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Advancements in computational devices, sensors and actuators together with in-

formation technology and the need for more effective control have created a new

horizon of research; the cooperative control of autonomous multi-agent systems.

In many applications a group of autonomous systems working cooperatively can

outperform a task that could be either very difficult or even impossible by the in-

dividual actions of autonomous systems. The majority of these physical systems

have nonlinear dynamics and their parameters are prone to significant variations

during their operations in practical scenarios. This thesis presents novel Neural

Networks (NNs) based robust distributed adaptive cooperative tracking control

techniques for two important classes of physical systems where the individual

agents are networked through a directed graph. These systems are the Port Con-

xv



trolled Hamiltonian (PCH) Systems and the higher-order nonlinear affine systems

in Brunovsky Canonical Form (BCF). PCH systems represent a large number of

physical systems including several electrical, electromechanical, chemical and par-

ticularly a major class of mechanical systems described by Euler-Lagrange (EL)

models. Due to their inherent passivity property, PCH systems are best suited

for passivity based energy shaping control, particularly in the applications where

shaping of both the potential as well as the kinetic energy is required. These ad-

vantages associated with the controller design under PCH formalism are exploited

in the design of cooperative tracking control problem in this thesis. Parametric

uncertainties are dealt with using the NNs. Canonical transformation of PCH

systems using NNs is also presented. A novel idea of information preserving fil-

tering of Hamiltonian gradient is introduced to drive the NNs tuning laws by the

position as well as the velocity errors. L2 disturbance attenuation objective is also

achieved. This thesis also presents a NNs based adaptive distributed cooperative

tracking control of unknown higher-order affine nonlinear systems represented in

BCF. The Cooperative Ultimate Uniform Boundedness (CUUB) of the cooperative

tracking errors is guaranteed for the proposed controllers. The proposed neuro-

adaptive controllers are direct i.e. NNs are trained online without any need of the

off-line training. Effectiveness of the proposed controllers are tested through sim-

ulations using several models of physical systems including planar manipulators,

simple pendulums, inverted pendulums and an Autonomous Underwater Vehicle

(AUV).
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CHAPTER 1

INTRODUCTION AND

MOTIVATION

Evolution of feedback control theory has been fundamentally driven by the neces-

sity of the control systems engineers to manipulate a system behavior to exhibit

some desired operation dictated by the requirements of an application. Because

of the vast variety of control problems, researchers have developed numerous au-

tomatic control techniques by utilizing the well-established tools of mathematics.

This thesis is an attempt to step forward in the control theory by its novel contri-

butions in the cooperative control of higher-order nonlinear systems. Introduction

to cooperative control and motivation of the thesis are explained in the following

section.
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1.1 Introduction

The essence of a control system is to achieve the desired objectives with maximum

accuracy, autonomy, reliability and robustness under some physical constraints.

Research in control theory has been revolutionized by numerous technological ad-

vancements along the history as happened to several other disciplines of applied

research. Among these advancements, the prominent ones that recently influenced

the progress of control theory are the advent of ultra-fast miniaturized micropro-

cessors, reliable means of data communication and MEMS-based smart sensors

and actuators. Such advancements and emerging needs in diverse fields of ap-

plications, together with the enthusiasm of researchers have further paved the

way for the unprecedented developments of a number of innovative autonomous

and intelligent control systems. A substantial interest of researchers has been

witnessed to develop autonomous systems with minimum human involvement in

their operations. To name a few, examples of such systems are: unmanned ground,

aerial and underwater vehicles, various intelligent industrial, personal and service

robotic systems. They have been successfully deployed in many applications such

as mineral exploration, environmental monitoring, space research, health care and

several other civil and military applications. Some examples of such systems are

shown in Fig. 1.1.
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Figure 1.1: Examples of autonomous systems: (a) High access survey robot by Honda
deployed at hazardous areas of abandoned Fukushima nuclear power plant. (b) Au-
tonomous robotic solderer (Promation Inc.) (c) Mars rover (NASA Jet Propulsion Lab)
and (d)Autonomous underwater vehicle Remus-6000 (Konsberg Maritime Inc.)

1.1.1 From a single system to a system of systems

When operated as single systems, the autonomous systems mentioned above have

reportedly succeeded in achieving the desired objectives in their missions and tasks

[1]. However, at the same time there exist numerous applications where a coor-

dinated group or team of such autonomous systems can perform their operations

with greater efficiency as compared to their individual operations. In most cases

the individual systems forming a coordinated group are geographically distributed

and are linked through a communication network. A group of systems operating

in a coordinated way is also called a multi-agent system [2]. Some examples of

applications where such systems are used are: Simultaneous Localization And

Mapping (SLAM) [3] - [4], environmental monitoring and sampling [5] - [6] loco-

3



motion [7] - [8] and automated manipulation of biological cells [9]. Furthermore,

there are many applications where deployment of a multi-agent system is essential

rather than a matter of choice of increasing the efficiency. Examples of applica-

tions of such multi-agent systems include: Space-based interferometers [10] - [11],

future combat systems [12], surveillance, reconnaissance and hazardous material

handling [13], distributed reconfigurable sensor networks [14]. Some examples of

multi-agent systems working cooperatively are shown in Fig. 1.2 . The feature of

enhanced performance of autonomous multi-agent systems, and their inevitability

in some cases, has created an active research area known as cooperative control

and coordination. Compared to the control of a single autonomous system (i.e. a

single-agent system) cooperative control of multi-agent systems is mainly differ-

ent, firstly, in its structure; which can be centralized, decentralized or distributed

and secondly, the information exchange among the agents through a communi-

cation network which can be well explained with the help of a graph. Direction

of information flow, topology of the graph, limited connectivity of the commu-

nication network, complexity of the operating environment and the limitations

on the embedded computational resources are the major factors that influence

the multi-agent controller design in different aspects. Literature review indicates

that development of any cooperative control scheme is accomplished by consid-

ering a particular class of systems. These classes mainly include systems with

single or double integrator dynamics, general linear systems, nonlinear oscillators,

Euler-Lagrange systems (holonomic and non-holonomic) and some other classes

4



Figure 1.2: Examples of cooperative groups of autonomous systems: (a) Cooperative
group of robots at a car assembly line (Tesla Cars) (b) Manipulation and locomotion
by swarm-bot at LASA (EPFL university) (c) Automated manipulation of biological
cells using gripper formations controlled by optical tweezers [9] (d) Swarm of robots
cooperatively manipulate an object (University of Pennsylvania).

of nonlinear systems [15]. It is a well-established fact in control theory that unlike

the case of linear systems, analysis and controller design of nonlinear systems can-

not be unified in a general framework of mathematical tools. It is due to this fact

that cooperative control of different classes of nonlinear systems, which represent

the majority of real life physical systems, is still an area of active research around

the world. The essence of this thesis is to design robust adaptive cooperative con-

trollers which can be applied to a broader set of higher order nonlinear systems.
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1.2 Cooperative Control of Higher-Order Non-

linear Multi-Agent Systems

Most of real-life practical systems are described by nonlinear dynamics, e.g.

robotic manipulators, autonomous vehicles and power generation systems etc. In

many cases controllers designed using the linearized models of such nonlinear sys-

tems exhibit very poor response, and it becomes necessary to base the controller

design on the most realistic nonlinear model. The literature survey shows that a

major research gap left in the field of cooperative control is the unavailability of

results for two important classes of physical systems namely, the Port Controlled

Hamiltonian (PCH) systems and the higher-order nonlinear systems described in

Brunovsky Canonical Form (BCF). The major concern of this thesis is to develop

distributed cooperative control schemes for these two important classes of higher

order nonlinear systems, described separately in the followings.

