in 

Figure 4.40 without and with the clustering size control with 0� = 81 respectively, and 5� = 1. 

The modified clustering weights, i.e., 2��D h��,�A , ��, ��∈��!, given in (4.55.5) can be 

generalized to meet various application requirements as follows: 
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2��D h��,�A , ��, �∈��! = 1± 7 ��,��!JE�!� (4.55.6) 

where: ℎ ��, ��! is the criterion to be minimized or maximized relative to a specified 

threshold ��. 
To bridge the link between consensus and clustering, let us have the following affine-in-

control-input scalar nonlinear system as a representative of an agent dynamics. Then, 

(4.55.6) can be seen into the picture as follows: 

	r� = ��	�� + �	��z�, �	�� ≠ 0 ∀	� (4.56) 

with an exact feedback linearization [148] controller: 

z� = J��	�� ±−2C��D ��	�� + � ��F2��D 	� − 	�H�∈��
² (4.56.1) 

where: 2C��D denotes the overall in-neighborhood criteria evaluation and has a structure like 

2��D.  

To submit itself to the team, the .67 agent must be assured about the benefits gained upon 

teaming up with the rest. These guarantees are reflected in 2C��D. Being a member in the 

team, i.e., 2C��D = 1, the .67 agent can determine how to react to other agents in the same 

team, i.e., cooperatively or competitively, based on 2��D. When 2��D = 1 ∀., /, then a 

consensus is achieved when at least �� satisfies (3.35). Note that (4.56.1) is closely related 

to the general class given by (3.72) and (3.75). 

Remark 4.11: The universal protocol can be also used under the clustering behavior. 

Back to (4.55.5), and by having Figure 4.42.e in mind, the effect of the cluster size control- 

as seen from Figure 4.44- is equivalent to switching between consensus and formation; 
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where the desired shape is controlled by ∆��A , see (4.22). Therefore, the relations among 

consensus, clustering and formation are now obvious. 

 

Figure 4.44. Effect of cluster size control approach on clustering behavior. 

4.1.5.2: The shape consensus behavior 

Unlike the formation control approach, shape consensus can achieve a desired shape only 

by affecting the way the left eigenvector associated with ���	
� = 0 is spanning the column 

space, i.e., the left null-space, of the Laplacian matrix. In the average consensus for 

example, the left null-space is spanned by the 1m
& vector while in shape consensus it is 

spanned using a probably signed vector whose elements are not necessarily 1. However, 

the resulting Laplacian matrix under shape control is still positive semi-definite and 

therefore stable- as explained previously-, but it is weight-unbalanced, i.e., the row-sum 

does not equate to zero. Inspired by [1] and utilizing (4.8), a shape control shown in Figure 

4.45 was achieved in 2-D by manually tuning the cooperative-competitive weights. One 

feature of the proposed shape control is its flexibility to scaling and reflection due to the 

agents’ initial positions. It was verified through numerical simulation that the translation 

also affects the scale of the resulting shape. So, the used weights could be adaptively 

adjusted to overcome these issues if they are undesirable, may be using (4.55.5). 
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Remark 4.12: What motivated the shape control proposed herein is our vision to provide a 

way for agents to relate their preferred shape with the under lying communication network 

connecting them which enables switching the shape whenever the underlying network 

switches. 

The underlying communication network used to achieve the shape shown in Figure 4.45 is 

depicted in Figure 4.46 and the cooperative-competitive weight matrices used were as 

follows- see [1] for more details: 

 

Figure 4.45. Shape control results under C-S distance-based protocol where agents {6}, {2}, {4}, {1,3} and {5,7} form 

five clusters in the x-direction while agents {3,5}, {2,4,6} and {1,7} form three clusters in the y-direction. Agent 4 is the 

center of this shape. 

OA = �i0l 1 hA�⁄ i0lhA� 0 hA�i0l 1 hA�⁄ i0l¡ (4.57) 

OB = � i0l 1 hB�⁄ i0lhB� 0 hB�i0l 1 hB�⁄ i0l ¡ (4.57.1) 

where:  
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 hA� = i0.8, 0.2655, 0.8l, hA� = i1.3332, −0.6, 1.3332l,  hB� = i0.6667, 1.0, 2.0l, 
hB� = i2.0, 1.0, 0.6667l and i0l is 3 × 3 zero matrix. These design variables can be 

directly related to the desired shape and the left and right eigenvectors associated with �� =
0 of the new resulting graph. This will help in creating a systematic method to implement 

the shape consensus as presented herein. This will be a subject of a future work. Note that 

similar approach was presented in [149]. 

The shape controller in the x-direction is given as follows- see (4.8): 

çr
� =  �OA + <F×F� ∘ ℒ�ç
��!ç
� (4.57.2) 

where: ç
� is given in (4.8), and ∘ denotes the Hadamard product of two matrices, i.e., an 

element wise product, and < is the identity matrix. The shape controller in the y-direction 

can be given in a similar manner. 

Once the shape control proposed in [131] is compared to the one proposed herein, it is 

straightforward to notice that both shape control approaches do require an explicit 

similarity between the communication network and the resulting shape. So, they give a 

way to get-what-you-see which will be highly appreciated by the design engineers. After 

simplification, the cluster consensus value reported in [1] can be given as follows: 

 

Figure 4.46. Network topology used in 2-D shape control shown in Figure 4.38. 

?
 = ª1a � 	�����1�
W

��� « 1
 (4.57.3) 
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where: 1
 is the right eigenvector associated with �� = 0. Note that under the proposed 

shape control, the elements of the left eigenvector associated with �� = 0 are the 

reciprocals of their corresponding elements in the right eigenvector. It is also worth noting 

that the control effort will be zero once the shape consensus is achieved. Even though a 

state-dependent version is applicable as stated previously, it was not used to obtain the 

results shown in Figure 4.45. Other cooperative-competitive behaviors can be realized 

similar to what was reported in [150]. More information about cooperative and competitive 

systems described by ordinary differential equations can be found in [151] and [152]. 

4.1.6: Containment and Escorting in obstacle-free 2-D plane 
In some applications, agents must conduct special kinds of behaviors like containing a 

target or valuable assets while escorting them to a desired location. This can be found in 

autonomous surface vessels acting as coast guards and warships escorting, for instance. 

Although such behaviors can be viewed from formation control point of view, it is intended 

herein to avoid such approaches and to provide a more flexible approach that does not 

require hardcoded information to maintain the connectivity while achieving the desired 

task objectives. 

Let the behavior be realized using the following directed communication network: 

 

Figure 4.47. Network topology used in containment and escorting example. 

As suggested by this communication network, it is desired to contain agent 1 and escort it 

while it is moving in the 2-D plane. Agent 1 acts as a leader to the other agents, however 



237 
 

if it only has inwardly directed links then it will be a follower for multiple leaders. 

Geometrically, there will be two concentric regions- preferably circular regions- inside 

which the desired behavior is to be achieved while having the maximum separation among 

the surrounding agents whose connectivity must be maintained. Figure 4.48 shows the 

containment region and the available forces among agents. 

 

Figure 4.48. Desired containment region, its approximate side view and the available forces among agents. 

Thus, the functions used for the x-axis motion can be given as follows 

5���	�, 	�� = ���F�Gpℎ ��{�� − ∆− )�! + �Gpℎ ��{�� + ∆− )�!H (4.58) 

�� 	� , 	�! = ����Gpℎ ��0� − ℎ���!<��, ., / ≠ 1 (4.58.1) 

where: 5�� is the pinning gain, <�� is given in (4.34), ��� > 0 and ℎ�� = 1 �1 + ${��� �⁄  with 

$ > 0 and {�� = ��	� − 	��� + �'� − '���. For the y-axis motion, simply replace 	� in <�� 

with '�. 
The simulation results for both containment and escorting are shown in Figure 4.49. One 

main difference between this behavior and the formation behavior explained previously is 

that agents in the former behavior decide online in a distributed fashion the best formation 

that meet the requirements of both containment and connectivity preservation. So, in 

general one should not expect to have almost regular polygons for any ) and 0� values. 

The values used to generate Figure 4.49 were as follows: ) = 2, 0� = 0.1 and ∆= 0.1. 



238 
 

 

(a) 

 

(b) 

 

(c) 

-10 -8 -6 -4 -2 0 2 4
-7

-6

-5

-4

-3

-2

-1

0

1

2

3

X-axis (Length Units)

Y
-a

x
is

 (
L

e
n

g
th

 U
n

it
s

)

 

 

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

X-axis (Length Units)

Y
-a

x
is

 (
L

e
n

g
th

 U
n

it
s

)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5



239 
 

 

(d) 

Figure 4.49. Containment and escorting results. (a): containment phase. (b): close view. (c): Agent 2 is initially close to 

agent 1. (d): escorting phase where all agents are connected to the virtual leader. 

4.1.7: Switching behaviors 
As, the name implies, this behavior consists of several sub-behaviors among which the 

agents switch based on a switching signal generated maybe using a behavior selection 

mechanism in a centralized or a distributed fashion or even as a response to triggered 

events. This mechanism may depend on a distributed or collective artificial intelligence or 

it may have a human-in-the-loop who is responsible for deciding what to do. The collection 

of sub-behaviors consist what is referred to as a behavior bank as depicted in Figure 4.1. 

In general, the switching among the previously mentioned behaviors and others as well 

must be stable to make sure that the overall mission is achieved. In switching systems 

theory, the working space, say ℜ3 in the 3-D Euclidean space, is partitioned into several 

operating regions (OPR) separated by a family of switching surfaces. During the transition 

from one OPR to another, the states might experience a jump-like response referred to as 

the impulse effect. To overcome this effect, a reset map is devised. When the impulse 

effects are ignored, one may argue that the resulting system is a discontinuous system and 
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not hybrid [137]. Nevertheless, a stability approach for switching systems will be used to 

analyze the stability of the proposed behaviors. Following the approach presented in [90] 

and by finding a valid common Lyapunov function [137], the stability of the MAS with 

switched behaviors can be studied as follows: 

Let �
 ∈ ℜW be continuous and let ΓW be a finite set of all graphs involved, i.e., N�, from 

which a behavior |~ ∈ ℬØ is selected at a given time instant by an arbitrary discrete 

switching signal q���. ℬØ denotes the finite set of all possible behaviors available in the 

behavior bank. It is assumed that all graphs are strongly connected or simply connected- in 

the case of undirected graphs- in which case ����
� = 0  ∀�
. Consequently, 1m
& is a 

nonlinear left eigenvector associated with ����
� = 0 indicating that the MAS has an 

invariant quantity. Note that this automatically will exclude the clustering behavior- at least 

from the coming discussion-; because the clustering behavior simply does not have 1m
& as 

a left eigenvector. Mathematically, ΓW is given as follows: 

ΓW = FNÜ��
, |~� =  L, ℰ, P��
, |~�!: {Gp� ℒ8�NÜ�! = a − 1, 1m
&ℒ8 = 0m
H (4.59) 

where: �
 = )	
, '
, ç
* assuming no coupling among the spatial directions. ΓW is finite because 

the number of vertices, i.e., a, involved is fixed resulting at max in a�a − 1� different 

graphs [90]. The overall dynamics of the MAS can therefore be given as follows: 

�r
��� = �
8�6� �
���! (4.59.1) 

where: �
8�6� is mainly constructed using the previously shown semi-linear protocols 

comprising ℒ8�N��, q��� = )¦, p* > 0 ∈ ℕ are the indices of the graph NÜ ∈ ΓW and the 

behavior |~ ∈ ℬØ. Note that �
8�6� could also result from a nonlinear protocol as was shown 

in Chapter 3. 
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Remark 4.13: A single graph may facilitate several behaviors and several graphs could 

facilitate the same behavior. 

The stability of the behavioral-switched MAS can be guaranteed by the following theorem. 

Theorem 4.11: The behavioral-switched MAS given in (4.59.1) is stable for all arbitrary 

switching, moreover its invariant quantity is globally achieved if and only if all its switched 

instances are connected and having 1m
& as a nonlinear left eigenvector associated with 

����
� = 0 ∀�
. 

Proof: Let the MAS consists of a fixed number of agents, and a finite number of behaviors 

acting over a finite number of connected graphs, so at each switching, a new behavior and/ 

or network appears in the MAS dynamics. If each graph is connected under the active 

behavior at that specified switching, then ����
� = 0  is a simple eigenvalue to which the 

MAS invariant quantity is related. Moreover, designing the �� functions for each behavior 

|~ ∈ ℬØ such that both (3.34) and (3.35) are satisfied, will ensure that 1m
& is a nonlinear 

left eigenvector associated with �� }ℒ8�6��NÜ�� = 0 ∀�
.   This means that for semi-linear 

protocols especially those resulting in symmetric Jacobians, we may define the 

disagreement vector I
��� as [90]- see also (3.90): 

�
��� = ?1m
 + I
��� (4.59.2) 

Taking the derivative with respect to time, we may write the disagreement dynamics as 

follows: 

�r
��� = −ℒ8�6���
��
 = I r
��� (4.59.3) 

Substituting (4.59.2) into (4.59.3), yields: 

I r
��� = −ℒ8�6� }?1m
 + I
���� F?1m
 + I
���H (4.59.4) 
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Which by assuming that the �� functions used in all ℒ8�6���
� depends on the relative error 

between states, i.e., �� �� − ��!, and knowing that- from (3.35)- 1m
 is a nonlinear right 

eigenvector associated with ����
� = 0 ∀�
, one can easily show that (4.59.4) is equal to: 

I r
��� = −ℒ8�6� I
���!I
��� (4.59.5) 

Now, let the following positive-definite and smooth function be a common Lyapunov 

candidate function: 

��I
� = 12 I
&I
 (4.59.6) 

So, by taking the time-derivative and from (4.59.5), we will have the following: h�h� = −I
&ℒ8�6�I
 < 0, ∀I
 ≠ 0m
 (4.59.7) 

This result can be seen from the fact that ℒ8�6� is an M-matrix ∀I
. Since ��I
� > 0, ∀I
 ≠ 0m
  

and ��I
� = 0 when I
 = 0m
, therefore (4.59.6) is indeed a common Lyapunov function and 

therefore the behavioral-switch MAS (4.59.1) is stable for arbitrary switching. 

∎ 

The following example is a demonstration of the previous theorem. Consider a MAS 

entitled to search a working space to find specific targets, once an agent finds a target, then 

all agents will contain it along with the target found and escort them to a specified place. 

Once the target is delivered, then the cycle starts again.  

To simulate this behavior, a switching signal based on time- to avoid further complications 

and to stay focused on the objective- is used to switch in a planned manner between three 

main behaviors, namely: deployment, containment and escorting all in 2-D obstacle-free 

plane. During escorting, all agents followed an externally generated command to direct 
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them to the delivery point after which agents commenced again their search mission. These 

phases are shown in Figure 4.50.  

 

(a) 

 

(b) 

Figure 4.50. The switching behaviors results. (a): in 2-D. (b): Agents y-positions. 

4.1.8: Agents with scalar and nonlinear affine-in-control-input  
To push further the applicability of the proposed framework, let us reconsider the agent 

dynamics given in (4.56). So, under the semi-linear protocol given in (4.2), we may write 

(4.56) as follows-in the x-direction assuming no coupling with other directions: 
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	r� = ��	�� + �	�� � ��F	� − 	�H�∈ �
 (4.60) 

under which the overall MAS dynamics can be written as: 

	r
��� = n�	
� − å�	
�ℒ�	
�	
��� = �
8�	
� (4.60.1) 

Moreover, if n�	
� can be written or approximated as n�	
� = I�	
�	
, then (4.60.1) 

becomes: 

	r
��� = )I�	
� − å�	
�ℒ�	
�*	
��� = �
�	
� (4.60.2) 

Similarly, if a nonlinear protocol is used, say (3.45), then it is easy to show that (4.56) can 

be written as follows: 

	r
��� = n�	
� + å�	
�Φ�	
� = �
~�	
� (4.60.3) 

If n�	
� = I�	
�	
, then (4.60.3) can be given as: 

	r
��� = I�	
�	
 + å�	
�Φ�	
� = �
~�	
� (4.60.4) 

which is the same setup used when dealing with state-feedback in the control community. 

In this point of view, the state-feedback controller is Kmm
�	
� = Φ�	
�. However, the affine-

in-control-input nonlinear system given by (4.60.4) follows a certain structure imposed by 

the underlying communication network. Therefore, aspects like structural controllability 

[153] and structural observability [154] are discussed.  

Applying the proposed framework to (4.60.1) or (4.60.2), one may find out the conditions, 

if possible, to design the �� functions to achieve certain behaviors. The same goes for 

(4.60.3) and (4.60.4) as well. Mainly, for (4.60), we may use the following theorem. 

Theorem 4.12: Considering the proposed framework, the exact feedback linearization is a 

special solution for the synchronization problem among agents in a MAS when 

�� 	� , 	�! ≡ ���	�� is a non-diffusive weighting function. 
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Proof: After finding the Jacobian of (4.60), we may force 1
 = 1m
 as a nonlinear right 

eigenvector associated with ���	
� = 0 ∀	
 by solving the following partial differential 

equation (PDE) ∀., / ∈ ℇ as pairs- if possible: 

¿��	��¿	� + F	� − 	�H Þ�	�� �¿��¿	� + ¿��¿	� �+ ¿�	��¿	� ��� = 0 

¿� 	�!¿	� + F	� − 	�H Þ 	�! �¿��¿	� + ¿��¿	� �+ ¿ 	�!¿	� ��� = 0 

 (4.60.5) 

Similarly, to force j
& = 1m
& as a nonlinear right eigenvector associated with ���	
� = 0 ∀	
 

by solving the following PDE ∀., / ∈ ℇ as pairs - if possible: 

¿��	��¿	� + F	� − 	�H Þ�	�� ¿��¿	� −  	�! ¿��¿	� + ¿�	��¿	� ���+ F 	�!�� − �	����H = 0 

¿� 	�!¿	� + F	� − 	�H Þ 	�! ¿��¿	� − �	�� ¿��¿	� + ¿ 	�!¿	� ���+ F�	���� −  	�!��H = 0 

 (4.60.6) 

If we are interested only in synchronization of agents, i.e., without preserving any time-

invariant quantity like average mean for example, then we may only force 1
 = 1m
 only by 

solving (4.60.5) for the .67 and /67 agents, separately such that 	� − 	� → 0 as � → ∞. Let 

��	�� in (4.60) be stable, then ¿��	�� ¿	�⁄  will vanish as � → ∞. So, by taking: 

�� 	�, 	�! =  J��	��, �	�� ≠ 0 (4.60.7) 

Therefore, we have: 

¿��¿	� =  − ¿�	��¿	�
1��	�� (4.60.8) 

So, (4.60.5) is solved ∀., / ∈ ℇ. Note that (4.60.7) is the exact feedback linearization 

approach. 
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∎ 

Remark 4.14: In (4.60.5) and (4.60.6), if �	�� =  	�! = 1 and we take �� = �� both 

being diffusive weighting functions, then by forcing (3.34) and (3.35) the synchronization 

between the two agents will be achieved assuming ��	�� and � 	�! to be stable. 

To force both 1
 = 1m
 and j
& = 1m
&as nonlinear right and left eigenvectors associated with 

���	
� = 0 ∀	
, i.e., to have a symmetric Jacobian, we need to solve the following system 

of PDEs at once- say for (4.60.1) in the x-direction assuming no coupling with other 

directions: 

1m
& ¿�
8�	
�¿	
 1m
 = 0, ∀	
  (4.60.9) 

given: 	
���� = 	
� such that: 

¿�
8�	
�¿	
 < 0, ∀	
 ∉ ℑA  
¿�
8�	
�¿	
 = 0, ∀	
 ∈ ℑA 

(4.60.10) 

If a solution does exist, then it will be stable and invariant.  