1.2.1 Port Controlled Hamiltonian (PCH) systems

The PCH formalism represents a large number of physical systems including all

of the Euler-Lagrange (EL) systems and several electrical, electromechanical, and

chemical systems [16], [17]. As a distinctive feature, PCH formalism utilizes the

energy-relevant properties of a physical system. Within PCH formalism a system

is described by:

1. an interconnection of energy storing components to explain the phenomenon

6



of energy exchange among them, and

2. power ports to explain the interaction of the system with external world.

Controller design and implementation within PCH formalism becomes more evi-

dent by associating the energy-relevant properties of a system with its constituent

components and the way they are interconnected to one another. Possessing the

clear-cut interpretation of energy-relevant properties together with their inherent

passivity, PCH systems are well suited to exploit the passivity theory, which is a

strong tool of nonlinear systems analysis and control [18]. From a controller design

point of view, the principal advantage of PCH formalism is that the Hamiltonian,

i.e. the stored energy function acts as Lyapunov function, thus alleviating the

search of candidate Lyapunov function which is an essential step in controller de-

sign, and often becomes a problem of major concern for the control of complex

nonlinear systems [19]. Furthermore, in passivity-based control by energy-shaping

and energy-balancing, structure preserving shaping of both the potential as well

as the kinetic energies can be performed for the PCH systems, while in Euler-

Lagrange such structure preserving shaping can be achieved only for potential

energy. Thus PCH formalism can be successfully employed in applications which,

in addition to potential energy, also require the modification of kinetic energy

[16]. Some of the major theoretical contributions in the literature of PCH sys-

tems modelling, analysis and control are [16], [20], [21], [22], [23].
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1.2.2 Parametric uncertainties and neural networks based

adaptive control

Controllers are usually designed with the assumption of exact knowledge of the

system parameters. However, in practical situations exact values of the param-

eters are prone to vary significantly from the nominal values provided by the

manufacturers due to several factors. As an example, the effective length and

mass of the free arm of a robotic manipulator significantly varies when interacting

with the outside world. Ageing is also a factor of parametric uncertainty. Un-

certainties in system parameters and model structure can significantly degrade

the performance and stability of a controller, if they are not taken into account

during the controller design stage. In this thesis, Neural Networks (NNs) are

used to compensate for the parametric uncertainties, which are lumped into an

unknown function. In the last two decades, closed-loop feedback applications and

properties of NNs have been well studied and rigorously developed [24]. This

development was achieved using the mathematical tools from a control theoretic

perspective, and showed how to systematically design the neurocontrollers with

guaranteed stability and performance. Neurocontrollers alleviate the need for sev-

eral assumptions, which are very common in adaptive control theory, for example,

linearity in the parameters and availability of a known regrersor matrix [24].

In the available literature of adaptive tracking control of uncertain PCH sys-

tems, the adaptive laws are driven by the velocity error only, that may result in

a steady-state position error even when the velocity error converges to zero [25],

8



[26], [27]. Inclusion of position error in the adaptive laws is avoided for the reason

of preserving the PCH structure of closed-loop dynamics [28]. In this thesis, a

novel idea of Information Preserving filtering of Hamiltonian gradient is intro-

duced to drive NN tuning law by both the velocity as well as the position error,

while the PCH structure of the closed-loop system is preserved. In addition to

compensation of parametric uncertainties, L2 attenuation objective of a class of

external disturbance is also achieved.

It is also worth noting that neuro-adaptive controllers proposed in this thesis

are direct. In direct adaptive controller, off-line training of NN for system identi-

fication is not needed: the parameters of the controller are tuned directly. On the

other hand, in the indirect adaptive control an identifier is used to synthesize the

model of the system dynamics and the information obtained from this identified

model is used to tune the controller. The process of identification is performed

off-line in the indirect adaptive control schemes [29], [30].

1.2.3 Nonlinear systems in Brunovsky Canonical Form

(BCF)

This thesis also develops a robust neuro-adaptive distributed cooperative con-

trol methodology for a group of higher-order unknown affine nonlinear systems

described in Brunovsky canonical form (BCF), also known as companion canon-

ical form and controllability canonical form. The powerful function estimation

property of NNs is utilized to estimate the unknown dynamics with guaranteed
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closed loop stability. Examples of nonlinear systems in BCF include the Fitzhugh-

Nagumo model that describes the dynamics of the membrane potential in neuronal

systems driven by electrochemical properties of sodium and potassium ion flow

[31]. The Van der Pol oscillator is a special case of Fitzhugh-Nagumo models

[32]. Another example of nonlinear systems in BCF is the inverted pendulum

[33]. Other than the nonlinear systems directly described in BCF, many other

nonlinear systems can also be transformed to BCF using feedback linearisation

provided a reachability and an involutivity condition is satisfied [24]. Though

practical systems usually satisfy the reachability condition, some classes of sys-

tems fail to be involutive. Nevertheless, in case of this failure, it is still possible to

transform the system to BCF using partial state feedback linearisation or using

input-output linearisation and taking a care of the stability of the zero-dynamics

[24].

In the available literature, the actuator input function, usually denoted by g(·)

is assumed to be known and equal to unity. Such assumption on the input function

restrict the application of the available distributed controller to a relatively small

class of systems. Indeed, in real-life applications, the actuators input function

is different from unity, nonlinear, and depends on system’s states. In this thesis

the input function is assumed to be a smooth function of states, thus making the

proposed controller more general as compared to the closely relevant works in [34],

[35] and [36]. In this thesis, NNs are used to estimate the unknown dynamics of

the individual systems with guaranteed closed loop stability.

10



1.3 Controller structure of Multi-Agent Sys-

tems

Theoretically, there are three possible configurations of controller structure, cen-

tralized, decentralized or distributed, as elaborated in the following sections.

1.3.1 Centralized

In a centralized control scheme, all agents send their state information to a central

controller. The central controller processes this information to compute the con-

trol decision and sends the control commands to corresponding agents. Though

essentially similar to the control of a single large-scale systems with relatively

established theory, the centralized scheme suffers from the serious problems of

increased communication load, loss of information transmitted by distant agents

due to limited wireless sensor range, and increase of computational complexity

with increase of number of agents and couplings among them [32]. Furthermore,

any small change in the network topology, such as addition or removal of an agent

from the group can require the redesign of the controller.

1.3.2 Decentralized

In decentralized control, the control command is decided at the individual agents’

ends from their own state information. Decentralized control strategy has the

advantages of relatively very low computational complexity and almost negligible
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communication load. A major shortcoming of such schemes is that some group

members are not able to predict the group behavior on the basis of available

information, and consequently, some of the desired cooperative objectives cannot

be achieved [15].

1.3.3 Distributed

Distributed control exhibits a practical balance between the centralized and de-

centralized control methodologies. In such control schemes, controllers are im-

plemented at the agents’ ends with state information of itself and the neighbor

nodes. The communication load and computational complexity is greater than

in the decentralized case but adequately lower than in the centralized case. Dis-

tributed control approach is inspired by the group behaviors of the animals, where

each group member try to cooperate as a unit [32]. Examples of such cooperative

group behaviors in nature can be found in flocking of birds, swarming of insects,

schooling of fish, and herding of quadrupeds. Distributed control approach is more

promising for the multi-agent systems because of its robustness, flexibility, and

scalability [2], [32].

1.4 Multi-Agent Systems on Graphs

Graph theory is a strong tool for the representation, analysis and controller design

of networked multi-agent systems. It has been extensively used in cooperative

control of multi-agent systems. An individual agent is represented by the node or
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vertex of a graph. Communication link between a pair of agents is represented by

the edge of a graph. The topology of a graph represents the interconnection among

different agents of a group. In this thesis, cooperative controllers are designed by

utilizing the definitions and concepts of graph theory, explained in detail in the

next chapter.

1.5 Thesis Objectives

Thesis objectives are now precisely described as follows.

1. Consider a group of higher-order nonlinear affine systems described in

Brunovsky canonical form with unknown dynamics and distributed over a

communication network represented by a directed graph. Design a distributed

neuro-adaptive cooperative tracking control law such that the resulting track-

ing error and neural network weight error dynamics are cooperatively uni-

formly ultimately bounded.

2. Consider a group of autonomous PCH systems, distributed over a commu-

nication network represented by a directed graph. Design a distributed co-

operative tracking control law such that tracking error dynamics are globally

asymptotically cooperatively stable.

3. Design a distributed neuro-adaptive cooperative tracking control law for a

group of systems described in part 2, such that:

(a) the resulting controller is robust to modelling and parametric uncertain-
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ties, and

(b) the resulting tracking error and neural network weight error dynamics

are cooperatively uniformly ultimately bounded, and

(c) L2 disturbance attenuation is also achieved, against the external dis-

turbance.

1.5.1 Thesis contributions

Development of this thesis resulted into the following contribution to the litera-

ture.

• Sami El-Ferik, Aminuddin Qureshi and Frank L. Lewis, ”Neuro-adaptive

cooperative tracking control of unknown higher-order affine nonlinear sys-

tems”, Automatica, DOI: 10.1016/j.automatica.2013.12.033, Feb. 2014.

• Aminuddin Qureshi, Sami El-Ferik and Frank L. Lewis, ”L2 Neuro-Adaptive

Tracking Control of Uncertain Port Controlled Hamiltonian Systems”, sub-

mitted.

• Sami El-Ferik, Aminuddin Qureshi and Frank L. Lewis, ”Robust Neuro-

Adaptive Cooperative Control of Multi-Agent Port Controlled Hamiltonian

Systems’, submitted.

• Aminuddin Qureshi, Sami El-Ferik and Frank L. Lewis, ”On Neural Net-

works Based Canonical Transformation of Port Controlled Hamiltonian Sys-

tems”, under preparation.
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1.6 Thesis Organization

Chapter 1 introduces the subject of the thesis, i.e. cooperative control of multi-

agent dynamic systems. It describes the importance of, and advantages associated

with, the applications of multi-agents systems and their cooperative control. A

discussion on the different structures of cooperative control is presented. Research

gaps are identified and objectives of the thesis are then precisely stated.

Chapter 2 presents the detailed literature survey related to the subject of the

thesis. The surveyed topics are cooperative control theory and control of BCF

and PCH systems. This chapter also explains the important concepts of control

theory and graph theory which are fundamental to the development of this thesis.

In chapter 3, the distributed neuro-adaptive cooperative tracking control of un-

known higher-order nonlinear affine systems in BCF is presented. Chapter in-

cludes the problem formulation, underlying assumptions and controller design

steps. Since the controller structure possesses discontinuity, existence and unique-

ness as well as boundedness of the control action is asserted and explained in detail.

Rigorous stability analysis and several simulation examples are presented as well.

In chapter 4 robust neuro-adaptive trajectory tracking control of a single uncer-

tain PCH system is presented. Development of this controller is considered as

an important step towards the cooperative control of a group of networked PCH

systems. A novel idea of information preservation filtering of shaped Hamiltonian

gradient is introduced which causes the neural network weight tuning law to be

driven by both the position and velocity errors. This chapter also presents the
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neural networks based canonical transformation of PCH systems. Simulations

are performed on a simple pendulum, a two-link robotic manipulator and an Au-

tonomous Underwater Vehicle (AUV).

In chapter 5 robust neuro-adaptive distributed cooperative tracking control of a

group of networked PCH systems is presented. The problem formulation of co-

operative control is accomplished by taking the necessary steps to transform the

PCH systems from state-space to normalized local synchronization error space.

Distributed cooperative tracking control is first proposed for nominal systems, and

then neural network based adaptive distributed cooperative controller is presented

which is robust to parametric uncertainties. As in chapter 4, the PCH structure of

the closed loop system is preserved. L2 disturbance attenuation objective is also

achieved. Simulations are performed on a group of five PCH systems, distributed

over a communication network.

The thesis is concluded in chapter 6 with a description of several interesting future

works.
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CHAPTER 2

LITERATURE REVIEW AND

MATHEMATICAL

BACKGROUND

In the literature cooperative control refers to a control methodology that drives

a group of autonomous agents to some common state [2]. The terms consensus,

synchronization, agreement and rendezvous are alternatively used for coopera-

tive control. Research in cooperative control has attracted a great number of

researchers from different disciplines of science and engineering including control

theory, communication, computer science, biology, physics and economics. This

chapter presents a comprehensive survey of the cooperative control literature. Im-

portant mathematical preliminaries, including some basic definitions of passivity

theory, Port Controlled Hamiltonian (PCH) modelling and graph theory are also

briefly described.
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2.1 Review of Cooperative Control Literature

The spirit of cooperative control theory is to develop a set of mathematical rules

that manipulate the individual behaviors of the members i.e the agents of a

networked-group, to achieve a predefined common objective. Research in this field

is believed to be first inspired by the similar research works in other disciplines of

science. In 1974 DeGroot presented his work in the field of management sciences

on the problem of reaching a consensus [37]. In 1986, Tsitsiklis, Bertsekas and

Athans presented their work in [38] and [39] on asynchronous distributed optimiza-

tion algorithms for distributed decision making problems, which is considered as a

seminal work in cooperative control theory [32]. Distributed computing [40], and

statistical physics [41] are also believed to have influenced the research in coop-

erative control [15]. In [41], the authors investigated the emergence of self-driven

motion in systems of particles with biologically motivated interactions. They

showed by simulations that in a group of autonomous agents moving with some

constant speed, the direction of motion of an individual agent converges to the

average of the directions of other agents lying within a neighborhood of radius r.

These simulations showed the collective behavior of a group of autonomous agents.

Control theoretic grounds for these simulations were provided by Jadbabaie, Lin

and Morse in their seminal paper [42]. This paper triggered a great interest from

the control theory community to further investigate the various facets of the dy-

namics of cooperative and coordinated multi-agent autonomous systems. Several

newly-emerged cooperative control problems were then considered in another se-
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ries of papers [43], [44], [45] and [46].

In [43], the authors studied the consensus problems for networks of dynamic agents

with fixed and switching topologies with the analysis of three cases: (1) directed

networks with fixed topology; (2) directed networks with switching topology; and

(3) undirected networks with communication time-delays and fixed topology. Au-

thors of [44] considered the problem of cooperation among a collection of vehicles

performing a shared task using inter-vehicle communication to coordinate their

actions. In [45] the problem of asymptotic consensus under dynamically chang-

ing interaction graph topologies and weighting factors is considered. Authors of

[45] also proposed the discrete and continuous update schemes for information

consensus with conditions for asymptotic consensus under dynamically changing

communication environment using these update schemes.