When ¿��	�� ¿	�⁄ = ¿��	�� ¿	�⁄ = 0, we may solve (4.60.9) for a single-edge MAS- 

whose agents dynamics are given in (4.60)- by simply adding the two equations available 

in (4.60.5) or (4.60.6) resulting in: 

F	� − 	�HF∇ �	����!1m
 − ∇  	�!��!1m
H = 0 

F	� − 	�HF[�mm
 �	����! − [�mm
  	�!��!H = 0 
(4.60.11) 

where: [�mm
 denotes the directional derivative, i.e., Lie derivative. (4.60.11) can be satisfied 

∀	� ≠ 	� by forcing the following condition: 
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[�mm
 �	����! = [�mm
  	�!��! (4.60.12) 

for both diffusive and non-diffusive �� weighting function.  

Using Theorem 4.12 to avoid complications, and despite being different from the one given 

in (4.9), the å�	
� matrix in (4.60.1) and (4.60.3) can be used under exact feedback 

linearization and a semi-linear protocol as follows- assuming �	�� ≠ 0 in the domain of 

interest: 

z� = J��	�� ±− ��	�� + � ��F	� − 	�H�∈��
² (4.60.13) 

The resulting MAS system dynamics under a semi-linear and a nonlinear protocol can be 

then given as follows: 

	r
��� = −ℒ�	
�	
��� = �
8�	
� 

	r
��� = Φ�	
� = �
~�	
� 
(4.60.14) 

which brings us back to our proposed framework. 

To conclude, despite the applicability of our framework under the general case given in 

(4.56), we have preferred to focus on realizing coordination protocols that can be 

considered as command signals to be tracked by dedicated local agent controllers. The 

advantages gained under this philosophy will be obvious in the next chapter. 

4.2 Conclusion 

In this chapter, several examples of motion-related behaviors were presented. Unlike most 

of the reported results in the related literature, the framework proposed herein gave a 

systematic and holistic view of designing motion-related behaviors for multiagent systems 

on graphs. Stability proofs were presented also in a systematic way, thanks to the inherited 

M-matrices properties. Moreover, the framework enables introducing state-dependent 
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parameters and dynamics into the behaviors making process. The needed conditions to 

keep both invariance and stability under such dependency were obtained using the same 

framework. Therefore, we see – so far- the proposed framework as a sophisticated 

coordination motion planner that provides the foundation of further extensions in which, 

including the time as an additional dimension, distributed measurements and intelligence, 

navigation and guidance are made possible. This will result in a sophisticated semi or fully-

autonomous mission orchestrating platform. 
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5 CHAPTER 5 

ADVANCED BEHAVIORS 

In this chapter, we continue our work by providing more sophisticated behaviors that are 

mainly directed to mobile agents. These agents could be maritime, airborne or ground 

robots. Both kinematical and kino-dynamical trajectory-generator systems are developed 

and integrated with reactive and hybrid-model-based-reactive intelligent controllers to 

facilitate interacting with more realistic working spaces. Harmonic potential fields are 

utilized to model the environment to enable collision-avoidance. Both collision-avoidance 

and connectivity-preserving behaviors are combined in a simple, yet efficient, way. Also, 

second-order, general linear time-invariant, nonlinear systems, and other models with 

higher dimensions are presented, where a special representation methodology reveals the 

usefulness of the proposed framework when dealing with such systems. The design steps 

presented can be easily upgraded to deal with systems of heterogeneous dynamical 

features. The strength of the kinematical trajectory-generator is demonstrated by guiding a 

group of non-holonomic front-wheel steered robots through a working space where 

obstacles exist. Another example demonstrating the use of the developed kino-dynamical 

trajectory-generator systems in controlling the behavior of a MAS consisting of six 

quadrotors is also presented. 

n this part, more sophisticated behaviors that suit various types of robots and missions are 

provided. Mainly, in the previous parts, agents with simple dynamics were considered. In 

this part, dynamics with higher dimensions are used to build the trajectory-generator 

I 



250 
 

systems. These systems can be of kinematical or kino-dynamical natures. As the name 

implies, a kinematical trajectory-generator system does not consider the steered agent 

dynamics explicitly. On the contrary, the kino-dynamical version considers the dynamics 

of the steered agent explicitly. Therefore, this version can be extended to include any order 

of dynamics in a lower-triangle hierarchical structure, which facilitate studying the stability 

in a top-down manner as will be discussed later.  

Capturing the working environment is very important in guidance and path planning, in 

general. Sensory inputs and environment models can be combined to increase the 

awareness of the trajectory-generator system about the context evolving. This awareness, 

when combined with reasoning, opens the way to intelligent behavior mechanisms to 

handle almost every situation. 

In this part, we will depend on harmonic potential fields to model the known parts of the 

environment and show how to mechanize the sensory inputs such that interesting behaviors 

can be generated. In Chapter 4, behavior banks were proposed in which mainly one 

behavior can be active at any given instant; however, in this part, this should not be the 

case any longer. Both sequential and parallel behaviors are addressed herein, and some 

examples are shown to emphasize their importance. For example, the collision-avoidance 

and connectivity-preserving behaviors can run simultaneously such that when an obstacle 

is avoided a preferable escape direction is nominated at which connectivity among agents 

will not decrease. 
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5.1 MAS utilizing trajectory-generators 

In this section, and without loss of generality, a MAS consisting of N identical or 

nonidentical scalar dynamical systems is analyzed. Let us start with a fixed number, i.e., 

N, of scalar systems whose dynamics are modeled as follows: 

	r���� = G�	���� + |�z���� ∈  ℜ, ∀. = 1,2, ⋯ , a (5.1) 

where: G�, |� are certain constants and could be different for each agent.  

Let z� be given as a combined input such that: 

z� = z�Ü + z�6 (5.2) 

where:  

z�Ü = −���	� 
z�6 = ���|� Þ�Γ� − 	�� +L �Γ� − 	��hø6

6� � 
and z�Ü is the local controller- which can be used to stabilize the dynamics if not originally 

stable or to meet certain performance criteria- and z�6 is the tracking controller of the .67 

agent. The trajectory signal of the .67 agent is generated using a single-integrator dynamical 

system -existing within the agent- as shown in the previous parts, and is given as follows: 

Γr� = $ � ���Γ�, Γ��FΓ� − Γ�H�∈��
 (5.3) 

Where: Γ����� = 	����� and �� Γ�, Γ�!: ℜ� → ℜ�� is a general weighting vector-valued 

functional that achieves the desired behavior, and Γ� is the reference signal of the /67 agent 

who is neighboring the .67 agent. System (5.3) will make use of what was previously 

presented in Chapters 3 and 4. 

Remark 5.1: Note that in (5.3), the �� Γ�, Γ�! can be �� 	� , 	�!, �� 	�, Γ�! or �� Γ�, 	�! 

instead which indicates that actual scalar system states are used after being filtered through 
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the dynamics of their corresponding systems. However, this will introduce a direct 

nonlinear coupling- in general- between the system and its trajectory-generator co-system. 

So, the ideal reference signal generated, i.e., Γ�, can be affected by both the actual state, 

i.e., x�, and Γ�. This will reduce the tracking error; because the reference signal generator 

is aware of the status of the actual system given in (5.1). In such a case, (5.3) can be 

generally considered as a nonlinear parameter varying system where the parameters include 

x� , ∀. = 1,2, ⋯ , a.  

Remark 5.2: In Chapter 3, the �� functions were mainly of dynamical nature. In general, 

the implementation of these functions can also be realized using algorithmic approaches if 

it follows the conditions stated in Parts I and II. This will allow including the algorithms 

into the overall dynamical system and the stability can be analyzed more easily. This 

combination of algorithmic and dynamical approaches allows including more behaviors 

that depend more on logic. Consider implementing these functions using Fuzzy Logic, for 

example. 

From a distributed MAS point of view, having a self-loop feedback should not be 

interpreted as if the agents are completely self-interested rather it should be looked at as an 

advantage added to the team since every agent can evaluate the global objective of the team 

in a distributed fashion and willingly accepts it based on the task assigned to it. This 

combination of self-awareness and teaming allows agents to change their behavior in a way 

that ensures their safety, stability and optimality for example while submitting themselves 

to the mission assigned to the whole team by the designer. It will be evident, through the 

sequel of this thesis, that enabling agents with some level of freedom to decide for 

themselves during mission conduction- based on their embedded artificial intelligence and 
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the planned actions- will enrich their behaviors and make them context-aware besides 

being almost autonomous. Moreover, this will ease the problem of designing the MAS, in 

general, when more realistic dynamical models are involved. 

Having Γ����� = 	����� in (5.3) indicates that the agent- in a distributed manner- will try 

to minimize the tracking error, i.e., 1�, between its idealized behavior resembled by Γ� and 

its actual behavior 	� for all times. This is depicted in Figure 5.1. Note that the local 

controller, namely: ���, can be designed such that the .67 agent is stabilized if not originally 

stable. The local controller can be designed using the standard techniques like optimal or 

pole placement in case it is certain. Notice that the local controller should not be used to 

cancel the system dynamics to bring it back to the single-integrator system; simply because 

an unstable local controller must be used to do so if the system is originally stable. This 

should be the case even if the system is originally unstable; since canceling its dynamics 

might reduce its robustness, significantly. If the system (5.1) happen to include uncertainty, 

then robust techniques should be used to design ���, if needed. If the uncertainty in (5.1) 

includes |�, then |� must be sign definite and the tracking controller should use the nominal 

value of |�, i.e., |M�. In general, the tracking controller, namely: ���, can be designed using 

a suitable fixed gain, adaptive or optimal techniques. 

 

Figure. 5.1. The tracking error of the .67 agent. 

Justified by the application, the local controller ensures the stability of an agent such that 

it can accommodate any parametric uncertainties involved in the agent dynamics, while the 

tracking controller follows the desired behavior generated by the trajectory-generator while 
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rejecting external disturbances. These relations are depicted in Figure 5.2. Note that a 

slowly varying trajectory signal will result in a dynamical friendly response of the MAS. 

The scalar system is like the single-integrator with added self-loop if viewed from a graph 

theoretic perspective. Figure 5.3 shows a MAS of three scalar systems where the self-loop 

is evident. 

 

Figure. 5.2. The local and tracking controllers of the 186 agent. 

 

 
 

Figure. 5.3. Three identical agents with scalar dynamics building a MAS over an undirected graph without tracking 

controller. Left: Network topology. Middle: Signal flow diagram. Right: Effect of local controller. 

Recalling Remark 5.1, we may rewrite (5.3) as one of the following: 

Γr� = $ � ���	�, Γ��FΓ� − Γ�H�∈��
 (5.4) 

Γr� = $ � ���Γ�, 	��FΓ� − Γ�H�∈��
 (5.5) 

Γr� = $ � ���	�, 	��FΓ� − Γ�H�∈��
 (5.6) 

The effects of using (5.4) – (5.6) can be identified from Figure 5.4. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure. 5.4. The effect of using different couplings in ��  functions. (a) ���Γ� , Γ��. (b) ���	� , Γ��. (c) ���Γ� , 	��. (d) 

���	� , 	��. Examples are shown specifically for agent 1. 

So, the overall MAS dynamics can be written into mainly three categories as follows- in 

the x-direction: 

Γr
 = −$ℒ Γ
!Γ
 = �
: (5.7) 

Γr
 = −$ℒ 	
, Γ
!Γ
 = �
:,N (5.8) 
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Γr
 = −$ℒ�	
�Γ
 = �
N (5.9) 

Γr
 = −$ℒ Γ
, 	
!Γ
 = �
N,: (5.10) 

In fact, each connection between the actual system dynamics and the corresponding 

trajectory-generator is very interesting. In Figure 5.4.a, the trajectory-generator is neither 

aware of the actual system it is driving nor its neighbors and therefore generates a trajectory 

that suits the context viewed from the ideal states perspective. In Figure 5.4.b, the 

trajectory-generator of agent 1 tries to situate the agent based on the ideal state of its 

neighbors considering its own actual state, which is exactly the opposite to what is 

happening under the connection shown in Figure 5.4.c. The last connection shown in 

Figure 5.4.d indicates that the trajectory-generator of agent 1 is concerned about its actual 

state as well as its neighbors. A visualization of the previous effects can be read from Figure 

5.5.   

 

Figure. 5.5. Visualization of the effect of using different couplings in ��  functions where stars denote the actual systems 

states and the squares denote the states of their trajectory-generator systems.  

Applying the proposed framework conditions on the (5.7) – (5.9), and after solving (3.33.1) 

and (3.33.2) for each case, we find that (5.8) and (5.10) do satisfy (3.33.2) but not (3.33.1). 

So, only the nonlinear right eigenvector 1
 = 1m
 is associated with �� Γ
! = 0 ∀Γ
 but not 

j
& = 1m
&. Therefore, we will be using (5.7) and (5.9) or one of them in the coming 

discussion. Note that both (5.7) and (5.9) have 1
 = 1m
 and j
& = 1m
& as nonlinear right and 
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left eigenvectors associated with �� Γ
! = 0 ∀Γ
. In words, this means that the invariance 

properties are preserved. 

The differences between (5.7) and (5.9) are listed as follows: 

1- (5.7) is semi-linear system, while (5.9) is linear parameter varying (LPV) system. 

2- Since (5.9) depends on the actual agent dynamics, it is aware of the agent status, while 

(5.7) is not; since it only depends on the ideal states of the trajectory-generator system. 

3- (5.7) is a cascade connection while (5.9) is a loop connection. 

The frequency domain transfer function of the .67 agent can be given as follows- assuming 

	����� = 0 ∀.: 
=��q�Γ��q� = ����q + 1�q� + ���� + |���� − G��q + ��� (5.11) 

where: q is the Laplacian operator. The stability of (5.11) is straightforward if and only if 

��� + |���� − G� > 0 is satisfied -as can be obtained using Routh-Hurwitz criterion- and Γ� 
is bounded.  

Now, since the desired set-point value- under the current formulation- is mainly a function 

of the original system initial values, i.e., 	
����, the initial value of Γ
��� must also be equal 

to 	
����. When �� Γ�, Γ�! or �� Γ�, 	�! is used, then a cascade connection is established, 

and when �� 	� , 	�! or �� 	� , Γ�! is used, then a loop is introduced. Therefore, studying 

the stability of the augmented system, i.e., command generator and agent dynamics, is 

inevitable. 
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5.1.1: Stability of augmented systems 

5.1.1.1: Stability of cascade-connected augmented systems 

Let the general dynamics of the .67 agent and the trajectory-generator co-system be given 

as follows: 

	r
���� = �
� �, 	
� , Γ
�! (5.12) 

Γr
� = ℎm
� �, 	
� , Γ
�! (5.13) 

where: �
�: i0, ∞� × ℜ~ × ℜØ → ℜ~ and ℎm
�: i0, ∞� × ℜØ → ℜØ are piecewise continuous 

in the time, i.e., �, and locally Lipschitz in Omm
 = S	
�, Γ
�T&
. Suppose that 	r
���� = �
� 	
�, 0m
! 

and (5.13) have globally asymptotically stable equilibrium points at their respective 

origins. Then, the stability of the origin, i.e., Omm
 = 0m
, of the cascade-augmented systems 

shown in figures 3.4.a and 3.4.c follows from the coming lemma where Γ
� is the input. 

Lemma 5.1: (Lemma 4.7) [148] Under the stated assumptions, if the system (5.12), with E
� 
as input, is input-to-state stable (ISS) and the origin of (5.13) is globally uniformly 

asymptotically stable, then the origin of the cascade system (5.12) and (5.13) is globally 

uniformly asymptotically stable. 

Proof: See [148] page 180. 

∎ 

Since (5.13) is in fact an autonomous system, we may use Lemma 5.1 by focusing on the 

global asymptotic stability of the origin of (5.13). This is possible by following (3.83) 

through (3.86). Moreover, ℎm
� can be written as ℎm
� Γ
�! to cover (5.7). According to the 

proposed framework, the command generator signal, i.e., Γ� is or can be made bounded. 
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Consider for example the C-S model given in (3.116) whose value ∈ �0, �/��l, which 

means it is bounded even if the relative distance between states becomes unstable. 

Proposition 5.1: Considering the previous discussion, we may split the augmented system 

design process into two steps, namely: first designing ISS agent dynamics and then the 

bounded globally asymptotically stable trajectory-generator system. 

∎ 

Figure 5.6 shows the result of six augmented systems that consist of agents’ dynamics 

given by (5.1) under (5.2) and a trajectory-generator system given by (5.3) where the �� 

functions are given by (4.58) and (4.58.1). A disturbance was acting on agent 3 between 5-

20 seconds. Note that the trajectory-generator system was unaware of this disturbance as 

can be read from Figure 5.6.a. 

The difference between the responses of (5.7) and (5.9) is clearly shown in Figure 5.6. a 

and Figure 5.7.a. The tracking error while following the trajectory generated using (5.9) is 

depicted in Figure 5.8. 

Remark 5.3: In figurers 3.7.c and 3.7.d, the needed control signals reflect the difference 

between crafting the invariance, i.e. the behavior, intrinsically in the agent dynamics and 

following a behavior that is externally or internally generated, as it is the case in our 

proposed philosophy. In a future work, the former view point will be elaborated in more 

depth considering agents with non-trivial dynamics. 
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(a) 

 

(b) 

Figure. 5.6. The containment behavior of six nonidentical agents with scalar dynamics when �� Γ� , Γ�! under a 

disturbance acting on agent 3 between 5-20 seconds. (a) reference trajectory. (b) actual system response. 

5.1.1.2: Stability of tip-to-tail connected systems 

As stated before, when �� 	�, 	�! or �� 	�, Γ�! is used, a loop is introduced. The resulting 

system under this interconnection could be viewed as an activator-inhibitor system [155] 

or sometime known as reaction-diffusion system. In this perspective, the trajectory-

generator, i.e., the activator, stimulates its own production via autocatalysis as well as the 

production of the inhibitor, i.e., the agent dynamics. The inhibitor in turn suppresses the 

production of the activator [156]. 

The stability of this combined system is an immediate result of Lemma 5.1; since both 

systems are ISS. This can be seen by cutting the loop into two loops from tip-to-tail.  
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The simulation results obtained while achieving the containment behavior, explained in 

Chapter 3, using six nonidentical scalar dynamical systems are shown in figures 3.7 and 

3.8. The distributed trajectory generation protocol was running over the network graph 

shown in Figure 4.47. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure. 5.7. The containment behavior of six nonidentical agents with scalar dynamics under a disturbance acting on 

agent 3 between 5-20 seconds: ideal trajectories denoted by solid lines and actual trajectories denoted by dashed lines, 

when (5.3) uses: (a)-(b) reference trajectory and actual system response when �� 	, x�!. (c) actual systems position along 

the x-axis and the needed control signals when �� 	� , 	�!. (d) control signal of the trajectory-generator along the x-

direction when �� 	� , 	�!. 

 

Figure. 5.8. The tracking error of all agents during the containment behavior using (5.9). 

5.1.2: Effect of agents dynamics on the MAS connectivity 
In Chapter 4, an edge contribution in the overall MAS connectivity was discussed, and the 

results obtained are still applicable under (5.7). However, under (5.9), the matter deserves 

investigation. 

Following the same steps taken to derive Theorem 4.6, we may write the overall MAS 

connectivity as follows: 

���	
� = $ � ��)�,�*
)�,�*∈ℇ = $ � ¿��N¿Γ�  j� − j�!�

)�,�*∈ℇ  (5.15) 
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which is valid for general nonlinear protocols. If a semi-linear protocol is used, then (5.15) 

can be written as follows: 

���	
� = $ � ���	�, 	�� j� − j�!�
)�,�*∈ℇ  (5.16) 

This leads us to the following theorem. 

Theorem 5.1: For �� 	� , 	�! > 0 ∀	� , 	�, an edge )., /* ∈ ℇ will remain connected under 

(5.6) if and only if it is initially connected. 