In the following, depending on the type of system dynamics, various contribu-

tions are separately described. For each type of dynamics, a group of N agents is

considered and an ith group member is denoted with a subscript i.

2.1.1 Single and double integrators

A single integrator is described as

ẋi = ui, i = 1, 2, · · ·N. (2.1)
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and a double integrator is described as

ẍi = ui, i = 1, 2, · · ·N. (2.2)

where xi ∈ � is the state and ui ∈ � is the control input. Cooperative control

of single integrators are considered in the seminal papers [42], [43] and [45], men-

tioned above. Double integrator dynamics are considered in [47], [48] and [49] and

references therein.

2.1.2 General linear systems

The well-known dynamics of a linear system is given by

ẋi = Aixi + Biui, yi = Cixi (2.3)

where xi ∈ �n is the nth order state vector, ui ∈ �m is the input vector and

yi ∈ �p is the output vector. Ai, Bi and Ci are real matrices of compatible di-

mensions.

In [50], a framework based on the matrix theory is proposed to analyze and design

cooperative controls for a group of individual linear dynamic systems whose out-

puts are sensed by, or communicated to, others in an intermittent, dynamically

changing, local manner. For arrays of identical output-coupled linear systems, [51]

investigated the sufficiency of certain conditions on system matrix Ai and output

matrix Ci for existence of a feedback law under which the systems synchronize
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for all coupling configurations with connected graphs. [52] investigated the syn-

chronization of a network of identical linear state-space models under a possibly

time-varying and directed interconnection structure. Authors of [53] studied the

cooperative control of multi-agent higher-order identical MIMO linear dynamic

systems where only the output information of each agents is delivered throughout

the communication network. [54] addressed the consensus problem of multi-agent

systems with a time-invariant communication topology consisting of general linear

node dynamics and proposed a distributed observer type consensus protocol based

on relative output measurements. In [55] a high-gain methodology is used to con-

struct linear decentralized controllers for consensus, in networks with identical but

general multi-input linear time-invariant (LTI) agents and general time-invariant

and time-varying observation topologies. Most recently a locally optimal Riccati

design approach is introduced in [56] to synthesize the distributed cooperative con-

trol protocols for both continuous and discrete-time systems networked through

directed graphs. A detailed study of the fundamental definitions, mathematical

tools, matrix and graph theories applied to cooperative control is presented in the

the book [57].

Note that single and double integrator dynamics can be considered as special cases

of general linear systems described in (2.3).

Since cooperative control and coordination is mainly concerned with the be-

havior of a group of dynamic systems, it is important to consider the dynamics of

practical systems like robotic manipulators and vehicles during the development
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of a control algorithm. Research outcomes mentioned above considered the single

and double integrator dynamics and general linear dynamics for the development

of cooperative control theory. Since most of the practical physical systems cannot

be modelled as linear systems, the trend of cooperative control research was natu-

rally diverted to consider the models with much richer information of the system’s

dynamics to design practically efficient and robust controllers. A number of com-

plex cooperative control methodologies appeared then in the literature. In the

following subsections, various contributions are separately described for different

types of nonlinear dynamics.

2.1.3 Coupled nonlinear oscillators

Synchronization of coupled nonlinear oscillators, often described by Kuramoto

models, has been extensively studied in physics, chemistry and neuroscience [58].

Synchronization is observed when frequencies of oscillations of individual coupled

oscillators converge to a common frequency despite differences in their natural

frequencies. Authors of [58] studied the problem of exponential synchronization

for coupled phase oscillators described by the Kuramoto model. The closed-loop

dynamics of a Kuramoto oscillator is given by:

ẋi = ωi +
K

N

N∑
j=1,j �=i

sin(xj − xi) (2.4)

where xi is the phase and ωi is the natural frequency of the ith oscillator,

N is the number of oscillators, and K is the control gain. Oscillators can be
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considered as linked through a strongly connected graph, where each oscillator

has access to any other oscillator in the group. Generally, the control gain

K plays a crucial role in determining the synchronizability of the network. In

[59], the problem was further studied with consideration of the effect of time-delay

2.1.4 Euler-Lagrange (EL) systems

A vast majority of physical systems can be modelled as Euler-Lagrange systems.

The systems covered by EL models include mechanical, electromechanical, power

electronics and a number of chemical systems. Some examples of the EL au-

tonomous systems are robotic manipulators, unmanned aerial, ground and under-

water vehicles. EL systems are generally described as

Mi(xi)ẍi + Ci(xi, ẋi)ẋi + gi(xi) = τi (2.5)

where xi ∈ �n is the vector of generalized coordinates, Mi(xi) ∈ �n×n is the

symmetric positive-definite inertia matrix, Ci(xi, ẋi)xi ∈ �n is the vector of cori-

olis and centrifugal torques, gi(xi) ∈ �n is the vector of gravitational torques,

and τi ∈ �n is the vector of torques produced by the actuators associated with

the ith agent. An inherent property of EL systems is that Ṁi(xi) − 2Ci(xi, ẋi)

is skew-symmetric which implies that zT
(
Ṁi(xi) − 2Ci(xi, ẋi)

)
z = 0,∀z ∈ �n.

This property plays a vital role in the Lyapunov function based controller design.

In [60], the passivity-based output synchronization of EL systems was studied, for
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both, fixed and switching topologies. In [61], a distributed cooperative tracking

control of a group of EL systems networked through an undirected graph topology

is presented. In this paper the authors also considered the uncertainties in Linear-

in-Parameter (LIP) form. A neural network-based distributed adaptive tracking

control is presented in [62] for EL systems with completely unknown dynamics.

Results of [62] are stronger than those in [61] in two aspects. Firstly, LIP assump-

tion is not required in the controller design of [62]. Secondly, in [62] the controller

is designed for a directed graph topology, as compared to the undirected graph

topology considered in [61].

2.1.5 Nonholonomic mobile robots

The dynamics are described by

ẋi = uicos(θi), ẏi = uisin(θi), θ̇i = ωi, i ∈ N (2.6)

where xi, yi denote the location of the ith agent, and ui and ωi denote, respec-

tively, its translational and rotational velocity. Note that there are three states and

two control inputs. Therefore, the dynamics for nonholonomic mobile robots are

underactuated. This poses substantial difficulties in designing proper consensus

algorithms with corresponding stability analysis. Different facets of cooperative

control of non-holonomic systems are studied in [63], [64], [65] and [66].

In [63], a decentralized feedback control strategy that drives a system of multiple

nonholonomic unicycles to a rendezvous point in terms of both position and orien-
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tation is presented. The proposed nonholonomic control law is discontinuous and

time-invariant. Stability of the overall system is examined using the tools from

non-smooth Lyapunov theory and graph theory. In [64], the problem of output

consensus for multiple non-holonomic systems in chained form is investigated for

general directed graph containing a spanning tree. Authors of [65] investigated

finite-time distributed tracking control problem of multiple non-holonomic mobile

robots via visual servoing with unknown camera parameters. in [66], the authors

studied the rendezvous problem of multiple nonholonomic unicycle-type robots

interacting through unidirectional ring topology.