Proof: Obviously, when the edge is initially connected, we have j� − j� ≠ 0. So, by having 

�� 	� , 	�! > 0 ∀	� , 	�, then ��)�,�* > 0 and therefore the edge is connected ∀	� , 	�. 

∎ 

Corollary 5.1: An initially connected edge will be disconnected when the diffusive 

weighting function ���	�, 	�� approaches 0. 

Proof: Clearly, when ���	�, 	�� → 0, then ��)�,�* → 0 as well and the edge could be deemed 

disconnected. Consider for example the C-S model given in (3.116), if 	� − 	� → ∞, then 

���	� , 	�� → 0.    

∎ 

Proposition 5.2: Under (5.6), a healthy link can be characterized according to a threshold 

percentage between the state-dependent edge-weight and its fixed weight in the fixed 

Laplacian matrix of the underlying communication graph.  

Proof: Let the contribution of the edge )., /* ∈ ℇ in the fixed Laplacian matrix be ���)�,�*, and 

let the accepted change threshold be ��,&O)�,�* > 0. Then, we may write the following: 



264 
 

��,&O)�,�* = ��)�,�*
���)�,�* = �� 	�, 	�! j� − j�!�

O��  j� − j�!� = �� 	� , 	�!O�� > 0 (5.17) 

where: O�� is the fixed edge-weight. 

∎ 

A connectivity-preserving protocol can be designed by taking the gradient of ���	
�. So, 

we have: 

¿���	
�¿	� = $ � ¿��¿	� �	�, 	�� j� − j�!�
)�,�*∈ℇ  (5.18) 

Which is exactly similar to what was proposed in [145]. As a result, we may modify both 

(5.3) and (5.6) as follows: 

Γr� = $ � �� Γ�, Γ�!FΓ� − Γ�H + ¿��)�,�*¿Γ��∈��
 (5.19) 

Γr� = $ � �� 	�, x�!FΓ� − Γ�H + ¿��)�,�*¿	��∈��
 (5.20) 

The effect of adding the connectivity-preserving protocol to the trajectory-generator at 

edge )1,2* ∈ ℇ is depicted in Figure 5.9 assuming a consensus protocol is carried out in 2-

D working space. 

 

Figure. 5.9. A visualization of the effect of adding a connectivity-preserving controls to (5.6) in (red). Stars denote the 

actual positions of agents and actual directions of motion (blue), while squares denote the ideal trajectory to follow 

(black). The dashed lines are the resultants directions to follow. 
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Now, to see the effects of the agents dynamics on the edge connectivity under (5.6), we 

may simply take the change of ��)�,�* with respect to time, which yields: 

h��)�,�*h� = $ j� − j�!� �¿��¿	� , ¿��¿	� � t	r�	r�u (5.21) 

Let the �� functions satisfy (3.35), and the .67 agent closed-loop dynamics be given as 

follows: 

	r���� = ���	�� + ��	��z��	�, Γ��  ∈ ℜ (5.22) 

Then, the time-change in ��)�,�* can be given as follows: 

h��)�,�*h� = $ j� − j�!� ¿��¿	�  	r� − 	r�! (5.23) 

Which is valid even if the connected agents are heterogeneous. Note that (5.23) depends 

on the tracking controller used; for example, if an exact state feedback linearization is used 

as given in (4.60.13), then (5.23) will be given as follows: 

h��)�,�*h� = $ j� − j�!� ¿��¿	�  Γr� − Γr�! (5.23.1) 

Considering (5.6), the time change in ��)�,�* depends also on neighbors’ dynamics of both 

.67 and /67 agents. Note that the time change in ��)�,�* under (5.3) does not involve agents’ 

dynamics at all. 

B.1: Introducing the tracking error into the trajectory-generator kinematics as a 
multiplicative term 

So far, we have not considered the tracking error, i.e., 1� = Γ� − 	�, effect on the 

connectivity of agents. To do so, let the convergence rate $ > 0 ∈ ℜ be given as a function 

of the tracking error at the agent level. Thus, it can be given as follows:  
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$� ≡ $��1�� > 0, ∀. = 1,2, ⋯ , a  
$� 1�����! = $, ∀. (5.23.2) 

Previously, we used to have $� = $, ∀., � ≥ ��  as a real constant. Considering (5.21), we 

may rewrite (5.19) and (5.20) as follows- while neglecting the connectivity-preserving 

controls: 

Γr� = $��1�� � �� Γ�, Γ�!FΓ� − Γ�H�∈��
 (5.23.3) 

Γr� = $��1�� � �� 	� , x�!FΓ� − Γ�H�∈��
 (5.23.4) 

Therefore, it is straightforward to modify (5.7) and (5.9) as follows: 

Γr
 = −Α 	
, Γ
! ℒ Γ
!Γ
 = �
: (5.24) 

Γr
 = −Α 	
, Γ
! ℒ�	
�Γ
 = �
N (5.25) 

where: Α 	
, Γ
! = h.G�i$��1��, ⋯ , $W�1W�l�, $��1�� > 0 and 1� = Γ� − 	�.  
Let $��1�� be given as follows- other forms are also possible: 

$��1�� = À ��¹�|1�| + 1Á , �� , ¹� > 0 (5.26) 

Note the similarity between (5.23.3) and (4.35). Now, the effect of introducing the tracking 

error (5.26) on the edge connectivity under (5.23.3) using the parameterized C-S model 

(3.116) with � = 0.5 is stated without proof as follows- see (4.42) and replace �	�� with 

$��1�� given in (5.26): 

��)�,�* = Ú�� + Ú�� + Ú�� (5.27) 

where:  

Ú�� =  ?���   j� − j�!�
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Ú�� = ?��� F¹��1��j�� − j�j�S¹�|1�| + ¹��1��T + ¹�|1�|j��H 

Ú�3 = ?���  F¹�  j�� $�� qp 1�! − ¹�  j�� $�� qp�1��H 

?��� = −��$�$��� v� Γ� − Γ�!� + �w3/�  

?��� = �FΓ� − Γ�H�� v� Γ� − Γ�!� + �w�/� (5.27.1) 

Similarly, the effect of introducing the tracking error (5.26) on the edge connectivity under 

(5.23.4) using a general �� weighting function is stated without proof as follows- see (4.42) 

and replace �	�� with $��1�� given in (5.26): 

��)�,�* = Ú�� + Ú�� + Ú�� (5.28) 

where:  

Ú�� =  ?��3   j� − j�!�
 

Ú�� = ?��3 F¹��1��j�� − j�j�S¹�|1�| + ¹��1��T + ¹�|1�|j��H 

Ú�3 = ?��%  F¹�  j�� $�� qp 1�! − ¹� j�� $�� qp�1��H 

?��3 = −$�$��� �� 	�, 	�!  

?��% = FΓ� − Γ�H�� �� 	� , 	�! (5.28.1) 

In (5.28.1), ?��%  cannot be bounded using �� 	�, 	�!. On contrary, ?���  in (5.27.1) is bounded 

and is equal to �  ��√�!⁄  as explained in (3.117). In general, ��)�,�* in (5.27) can be made 

negative for all Γ�, Γ� and bounded 1�, 1� by selecting ¹� sufficiently small. Therefore, the 

trajectory-generator under (5.22) will be mostly used in this investigation. 
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In the literature, there are many methods by which guaranteed tracking performance can 

be achieved. For example, in [157] dynamics surface control (DSC) method was used in 

conjunction with neural networks to guarantee the [ä tracking performance for a class of 

uncertain nonlinear systems under output feedback. In [158] asymptotic tracking for a class 

of nonlinear systems, which globally can be transformed into systems in generalized output 

feedback canonical forms, is presented. Note that in [157], the initial value of the tracking 

error is set to zero; so that the [ä norm of the tracking error can be guaranteed, i.e., |1�|ä ≤
Q, Q ≥ 0. This is like what is depicted in Figure 5.1. 

B.2: The effect of introducing the tracking error- as a multiplicative term- on the 
invariant quantity 

Clearly, when ¹�|1�| = 0, then the average value, i.e., the arithmetic mean, is achieved. 

When ¹�|1�| ≠ 0, then a deviation from the average value starts taking place. This is stated 

in the following theorem. 

Theorem 5.2: The invariant quantity, i.e., the arithmetic mean, of a MAS under (5.23.3) 

and (5.23.4) with bounded tracking errors |1�| ≤ Q, Q ≥ 0, is asymptotically achieved. 

Moreover, for the same Q, the rate of change from the invariant quantity is upper bounded 

by the ideal-states’ instantaneous weighted average. 

Proof: Let the following approximate the arithmetic mean �� under (5.23.3) and (5.23.4):  

����� = 1a � $�J��1��Γ����W
��� , ∀� ≥ �� (5.29) 

Taking the derivative of (4.29) with respect to time, yields: 

h�����h� = 1a hh� � $�J��1��Γ����W
��� = 1a � Þh$�J�h� Γ� + $�J� hΓ�h� �W

���  (5.29.1) 

Using (5.23.3) and (5.26), it is straightforward to rewrite (4.29.1) as follows: 
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h�����h� = − 1m
&a �ℒ Γ
! + hh� RJ� 	
, E
!× Γ
 (5.29.2) 

where: 
��6 ΑJ� 	
, Γ
! = h.G }v�S�!��6 , ⋯ , �S�!��6 w�.  

Since 1m
&ℒ Γ
!Γ
 = 0, ∀Γ
, we are left with: 

h�����h� = − 1m
&a hh� RJ� 	
, E
!Γ
 (5.29.3) 

Which can be written in element-wise notation as follows: 

h�����h� = − 1a �  ¹�  1r� qp�1��!Γ�W
���  (5.29.4) 

Let |1r�| ≤ T� be guaranteed by the tracking controller for some sufficiently large constants 

T� ≥ 0, then: 

Uh�����h� U ≤ 1a � )¹� T�* Γ����W
���  (5.29.5) 

Which is upper bounded by the ideal-states’ instantaneous weighted average. Note that if 

¹� = 0, then the average consensus will be achieved. 

∎ 

Table 5.1 and Table 5.2 display the consensus behavior results in 3-D of six nonidentical 

scalar dynamical systems over the network (V.) shown in Figure 2.36 (#X) and an 

undirected 6-cycle (#Y). The trajectory-generator systems (5.23.3) and (5.23.4) were used 

with different values of ¹�. The �� functions utilized the parameterized C-S model (3.116) 

with � = 0.5. The systems were controlled using (5.2) and therefore with no specific 

bounds on the tracking errors being imposed. A disturbance was acting on agent 3 between 

5-20 seconds. All results were generated using the same simulation time and initial 

conditions whose average values are )−1.1875, 1.8872, −1.0266*. The actual MAS 
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consensus value is denoted by )	̅, '(, ç ̅* and the trajectory-generator achieved consensus 

value is denoted by FE(A, E(B , E(CH. 

Clearly, from tables 5.1 and 5.2, we may deduce that the best response is obtained when 

¹� → 0 ∀. and the tracking responsibility is left for the local controller. So, all the previous 

results obtained in the previous parts are still valid without any modification and now we 

are in position to propose more sophisticated behaviors. 

 

 

 

Table 5. 1: Consensus Tracking using (5.23.3) when ZY = Y[. 

\ [.[X X X[[ 

V. #X #Y #X #Y #X #Y 

]̂ -1.1848 -1.1842 -0.9283 -0.8776 0.2050 0.3332 

_̂ 1.8890 1.8881 2.0775 2.0273 3.6670 3.5641 

(̀ -1.0265 -1.0264 -1.0189 -1.0100 -0.8434 -0.8044 

â] -1.1848 -1.1843 -0.9284 -0.8777 0.2053 0.3332 

â_ 1.8890 1.8881 2.0775 2.0272 3.6673 3.5641 

â` -1.0265 -1.0264 -1.0189 -1.0100 -0.8434 -0.8044 
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Table 5. 2: Consensus Tracking using (5.23.4) when ZY = Y[. 

\ [.[X X X[[ 

V. #X #Y #X #Y #X #Y 

]̂ -1.1848 -1.1844 -0.9266 -0.8830 0.2022 0.3349 

_̂ 1.8890 1.8880 2.0803 2.0267 3.6710 3.5646 

(̀ -1.0265 -1.0264 -1.0188 -1.0100 -0.8434 -0.8043 

â] -1.1848 -1.1844 -0.9266 -0.8827 0.2025 0.3350 

â_ 1.8891 1.8881 2.0803 2.0271 3.6713 3.5647 

â` -1.0265 -1.0264 -1.0188 -1.0100 -0.8434 -0.8043 

In the previous discussion, we have seen that entering the self-awareness as a multiplicative 

variable might not be the best idea especially from the connectivity-preserving perspective; 

however, it helped in slowing down the evolution of the trajectory-generator systems and 

resulted in a reduced tracking error.  

B.3: Introducing the tracking error into the trajectory-generator kinematics as an 
additive term 

Still, the self-awareness can be introduced to the trajectory-generator system as an additive 

instead of multiplicative disturbance. As a result, both (5.23.3) and (5.23.4) can be 

modified as follows: 

Γr� = � � �� Γ�, Γ�!FΓ� − Γ�H�∈��
+ $��1�� (5.30) 

Γr� = � � �� 	� , x�!FΓ� − Γ�H�∈��
+ $��1�� (5.31) 
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where: � > 0 denotes the convergence rate. Clearly, in both (5.30) and (5.31), the $��1�� 

is acting as a self-pinning gain once viewed from a leader-follower perspective. Under this 

setup, the advantages of (5.31) over (5.30) are irrefutable; simply because (5.31) offers 

explicitly the self-awareness along with neighbors-awareness. Also, from a connectivity 

preservation perspective, (5.31) is straightforward as given in (5.16). Proving the 

invariance properties under (5.30) and (5.31) is easy when $��1�� is a non-persistent 

disturbance. 

Let $��1�� be given as follows- utilizing the C-S model: 

$��1�� = ��1�i¹�1�� + 1l�b (5.32) 

where: 1� = 	� − Γ�, �¥ > 0. Recalling (3.117), when �¥ = 0.5, then |$��1��| ≤ �� �¹�⁄ . 

Note that other forms of  $� can also be used, however, (5.32) was suggested because of 

the boundedness of the error term when �¥ = 1/2. 

At this point, it is good to consider the situation when the .67 agent is pinned to \ external 

leaders- other than the self. So, we may rewrite (5.30) and (5.31) as follows: 

Γr� = � � �� Γ�, Γ�!FΓ� − Γ�H�∈��
+ $��1�� + � ¦�~)	~Ü − Γ�*c

~��  (5.33) 

Γr� = � � �� 	�, x�!FΓ� − Γ�H�∈��
+ $��1�� + � ¦�~)	~Ü − Γ�*c

~��  (5.34) 

where: ¦�~ is the pinning gain of the .67 agent to the p67 leader and it can be given as in 

(4.29.4) or (4.33).  

Interestingly, (5.33) and (5.34) can be used to realize Node-to-Node behaviors as can be 

found in [159], [160], for examples. Figure 5.10 shows one realization of such a concept 

in view of the current investigation. 
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Considering (5.32), the results of a leaderless consensus behavior under (5.33) and (5.34) 

are shown in Table 5.3 where the local controller is given by (5.2). The same simulation 

setup used to generate the results displayed in tables 5.1 and 5.2 is used to fill Table 5.3. 

Note that ��� = ��, ∀.. Both the actual MAS consensus value and the trajectory-generator 

achieved consensus value were identical. The average values of the initial conditions are 

)−1.1875, 1.8872, −1.0266*. Since the results obtained using (5.34) were identical to 

those obtained using (5.33), only the latter are reported here. 

 

Figure. 5.10. A realization of the concept of Node-to-Node behavior in view of the current investigation. SA denotes the 

scout agents. CA denotes the communication agents. AA denotes the active agents. 

 

 

Table 5. 3:Consensus Tracking using (5.33). 

ZY d[ X[[ Y[[ 

V. #X #Y #X #Y #X #Y 

]̂ -1.1787 -1.1788 -1.1836 -1.1836 -1.1853 -1.1854 

_̂ 1.8736 1.8735 1.8799 1.8799 1.8838 1.8837 

(̀ -1.0191 -1.0191 -1.0229 -1.0229 -1.0247 -1.0247 

As can be seen from Table 5.3, the average consensus under (5.30) and (5.31) is achieved 

asymptotically with a bounded error directly proportional to that tracking error. Notice that 
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in (5.2), the tracking error is directly proportional to the used value of ��� in the PD-

controller at the agent level. 

To conclude this section, using a trajectory-generator co-system and local stabilizing and 

tracking controllers simplify the problem to the behavior engineers such that the controllers 

take care of the underlying dynamical nature of the agent while the trajectory-generator is 

acting like the brain. So, we will continue in presenting other dynamical behaviors needed 

in many applications. 

5.2 Kino-dynamics of Trajectory-generator systems 

In this section, it is intended to generate higher-order trajectory-related signals. Such 

signals are usually needed when controlling the motion of dynamical systems, in general. 

It is true that some slowly-moving dynamical systems, say ground robots, may interact 

with other dynamical systems, say aerial vehicles, under some applications. Such 

interaction yields dynamical systems with different time-scales in which position, i.e., the 

zero-derivative with respect to time, alone is not sufficient. Therefore, more information 

about the dynamics, or specifically, the kinematics, of this interaction is needed beyond 

velocity and acceleration including jerk, snap and higher derivatives [161]. The dynamics 

and kinematics of robots motion are combined to what is known as Kino-Dynamics [162]–

[164]. 

5.2.1: Introducing acceleration signals into the trajectory-generator 
kinematics 
By taking the needed number of time derivatives of both (5.33) and (5.34), we may 

formulate the kinematics of trajectory-generator systems, and most importantly provide a 

window to introduce explicitly the agents’ dynamics into the making of the trajectory 

signals. This in fact will enable us to introduce models of the involved agents especially if 
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they are uncertain, which will make designing robust trajectory-signals and dynamically-

friendly trajectories feasible. 

It is well-known in the art that most of the dynamical systems can be approximated as being 

second-order dynamical nature. Therefore, the acceleration signal is needed. Taking one 

more time derivative of (5.34) yields the following: 

Γe� = � � FΓ� − Γ�H [�
���� + ��FΓr� − Γr�H�∈��
+ ∇$��1�� tΓr�	r�u

+ � ∇¦�~ �	r~ÜΓr� � )	~Ü − Γ�* + ¦�~F	r~Ü − Γr�Hc
~��  

 (5.35) 

where: [�
�� is the directional derivative, and �
�� = SΓr�, Γr�T&
. Doing the same for all agents, 

yields: 

Γe
 = − ��ℒ }E
, Er
� + Ρ��∙��Γ
 − F�ℒ Γ
! − Ξ� Γ
, 	
! + Ρ��∙�HΓr
 + Ξ� Γ
, 	
!	r
 + Ψ��∙�	
Ü + Ψ��∙�	r
Ü 
 (5.36) 

where: ℒ is the state-dependent Laplacian matrix, and: 

 h��∙� = h.G À�∑ ∇¦�~ �	r~ÜΓr� � , ⋯ , ∑ ∇¦W~ �	r~ÜΓrW�c~��c~�� �Á 

h��∙� = h.G ³t� ¦�~c
~�� , ⋯ , � ¦W~c

~�� u´ 

Ξ��∙� = h.G ³t¿$�¿Γ� , ⋯ , ¿$W¿ΓW u´ 

Ξ��∙� = h.G ³t¿$�¿	� , ⋯ , ¿$W¿	W u´ 
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Ψ��∙� =
ÃÄÄ
ÄÄÅ∇¦�� �	r�ÜΓr�� ⋯ ∇¦�c �	rcÜΓr� �⋮ ⋱ ⋮∇¦W� �	r�ÜΓrW� ⋯ ∇¦Wc �	rcÜΓrW �ÇÈÈ

ÈÈÉ 

Ψ��∙� = �¦�� ⋯ ¦�c⋮ ⋱ ⋮¦W� ⋯ ¦Wc¡ 

	
Ü = S	�Ü , ⋯ , 	cÜ T&
 

 (5.36.1) 

Similarly, we may write the overall trajectory-generator systems state under (5.33) as 

follows: 

Γr
 = −F�ℒ Γ
! + h��∙�HΓ
 + R Γ
, 	
! + Ψ��∙�	
Ü (5.37) 

where: Α E
, 	
! = i$��1��, ⋯ , $W�1W�l&. If $��1�� is given by (5.32), then we may rewrite 

(5.37) as follows: 

Γr
 = −F�ℒ Γ
! + RC Γ
, 	
! + h��∙�HΓ
 + RC Γ
, 	
!	
 + Ψ��∙�	
Ü (5.38) 

where: RC Γ
, xm
! = h.G À� �iSj�¥����Tkb , ⋯ , �iSj�¥����Tkb�Á. 

Consequently, the overall trajectory-generator state-space model can be given as follows: 

�Γr
Γe
� = tΠ� i0lΠ� Π3 u �Γ
Γr
� + t RC i0l Ψ� i0li0l Ξ� Ψ� Ψ� u - 	
	r
	
Ü	r
Ü
. (5.39) 

�Γr
Γe
� = Σ8 �Γ
Γr
�+ th�h�u (5.39.1) 

where: i0l is a block of a × a zeros, Π�,Π� and Π3 can be found from there corresponding 

equations. 
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Remark 5.4: If the tracking error, i.e., |1�| = |Γ� − 	�| = 0 ∀., then both Π� and Π3 are 

equal. 

The stability of (5.39) is ensured by the following theorem: 

Theorem 5.3: The trajectory-generator systems given in (5.39) is stable if and only if the 

agents dynamics under their corresponding tracking controllers are stable and leaders 

signals are always bounded. 

Proof: When at least one agent is connected to a leader, then both Π� and Π3 are always 

negative nonsingular M-matrices, similarly will be their Jacobians. Moreover, when agents 

are stable under their corresponding tracking controllers, then the tracking errors will be 

bounded and both Π� and Π3 will be equal if these errors are zeros. 

When the leaders’ signals, namely: 	
Ü and 	r
Ü are bounded, then h��∙� in (5.36.1) will be 

bounded. Consequently, Π� in (5.39) will be bounded which is a sufficient condition for 

the stability of the system matrix in (5.39) when the Jacobians of both Π� and Π3 are 

negative [4] which is indeed the case. 

To see it clearly, let us define the following transformation: 

Φ = t < i0li0l n< u , n ∈ ℜ (5.39.2) 

Pre-multiplying (5.39.1) by Φ and post-multiplying it by ΦJ�, yields: 

t < i0li0l n< u tΠ� i0lΠ� Π3 u t < i0li0l nJ�<u = t Π� i0lnΠ� Π3 u (5.39.3) 

Now, since both Π� and Π� are the negatives of nonsingular M-matrices and Π� is bounded, 

then (5.39.3) is negative definite for sufficiently small n. 

When leaders do exist, then the stability of (5.39) can be tackled using the contraction 

analysis. In Chapter 3, specifically in (3.107) and the discussion that followed, we have 
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shown the relation between the semi-linear protocols per the proposed framework and the 

potential functions. According to [165], the dynamics of a system utilizing gradient decent 

method is contracting if the associated cost function is strictly convex, i.e., the system:  

	r
 = − ¿�¿Γ
  (5.39.4) 

has contracting dynamics whenever: 

¿��¿Γ
� > 0 (5.39.5) 

is valid uniformly. This can be seen from our previous discussion in (3.107), see also Figure 

2.25. So, we may consider Σ8 in (5.39.1)- from contraction analysis point of view- as the 

Jacobian of the following dynamical system [166]: hh� t�ç��ç�u = tΠ� i0lΠ� Π3 u t�ç��ç�u + th�h�u (5.39.6) 

where: h� and h� are disturbances that can be formulated from the terms appearing in 

(5.39). So, the relative velocities between a desired trajectory ?� and a system trajectory ?� 

verify: 

hh�L ‖�ç�‖ã�
ã� + ���,Ø�A�L ‖�ç�‖ã�

ã� ≤ ‖h�‖ (5.39.7) 

hh�L ‖�ç�‖ã�
ã� + ���,Ø�A�L ‖�ç�‖ã�

ã� ≤ ‖h�‖+L Π��ç�ã�
ã�  (5.39.8) 

where: ��,Ø�A is the largest eigenvalue of Π� , . = 1,2. 

When both h� and h� are bounded, then exponential convergence to the desired trajectory 

is asymptotically achieved. The boundedness of Π� can be seen from (5.39.3). 

∎ 
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Under (5.39), the invariance properties, or behaviors in general, embedded to the 

kinematical trajectory-generators (5.33) and (5.34) are still preserved. This is stated in the 

following theorem. 

Theorem 5.4: The behaviors realized using the kinematical trajectory-generators (5.33) 

can be asymptotically and dynamically realized with q-order systems using (5.39). 

Proof: In a leaderless situation, Σ8 given in (5.39.3) still have both j
& = 1m
& and em
 = 1m
 as 

nonlinear left and right eigenvectors associated with �� Γ
! = 0 ∀Γ
. Let the average value, 

i.e., �� , be the invariant quantity of concern. To test its kinematics under (5.39), we need 

to take its derivative with respect to time twice. This is demonstrated as follows, let: 

����� = 1a � Γ����W
��� , � ≥ �� (5.40) 

Taking the derivatives with respect to time, yields: h��h� = 1a � hΓ�h�W
���  (5.40.1) 

h���h�� = 1a � h�Γ�h��W
���  (5.40.2) 

Equating both time derivatives to zero, yields: 

h��h� = �a � � �� Γ�, Γ�!FΓ� − Γ�H�∈��
W
��� = 0 (5.40.3) 

h���h�� = �a � À¿��¿	� Γr� + ¿��¿	� Γr�Á FΓ� − Γ�H +W
��� ��FΓr� − Γr�H = 0 (5.40.4) 

As was shown in (3.11), we know that (5.40.3) is satisfied. As for (5.40.4), by recalling 

(3.12), (3.34) and (3.35), it will be straightforward to show that (5.40.3) is also true; since: ¿��¿Γ� Γr� + ¿��¿Γ� Γr� = ¿��¿Γ� Γr� + ¿��¿Γ� Γr� (5.40.5) 
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So, the average value is achieved as � → ∞. 

Recalling Theorem 5.2, then the average value under leaders’ influence will be 

asymptotically and dynamically achieved under (5.39). 

In general, classical graph algorithms facilitates combining several systems that can be 

systematically decomposed into sub systems under some hierarchies where input-

equivalence, i.e., invariance, can be verified top-down [4]. Therefore, (5.39) can be 

extended to work with q-order systems. 

∎ 

Likewise, one can find the kinematical version of (5.34) by following the previously stated 

steps used when deriving (5.39). This simply can be done by replacing �� Γ�, Γ�! with 

�� 	� , 	�! and Γr�,� with 	r�,� in (5.40.4). 

Remark 5.5: The kinematical part of (5.39) is dealing explicitly with the dynamics of a 

general scalar nonlinear system (5.22) as a disturbance. While in the system resulting from 

(5.34) after introducing the acceleration, the dynamics given in (5.22) appears explicitly as 

a disturbance and implicitly as a weighting factor in the used �� functions. 

Remark 5.6: According to Theorem 5.4, we may extend the Kino-dynamical features of 

the proposed trajectory-generator systems presented in this subsection to work with 

realistic robots whose dynamics are of higher-order. 

Remark 5.7: Recalling Chapter 3, and 4, all the developed behaviors embedded in the �� 

functions can be used in the Kino-dynamical trajectory-generator system presented in this 

subsection, however, a slight modification might be needed. 

Remark 5.8: The trajectory-generator systems in the other two spatial directions can be 

found similarly. 
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5.2.2: Designing harmonic potential fields using the proposed framework 
In this subsection, the utilization of the proposed framework in designing the navigation 

and planning signals is briefly demonstrated. By and large, the use of potential fields and 

more specifically the harmonic potential fields (HPF) has offered enormous advantages in 

the field of planning for rigid robots. Being an excellent goal-seeking planner, the HPF 

approach induces guidance vectors in a dense collection of guidance vectors covering the 

robot admissible space (Ω) [167]. The smooth induced guidance vectors do avoid being 

trapped in local minima usually encountered in ordinary potential fields. 

The HPF is a solution of the Laplace’s equation which is considered as a simple example 

of elliptic PDEs. Recalling (3.115), the Laplace’s equation is obtained when the 

characteristic of (3.115) given by (3.115.1) is positive definite.  

In Chapter 3, specifically in section I, we have shown how the vector calculus can be made 

useful in designing, mainly, the consensus protocols. Once more, we will use the vector 

calculus to facilitate our findings in this section. 

Let us start with a semi-linear protocol in 1-D working space that is related to a 

conservative potential field 5. The protocol is then given as follows: 

�Γr�Γr�� = − ¿5 Γ�, Γ�!¿Γ
 = −∇5 = �
 (5.41) 

To have a HPF, the divergence of the vector field must be zero, i.e., we need to have the 

following 

−∇. ∇5 = −∇�5 = − ¿�5¿Γ
� . 1m
 = 0 (5.41.1) 

where: ∇� is the Laplacian operator. From a vector calculus perspective, (5.41.1) is 

equivalent to having a divergence-free vector field, and because of having �
 as a 
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conservative field, the curl of that field will also be zero. So, a HPF is a vector field that is 

both curl-free and divergence-free. 

According to the proposed framework, we have shown the needed conditions to have a 

conservative field, i.e., curl-free, by forcing (3.34) and (3.35), simultaneously. Therefore, 

the invariant quantity is preserved in the whole domain of interest. So, now we also need 

to force another condition on the designed protocols, namely: to produce a divergence-free 

vector field. 

Recalling (4.36.3), and working mainly on one-edge MAS with two connected agents in 1-

D, the divergence associated with the designed vector field is given as follows: 

h.j �
! = ¿��¿Γ� �Γ� − Γ�� − �� + ¿��¿Γ� �Γ� − Γ�� − �� = 0 (5.41.2) 

which is exactly the trace of the Jacobian in (4.36.3). The curl of a vector field is zero, i.e., 

that vector field is curl-less, if and only if it is continuous over a simple connected domain. 

This will yield a symmetric Jacobian. According to the proposed framework, we need the 

following to be true as well, see (3.109.1): 

?z{¦ �
! = ¿��¿Γ� �Γ� − Γ�� + �� − ¿��¿Γ� �Γ� − Γ�� − �� = 0 (5.41.3) 

Adding both (5.41.2) and (5.41.3), yields the following PDE: 

�¿��¿Γ� + ¿��¿Γ� − ¿��¿Γ� + ¿��¿Γ� × �Γ� − Γ�� = 2�� (5.41.4) 

Or after imposing (3.34) and (3.35): ¿��¿Γ� )Γ� − Γ�* = �� (5.41.5) 

Remark 5.9: From connectivity-preserving perspective, a HPF acting alone on an edge 

makes it disconnected, i.e., ��)�,�* Γ
! = 0, see (4.37). 
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One may verify that the following is a candidate- if not the only-  solution of (5.41.5) in 1-

D: 

�� = � Γ� − Γ�! , � ≠ 0 (5.41.6) 

Substituting (5.41.6) into the semi-linear protocol, yields: 

�Γr�Γr�� = v �−�w = −∇5 = �
 (5.41.7) 

Which makes Γ� unbounded, when � > 0. So, we need to consider higher dimensions to 

facilitate building the needed HPFs, where things become more interesting and involved. 

Remark 5.10: From now on, we need to introduce superscripts on the ideal trajectory 

signals Γ to denote the spatial directions in the working space, i.e., ΓA,B,C. 

Definition 5.1: In robotics applications, a working space can be defined as the space where 

the physical action is projected or realized. On contrary, a configuration space can be 

defined as the space where the action is planned. Both spaces could be of equal dimensions. 

In a 2-D working space, we need to write the trajectory-generator kinematics in 2-D and to 

introduce coupling in the two directions, as follows: 

�Γr�AΓr�A� = ����T
�FΓ�A − Γ�AH���T
�FΓ�A − Γ�AH� = �
A 

(5.42) �Γr�BΓr�B� = ¢���T
�FE�B − E�BH���T
�FE�B − E�BH£ = �
B 

Where: T
 = SE�A, E�A, E�B , E�BT&
. Let �
 = v�
A& , �
B&w&

, and its Jacobian is given as follows: 
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¿�
¿�
 =
ÃÄÄ
ÄÅ¿�
A¿Γ
A ¿�
A¿Γ
B¿�
B¿Γ
A ¿�
B¿Γ
BÇÈÈ

ÈÉ
 (5.42.1) 

where: Γ
 A = SE�A, E�AT&
and Γ
B = SE�B , E�BT&

. 

Now, we require to have a HPF, i.e., we need to have a curl-free and divergence-free field. 

This can be realized by forcing the Jacobian symmetry and achieving the Laplace’s 

equation. This can be ensured if and only if the following conditions are met: ¿��¿E�A FE�B − E�BH = ¿��¿E�B FE�A − E�AH (5.42.2) 

¿��¿E�A FE�B − E�BH = ¿��¿E�B FE�A − E�AH (5.42.3) 

¿��¿E�A = − ¿��¿E�A , ¿��¿E�B = − ¿��¿E�B (5.42.4) 

�� = �� (5.42.5) 

As expected, these conditions are like what was presented in Chapter 3, namely: (3.14) and 

(3.34); however, by including two dimensions instead of only one. As stated before, forcing 

a symmetric Jacobian ensures that the 1
 = 1m
 is a nonlinear right eigenvector associated 

with �� = 0 ∀T
. These conditions are as follows: 

¿��¿E�A = − ¿��¿E�A , ¿��¿E�B = − ¿��¿E�B (5.42.6) 

As a result, the Laplace’s equation is given as follows: ¿��¿E�A FE�A − E�AH + ¿��¿E�B FE�B − E�BH = 2�� (5.42.7) 

A candidate solution is the following: 
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���T
� = � E�A − E�A!� + }E�B − E�B�� = ��{� − {��� (5.42.8) 

So, the HPF associated with �
 is given as follows: 

5�‖{‖� = � ¦o �{� − {��! (5.42.9) 

which is indeed a HPF with spherical symmetry in 2-D [168]. The strength of the field is 

given by �. Note that the Laplace’s equation is invariant under translation, therefore we 

may choose the origin of the HPF freely. 

Remark 5.11: As seen from the above discussion, if more dimensions are involved the size 

of the Jacobian gets larger. However, it is sufficient to work at the edge-level rather than 

working on the MAS level. This helps avoiding the curse of dimensionality usually 

encountered under similar situations. 

Note 5.1: Comparing (5.42.8) with the C-S in 2-D, the C-S model, even when � = 0.5, 

does not satisfy the Laplace’s equation and therefore there will be no problem in preserving 

connectivity in q-dimensions, in general. 

Following the previous steps, the needed conditions to build a HPF in 3-D using the 

proposed framework can be obtained. Therefore, the Laplace’s equation is given as 

follows: ¿��¿E�A FE�A − E�AH + ¿��¿E�B FE�B − E�BH + ¿��¿E�C FE�C − E�CH = 3�� (5.42.10) 

A candidate solution is the following: 

�� = �
t E�A − E�A!� + }E�B − E�B�� + }E�B − E�B��u3/� = ��{� − {��3 

(5.42.11) 

So, the HPF associated with �
 is given as follows: 
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5�‖{‖� = �/�{� − {��  (5.42.12) 

which is indeed a HPF with spherical symmetry in 3-D [168]. Note that this results in the 

law of motion of planets given in (4.54.1). 

Before concluding this subsection, let us have the following definition: 

Definition 5.2: A 1-D edge is an edge connecting two agents interacting along one 

dimension of the working/configuration space. A q-D edge is defined in a similar fashion. 

The Jacobian of a 3-D edge is given as follows: 

¿�
¿�
 =
ÃÄÄ
ÄÄÄ
ÄÅ¿�
A¿Γ
A ¿�
A¿Γ
B ¿�
A¿Γ
C¿�
B¿Γ
A ¿�
B¿Γ
B ¿�
B¿Γ
C¿�
C¿Γ
A ¿�
C¿Γ
B ¿�
C¿Γ
C ÇÈÈ

ÈÈÈ
ÈÉ
 (5.42.13) 

Recalling (4.8), the �� functions reflect the interconnection between agents in specific 

spatial directions. So, if they are connected along the z-direction using �� functions that 

depend only on the agents z-coordinates, then we have:  

¿�
¿�
 =
ÃÄÄ
ÄÄÄ
ÄÅ ¿�
A¿Γ
A ¿�
A¿Γ
B 0 00 0¿�
B¿Γ
A ¿�
B¿Γ
B 0 00 00 00 0 0 00 0 ¿�
C¿Γ
C ÇÈÈ

ÈÈÈ
ÈÉ
 (5.42.14) 

Which means that the motion along the z-direction is independent from the motion in the 

other two directions. This is useful when the MAS is operating over distinct 

communication networks in the working space as will be shown later in this thesis. 
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In this subsection, a systematic method to construct HPFs on q-D was presented. In the 

coming subsection, enabling the trajectory-generator with awareness of its working 

environment will be explained. 

5.2.3: Modeling the environment into the Kino-dynamics of trajectory-
generator systems 
Remarkably, the addition of gradients is a natural consequence of superposition property 

enjoyed by HPF which follows from the linearity of the Laplace’s equation [168]. 

According to Helmholtz decomposition, a vector field can be decomposed into potential 

components having divergence-free and curl-free, solenoidal component having 

divergence-free but not curl-free, and irrotational component having curl-free but not 

divergence-free. So, we may define a potential component that is responsible for collision 

avoidance, and an irrotational field responsible for steering the MAS towards the target 

point, namely: the average value of agents’ initial conditions. 

Taking advantage of the property of super position enjoyed by the HPF, we may define 

several HPFs to map the environment. Treating obstacles as points of singularity in the 

working space allows defining a HPF at each obstacle. More sophisticated representations 

of obstacles can be found in [168]. 

Figure 5.11 shows a working environment with two stationary obstacles each approximated 

by a point-of-singularity, or simply as a point obstacle. In this sense, neighboring agents 

on the graph are treated as mobile obstacles, which helps agents avoiding collision with 

each other. 
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Figure. 5.11. A visualization of a MAS system navigating a working space with obstacles approximated as point obstacles 

whose field strength is shown in red. Each agent is building a source potential field to avoid colliding with its neighbors 

on the graph. 

Let the combined HPFs gradients of � stationary obstacles from the perspective of the .67 

agent be given as follows: 

opq� = � {�,°�A�
��� = � )� Γ�A − o�A! Γ�A − o�A!� + }Γ�B − o�B��

�
���  

opr� = � {�,°�B�
��� = � )� Γ�B − o�B! Γ�A − o�A!� + }Γ�B − o�B��

�
���  

 (5.43) 

where: )� decides the strength of the source, i.e., repulsive, field. To avoid dead-lock while 

in motion, a tangential component can be added to the trajectory-generator system such 

that dead-lock situations are avoided. This is depicted in Figure 5.12 where agents roll over 

the boundary of an obstacle in a way that favors the increase of connectivity among agents. 

Clearly, from Figure 5.12, two tangential directions are possible for agents to take when 

confronted by obstacles. This is given as follows: 
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¢��,°�A��,°�B £ = ¢−{�,°�A{�,°�B £ (5.43.1) 

���,°�A��,°�A � = ¢ {�,°�A−{�,°�B £ (5.43.2) 

 

Figure. 5.12. Rolling around the obstacles boundaries in favor to increase connectivity with other graph neighboring 

agents. 