2.1.6 Nonlinear systems in Brunovsky canonical form

(BCF)

Nonlinear systems in BCF are described as

ẋi,m = xi,m+1, m = 1, 2, ..., M − 1

ẋi,M = fi(xi) + gi(xi)ui (2.7)

where M is the system order. As mentioned in Section 1.2.3, several physical

systems can be described in BCF either directly or through a transformation.

A series of papers, [34] - [36], have considered cooperative tracking control of BCF

nonlinear systems. [34], [35] and [36] have, respectively, considered distributed

cooperative tracking control of first-order, second-order and higher-order BCF
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nonlinear systems networked through directed graphs. In all of these three papers,

the dynamics of the agents are completely unknown. The individual agents can

have different dynamics of the same order. The authors used neural network (NN)

structures to compensate for the unknown dynamics in the proposed controller.

Furthermore, these papers assume gi(xi) to be unity. As one of its major goals,

this thesis presents a robust NN-based distributed adaptive cooperative tracking

controller for general higher-order affine nonlinear systems in BCF, allowing gi(xi)

to be a smooth function of states xi. Two separate NNs are used to estimate fi(xi)

and gi(xi). As compared to [34] - [36], the controller proposed in this thesis is more

general in the sense that the proposed controller can be applied to the systems

considered in [34] - [36], but not vise versa, because gi(xi)used here is a more

general function that also incorporates the unity value used in [34] - [36].

2.1.7 Port Controlled Hamiltonian systems

An autonomous PCH system is generally described as

ẋi = [Ji(xi) − Ri(xi)]
∂Hi

∂xi

(xi, t) + gi(xi)ui

yi = gi(xi)
T ∂Hi

∂xi

(xi, t) (2.8)

where xi ∈ �n is the state vector. Positive semi-definite function Hi(xi) : �n �→

� is the storage function and is called the Hamiltonian. The column vector

∂Hi(xi,t)
∂xi

= [∂Hi(xi,t)
∂xi,1

...∂Hi(xi,t)
∂xi,n

]T ∈ �n denotes the gradient of scalar function Hi(xi).

Skew-symmetric matrix Ji(xi) = −Ji(xi)
T ∈ �n×n and gi(xi) ∈ �n×m collectively
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define the interconnection structure of the system. Ri(xi) = Ri(xi)
T ≥ 0 ∈ �n×n

represents the dissipation. All these matrices may smoothly depend on xi. The

literature survey suggests that cooperative control of PCH systems has not been

studied so far and will be considered for the first time in this thesis.

2.2 Passivity Theory

Passivity theory is a well-established tool for the analysis and design of nonlinear

control systems. The passivity theory circles around passive systems, which are

physical systems in which the energy consumption over any period of time is

greater than or equal to the increase in the energy stored in the system over the

same period [19]. A controller design scheme which exploits the passivity property

of a dynamical systems is called the passivity-based control (PBC), first introduced

in [67]. Since PCH systems are passive by nature, and since most of the seminal

results on the control of PCH systems are based on the passivity theory, it is

important to describe the basic definitions of passivity theory.

Definition 2.1 (Passivity of Static Nonlinearity) [68].

A static nonlinearity y = h(u), where h : �p �→ �p, is passive if, for all u ∈ �p,

uT y = uT h(u) ≥ 0 (2.9)

and strictly passive if (2.9) holds with strict inequality ∀u 	= 0.

Definition 2.2 (Passivity of Dynamical Systems)[19].
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The dynamical system

∑
:

⎧⎪⎪⎨
⎪⎪⎩

ẋ = f(x, u)

y = h(x, u), x ∈ �n, u, y ∈ �p

(2.10)

is said to be passive if there exists a continuously differentiable positive semidefinite

function V (x) called the storage function such that

V̇ =
∂V

∂x

T

f(x, u) ≤ uT y, ∀(x, u) ∈ �n ×�p (2.11)

Moreover, it is said to be

• lossless if uT y = V̇ .

• input-feedforward passive if uT y ≥ V̇ + uT ϕ(u) for some function ϕ.

• input strictly passive if uT y ≥ V̇ + uT ϕ(u) and uT ϕ(u) > 0, ∀u 	= 0.

• output-feedback passive if uT y ≥ V̇ + uT ρ(y) for some function ρ.

• output strictly passive if uT y ≥ V̇ + uT ρ(y) and uT ρ(y) > 0, ∀y 	= 0.

• strictly passive if uT y ≥ V̇ + uT ψ(x) for some positive definite function ψ.

In all cases, the inequality should hold for all (x, u).

2.2.1 Passivity and stability

A very attractive feature of the passivity theory is its appealing link with the

Lyapunov stability, i.e. a system is at least Lyapunov stable if it is passive. The
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following two important properties follow from the fact that the storage function

is non positive along the state trajectories.

1. If u = 0 in (2.11) then

V̇ ≤ 0 (2.12)

Thus x = 0 is a Lyapunov stable equilibrium point.

2. If y = 0, then Eq. (2.12) still holds. Thus the zero dynamics of the system

is Lyapunov stable.

Moreover, asymptotic stability of passive systems is followed by the following

definition and lemma.

Definition 2.3 Zero State Observability[19] The system (2.10) is said to be

zero-state observable if no solution of ẋ = f(x, 0) can stay identically in S = {x ∈

�n|h(x, 0) = 0}, other than the trivial solution x(t) = 0.

Lemma 2.1 Asymptotic stability of passive systems [19]

Consider the system (2.10). The origin of ẋ = f(x, 0) is asymptotically stable if

the system is

• strictly passive

• output strictly passive and zero-state observable.

Furthermore, if the storage function is radially unbounded, then the origin will be

globally asymptotically stable.
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2.2.2 Output feedback stabilization of passive systems

In Sec. 2.2.1, the stability of passive systems was discussed. Another attractive

feature of passive systems, i.e. the asymptotic stabilization by output feedback,

is considered in this section which has been well established in the literature. The

global stabilization of passive systems is illustrated in the following theorem.

Theorem 2.1 [19]. If the system (2.10) is

1. passive with a radially unbounded positive definite storage function and

2. zero-state observable,

then the origin x = 0 can be globally stabilized by u = −φ(y), where φ is any

locally Lipschitz function such that φ(0) = 0 and yT φ(y) > 0 for all y 	= 0.

Remark 2.1: Theorem 2.1 gives the basic idea of well-known Passivity based

control. A simple choice of φ(y) is (−ky), for some k > 0, which is also called

the damping injection.

2.3 Modeling Examples and Passivity of PCH

Systems

A single PCH system is described as

ẋ = [J(x) − R(x)]
∂H

∂x
(x, t) + g(x)u

y = g(x)T ∂H

∂x
(x, t) (2.13)
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with all the variables and parameter matrices as defined in section 2.1.7. The

following examples illustrate the fundamental concepts of modeling a system in

PCH form.