By incorporating the connectivity-preserving concept in choosing one of the previous 

relations, we may write the following: 

¢��,°�A��,°�B £ = |"� ¢−{�,°�A{�,°�B £ (5.43.3) 

|"� = q.p
0
112ÃÄÄ

ÄÄÅ � ¿��)�,�*¿Γ�A�∈��� ¿��)�,�*¿Γ�B�∈�� ÇÈÈ
ÈÈÉ ∙ ¢−{�,°�A{�,°�B £

3
445 ≠ 0 

|"� = 1, o�ℎ1{O.q1 

(5.43.4) 

Note that other criteria can be used to facilitate the preferred tangential direction. Figure 

5.13 captures a situation where both tangents are perpendicular to the connectivity-

preserving gradient in 2-D. 
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Figure. 5.13. A situation where the connectivity-preserving gradient and the two tangents are perpendicular. 

Remark 5.12: A 3-D version of the previous derivation can be realized in a straightforward 

fashion. 

Remark 5.13: In (5.43.3), the decision can be made based on one or some selected edges 

instead of all neighbors. 

By utilizing the smoothness of the HPFs, the obstacles kinematics can be incorporated into 

the Kino-dynamics of the trajectory-generator systems by differentiating (5.43) and 

treating the obstacles velocities as disturbances. Moreover, to avoid chattering problems 

especially after differentiation, the sign function in (5.43.4) can be replaced by the tanh 

function as demonstrated in previous parts. 

5.2.4: Sensing the environment using on-board sensors 
Usually, the agents’ onboard sensors can sense the environment and form a sensing link 

with the surrounding objects. If the agent must avoid these parts of the environment, i.e., 

they are obstacles, then the sensing link should be repulsive, and it should be attractive if 

these parts of the environments are targets, way points or the like.  For example, a proximity 

sensor can be modelled as follows: 

npq,� = 0�  np� |	� − o|⁄  (5.44) 

where: npq,� is the  sensory input for the .67 agent, i.e., robot, in the x-direction, 0� is an 

appropriate transformation matrix and np� is a real proportionality constant. For example, 

let npq,� be the attractive/repulsive soft-force generated by the sensor due to an obstacle, 
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maybe another agent, obstructing the agent from proceeding in the x-direction. When the 

sensors are all the same, then the coefficient np� is the same for all sensors. One example 

of this force is depicted in Figure 5.14. 

 

Figure. 5.14. The soft-force as a function of an agent position with respect to an obstacle surface. The non-localized form 

in red and the localized form in blue where ; is a real constant. 

The overall sensory information of q-sensors in the x-direction is given as  npq� =
∑ npq,Ý8��� . Similarly, npr�  and nps�  can be found. 

Remark 5.14: Using sensory inputs increases the level of awareness of the trajectory-

generator system. As a result, the trajectory-generator can deal with more realistic situation 

where unmodeled obstacles are expected in the working space. This will be demonstrated 

by an example where a group of attackers attack an asset guarded by escorting agents. 

Consider the wheeled-robot, shown in Figure 5.15, having four identical proximity sensors 

arranged symmetrically onboard. This plurality of sensory devices generates a soft-force 

that can be modelled as follows:  

�npq�npr� � = np� � q�,� �?oq }45° + ñ� + 90°�� − 1��q.p }45° + ñ� + 90°�� − 1��¡%
���  (5.45) 

where: q�,� is the reading of the �67 sensor and ñ� is the actual orientation of the .67 agent 

with respect to the global inertial coordinate frame. 
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Figure. 5.15. A wheeled-robot having four symmetrically distributed identical proximity sensors onboard. The global 

inertial coordinate frame is <=> and the local coordinate frame is ?	'. The orientation of the .67 agent is given with 

respect to <=>. 

Like (5.43), the sensor-based navigation can be modified by introducing tangential 

components. The sensor information is crucial in realizing what is known as a reactive 

controller, see Figure 5.12.b. 

Therefore, combining the model-based and sensor-based navigation capabilities into the 

trajectory-generator Kino-dynamics given in (5.39.1) results in the following- in any 

direction: 

�Γr
Γe
� = Σ8 �Γ
Γr
�+ th�h�u + �n
p + om
p_h
3 � (5.46) 

where: n
p = Snpq� , ⋯ , npq�T&
, om
p_ = Sopq� , ⋯ ,opq�T&

 and  h
3 = ��6 Fn
p + om
p_H or can be set 

to i0lW×�. 

Considering (5.43), the contribution of opq�  can appear directly in Σ8 instead of being 

considered as a disturbance. 

5.2.5: The Complete picture of trajectory-generator systems 
In the previous subsections, we have introduced the needed modifications and components 

to build a sophisticated trajectory-generator system. This included the physical agent 
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dynamics through the tracking errors, and the context-awareness through modeling and 

sensing the environment. The relations among these building blocks is given in Figure 5.16 

from which the complete picture of Kino-dynamic trajectory-generator can be understood. 

A similar approach for joint planning and control of nonholonomic mobile robots was 

presented in [167]; however, here we are addressing the behavior control jointly with 

navigation assuming a local tracking controller to be already available.  

 

Figure. 5.16. The overall structure of the proposed trajectory-generator system. 

Next, the simulation results of two behaviors, namely: containment and consensus, in a 

work space that contains obstacles are provided. The kinematical trajectory-generator 

(5.33) was used to generate these behaviors and (5.43) is used to realize the HPF introduced 

to (5.33). 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure. 5.17. Simulation results of the 2-D containment behavior realized by six heterogeneous linear and scalar systems 

where stationary obstacles exist in the working space. The red squares represent the initial positions (a) an overview of 

the complete behavior. (b) a close view of the containment behavior. (c) the needed control signals in the x-direction. (d) 

the tracking error during the behavior. 



295 
 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Figure. 5.18. Simulation results of the 2-D consensus behavior realized by six heterogeneous linear and scalar systems 

where stationary obstacles exist in the working space. The red squares represent the initial positions (a) a 3-D overview 

of the complete behavior. (b) a close 2-D view of the working space and the trajectory of agents during behavior 

conduction. (c) the tracking errors. (d) the control signals in the x-direction. (e) the same behavior when obstacle 

avoidance is inactive. (f) the needed control signals in the x-direction when working in an obstacle-free working space.    
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The consensus behavior is shown in Figure 5.18 where the working space was modelled 

using HPFs. In Figure 5.14.b, the agents’ achieved consensus value was 

)−13.6240, 22.8937, 0 * while the ideal value achieved by the trajectory-generators was 

)−13.6241, 22.8935, 0 *. The average value of the initial conditions was 

)−11.8753, 18.8720, 0*. The differences between the last two are due to the tracking error 

contribution in (5.33). 

The effectiveness of the proposed approach can be seen from the results shown in figures 

5.17 and 5.18. 

In the coming sections, agents with higher-order dynamical models will be considered. 

5.3 Multi-agent Systems of N-Identical double-integrator systems 

In general, most mechanical systems can be modeled using second order systems whether 

linear or nonlinear. Thus, the double-integrator systems represent the simplest nontrivial 

holonomic dynamical systems that can be used in many applications, in general. Usually, 

this requires both the position and velocity command signals to be available. 

Generally, these signals could be communicated over distinct communication networks 

due to security reasons or application constraints. For example, an agent that is almost 

stationary does not need to communicate its velocity to agents moving significantly faster 

with respect to it. In this section, we will consider double-integrator systems as building 

blocks of the trajectory generator systems. 

The model of the .67 double-integrator trajectory-generator system can be given by: 

v	rjr w� = v0 10 0w v	jw� + v01w z� (5.47) 

The state-dependent protocol needed to build a distributed version of (5.47) is given as 

follows: 
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z� = −i��, ��l � ����	�, 	�� 00 <���j�, j��� v	� − 	�j� − j�w�∈��
 (5.48) 

which can be simplified as follows: 

z� = �� ±− Ê � ���∈��
Ë 	� + Ê � ��	��∈��

Ë² + 

�� ±− Ê � <���∈��
Ë j� + Ê � <��j��∈��

Ë² 

(5.48.1) 

Or collectively, the input of the overall trajectory-generator systems can be given as 

follows: 

zm
 = −��ℒ�	
�	
 − ��ℒ»�j
�j
 (5.48.2) 

where: 	
 = i	�, 	�, ⋯ , 	Wl& and j
 = ij�, j�, ⋯ , jWl& with ��, �� > 0, yet to be 

determined. 

Thus, the overall dynamics can be written as follows: 

_r
 = t	r
jr
u = t i0l <−��ℒ�	
� −��ℒ»�j
�u v	
j
w = Iã _
!_
 = �
 _
! (5.49) 

where: _
 = i	
& , j
&l&. Clearly, (5.49) is a nonlinear system given in a semi-linear form 

whose equilibria set Â is given such that Â = F�	
, j
� ∈ ℜ�W| �	
, j
� =  0m
, 0m
! o{ �	
, j
� =
 1m
, 0m
!H assuming connected undirected graphs associated with ℒ and ℒ». The Jacobian of 

(5.49) once evaluated at the equilibria set can be given as follows: 

¿�
¿_
 = � i0l <−��ℒ� −��ℒ»�� (5.49.1) 

where: ℒ� and ℒ»� are the fixed Laplacian matrices associated with connected undirected 

graphs selected originally by the designer.   
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In (5.49), the velocity of all agents, i.e., j
, reaches a consensus value of the arithmetic mean 

of the velocities initial values if and only if <�� functions are designed properly as proposed 

in Chapter 3. Thus, the positions of all agents, i.e., 	
, will also reach consensus that might 

be increasing with time assuming the consensus protocol to be convergent, see (3.87) and 

the discussion that followed. Considering this, it is important to study the stability of (5.49) 

under similar and different ℒ and ℒ» matrices assuming their associated graphs to be 

connected undirected graphs. 

Using (5.49.1), the eigenvalue concept can be used to check the stability of (5.49). Thus, 

the system eigenvalues can be found by solving the following equation: 

�q�< + ��ℒ»�q + ��ℒ�� = 0 (5.49.2) 

where: q is the differential Laplace operator. Since (5.49.2) is difficult to be solved in 

general, let us consider diagonalizing both ℒ� and ℒ»� Laplacian matrices by the following 

similarity transformations: 

ℒ� = \Y�\J� (5.49.3) 

ℒ»� = aY�aJ� (5.49.4) 

where: Y� and Y� are diagonal matrices containing the eigenvalues of both ℒ� and ℒ»� 

matrices, respectively. The matrices \ and a consist of the right eigenvectors, as columns, 

of both ℒ and ℒ» matrices while \J� and aJ� consist of the left eigenvectors, as rows, of 

both ℒ and ℒ» matrices, respectively. Next, the cases where agents positions and velocity 

are communicated over distinct or alike communication networks will be investigated. 

5.3.1: Similar communication graphs 
Since both networks are alike, let (5.49.3) be used as follows: 
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I̅ã = t\J� i0li0l \J�u t i0l <−��ℒ�	
� −��ℒ�	
�u t \ i0li0l \ u (5.49.5) 

So, we will have: 

I̅ã = t i0l <−�� Y� −�� Y�u (5.49.6) 

Thus, (5.11) can be solved easily as follows: 

|q�< + �� Y�q + �� Y�| = ©�q� + ����q + �����W
��� = 0 (5.49.7) 

Therefore, the eigenvalues of I̅ã are given by: 

q� = − 12 }���� ± �������� − 4����� (5.49.8) 

Now, since we are mainly interested in dealing with connected and undirected graphs, the 

values of �� and �� could be any positive value since �� will always be positive real for all 

	
 and j
. Since an undirected graph is represented by a symmetric Laplacian matrix, its 

eigenvalues are always real. However, if oscillation in the MAS response is not desired, 

i.e., q� must be real, then �� value should be designed such that the following inequality is 

satisfied: 

0 < �� ≤ ��� Ú.p����4 , �� > 0 (5.49.9) 

It is worth noting that there are two eigenvalues of I̅ãfor each eigenvalue �� of ℒ [9]. 

Similar results can also be obtained when we use ℒ�j
� or ℒ�	
, j
�. 

5.3.2: Distinct communication graphs I̅ã = t\J� i0li0l aJ�u t i0l <−��ℒ�	
� −��ℒ»�j
�u t \ i0li0l a u (5.49.10) 

or: 
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I̅ã = taJ� i0li0l \J�u t i0l <−��ℒ�	
� −��ℒ»�j
�u t a i0li0l \ u (5.49.11) 

So, we will have: 

|q�< + �� Y�q + ��aJ�ℒa| = 0 (5.49.12) 

or: 

�q�< + ��\J�ℒ»\q + �� Y�� = 0 (5.49.13) 

which are difficult to generalize unless a suitable relation between the two communication 

graphs are imposed like being co-spectral for example. Both (5.49.12) and (5.49.13) 

suggest that the eigenvectors can be used as means to design one of the networks if the 

other is desired by specifications. However, the effect of general distinct Laplacian 

matrices is still worthy of investigation.  

5.3.3: Studying the invariant quantity of MAS comprising N-identical double-
integrator systems 
Under state-dependent Laplacian matrices, we can find the consensus value of (5.49) as 

follows: 

Let the arithmetic mean of the MAS consisting of a-identical double-integrator systems 

be given as follows: 

�
���� = t	̅���j̅���u = 1a � t	����j����uW
���  (5.50) 

Taking the time-derivative and equating it to zero, yields: 

h�
����h� = 1a � t	r����jr����uW
��� = 1a � tj����z����uW

��� ≢ 0m
  , ∀j����, � ≥ �� (5.50.1) 

Using (5.47) into (5.50.1), yields: 

j̅r ��� = i1 1 ⋯ 1liz�, z�, ⋯ , zWl& = 1m
&zm
 = 0          
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∀	����, j����, � ≥ �� (5.50.2) 

If and only if the 1m
& is a nonlinear left eigenvector of both ℒ�	
� and ℒ»�j
� appearing in 

(5.48.2). Integrating (5.50), yields: 

	̅ = 1a � 	��0�W
��� + �j̅ (5.50.3) 

Where:  

j̅ = 1a � j��0�W
���  (5.50.4) 

where: � denotes the time. From (5.50.3) and (5.50.4), consensus of (5.49) to the arithmetic 

mean of the agents’ initial values is achieved if the graphs used were connected undirected 

and both the �� and <�� are designed as per Chapter 3. Clearly, if j̅ ≠ 0 then 	̅ will be 

time-varying and consequently (5.49) is deemed unstable. Although this behavior is desired 

in some cases, like rendezvous for example, it might be difficult to use in realizing the 

behaviors shown in Chapter 4. As a remedy, one may consider generating the needed 

velocity signal in the trajectory-generator system using (5.33) or (5.34) instead. 

5.4 Multi-agent Systems of N-Identical coupled-integrators systems 

In this section, an extension of the previous results to include general time-invariant 

coupling between purely integrator systems is presented. This section will show how the 

input matrix affects the designed consensus protocols through allowing several inputs to 

affect one state in the system simultaneously. This will help in understanding how the 

proposed communication protocol can be used to ease both analysis and design of linear 

time-invariant (LTI) MAS. Suppose we have the following coupled-integrators, not 

necessarily a trajectory-generator, system given by: 
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	r
� = ¸zm
���� (5.51) 

where: 	
� ∈ ℝ~ and zm
� ∈ ℝØ.  

It is important to consider the cases where we have: 

 Over actuated systems, i.e., Ú > p. 

 Under actuated systems, i.e., Ú < p. 

 Squared systems, i.e., Ú = p. 

to gain more understanding about the coupling resulting from the input matrix being other 

than the identity matrix. In MAS consisting of single-integrators, both Ú and p were equal, 

while in the double-integrator based MAS Ú < p. Thus, it is intended in this section to 

investigate the case where Ú > p. The main objective is to convert the over/under actuated 

systems into squared systems using full-state feedback consensus protocols. 

To do this, a modified version of the protocol given in (5.48) is used to build the needed 

MAS of the specified systems and is given as follows: 

zm
� = −; � h.G S���  	��, 	��!, ⋯ , ��~ �	�~, 	�~�T! ¢	�� − 	��⋮	�~ − 	�~£�∈��
 (5.51.1) 

where: ; ∈ ℝØ×~ is a gain to be designed and ��Ü  is a weight function associated with the 

¦67 state where ¦ = 1,2, ⋯ , p. 

Remark 5.15: Notice that the gain used, i.e., ;, is chosen to be identical for all agents. This 

will dramatically make the analysis and design of the corresponding system more obvious. 

In case agents are different, i.e., heterogeneous MAS, then the input matrix will be different 

so should the gain used. This fact will make the design process more involved, in general. 

Now, to make things more appealing, let us consider the following example to show how 

(5.51) can be used in (5.51.1). 
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Example 5.1: Assume undirected links exist among three coupled-integrators agents as 

shown in Figure 5.3 where the agent dynamics are described as follows: 

�	r
�	r
��� = t|� |� |3|% |' |&u ¢z�z�z3£� (5.52) 

Let ; be given as follows: 

; = ¢�� ���3 �%�' �&£ (5.52.1) 

Thus, using (5.51.1) and (5.52.1) in (5.52), the overall dynamics of the first agent can be 

given as follows: 

¢z�z�z3£� = −;
ÎÏÐ
ÏÑ t��� �	��, 	��� 00 ��� �	��, 	���u v	�� − 	��	�� − 	��w

+ ��3� �	��, 	3�� 00 �3� �	��, 	3��� v	�� − 	3�	�� − 	3�wÒÏÓ
ÏÔ

 (5.52.2) 

�	r
�	r
��� = −
ÎÏÐ
ÏÑ �?����� + �3� � −?���� −?��3�?3���� + �3� � −?3��� −?3�3� � ¢	��	��	3�£

+ �?����� + �3� � −?���� −?��3�?%���� + �3� � −?%��� −?%�3� � ¢	��	��	3�£ÒÏÓ
ÏÔ

 (5.52.3) 

v?� ?�?3 ?%w = t|� |� |3|% |' |&u ¢�� ���3 �%�' �&£
= t|��� + |��3 + |3�' |��� + |��% + |3�&|%�� + |'�3 + |&�' |%�� + |'�% + |&�&u 

(5.52.4) 

Similarly, the overall dynamics for the other two agents are given as follows: 

�	r
�	r
��� = −
ÎÏÐ
ÏÑ �−?���� ?����� + �3� � −?��3�−?3��� ?3���� + �3� � −?3�3� � ¢	��	��	3�£

+ �−?���� ?����� + �3� � −?��3�−?%��� ?%���� + �3� � −?%�3� � ¢	��	��	3�£ÒÏÓ
ÏÔ

 (5.52.5) 
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�	r
�	r
��3 = −
ÎÏÐ
ÏÑ �−?�3�� −?�3�� ?��3�� + 3�� �−?33�� −?33�� ?3�3�� + 3�� �� ¢	��	��	3�£

+ �−?�3�� −?�3�� ?��3�� + 3�� �−?%3�� −?%3�� ?%�3�� + 3�� �� ¢	��	��	3�£ÒÏÓ
ÏÔ

 (5.52.6) 

Let _
� = i	��, 	��, 	3�l& and _
� = i	��, 	��, 	3�l&. So, by rearranging the states of the 

agents carefully, then the MAS dynamics can be described as follows: 

¢_r
�_r
�£ = − t?�< ?�<?3< ?%<uxyyzyy{|°xµÜ�~§ c�6��A
�ℒ _
�! i0li0l ℒ» _
�!� �_
�_
�� (5.52.7) 

where ℒ _
�! and ℒ» _
�! are the state-dependent Laplacian matrices associated with the 

network topologies used to communicate the first and second states among the agents, 

respectively. 

  □                                                                       

Remark 5.16: Notice the difference between (4.8) and (5.52.7) to identify the effect of the 

input matrix when it is other than the identity matrix. 

Remark 5.17: One important role of the gain ; appearing in (5.52.1) is its use in decoupling 

the inputs, appearing in (5.52), if possible. In other words, if it is possible to find a gain ; 

such that the coupling matrix is a positive diagonal matrix, then the states are decoupled. 

In such a case, the stability of the decoupled system requires mainly that all the networks 

used to communicate the states be connected and undirected. 

Let ¸ in (5.51) be given as follows: 

¸ = v1 1 00 1 1w (5.52.8) 

If ; is designed as: 
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; = ¢ 1 22 −2−2 5 £ (5.52.9) 

Then, (5.52.7) will be decoupled, and therefore can be rewritten as follows: 

¢_r
�_r
�£ = − �3ℒ _
�! i0li0l 3ℒ» _
�!� �_
�_
�� (5.52.10) 

Now, to study the stability of the MAS consisting of a-identical coupled-integrators 

systems, we need to have the involved matrices as positive definite/semi-definite. For 

example, in (5.52.7), we want: 

IãÜ = t?�< ?�<?3< ?%<u �ℒ _
�! i0li0l ℒ» _
�!� (5.52.11) 

to be always positive semi-definite. 

Thus, by making sure that ?% > 0 and ?� − ?�?%J�?3 > 0, then IãÜ can be made positive 

semi-definite; since the multiplication of a positive and semi-positive matrices is a positive 

semi-definite matrix [169]. 

From trajectory-generator point of view, the time-invariant coupling matrix can be used to 

generate interesting behaviors in the MAS. In Chapter 4, behaviors were generated by 

switching the underlying communication network and/or the �� functions used. Using 

(5.51) instead, behaviors can be generated by switching the coupling matrix between pre-

designed gains that suit the desired behavior without changing the underlying 

communication network or the �� functions used. Consider for example six agents, whose 

dynamics are given by (5.51), with ¸ ∈ ℝ�×�. So, to design an x-y trajectory-generator 

system using (5.51), with Ú = 2, let: 

¸ = t|� |�|3 |%u , ; = t�� ���3 �%u (5.53) 
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Thus, the coupling matrix can be given as follows: 

v?� ?�?3 ?%w = ¸; = t|��� + |��3 |��� + |��%|3�� + |%�3 |3�� + |%�%u (5.53.1) 

Mainly, two interesting behaviors can be generated using the coupling matrix by setting it 

as follows: 

¸1ℎ� ⇒ t 0 −?�?3 0 u , ¸1ℎ� ⇒ t?� 00 ?%u (5.53.2) 

After the designer picks the needed values of ?� for each behavior, (5.53.1) can be solved 

to satisfy both behaviors by selecting an appropriate common ¸ matrix, and solving for ; 

that achieves the intended behaviors. For example, let (5.53.2) be:  

¸1ℎ� ⇒ v0 −55 0 w , ¸1ℎ� ⇒ v2 00 2w (5.53.3) 

Then, the following matrices can be used to achieve the desired behaviors: 

¸ = v1 12 1w , ;~¥7� = v 5 5−5 −10w , ;~¥7� = v−2 24 −2w (5.53.4) 

Clearly, ¸1ℎ� is an orbiting behavior, while ¸1ℎ� is a consensus behavior.  

If (5.51) is originally designed as a trajectory-generator system, then the previous behaviors 

can be straightforwardly achieved by directly manipulating the ¸ matrix as follows: 

¸ = v0 −55 0 w    o{   ¸ = v2 00 2w (5.53.5) 

Figure 5.19 shows an orbiting behavior in 2-D and a consensus behavior along the z-axis. 

The ¸ matrix can then be given as follows- with real constants G, | > 0: 

¸ = ¢0 −G 0G 0 00 0 |£ (5.53.6) 
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(a) 

 

(b) 

Figure. 5.19. The orbiting behavior. (a): 3-D view of trajectories of all agents. (b): synchronization of trajectories. 

Note that the orbiting will happen about the average value of initial conditions in the x-y 

plane. 

5.5 Multi-agent Systems of N-Identical general LTI systems 

In this section, an extension of the previous results to include general linear time-invariant 

systems will be presented. It will be made clear how the proposed communication protocol 

can be used to ease both analysis and design of LTI MAS. Suppose we have the following 

LTI system given by: 

	r
� = I	
���� + ¸zm
���� (5.54) 

where: 	
� ∈ ℜ~ and zm
� ∈ ℜØ.  
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The dynamics provided in (5.54) reflects more realistic models that real existing dynamical 

systems may exhibit. Usually in the related literature, such models are stacked as blocks, 

which helps in visualizing the effects of both the dynamics and the communication network 

when looking at the MAS overall dynamics. However, this stacking comes along with a 

preferred realization of MAS dynamics if a common communication networks is used to 

transmit the data, i.e., the agent states, among neighbors. The resulting MAS dynamics may 

appear more appealing to study than the case where states are communicated over distinct 

networks especially when they are state-dependent, see (5.52.7), for example.  

Recently, a new representation of the Laplacian matrix was proposed in [170] by which 

individual states are given a matrix-weight arguments and not scalar weights as usually 

used in the standard literature. However, [170] makes the resulting representation less 

obvious to be described as states being communicated via distinct networks. Having the 

states communicated via distinct networks can be inspired by security reasons or more 

generally by hierarchical structures associated with the MAS, and the assigned mission. 

 One main goal in this section is to show the equivalency between our proposed 

representation and the standard representation when all states are communicated via the 

same network. This will be done through an example. In this example, a leader agent is 

assumed to be existing and the follower agents are entitled to reach consensus with its 

states. 

Example 5.2: Assume undirected links exist among three 2nd-order single-input and single 

output (SISO) LTI agents, given by (5.54), as shown in Figure 5.20. Let the used 

communication protocol be given as follows: 
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z� = −?i��, ��l
ÎÏÐ
ÏÑ � Þ��� 	��, 	��! 00 <�� 	�� , 	��!� v	�� − 	��	�� − 	��w��∈��+ tℎ���	��, 	��� 00 ℎ���	��, 	���u v	�� − 	��	�� − 	��w ÒÏÓ

ÏÔ
 

 (5.54.1) 

Let the 2nd-order SISO LTI agent dynamics be given as follows: 

	r
� = vG� G�G3 G%w v	��	��w + t|�|�u z� (5.54.2) 

To ease the derivation, let us assume fully-connected networks, and by using (5.54) in 

(5.54.1) the overall dynamics of the first agent can be given as follows: 

	r�� = iz��, z��, z�3l ¢	��	��	�3£ + ij��, j��, j�3l ¢	��	��	�3£ + i?ℎ��|���, ?ℎ��|���l v	��	��w 

z�� = G� − ?��|��� − ?�3|��� − ?ℎ��|��� 

z�� = ?��|��� 

z�3 = ?�3|��� 

j�� = G� − ?<��|��� − ?<�3|��� − ?ℎ��|��� 

j�� = ?<��|��� 

j�3 = ?<�3|��� 

	r�� = iz��, z��, z�3l ¢	��	��	�3£ + ij��, j��, j�3l ¢	��	��	�3£ + i?ℎ��|���, ?ℎ��|���l v	��	��w 

z�� = G3 − ?��|��� − ?�3|��� − ?ℎ��|��� 

z�� = ?��|��� 

z�3 = ?�3|��� 

j�� = G% − ?<��|��� − ?<�3|��� − ?ℎ��|��� 
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j�� = ?<��|��� 

j�3 = ?<�3|��� 

 (5.54.3) 

Similarly, the overall dynamics of the second agent can be given as follows: 

 	r�� = iz(��, z(��, z(�3l ¢	��	��	�3£ + ij̅��, j̅��, j̅�3l ¢	��	��	�3£ + i?ℎ��|���, ?ℎ��|���l v	��	��w 

z(�� = ?��|��� 

z(�� = G� − ?��|��� − ?�3|��� − ?ℎ��|��� 

z(�3 = ?�3|��� 

j̅�� =  ?<��|��� 

j̅�� = G� − ?<��|��� − ?<�3|��� − ?ℎ��|��� 

j̅�3 = ?<�3|��� 

	r�� = i z(��, z(��, z(�3l ¢	��	��	�3£ + i j̅��, j̅��, j̅�3l ¢	��	��	�3£ + i?ℎ��|���, ?ℎ��|���l v	��	��w 

z(�� = ?��|��� 

z(�� = G3 − ?��|��� − ?�3|��� − ?ℎ��|��� 

z(�3 = ?�3|��� 

j̅�� = ?<��|��� 

j̅�� = G% − ?<��|��� − ?<�3|��� − ?ℎ��|��� 

j̅�3 = ?<�3|��� 

 (5.54.4) 

Also, the overall dynamics of the third agent can be given as follows: 
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 	r�3 = iz���, z���, z��3l ¢	��	��	�3£ + ij̿��, j̿��, j̿�3l ¢	��	��	�3£ + i?ℎ3�|���, ?ℎ3�|���l v	��	��w 

z��� = ?3�|��� 

z��� = ?3�|��� 

z��3 = G� − ?3�|��� − ?3�|��� − ?ℎ3�|��� 

j̿�� = ?<3�|��� 

j̿�� = ?<3�|��� 

j̿�3 = G� − ?<3�|��� − ?<3�|��� − ?ℎ3�|��� 

	r�3 = iz���, z���, z��3 l ¢	��	��	�3£ + i j̿��, j̿��, j̿�3l ¢	��	��	�3£ + i?ℎ3�|���, ?ℎ3�|���l v	��	��w 

z��� = ?3�|��� 

z��� = ?3�|��� 

z��3 = G3 − ?3�|��� − ?3�|��� − ?ℎ3�|��� 

j̿�� = ?<3�|��� 

j̿�� = ?<3�|��� 

j̿�3 = G% − ?<3�|��� − ?<3�|��� − ?ℎ3�|��� 

 (5.54.5) 

Now, let _
� = i	��, 	��, 	�3l&, _
� = i	��, 	��, 	�3l&, _
�� = 	��1m
W&
 and _
�� =

	��1m
W&
. So, we can write the MAS dynamics as follows: 

¢_r
�_r
�£ = tG�<W − ?|����ℒ� +ℋ�� G�<W − ?|����ℒ� +ℋ��G3<W − ?|����ℒ� +ℋ�� G%<W − ?|����ℒ� +ℋ��u �_
�_
�� 
+? t|���<W |���<W|���<W |���<Wu tℋ� i0li0l ℋ�u �_
��_
��� 
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 (5.54.6) 

where: ℒ� and ℒ� are the associated state-dependent Laplacian matrices that convey the 

first and second states of each agent to its neighbors, respectively. ℋ� and ℋ� denotes the 

pinning gains of the first and second states of the leader with the corresponding first and 

second states of each follower, respectively. Also, we have ℋ� = h.G�iℎ�� , ℎ�� , ℎ3�l�,
h = 1,2. 

 

Figure 5.20. Three 2nd-order LTI agents with a single leader where each follower state is connected via a different network 

topology. The same can be said about the pinning gains denoted by the letter ℎ. 

Using the Kronecker product operator, (5.54.6) can be simplified as follows:  

_r
 = ¢_r
�_r
�£ = ³I⊗ <W − ?�¸; ⊗ <W� tℒ� +ℋ� i0li0l ℒ� +ℋ�u´ �_
�_
��
+ ?�¸; ⊗ <W� tℋ� i0li0l ℋ�u �_
��_
��� 

= Iã((( }_
���, _
����� _
��� + ã̧((( }_
���, _
����� _
���� = �»
�	
� 

 (5.54.7) 

where: ; = i��, ��l and _
� = v_
��& , _
��&w&
. 

□ 
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Remark 5.18: It is easy to extend the results shown in (5.54.7) for agents with state vector 

	
� ∈ ℜ~ since (5.54.7) provides a systematic way of doing this by simply introducing 

additional networks. 

Now, we would like to show the equivalency between our representation and the standard 

one available in the literature when the communication networks are alike, i.e., when ℒ� =
ℒ� and ℋ� = ℋ�, see [171] for example. So, by rearranging (5.54.3), we will end up having 

the following: 

	r�� = iz���, z���l v	��	��w + ij���, j���l v	��	��w + iO���, O���l v	�3	�3w + i?ℎ��|���, ?ℎ��|���l v	��	��w 
z��� = G� − ?��|��� − ?�3|��� − ?ℎ��|��� 

z��� = G� − ?��|��� − ?�3|��� − ?ℎ��|��� 

j��� = ?��|��� 

j��� = ?��|��� 

O��� = ?�3|��� 

O��� = ?�3|��� 

	r�� = iz���, z���l v	��	��w + ij���, j���l v	��	��w + iO���, O���l v	�3	�3w + i?ℎ��|���, ?ℎ��|���l v	��	��w 
z��� = G3 − ?��|��� − ?�3|��� − ?ℎ��|��� 

z��� = G% − ?��|��� − ?�3|��� − ?ℎ��|��� 

j��� = ?��|��� 

j��� = ?��|��� 

O��� = ?�3|��� 

O��� = ?�3|��� 

 (5.54.8) 
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Similarly, both (5.54.4) and (5.54.5) can be rearranged. So, the overall MAS of three 

identical 2nd-order general LTI systems can be given as follows: 

	r
��� = i<W⨂I − ?)ℒ8�	
� +ℋ8�	
, 	
��*⨂¸;l	
��� + i?ℋ8�	
, 	
��⨂¸;l	
���� 

= Iã 	
���, 	
����!	
��� + ã̧ 	
���, 	
����!	
���� = �
�	
� 

 (5.54.9) 

where: <W ∈ ℝW×W is the identity matrix and ⨂ is the Kroneker product of two matrices. 

	
 = S	
�& , 	
�& , ⋯ , 	
W&T&
 and 	
� = 1m
W⨂i	��, 	��l& where: 1m
W = i1 1 ⋯ 1l&. 

The nonlinear systems �»
�	
� and �
�	
� in (5.54.7) and (5.54.9) are given in a semi-linear 

state-dependent form. The stability of these systems can be ensured by a careful design of 

the networks, and the static values of both ? and ; used. However, since the Laplacian 

matrices under study are state-dependent, as well as the pinning matrices, static values of 

both ? and ; can be used to ensure stability of the overall MAS if and only if we restrict 

the states to evolve within a prescribed region in the state-space that includes their initial 

conditions as well. This restriction can be described as conservative and might not be 

applicable in many situations.   

Considering the above discussion, it seems appealing to use a variable state-feedback gain, 

i.e., ;̂� 	
�, 	
�!, instead of a static one, i.e., ;. Under such variable gain, we might simply 

keep the value of  ? to be static or simply set it to exactly 1. A self-loop can be added at 

each follower agent as depicted in Figure 5.21. These loops will enable agents to maintain 

their stability irrespective of the changes occurring at the state-dependent Laplacian matrix 

and at the same time they will facilitate the agents with self-awareness and the ability to 

situate themselves within the evolving contexts. This is equivalent to adding a stabilizing 

local controller. 
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Revisiting Example 5.2, the modified communication protocol is given as follows: 

z� = −?i��, ��l
ÎÏÐ
ÏÑ � Þ��� 	��, 	��! 00 <�� 	��, 	��!� v	�� − 	��	�� − 	��w��∈��+ tℎ���	��, 	��� 00 ℎ���	��, 	���u v	�� − 	��	�� − 	��w ÒÏÓ

ÏÔ − ;̂� 	
� , 	
�∈�� , 	
�!	
� 

 (5.55) 

where: ;̂� = S�(��, �(��T. 

 

Figure 5.21. Three 2nd-order LTI agents with a single leader where each followers state is connected via a different 

network topology where the self-loops added are evident. 

In (5.55), the role of the gain ; is to reflect the changes within the neighborhood, while ;̂ 

is responsible for, mainly, maintaining the stability of the agent irrespective of these 

changes. Thus, by using ;̂, the agent becomes self-aware and situated within its context. It 

is worth noting that the gain ; could be the same for all agents while ;̂� is assumed to be 

different and varying. 

Under (5.55), the dynamics for the first agent- for example- can be given as follows: 

	r
� = I��	
�, 	
�, 	
�, 	
3�	
� + ¸���	
�, 	
��	
� + ¸�3�	
�, 	
3�	
3 + ¸���	
�, 	
��	
�¸;̂�	
� 

 (5.55.1) 

where:   

I� = vç�� ç��ç�� ç��w = I − �¸�� + ¸�3 + ¸��� 

ç�� = �G� − ?��|��� − ?�3|��� − ?ℎ��|���� 
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ç�� = �G� − ?<��|��� − ?<�3|��� − ?ℎ��|���� 

ç�� = �G3 − ?��|��� − ?�3|��� − ?ℎ��|���� 

ç�� = �G% − ?<��|��� − ?<�3|��� − ?ℎ��|���� 

¸�� = ?¸; t�� 00 <��u , ¸�3 = ?¸; t�3 00 <�3u ,
¸�� = ?¸; tℎ�� 00 ℎ��u 

Thus, the MAS overall dynamics can be written in another format as follows- in which the 

communication networks effects are implicit:  

	r
��� = -	r
�	r
�	r
3
. = �I� − ¸;̂� ¸�� ¸�3¸�� I� − ¸;̂� ¸�3¸3� ¸3� I3 − ¸;̂3¡ �	
�	
�	
3¡ + ¢¸��¸��¸3�£  1m
3 ⊗ 	
�! 

= Iã��� 	
���, 	
����!	
��� + ã̧��� 	
���, 	
����! 1m
3 ⊗ 	
�! 

 (5.55.2) 

where: 1m
3 = i1 1 1l&. 

If the communication networks used are undirected, then the stability of (5.55.2) can be 

easily studied as will be discussed shortly. The network topology appears implicitly under 

(5.55.2) such that when only ¸�� ≠ i0l, then a link exists.  

Remark 5.19: Clearly, if the system matrix I is originally Hurwitz, then the stability of 

(5.55.2) is straightforwardly guaranteed as will be discussed shortly, and there will be no 

need for a local stabilizing controller. However, if the system matrix I is originally 

unstable, then a stabilizing controller for each agent is inevitable.  This could be done using 

adaptive, robust or optimal techniques, for examples.  Since the I� matrices are state-

dependent, one possible approach to design the needed ;̂� gains in (5.52.2) could be 
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through the solution of state-dependent Riccati equation associated with Linear Quadratic 

Regulator (LQR) at each point of the state-space of concern.  

Figure 5.22 depicts a schematic diagram of the resulting first agent dynamics under 

(5.55.2). 

 

Figure. 5.22. The resulting dynamics of the first 2nd-order LTI agent under (5.55). 

Notice that in Iã��� 	
���, 	
����!, each row and column always sum up to I − ¸;̂�. So, -Iã��� 
is acting as a non-singular non-negative block M-matrix. Interestingly, if all �� and ℎ�� 

functions used utilize the same structure of the parameterized C-S model given in (3.116) 

with � = 0.5, then their values will be bounded and ∈ �0, ���/����l.  
For simplicity, having all �� with similar ��� and ��� values, Iã��� will be equivalent to the 

following LTI matrix at full-coupling, i.e., when all agents are connected and all �� 

functions converge to �/√�  including the pinning gains: 

Iã��� = - I� − ¸;̂� ?¸; �/√� ?¸; �/√�?¸; �/√� I� − ¸;̂� ?¸; �/√�?¸; �/√� ?¸; �/√� I3 − ¸;̂3
. (5.56) 

where: I� = I − 3?¸; �/√� if I� is pinned to the leader, and I� = I − 2?¸; �/√� if 

it is not. Under the previous assumptions, and for a general MAS comprising N-identical 

general LTI systems, we may extend the previous results by writing: I� = I −
?�|��| + 1�¸; �/√� if I� is pinned to the leader, and I� = I − ?|��|¸; �/√� if it is 
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not. |��| denotes the in-degree size of the .67 agent. Note that when the .67 agent becomes 

distant from the remaining of the MAS, then we will have I� ≅ I. 