2.3.1 Example 1: mass spring damper systems

Figure 2.1 shows a typical mass-spring-damper system with mass m, spring con-

stant k and damping coefficient b. Let q be the distance moved by mass. Equation

of motion of this system can be obtained by simple force balancing and is given

by

mq̈ + bq̇ + kq = F (t) (2.14)

The momentum p of mass m is given by

p = mq̇ (2.15)

In mechanics, q is called the vector of generalized coordinates and p is the mo-

mentum vector. In this example q and p are scalers. The Hamiltonian, H(q, p),

for this system is defined as:

H(q, p) = K.E of the mass + P.E. of the spring

H(q, p) =
1

2
mq̇2 +

1

2
kq2

H(q, p) =
1

2m
p2 +

1

2
kq2 (2.16)
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Where K.E = Kinetic energy and P.E = Potential energy. The gradient of Hamil-

tonian H(q, p) is given as:

∂H(q, p)

∂(q, p)
=

⎡
⎢⎢⎣

∂H(q,p)
∂q

∂H(q,p)
∂p

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ kq

p
m

⎤
⎥⎥⎦ (2.17)

A simple re-arrangement of (2.14)-(2.15) and (2.17) leads to

⎡
⎢⎢⎣ q̇

ṗ

⎤
⎥⎥⎦ =

⎛
⎜⎜⎝
⎡
⎢⎢⎣ 0 1

−1 0

⎤
⎥⎥⎦−

⎡
⎢⎢⎣ 0 0

0 b

⎤
⎥⎥⎦
⎞
⎟⎟⎠

⎡
⎢⎢⎣

∂H(q,p)
∂q

∂H(q,p)
∂p

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣ 0

1

⎤
⎥⎥⎦u (2.18)

y =

[
0 1

]⎡⎢⎢⎣
∂H(q,p)

∂q

∂H(q,p)
∂p

⎤
⎥⎥⎦ (2.19)

Note that the port variables i.e. input and out put are, u = F (t) = external force

and y = q̇ = velocity of mass. Equations (2.18)-(2.19) represent the mass-spring-

damper system in PCH form described by (2.13) with x =

[
q p

]T

,

J =

⎡
⎢⎢⎣ 0 1

−1 0

⎤
⎥⎥⎦, R =

⎡
⎢⎢⎣ 0 0

0 b

⎤
⎥⎥⎦ and ∂H(x)

∂x
= ∂H(q,p)

∂(q,p)

Note that J = −JT and R = RT .

Figure 2.1: Mass-Spring-Damper System
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2.3.2 Example 2: DC motor

The schematic diagram of a loaded DC motor is shown in Fig. 2.2. The inductor

with inductance L and mass of load with inertia m are the energy storing elements

of the system, with flux φ on the inductor and momentum p on the load as the

energy variables. The Hamiltonian of the system is given by

H = Magnetic energy stored by the inductor + K.E. of the coupled system

=
φ2

2L
+

p2

2m
(2.20)

Resistance Rm of the circuit and damping b on the load are energy dissipat-

Figure 2.2: Equivalent circuit of a DC motor [18]

ing elements of the system. Let k be the electro-mechanical coupling constant.

Application of Kirchoff’s Voltage Law (KVL) yields

φ̇ = −kp

m
− Rφ

L
+ V (2.21)
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The torque balance equation is given by

ṗ =
kφ

L
− bp

m
(2.22)

The gradient of Hamiltonian H(φ, p) is given as:

∂H(φ, p)

∂(φ, p)
=

⎡
⎢⎢⎣

∂H(φ,p)
∂φ

∂H(φ,p)
∂p

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

φ
L

p
m

⎤
⎥⎥⎦ (2.23)

A simple re-arrangement of (2.21)-(2.23) leads to

⎡
⎢⎢⎣ φ̇

ṗ

⎤
⎥⎥⎦ =

⎛
⎜⎜⎝
⎡
⎢⎢⎣ 0 k

−k 0

⎤
⎥⎥⎦−

⎡
⎢⎢⎣ Rm 0

0 b

⎤
⎥⎥⎦
⎞
⎟⎟⎠

⎡
⎢⎢⎣

∂H(φ,p)
∂φ

∂H(φ,p)
∂p

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣ 1

0

⎤
⎥⎥⎦u (2.24)

y =

[
1 0

]⎡⎢⎢⎣
∂H(φ,p)

∂φ

∂H(φ,p)
∂p

⎤
⎥⎥⎦ (2.25)

The port variables are: u = V = supply voltage and y = i = armature current.

The dynamics of the DC motor is represented in PCH form by (2.24) and (2.25)

with x =

[
φ p

]T

, J =

⎡
⎢⎢⎣ 0 k

−k 0

⎤
⎥⎥⎦ and R =

⎡
⎢⎢⎣ 0 0

0 b

⎤
⎥⎥⎦.

Note again that that J = −JT and R = RT .

2.3.3 Passivity of PCH systems

The passivity property has a strong connection with the nonlinear version of

Kalman-Yakubovitch-Popov (KYP) lemma, which is very useful to prove the pas-
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sivity of PCH systems. At this point, the following nonlinear affine system is

considered.

∑
a

:

⎧⎪⎪⎨
⎪⎪⎩

ẋ = f(x) + g(x)u

y = h(x), x ∈ �n, u, y ∈ �p

(2.26)

Definition 2.4 (KYP property)[18] A non linear system described by (2.26)

enjoys the KYP property if there exists a non negative C1 function V : �n �→ �

with V (0) = 0 such that, for each x ∈ �n

LfV (x) ≤ 0 (2.27)

LgV (x) = hT (x) (2.28)

where the Lie derivatives, LfV (x) and LgV (x) are given by:

LfV (x) = ∂V (x)
∂x

f(x) and

LgV (x) = ∂V (x)
∂x

g(x)

Note that the notation Cr denotes a function with r continuous derivatives, and

therefore, the C1 storage function V has at least one continuous derivative. The

following proposition relates the KYP property with the passivity of a system.

Proposition 2.1 [69] If a system enjoys KYP property then it is passive. Con-

versely, if a system is passive with C1 storage function then it enjoys the KYP

property. �

Passivity of the PCH systems is shown in a very obvious way by utilizing the link

between the KYP lemma and passivity, using the following proposition.
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Proposition 2.2 [18] A port-controlled Hamiltonian system is a passive system

with hamiltonian as a storage function.

Proof. Comparison of a PCH system (2.13) with the affine system (2.26), yields

f(x) = [J(x) − R(x)]
∂H

∂x
(x, t) (2.29)

g(x) = g(x) (2.30)

h(x) = gT (x)
∂H

∂x
(x, t) (2.31)

Exploiting the skew symmetry of J(x) and the positive semidefiniteness of R(x),

it is straightforward to show that

L[J(x)−R(x)] ∂H
∂x

H(x) =
∂T H

∂x

[
J(x) − R(x)

]
∂H

∂x
= −∂T H

∂x
R(x)

∂H

∂x
≤ 0 (2.32)

Furthermore,

LgH(x) =
∂T H

∂x
g(x) =

(
gT (x)

∂T H

∂x

)T

(2.33)

Eqs. (2.32)-(2.33) together with KYP lemma imply the proof of proposition. �

In what follows, most prominent seminal results on stabilization and trajectory

tracking control of PCH systems are briefly described.
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2.3.4 Interconnection and damping assignment passivity-

based control (IDA-PBC) of PCH systems

The objective of IDA-PBC of PCH system (2.13) is to find a state-feedback con-

trol u = β(x) such that the closed-loop dynamics is again a PCH systems with

dissipation of the form

ẋ = [Jd(x) − Rd(x)]
∂Hd(x)

∂x
(2.34)

where the new energy function Hd(x) has a strict local minimum at some desired

equilibrium x∗, and, Jd(x) = −Jd(x)T and Rd(x) = Rd(x)T ≥ 0 are some desired

interconnection and damping matrices, respectively. The following proposition

presents the IDA-PBC for the PCH system (2.13).

Proposition 2.3 [16] Given J(x, u), R(x), H(x), g(x, u) and the desired equi-

librium point x∗ ∈ �n. Assume we can find functions β(x), Ja(x), Ra(x) and a

vector function K(x) satisfying

[J(x, β(x)) + Ja(x)−{R(x) + Ra(x)}]K(x) = −[Ja(x)−Ra(x)]
∂H(x)

∂x
+ g(x)β(x)

(2.35)

and such that

(i)(Structure preservation)

37



Jd(x) := J(x, β(x)) + Ja(x) = −[J(x, β(x)) + Ja(x)]T

Rd(x) := R(x) + Ra(x) = [R(x) + Ra(x)]T ≥ 0

(ii)(Integrability) K(x) is the gradient of a scalar function. That is,

∂K

∂x
(x) =

[
∂K

∂x
(x)

]T

(2.36)

(iii)(Equilibrium assignment)K(x) at x∗ verifies

K(x) = −∂H

∂x
(x∗) (2.37)

(iv)(Lyapunov stability) The Jacobian K(x), at x∗, satisfies the bound

∂K

∂x
(x∗) > −∂2H

∂x2
(x∗) (2.38)

Under these conditions, the closed-loop system with u = β(x) will be a PCH system

with dissipation of the form (2.34), where

Hd(x) := H(x) + Ha(x) (2.39)

and

∂Ha

∂x
(x) = K(x) (2.40)
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Furthermore, x∗ will be a (locally) stable equilibrium of the closed loop. It will be

asymptotically stable if, in addition, the largest invariant set under the closed-loop

dynamics contained in

{
x ∈ �n|∂HT

d

∂x
(x)Rd

∂Hd

∂x
(x) = 0

}
(2.41)

equals {x∗}. An estimate of its domain of attraction is given by the largest bounded

level set {x ∈ �n|Hd(x) ≤ c} . �

In literature, (2.35) is also known as matching condition for stability [70]. A con-

troller designed on the basis of finding Ha(x) so as to obtain the desired energy

function Hd(x), as in (2.39), is also called the energy shaping based controller.

Additions of Ja(x) and Ra(x) in (2.35) are called, respectively, the interconnec-

tion and damping assignment. Addition of Ra(x) in (2.35) is also called damping

injection. Proposition 2.3 is a standard result for IDA-PBC of PCH systems.

Moreover, as mentioned in [16], this IDA-PBC becomes the so called energy bal-

ancing stabilizer without damping injection i.e. Ra = 0 and assuming that the

natural damping R(x) verifies

R(x)
∂Ha(x)

∂x
= 0 (2.42)
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2.3.5 Static output-feedback stabilization control of PCH

systems

As mentioned earlier, the IDA-PBC technique is based on state-feedback. In what

follows, a static-output-feedback stabilization control of PCH systems is presented.

Theorem 2.2 [23]. (i) Consider the system (2.13). Suppose that the Hamilto-

nian H(x, t) satisfies H(x, t) ≥ H(0, t) = 0 and that ∂H(x,t)
∂t

≤ 0 holds for all x

and t. Then the input-output mapping u �→ y of the system is passive with respect

to the storage function H(x, t), and the feedback

u = −C(x, t)y (2.43)

with a matrix C(x; t) ≥ ηI > 0 renders (u, y) → 0.

(ii) Suppose moreover that H(x, t) is positive definite, and that the system is zero-

state detectable. Then the feedback (2.43) renders the system asymptotically stable.

(iii) Suppose moreover that H(x, t) is decrescent and that the system is periodic.

Then the feedback (2.43) renders the system uniformly asymptotically stable. �

2.3.6 Tracking control of PCH systems

In order to construct an error system of a given port-controlled Hamiltonian sys-

tem (2.13) and to stabilize it, generalized canonical transformations are introduced
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in [23]. A generalized canonical transformation is a set of transformations

x̄ = Φ(x),

H̄ = H(x, t) + U(x, t) (2.44)

ȳ = y + α(x, t)

ū = u + β(x, t)

which preserves the structure of port-controlled Hamiltonian systems with dissi-

pation as described in (2.13). Here x̄, H̄, ȳ and ū denote the new state, the new

Hamiltonian, the new output and the new input, respectively. The generalized

canonical transformation is a natural generalization of a canonical transforma-

tion which is widely used for the analysis of conventional Hamiltonian systems in

classical mechanics. The resultant transformed systems is given by

˙̄x =
[
J̄(x̄, t) − R̄(x̄, t)

] ∂H̄

∂x̄
(x̄, t) + ḡ(x̄)ū (2.45)

ȳ = ḡ(x̄)T ∂H̄

∂x̄
(x̄, t) (2.46)

Definition 2.5 : A system described by

˙̄x = f(x̄, u, t), x̄(t0) = ψ(x(t0), xd(t0)) (2.47)

with a smooth function ψ : �n × �n, is said to be an error system of (2.13) with
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respect to the desired trajectory xd(t) if the following holds for each t > t0

x̄(t) = 0 ⇐⇒ x(t) = xd(t) (2.48)

It should be noted at this point that the PCH formalism allows the shaping of

both the kinetic as well as the potential energy and at the same time preserves the

PCH structure, thus exploiting all the advantages of PBC. This fact will become

more evident when the tracking controller is designed for robotic manipulators

discussed in Ch. 4. On the other hand, as stated in [16], PBC has been successfully

applied to physical systems described by EL equations of motion. However, though

still defining a passive operator, the closed-loop is no longer an EL system for

applications that require the modification of the kinetic energy, and the storage

function of the passive map (which is typically quadratic in the errors) does not

have the interpretation of total energy [16].

The following theorem proposes the generalized canonical transformation for

construction of structure preserving or structure-invariant error dynamics.

Theorem 2.3 [23]. (i) Consider the system (2.13). For any functions U(x, t) ∈

� and β(x, t) ∈ �m, there exists a pair of functions Φ(x, t) ∈ �n and α(x, t) ∈ �m

such that the set (2.44) yields a generalized canonical transformation. A function

Φ yields a generalized canonical transformation if and only if a partial differential
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equation (PDE)

∂Φ

∂(x, t)

⎛
⎜⎜⎝ [J − R]∂H(x)

∂x
+ [K − S](∂H(x)

∂x
+ ∂U(x)

∂x
) + gβ

−1

⎞
⎟⎟⎠ = 0 (2.49)

holds with a skew-symmetric matrix K(x, t) ∈ �n and a symmetric matrix

S(x, t) ∈ �n satisfying R + S > 0. Further the change of output α and the ḡ

are given by

α = gT ∂U(x)

∂x
(2.50)

ḡ =
∂Φ

∂x
(2.51)

J̄ =
∂Φ

∂(x, t)
(J + K)

∂ΦT

∂(x, t)
(2.52)

R̄ =
∂Φ

∂(x, t)
(R − S)

∂ΦT

∂(x, t)
(2.53)

(ii) If the system (2.13) is transformed by the generalized canonical transformation

with U , β and S such that H + U ≥ 0, then the new input-output mapping ū �→ ȳ

is passive with the storage function H̄ if and only if

∂(H + U)

∂(x, t)

⎛
⎜⎜⎝ [J − R]∂U(x)

∂x
− S(∂H(x)

∂x
+ ∂U(x)

∂x
) + gβ

−1

⎞
⎟⎟⎠ ≥ 0 (2.54)

(iii) Suppose moreover that (2.54) holds, that H + U is positive definite, and that

the system is zero-state detectable. Then the feedback u = β − C(x, t)(y + α)

with C(x, t) ≥ ηI > 0 ∈ �m×m renders the system asymptotically stable. Suppose
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moreover that H + U is decrescent and the transformed system is periodic. Then

the feedback renders the system uniformly asymptotically stable. �

2.4 Preliminary Graph Theory

The structure of the information sharing among the members of a group of agents

interlinked through a communication network can be well analyzed with the help

of graph theory. With the recent development of multi-agent control, graph theory

has accordingly evolved with a control theoretic basis. In this section preliminary

graph theory is briefly described as necessary in the development of this thesis.