To understand the relation between the controller’s gain ;, the value of the coupling ? and 

agents’ stability, let us consider fixed weighted links among the agents themselves as well 

as the leader. Also, let us ignore the local stabilizing controller, i.e., by having ;̂� = i0l, 
and let the neighborhood controller gain, i.e., ;, be designed independently from the 

network topology using local algebraic Riccati equation (ARE) as follows: 

Let the pair �I, ¸� be stabilizable, and ; = )J�¸&` where ̀  is the unique positive definite 

solution of ARE given as: 

I&` + `I + / − `¸)J�¸&` = 0 (5.57) 

where: / ∈ ℜ~×~ and ) ∈ ℜØ×Ø are positive definite matrices. After finding `, we need 

to determine the suitable value of the coupling ? appearing in (5.56) with �/√� = 1. This 

can be done as follows [9]: 

I�&` + `I� + / − `¸)J�¸&` = 0 (5.57.1) 

Considering ; = )J�¸&` and (5.57), we may find the following after a simple calculation: 

�I − ?��¸;�∗` + `�I − ?��¸;� = −/ + )−2$�? + 1*;&); (5.57.2) 

Where the superscript ∗ denotes the conjugate transpose of a complex matrix, �� = $� +
/�� with $� > 0, �� ∈ ℜ is the .67 complex eigenvalue of the matrix ℒ� +ℋ� with ℒ� is the 

fixed Laplacian matrix that can be associated with a digraph. According to Lyapunov 

theory, if �I − ?��¸;�∗` + `�I − ?��¸;� < 0, then the system is stable. So, solving for 

? in (5.57.2) by forcing the bracket to be negative, yields: 

? ≥ 12$� (5.57.3) 
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Since we want this to be valid for every agent, we need to have the following: 

? ≥ 12Ú.p�$�� , ∀. = 1,2, ⋯ , a (5.57.3) 

It is obvious that the properties of the underlying communication network appeared only 

when choosing the coupling value ?, which facilitates reducing the design process of the 

complete MAS under consideration. 

Choosing ? such that (5.57.3) is valid guarantees unbounded synchronization region [9]. 

The previous results can also be used when the involved matrices are LTI where the locally 

designed controller, i.e., ; = )J�¸&`, minimizes the following local performance index:   

Y� = 12L �	
�&/	
� + zm
�&)zm
�� h�ä
�  (5.57.4) 

and not the global performance of the MAS, which will be investigated in a future work. 

Now, if an agent is far away from its neighbors, then the neighborhood contribution in 

stabilizing that agent will be minor, and therefore the agent my become unstable if it is not 

originally stable. Therefore, the local controller is needed, i.e., ;̂� ≠ i0l. This justifies our 

proposition of adding a local controller in (5.55.1). 

When state-dependent weights are used, a balance between being a self-centered and a 

cooperative member in the team, an agent must situate itself within the current context. 

This can be realized using a state-dependent version of ARE known as state-dependent 

Riccati equation (SDRE) (cf. [172], [173]) as will also be investigated in a future work. 

5.6 Multi-agent Systems of N-Identical nonlinearly-coupled higher-order integrator 

systems 

In this section, an extension of the previous results to include N-identical nonlinearly-

coupled higher-order integrator systems as kinematical trajectory-generator systems will 
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be presented. A set of heterogeneous agents of scalar dynamics given by (5.1) are used in 

conjunction with the developed trajectory-generator systems.  

Suppose we have the following systems given by: 

�r
� = ¸��
��zm
���� (5.58) 

where: �
� ∈ ℝ~ and zm
� ∈ ℝØ.  

Using the identical nonlinearly-coupled higher-order integrators helps in generating more 

sophisticated behaviors. For example, the containment-escorting behavior, shown in 

Chapter 4, can be extended to create a dynamic version of it such that agents will move on 

a spherical surface, generally an ellipsoid, without colliding while conducting the 

containment-escorting behavior in 3-D obstacle-free Euclidean space. This dynamic 

behavior is implemented using dynamical approach and not algorithmic approach. For 

example, the trajectory-generator utilizing angular momentum in 3-D is given as follows: 

�r
� = �Γr�AΓr�BΓr�C¡ = � 0 −Γ�C Γ�BΓ�C 0 −Γ�A−Γ�B Γ�A 0 ¡ ¢zA�zB�zC� £ (5.58.1) 

Let zA� be given as follows: 

zA� = � ��A �∙,∙�FΓ� − Γ�H�∈��q
 (5.58.2) 

where: the superscript 	 denotes the 	-direction of the Euclidean space under 

consideration. Note that it is possible, by design, to limit the agent neighbors to certain 

agents in any direction even if they can communicate. Also ��A  can be other than ��B  or ��C , 

in general. Thus, the overall dynamics of the MAS consisting of N trajectory-generator 

systems is given as follows: 
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/rm
 = −�� � i0l −fC fBfC i0l −fA−fB fA i0l ¡ -ℒA Γ
 A! i0l i0li0l ℒ B Γ
B! i0li0l i0l ℒC Γ
 C!. �Γ
 AΓ
BΓ
 C¡ (5.58.3) 

where: �� > 0 is a real constant and scalar that determines the rate of convergence and 

f� = h.G Γ
�!, ø = )	, ', 	*. Figure 5.23 shows the simulation results of 3-D 

containment behavior over the network shown in Figure 2.47 and the protocol is designed 

according to (5.58.3) where the ideal trajectory signals were used. Note that the algebraic 

connectivity of the network in the z-direction is initially higher than the other two 

networks; simply because agents are initially assumed to be at the quadrants of a semi-

sphere sliced by the x-y plane, so five agents share initially the same plane. This also 

justifies the connectivity evolution during approximately the first 40 seconds after which 

3-D motion starts taking place. 

Now, let us examine the implications of Remark 5.1. If ��A,B,C in (5.58.2) depends totally 

on the actual driven system state �<
� = i	� , '�, ç�l&, i.e., ��A  	� , 	�!, then the resulting MAS 

trajectory-generator will be a linear parameter-varying system and its resulting behavior is 

orbiting with the exception that agents will move along a spherical surface to approach the 

orbiting behavior as can be seen from Figure 5.24. 

  

(a) (b) 



323 
 

 

(c) 

Figure. 5.23. The 3-D containment behavior with ��A,B,C Γ� , Γ�!. (a) ideal trajectories of all agents. (b) ideal trajectory of 

agent 3. (c) algebraic connectivity of all networks using the MATLAB 1.�∙� function. 

  

(a) (b) 

Figure. 5.24. The 3-D containment behavior with ��A,B,C 	� , 	�! in all networks. (a) ideal trajectories of all agents. (b) 

algebraic connectivity of all networks using the MATLAB 1.�∙� function. 

Similarly, when ��A,B,C in (5.58.2) depends partially on the actual driven system state and 

the ideal state generated by the trajectory-generator systems of its neighbors, i.e., 

��A  	� , Γ�A!, then the same results shown in Figure 5.24 are obtained. However, if we 

choose ��A  Γ�A, 	�!, then the results are shown in Figure 5.25. These changes must be 

concurrently done to the other two networks, i.e., ��B  and ��C , as well. In Figure 5.24, agents 
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will be orbiting on the surface of a semi-sphere with maximum likelihood of their existence 

in a certain position- not characterized in this study- while maintaining a distance among 

themselves, so collision is avoided as can be seen from (4.58.1). The difference between 

the first and last cases is obvious by observing Figures 3.23.b and 3.25.b. Figure 5.25 shows 

the orbiting behavior that evolves about a point moving on the spherical surface containing 

the agents’ initial positions. 

  

(a) (b) 

Figure. 5.25. The 3-D dynamic containment behavior with �� E�A, 	�! for all networks. (a): ideal trajectories of all 

agents. (b): ideal trajectory of agent 3. 

5.6.1: Dynamic containment-escorting behaviors 
In many situations, composite behaviors may evolve within a context during mission 

conduction. In Chapter 4, we have discussed the switching mechanism among agents 

residing in a behavior bank. This switching in behaviors reflects the fact that a single 

behavior may fully-dominate a certain situation over a certain period of time.  

In this section, we will provide simulation examples by which we demonstrate the ability 

of the proposed framework to prove that it is efficient in designing composite behaviors. 

A composite behavior may consist of several primitive behaviors that evolve concurrently 

or sequentially. 

A set of parallel behaviors consists of several primitive behaviors running concurrently at 

the same time-space dimensions. This allows cooperative-competitive behaviors within the 
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same set to be aware of each other and even to evolve on top of each other, and in many 

cases to be active at the same time. 

Note 5.2: It is intended here to make things easy, so extracting an individual behavior 

contribution in tracking errors, prioritizing and solving conflicts among behaviors are all 

reserved for a future investigation. Some results are available in [72] where it utilizes the 

concept of null-space to mainly prioritize behaviors. Here, we assume that behaviors are 

concatenated linearly as can be found in regular examples where a team of agents 

synchronizes with a leader. 

Sequential behaviors happen one after another based on time, event or task completion 

such that they do not share the same time interval. The initial conditions of ¸1ℎ�J� comes 

from ¸1ℎ� if they are aware of each other, or from the last memory of  ¸1ℎ�J� if they are 

not aware of each other. As a result, there might be a jump. This is depicted in Figure 5.26. 

 
 

(a) Behaviors aware of each other (b) Behaviors unaware of each other 

Figure. 5.26. Difference between parallel and sequential behaviors. 

Remark 5.20: In the coming examples, we assume that all agents are pinned to the leader 

so that they are all aware of its position, and the leader tracking error is ignored. Moreover, 

the tracking errors used are related only to the containment behavior. 

5.6.1.1: Dynamic containment-escorting behaviors 

Interestingly, if (5.58.3) is parameterized using several parameters, i.e., 

FGAA, GBB , GCC, GA, GB , GCH ≥ 0 ∈ ℜ, that correspond to a set of behaviors, then it can be 

given as follows: 
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/rm
 = − � GAA< −GCfC GBfBGCfC GBB< −GAfA−GBfB GAfA GCC< ¡ ÃÄÄ
Å��AℒA Γ
 A!Γ
 A��Bℒ B Γ
B!Γ
B��CℒC Γ
 C!Γ
 C ÇÈÈ

É
 (5.58.4) 

where: ��A, ��B , ��C > 0 are real constant scalars that determines the rate of convergence in 

each direction and f� = h.G Γ
�!, ø = )	, ', 	*.  

If FGAA, GBB , GCCH = 0 and FGA, GB , GCH = 1, then dynamic containment-escorting behavior 

will happen as shown in Figure 5.27. If FGAA, GBB , GCC, GCH = 0 and FGA, GBH = 1, then 

dynamic containment-escorting behavior will happen while agents 2,3,4 and 5 move on a 

cylindrical surface about the z-axis as shown in Figure 5.28. If FGAA, GBB , GCC, GAH = 0 and 

FGB , GCH = 1, then dynamic containment-escorting behavior will happen while only agents 

4 and 5 move as shown in Figure 5.29.   

 

 

(a) 
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(b) 

Figure. 5.27. The 3-D dynamic containment-escorting behavior with �� Γ� , Γ�! for all networks. (a): ideal trajectories of 

all agents. (b): ideal trajectories of agent 3 while escorting agent 1 combining both containment and escorting behaviors. 

 

(a) 

 

(b) 

Figure. 5.28. The 3-D dynamic containment-escorting behavior with �� Γ� , Γ�! for all networks FGAA , GBB , GCC, GCH = 0 

and FGA, GBH = 1. (a) ideal trajectories of all agents. (b) ideal trajectories of agent 3. 
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(a) 

 

(b) 

Figure. 5.29. Alternating ideal trajectories of agents 4 and 5 during the 3-D dynamic containment-escorting behavior with 

�� E� , E�! for all networks FGAA , GBB, GCC, GAH = 0 and FGB , GCH = 1. (a) ideal trajectory signals. (b) actual agents 

trajectories. 

In general, many other behaviors can be generated using (5.58.4) by allowing 

FGAA, GBB , GCCH ∈ )0,1* and FGA, GB , GCH ∈ i0,1l and they are not reported here due to 

compactness issues. 

It is obvious that once Remark 5.1 was implemented, the modified �� functions affected 

the generated behaviors. However, there is a need to have some feedback from the driven 

agent such that the trajectory-generator system can accommodate the agent dynamical 

limitations. So, modifying (5.26), we may rewrite (5.58.2) as follows: 

zA� = À ���A¹��1�A�+ 1Á � ��A �∙,∙�FΓ� − Γ�H�∈��q
 (5.58.5) 



329 
 

where: 1�A = Γ� − 	� is the tracking error from the previous time instance where 1�A���� =
0, see Figure 5.1, and ���A > 0 is a real constant. The parameter ¹� ≥ 0 can be used by the 

.67 agent itself or a performance monitoring unit to remove the agent from the team; to 

avoid severe deterioration in the overall performance of the MAS while giving the chance 

to the erroneous agent to track the changes- if it is connected- and to pick the instance to 

rejoin the team once recovered. Consequently, ¹� will be reset to an appropriate value.  

Both zB� and zC� can be modified accordingly. 

Remark 5.21: The added tracking error term in (5.58.5) is inversely-proportioned to the 

tracking error in the previous time instance and thus changes the speed of the currently 

generated trajectory. This indirectly makes all agents aware of the slowest agent in their 

neighborhood. Note that this awareness does not require agents to know the actual 

dynamics of the slowest one which could be of different dynamics, in general. 

 Using (5.58.5), we can rewrite (5.58.4) as follows: 

/rm
 = − � GAA< −GCfC GBfBGCfC GBB< −GAfA−GBfB GAfA GCC< ¡ -�AℒA Γ
 A!Γ
 A�Bℒ B Γ
B!Γ
B�CℒC Γ
 C!Γ
 C . (5.58.6) 

where: �� = h.G ³t �i��j��¥����� , ⋯ , �i��j��¥�� ���u´ > 0 is acting as a damping term and f� =
h.G Γ
�! with ø = )	, ', ç*. Note that due to the available coupling, an agent motion in 

one direction will be affected by its inability to track the ideal trajectory in the remaining 

directions. 

Remark 5.22: Note that the tracking error of the dynamic containment behavior was easy 

to derive since we assume the states to be fully available. 
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Now, let us assume six nonidentical scalar systems given by (5.1) under the control of 

(5.58.4) and (5.58.6) to assess the difference. Let the agents dynamics given by (5.1) such 

that )G�, G�, G3, G%, G', G&* = )−2, −1, −3, −0.4, −0.8, −1.2* and )|�, |�, |3, |%, |', |&* =
)0.2, 0.8, 0.5, 0.2, 0.3, 0.1*. The local controllers’ gains were all zeros; since agents are 

stable, while the tracking gains were all set to 20. Figure 5.30 shows the effect of the 

damping term used in (5.58.5) where the tracking error was reduced as can be seen from 

Figure 5.29.a and c. However, agent 3 was unable to cover the same regions of the working 

space as can be seen from figures 5.30.b and 5.23.b.    

  

(a) (b) 

 

(c) 

Figure. 5.30. Resulting trajectories during containment behavior. (a) tracking error of all agents under (5.58.6). (b) actual 

trajectories of agent 3 under (5.58.6). (c) tracking errors of all agents under (5.58.4). 
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Remark 5.23: The previous example should not be considered as a deficiency in the 

proposed approach. Rather it should be used to emphasize the necessity for a careful 

selection of agents, mainly their dynamics, such that the intended behavior is feasible. If 

specific initial conditions are needed before a behavior is started, then a formation behavior 

should precede that behavior such that the needed agents’ positions are achieved. This is 

an example of sequential behaviors.  

5.7 Multi-agent Systems of N-Identical affine-in-input nonlinear systems 

In this section, a MAS consisting of N-identical non-scalar affine-in-input nonlinear 

systems will be presented. Suppose that we have the following systems given by: 

�r
� = �
��
�� + ¸��
��zm
���� (5.59) 

where: �
� ∈ ℝ~ and zm
� ∈ ℝØ.  

If �
��
�� is given or desired in a LTI form, and the control input is designed as shown in 

(5.58.5), then a modified version of (5.58.6) that includes the additional drift terms, i.e., 

�
��
��, can be given as follows: 

/rm
 = − áI + ¸ -�AℒA Γ
 A! i0l i0li0l �Bℒ B Γ
B! i0li0l i0l �CℒC Γ
 C!.â �Γ
 AΓ
BΓ
 C¡ (5.59.1) 

where:  

I = � i0l −G<C< G<B<G<C< i0l −G<A<−G<B< G<A< i0l ¡ , ¸ = � GAA< −GCfC GBfBGCfC GBB< −GAfA−GBfB GAfA GCC< ¡ 

with f� = h.G Γ
�! with ø = )	, ', ç*, and FG<A, G<B , G<CH ∈ )0,1* are constants. When 

FG<A, G<B , G<CH are taken as )0,0,1*, then orbiting about the z-axis is achieved. 
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5.7.1: Dynamic containment-escorting-orbiting behaviors 
Note that if I in (5.59.1) is Hurwitz, then the trivial consensus, i.e., agents will approach 

the origin, will be achieved while agents moving along spiral trajectories as shown in 

Figure 5.31. If agent 1 is initially moving or at a location other than the origin, then the 

same behavior can be achieved by simply subtracting its initial position from the positions 

of other agents once the behavior is initiated, see Remark 5.20. The result is shown in 

Figure 5.31. The results shown in figures 3.31 and 3.32 were obtained using 

FGAA, GBB , GCCH = −1, FGA, GB , GCH = 0, and FG<A, G<B , G<CH = )0,0,1*. 

 

Figure. 5.31. The 3-D dynamic containment-escorting-orbiting behavior with �� Γ� , Γ�! when I in (5.59.1) is Hurwitz. 
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(b) 

 

(c) 

Figure. 5.32. The 3-D dynamic containment-escorting-orbiting behavior with �� Γ� , Γ�! and additional damping given 

by (5.59.1). (a) containment-orbiting trajectory-generator signals. (b) actual trajectory of all agents during the complete 

behavior when agent 1 is initially at the origin. (c) actual trajectory of all agents during the complete behavior when agent 

1 is initially away from the origin.  

Figure 5.33 shows the results of the dynamic containment-orbiting behavior when the 

parameters are set as follows: FGAA, GBB , GCCH = 0, FGA, GB , GCH = 1, and FG<A, G<B , G<CH =
)0,0,1*. Note that there was no collision among agents during conducting this behavior, 

and the minimum distance among agents was 14.0288. 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure. 5.33. The 3-D dynamic containment-orbiting behavior with �� Γ� , Γ�! and additional damping given by (5.59.1) 

when agents are spaced on a hemisphere. (a)-(b) not equally or ellipsoid like. (c)-(d) equally or circle like. 

Remark 5.24: The effect of the drift term in (5.59) can be observed by comparing the results 

shown in figures 5.23.a and 5.33. 

5.7.1.1: Shaping the Dynamic containment-escorting-orbiting behaviors using 
sensory-input 

In a previous section, we have discussed mapping the environment into the trajectory-

generator Kino-dynamics using HPFs, and two examples where provided. Here, in this 

subsection, we will demonstrate the usefulness of the sensory-input in shaping the overall 

behaviors and in triggering a background-running behavior to respond to certain situations. 

The kinematic version of the trajectory-generator systems will be used in the example 

provided. 

Now, it is desired to show how using (5.43) can upgrade the behavior obtained using 

(5.59.1)- for example- such that agents avoid colliding with obstacles based on sensory-

input available onboard. Figure 5.34 shows the 3-D dynamic containment-escorting-

orbiting behavior while being affected by a moving obstacle wandering in the working 
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space. In Figure 5.34, onboard sensors provide readings about the obstacle position for the 

agent and fed them into an on-the-fly modelling capability that converts these positions 

into forces related to HPFs- as shown in (5.43)- which can then be localized as shown in 

Figure 5.14. However, if these readings are related to a target, then instead of avoiding that 

object it is intended to target it. This is demonstrated as follows: 

 

(a) 

 

(b) 

Figure. 5.34. Results of dynamic containment-escorting-orbiting during dynamical single-point-obstacle avoidance. (a) 

ideal trajectories of all agents due to containment-orbiting trajectory-generator system. (b) actual trajectory of all agents 

during the complete behavior. 
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Figure 5.35 shows an attack-protect scheme where Y-cooperating or non-cooperating point 

attackers attack an asset in an unplanned manner, i.e., no attacking plan is used. The 

attackers try to hit the asset and at the same time evade the guardians whose responsibilities 

are to protect, contain and escort the asset to a safe zone. Guardians start by performing the 

3-D dynamic containment which will be abandoned by a guardian once an attacker is 

detected. The idea here is to have at least two evolving behaviors within the trajectory-

generator co-system within a guardian such that switching among them result in the overall 

response to certain context. In contrast to the attackers, guardians utilize attractive artificial 

forces that ensure capturing the attackers while attackers utilize repulsive artificial forces 

to evade the guardians. 

Remark 5.25: In Figure 5.35, attacker-guardian pairs are established based on minimum 

separation. However, more intelligence can be introduced to control the attacker-guardian 

relations especially if there are more attackers than guardians.  
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(b) 

 

(c) 

Figure. 5.35. Results of unplanned attack of four agents targeting an asset protected by dynamic containment-escorting-

orbiting utilizing five agents. (a): ideal trajectories in 2-D. (b): actual trajectories in 2-D. (c): actual trajectories of 3-D 

followed by 2-D dynamic containment-escorting-orbiting behaviors based on the time elapsed. 

5.7.2: Non-holonomic wheeled robots 
In this subsection, we present the results obtained in guiding a group of six front-wheel 

steered robots (FSR) to achieve average consensus in a working space containing stationary 

obstacles. The kinematical trajectory-generator (5.33) was used with the following 

synchronizing error: 
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$��1�� = ��1� = ���	� − Γ��, �� ≫ 1 (5.60) 

The synchronizing error signal plays a significant role in stimulating the trajectory-

generator system to consider the robot motion and capabilities, and therefore generates 

suitable trajectories that the robot can follow.  

A simplified model for FSR robots is given as follows [117]: 

¢	r'rñr £ = ¢?oq�ñ� 0q.p�ñ� 00 1£ vj�w (5.61) 

Where: ñ is the heading, j is the linear velocity and � is the angular velocity of the wheels. 

The integration between the trajectory-generator system and the .67 FSR is depicted in 

Figure 5.36.a where a simple nonlinear transformation is used to generate the input signals 

needed for the FSR, namely: the speed and heading. This setup is like what one may 

experience when commanding a radio-controlled ground vehicle where the operator acts 

like the trajectory-generator system in our setup presented while the radio kit is like the 

nonlinear transformation used. The results are shown in Figure 5.36, in which the following 

consensus value was obtained: )−13.6564, 22.9838, 0*, while the actual average value 

of robots’ initial conditions was )−11.8753, 18.8720, 0*. 

Remarkably, the nonlinear transformation used in Figure 5.36.a is another example of 

possible coupling and transformations that can be used in the designed trajectory-generator 

systems to facilitate their functionality. Compare it to the coupling shown in (5.58.6), for 

example. The chattering in the control signal shown in Figure 5.36.e is mainly due to the 

localization of obstacles potential field. 

Note 5.3: It is worth noting that other behaviors besides the ones presented here are also 

feasible. See, Chapter 4 for more information. 
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Figure. 5.36. Simulation results of guiding a group of six FSR in a working space that contains stationary obstacles. (a) 

trajectory-generator, nonlinear transformation and FSR integration. (b) top-view of working space and FSR actual 

trajectories. (c) FSR positions versus time. (d) tracking error of order 10JK. (e) control signal along the x-axis. 

5.7.3: Under-actuated Flying robots 
In this subsection, we present the results obtained in guiding a group of six under-actuated 

flying robots, namely: quadrotors. In this example we will emphasize on using the kino-

dynamical trajectory-generator system as an ultimate result of the proposed framework in 

this thesis. Also, this example will aid in appreciating our philosophy which entails using 

an idealized trajectory-generator system to steer various realistic systems. 

Previously, in equation (5.59.1), the position command signal was generated. However, in 

more realistic situations, the velocity command is also needed; since most realistic robots 

can be approximated or are of second order dynamics. So, taking the time-derivative of 

(5.59.1) yields the following- when �A,B,C are fixed constants: 

¢/rm
/em
£ = t\� i0l\� \�u �/m
/rm
� (5.62) 

where: \� is given in (5.59.1) and \� is given as follows: 
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\� = - −GAA�Aℒ ̅A Γ
 A! GC�BFfCr ℒ B + fCℒ ̅BH −GB�CFfBr ℒC + fBℒ ̅CH−GC�AFfCr ℒA + fCℒ ̅AH −GBB�Bℒ̅ B Γ
B! GA�CFfAr ℒC + fAℒ ̅CHGB�AFfBr ℒA + fBℒ ̅AH −GA�BFfAr ℒ B + fAℒ ̅BH −GCC�Cℒ ̅C Γ
 C! . 
With: f� = h.G�ø�, ø = )	, ', 	* and ℒ ̅� = Sh ��� ! h�⁄ T. 
Now, we need to ensure the stability of the kino-dynamical trajectory-generator system. 

Recalling Theorem 5.3, we need to ensure that \� is bounded. 

By re-examining the structure of (5.62), another representation for the x-acceleration 

signals can be given as follows: 

Γe
 A = −GAA�A �ℒ ̅AΓ
 A + ℒAΓr
 A� + GC�BfCrℒ BΓ
B + GC�BfC �ℒ ̅BΓ
B + ℒ BΓr
B�
+ G<CΓr
B − G<BΓr
 C − GB�CfBr ℒCΓ
 C − GB�CfB �ℒ ̅CΓ
 C + ℒCΓr
 C� (5.63) 

Now, we would like to simplify the terms �ℒ ̅�Γ
� + ℒ�Γr
�� such that the boundedness of \� 

is clear. This can be done by designing the ���  weighting functions as follows: 

Using the parameterized C-S model given in (3.116), we may write the following: 

Γr�� = � ��� Fø� − ø�H�∈��
 (5.63.1) 

where the coupling among the spatial directions is ignored for simplicity. So, we may find 

the second time derivative as follows: 

Γe�� = � Fø� − ø�H  h���h��∈��
+ � ��� Før� − ør�H�∈��

 (5.63.2) 

where: 

h���h� = ¿���¿ø� ør� + ¿���¿ø� ør� (5.63.3) 

Recalling (3.35) imposed by the framework, we may rewrite (5.63.3) as follows: 
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h���h� = ¿���¿ø� Før� − ør�H = 2��� ø� − ø�! ør� − ør�!v� ø� − ø�!� + �w���  (5.63.4) 

Substituting (5.63.4) into (5.63.2) and doing the simplification, yields: 

Γe�� = � � á��1 − 2�� ø� − ø�!� + �v� ø� − ø�!� + �w��� â  ør� − ør�!�∈��
 (5.63.5) 

Taking � = 0.5, yields: 

Γe�� = � � ± �v� ø� − ø�!� + �w�.'²  ør� − ør�! = � ̿���  ør� − ør�!�∈���∈��
 (5.63.6) 

Consequently, the global dynamics are given as follows: 

Γe
� = − �ℒ ̅�Γ
� + ℒ�Γr
�� = −ℒ ̿�Γr
� (5.63.7) 

where: ℒ ̿� = S̿��� T. 
Therefore: 

Γe
 A = −GAA�Aℒ ̿AΓr
 A + GC�BfCr ℒ BΓ
B + GC�BfCℒ̿ BΓr
B + G<CΓr
B − G<BΓr
 C
− GB�CfBr ℒCΓ
 C − GB�CfBℒ ̿CΓr
 C 

(5.63.8) 

The acceleration signals in the other spatial directions follow in the same manner. 

So, we may rewrite \� as follows: 

\̂� = - i0l GC�BfCrℒ B −GB�CfBr ℒC−GC�AfCrℒA i0l GA�CfAr ℒCGB�AfBr ℒA −GA�BfAr ℒ B i0l . (5.63.9) 

Recalling the preservation of angular momentum demonstrated in (5.58.1) and the 

boundedness of the control input under the C-S model with � = 0.5, it is straightforward 
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to conclude that \̂� is indeed bounded. Therefore, the kino-dynamical trajectory generator 

is also stable. 

5.7.3.1: Introducing the error signals 

Previously, when deriving (5.62) we assumed �A,B,C to be fixed constants. However, in 

previous sections we have demonstrated the usefulness of introducing the tracking error 

signals to activate or inhibit the idealized trajectory-generator signals such that they 

accommodate the dynamics of the steered agents. Special importance arises when 

considering the multiplicative tracking error given in (5.58.5); since its time derivative will 

appear in the acceleration signal generated in the kino-dynamical trajectory-generator 

proposed and therefore may affect its stability if the local tracking controller fails to bound 

the magnitude of the tracking error. This is investigated as follows: 

Taking the time derivative of �� given in (5.58.6), yields: 

�r� ≡ h��h� = −¹ ��� h.G ª q.p�1��� 1r�� ¹�1���+ 1!�« (5.64) 

where: ¹ = ¹�  ∀. and  ��� =  ����  ∀. are all fixed constants. 

Therefore, the contribution of the multiplicative tracking error can be included in \̂� as 

follows: 

\�� = - i0l GCF�BfCr ℒ B + �r BfCℒ BH −GBF�CfBr ℒC + �r CfBℒCH−GCF�AfCr ℒA + �r AfCℒAH i0l GAF�CfAr ℒC + �r CfAℒCHGBF�AfBr ℒA + �r AfBℒAH −GAF�BfAr ℒ B + �r BfAℒ BH i0l . 
 (5.64.1) 

Similarly, considering the additive tracking error can be investigated as follows: 

Let the additive tracking error be given as such: 
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G1�� = $ ø� − ø�!}� ø� − ø�!� + 1��.' (5.65) 

where: $, � > 0 are fixed and real constants. So, the time derivative of the tracking error 

is given as follows: 

G1r �� = $ ør� − ør�!}� ø� − ø�!� + 1��.' (5.65.1) 

Therefore, the overall dynamics of the kino-dynamical trajectory-generator system can be 

given as follows: 

¢/rm
/em
£ = �\� i0l\�� \�� �/m
/rm
�+ �I�mmmmm
I�rmmmmm
� (5.66) 

where: I�mmmmm
 = iG1mmmm
A, G1mmmm
B , G1mmmm
Cl& with G1mmmm
� = h.G�G1��, ⋯ , G1W� �, ø = )	, ', ç*. 

Remark 5.26: During the numerical simulation of the dynamic containment behavior under 

the kino-dynamical trajectory-generator system given in (5.66), it was found that numerical 

problems were inevitable; because it was difficult to find a suitable solver/step-size 

combination that uniformly solves the stiff problem over the intended time interval.  

 

Considering Remark 5.26 and to avoid numerical problems, it is possible to rewrite (5.66) 

as follows: 

¢/rm
/em
£ = ti0l <\�� \�u �/m
/rm
�+ �I�mmmmm
I�rmmmmm
� (5.67) 

which was found numerically stable. The identity matrix is denoted by <. 

Remark 5.27: The initial conditions of the velocity signals must be evaluated using 

(5.59.1). 
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The following example demonstrates the dynamic containment behavior under (5.67) 

where a group of six quadrotors are used. 

Example 5.3: Consider a MAS comprising five quadrotors where they must contain the 

sixth robot dynamically in the 3-D obstacle-free space. Both the interaction and 

communication graphs are depicted in Figure 5.37. The local nonlinear tracking controllers 

are designed according to [174] and the Simulink model is shown in Figure 5.38. 

 

Figure. 5.37. The communication and interaction graph used in quadrotors’ simulation example. 

 

(a) 
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(b) 

Figure. 5.38. The Simulink model used in simulating the dynamic containment behavior under (5.67). 

Next, the simulation results of the above setup will be presented for mainly four cases, 

namely: without tracking errors involved, with additive tracking error only, with 

multiplicative tracking error only and finally with both types of tracking errors involved. 

The effect of introducing the tracking errors can be read from generated trajectories and 

the magnitude of the tracking errors involved. 

Case 1: No tracking errors are involved: 

The simulation results of this case are shown in figures 5.39 and 5.40. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure. 5.39. The simulation results for case 1 without disturbances acting on quadrotor 2. (a) Actual 3-D trajectories 

for all agents. (b) Actual 3-D trajectories for the second quadrotor. (c) its attitude. (d) the tracking errors. 
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(a) 

 

(b) 
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(c) 

 

(d) 

 Figure. 5.40 The simulation results for case 1 with disturbances acting on quadrotor 2. (a) Actual 3-D trajectories for 

all agents. (b) Actual 3-D trajectories for the second quadrotor. (c) its attitude. (d) the tracking errors. 

Case 2: With additive tracking error only: 

The simulation results of this case are shown in Figure 5.41. 
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(a) 

 

(b) 

 

(c) 
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(d) 

Figure. 5.41 The simulation results for case 2 with disturbances acting on quadrotor 2. (a) Actual 3-D trajectories for all 

agents. (b) Actual 3-D trajectories for the second quadrotor. (c) its attitude. (d) the tracking errors. 

Case 3: With multiplicative tracking error only: 

The simulation results of this case are shown in Figure 5.42. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure. 5.42 The simulation results for case 3 with disturbances acting on quadrotor 2. (a) Actual 3-D trajectories for all 

agents. (b) Actual 3-D trajectories for the second quadrotor. (c) its attitude. (d) the tracking errors. 

Case 4: With both types of tracking errors involved: 

The simulation results of this case are shown in Figure 5.43. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure. 5.43 The simulation results for case 4 with disturbances acting on quadrotor 2. (a) Actual 3-D trajectories for all 

agents. (b) Actual 3-D trajectories for the second quadrotor. (c) its attitude. (d) the tracking errors. 

□ 

From the previous example, the contribution of the tracking controllers, both the additive 

and multiplicative, is very important in capturing the real capabilities of the driven agents 

which will reduce the tracking errors and helps in modifying the idealized trajectories 

generated so that they become more dynamic-friendly.  

Remark 5.28: One main difference between the two types of the tracking controllers is that 

the additive controller is very sensitive to any fixed offset in the tracking error which may 

cause the trajectories to drift over time. 

 

Considering Remark 5.28, the additive tracking component along the z-axis was ignored 

because of the dc-offset experienced under the action of the local controller used. This dc-

offset can be seen clearly from Figure 5.43 (d), for example. 
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At this point, we would like to mention that the previous work is inspired by the case study 

shown in Figure 5.36 that we will consider in more detail in a future work.  

 

Figure. 5.44. A rescue-team working in a devastated environment. 

5.8 Conclusion 

In this chapter, a set of interesting behaviors generated using dynamical systems with 

higher dimensions was presented. The usefulness of the proposed framework in realizing 

these behaviors were demonstrated under a specialized representation of the involved 

dynamical systems. Both kinematical and kino-dynamical trajectory-generator systems 

were designed. Intelligent controllers that depend on both environment models and sensory 

inputs were realized. Harmonic potential fields were the main tool to model the 

environment, while the sensory inputs were the pillars of the reactive controllers presented. 

Sequential and parallel behaviors were discussed were the importance of the latter was 

demonstrated through an example. Combining both collision-avoidance and connectivity-

preserving protocols was highlighted. Finally, a simple, yet efficient, control scheme to 

guide a group of non-holonomic front-wheel steered robots through an environment filled 

with obstacles was provided.  
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In the future, more focus will be needed on utilizing the kino-dynamical trajectory-

generator system to deal with more demanding situations- mainly where heterogeneous 

agents are collaborating to resolve a situation in a devastated region.  
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6 CHAPTER 6 

The Possible Extensions 

In this thesis, several issues related to motion-related behaviors of multi-agent system on 

graphs have been handled. A framework that can be used to build such behaviors was 

proposed where motion-invariance and stability analysis can be ensured if the given 

conditions are observed. Consensus, clustering, formation, deployment are some examples 

of the covered behaviors. The concept of behavior banks was utilized in which several 

primitive behaviors can be stored and then be selected by a suitable behavior selection 

mechanism that is controlled by the agent’s embedded artificial intelligence or an external 

mission planning utility. Issues related to connectivity preservation and collision avoidance 

were handled under the proposed framework. The ultimate result was a sophisticated 

distributed coordination and motion planning with both kinematical and kino-dynamical 

versions were derived in detail. However, more improvements can find its way towards the 

proposed framework. In this chapter, many possible future extensions which are directly 

related to the case study which motivated this thesis are stated as follows: 

1- Studying the non-diffusive couplings under the proposed framework. 

This will broaden the possibilities of dealing with almost all systems under absolute 

state coupling with neighboring agents on the graph. Remember that a symmetrical 

system can be achieved also using absolute state feedback, as stated in this thesis. 

2- Considering the same work presented in this thesis under nonlinear protocols. 

This step will open the way to considering mainly partial state-feedback or output-

feedback. This will relax the assumptions imposed so far by which a full-state-
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feedback is required to facilitate the functionality of the proposed behaviors. 

Suitable state-observers can also be utilized. 

3- Solving the state-dependent Riccati equation (SDRE). 

This will introduce the optimality at the agent level such that the needed local 

stabilizing controller can be optimal under a certain situation of operation. 

4- Introducing complex weighting functions. 

As stated by Complex Analysis Theorem, any function can be written as a sum of 

two functions, i.e., one real and another that is complex. This will make the 

Laplacian matrix used in the semi-linear protocols complex. It is expected to be 

able to introduce more complex behaviors if complex values were used at both 

states and weighting functions. 

5- Increasing the potential of the proposed framework by covering new behaviors. 

Driven by the application, new behaviors may emerge other than those already 

investigated in this thesis. For example, pattern formation and multi-leader multi-

follower schemes are interesting behaviors to investigate. 

6- Developing a dedicated joint design and simulation utility. 

The purpose of this utility is to facilitate building and analyzing the intended 

behaviors. It is true that there are available robotic simulation software available 

both commercially and for free; however, building a dedicated utility that matches 

the capabilities of the proposed framework is highly recommended. 

7- Investigating the possibility of building the behaviors within the agents’ dynamics, 

intrinsically. 



362 
 

In this thesis, we have developed sophisticated trajectory-generator co-systems that 

generate the reference signals. Agents are supposed to follow these signals and as 

a result they will generally deviate from their preferred state, i.e., least energy at 

equilibrium, to achieve the desired behaviors. However, by intrinsically crafting the 

behaviors within agents’ dynamics, then the executed behaviors will be their new 

norms. This was clearly demonstrated in Chapter 3 where the agents’ dynamics 

were approximated as single-integrator dynamics. 

8- Introducing the time as an independent variable. 

In this thesis, we only focused on using autonomous systems, i.e., independent of 

time. In real applications; however, time is very critical. So, by introducing the time 

as an independent variable, the proposed framework can cover more applications. 

9- Addressing the issue of prescribed performance in more detail. 

In Chapter 3, we only handled the simplest case that can be encountered in real 

applications. So, imposing more constraints on the behaviors is needed when 

considering agents with limited resources and timely-applications. 

10- Studying the connectivity-preserving under absolute and relative nonlinear 

protocols. 

11- Building decision-making utilities within the system that resolve conflicts among 

existing behaviors. 

12- Addressing the proposed search and rescue mission thoroughly. 

13- Study the controllability and observability under state-dependent protocols. 

14- Tackling the issue of dealing with emerging behaviors. 
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In general, the behaviors stored in the behavior bank can adapt or learn the best way 

to deal with changing contexts. This can be handled by incorporating techniques 

such as deep learning or the like in the decision-making process. 
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