A graph is denoted by G = (V , E) with a nonempty finite set of nodes (or

vertices) V = {V1,V2, . . . ,Vn}, and a set of edges (or arcs) E ⊆ V×V . (Vi,Vj) ∈ E

if there is an edge from node i to node j. The topology of a weighted graph is

often described by the adjacency matrix A = [aij] ∈ �N×N with weights aij > 0

if (Vj,Vi) ∈ E : otherwise aij = 0. Throughout this thesis, the topology is fixed,

i.e. A is time-invariant, and the self-connectivity element aii = 0. A graph can

be directed or undirected. A directed graph is called diagraph. The weighted

in-degree of a node i is defined as the sum of i-th row of A, i.e., di =
∑N

j=1 aij.

Define the diagonal in-degree matrix D = diag(d1, ...dN) ∈ �N×N and the graph

Laplacian matrix L = D−A. The set of neighbors of a node i is Ni = {j|(Vj×Vi) ∈

E}. If node j is a neighbor of node i, then node i can get information from node j

, but not necessarily vice versa. For undirected graph, neighborhood is a mutual

relation. A direct path from node i to node j is a sequence of successive edges in
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the form {(Vi,Vk), (Vk,Vl), ..., (Vm,Vj}. A diagraph has a spanning tree, if there is

a node (called the root), such that there is a directed path from the root to every

other node in the graph. A diagraph is strongly connected, if for any ordered pair

of nodes [Vi,Vj] with i 	= j, there is a directed path from node i to node j [2], [35].
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CHAPTER 3

NEURO-ADAPTIVE

COOPERATIVE TRACKING

CONTROL OF UNKNOWN

HIGHER-ORDER AFFINE

NONLINEAR SYSTEMS

In this chapter a practical design method for distributed cooperative tracking

control of a class of higher-order nonlinear heterogeneous multi-agent systems is

proposed. Dynamics of the agents, (also called the nodes,) are assumed to be un-

known to the controller and are estimated using Neural Networks. Linearisation-

based robust neuro-adaptive controller driving the follower nodes to track the

trajectory of the leader node is proposed. The nodes are connected through a
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weighted directed graph with a time-invariant topology. In addition to the fact

that only few nodes have access to the leader, communication among the follower

nodes is limited with some nodes having access to the information of their neigh-

bor nodes only. Command generated by the leader node is ultimately followed

by the followers with bounded synchronization error. The proposed controller is

well-defined in the sense that the control effort is restrained to practical limits.

The closed-loop system dynamics are proved to be stable and simulations results

demonstrate the effectiveness of the proposed control scheme.

3.1 Introduction

In the available studies, much attention has been paid to the cooperative tracking

control of single and double integrator and general linear systems [15] and ref-

erences therein. On the other hand, due to the vast variety of the dynamics of

nonlinear systems, research in the cooperative control of nonlinear system is still

worthy of the attention of researchers in the control community. This gap in the

knowledge has been highlighted in many papers ( see for example: [71], [72] and

[73]).

Recently a series of papers [34] - [36], addressed the cooperative tracking of

nonlinear systems with unknown dynamics using neuro-adaptive feedback lineari-

sation technique. The first two papers considered first and second order systems,

respectively. On the other hand, [36] considered higher-order systems described

in Brunovsky form and connected through a directed graph, in which access to
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leader is limited to a few follower nodes. The input function, gi(·) for each agent

i, i = 1, . . . , N , is assumed to be known and equal to unity. Such assumptions

on the input function restrict the application of the developed distributed con-

troller to a relatively small class of systems. Indeed, in real-life applications, the

actuator input function is different from unity, nonlinear, and depends on the sys-

tem’s states. To avoid the complexity introduced by the actuator dynamics, many

published studies ignore the actuator and assume that the input to the system

is directly the thrust generated by the different propulsion units. In addition to

the fact that the manipulated variables are usually the supplied power, fuel flow

rate, or voltage, the thrust generated by the power system depends on different

factors such as altitude, forward and relative airspeed, engine temperature, etc.

Assuming gi(·) = 1 introduces a discrepancy between both theoretical and in-field

performances.

The goal of this chapter is to propose a new controller that allows the input

function to be an unknown function of the system states. Thus, the proposed

results cover a broader class of systems and are closer to real-life applications

than any published results.

It is argued that the contribution of this chapter is nontrivial in two major

aspects. Firstly, due to an additional estimation of the input nonlinearities, the

controller structure is much different from the one proposed in [36] and the sta-

bility analysis is performed in different regions of the controller’s operating space

as a function of the magnitude of the gi(·) estimate. Secondly, the centralized
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controller for a single independent system presented in [74] cannot be directly

used in the present case because in this chapter a networked multi-agent system

is considered and the associated controller is distributed in nature, i.e. every node

has access to the state information of its neighbor nodes only. Furthermore it is

important to emphasize that the controller design methodology presented in this

chapter is more generic and equally applicable to the systems considered by [36]

and therefore to [34] and [35], while the converse is not true.

In the feedback linearisation based adaptive control of single nonlinear systems,

the estimate of g(x) (denoted by ĝ(x)) appears as a denominator term in the

control law. Therefore special attention has to be paid to avoid very high control

magnitudes in case of a very small estimate of g(x), or even the control singularity

in the case of zero estimate of g(x). This problem has been investigated by

several researchers and they proposed a number of solutions [33], [75], [74] and

[29]. For a similar problem, recently, an adaptive neuro-fuzzy approach for a

single system is proposed in [76], in which the approximation accuracy of the

unknown functions depends upon an initial estimate of the centers of the output

membership functions. These centers are obtained from experts or by off-line

techniques based on gathered data [76]. The approach presented in this chapter

is inspired from [74] to cope with additional unknown input nonlinearities. This

approach does not require any kind of off-line data gathering. However, as will

be seen in the sequel, few design parameters need to be evaluated. In addition,

adaptive control assumes the unknown part of a system to be linear-in-parameter
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which is not needed in our proposed approach.Moreover, as mentioned in Sec.

1.2.2, the proposed neuro-adaptive controller is direct, i.e. no off-line training of

the NN is required.

Chapter Organization: Sec. 3.1 introduces the cooperative control problem

discussed in this chapter. Problem statement is given in Sec. 3.2. The proposed

controller design steps are detailed in Sec. 3.3. Simulation examples are presented

in Sec. 3.4. The chapter is concluded in Sec. 3.5.

3.2 Problem Statement

Consider a multi-agent system composed of (N ≥ 2) agents, having distinct Mth

order dynamics. The dynamics of the ith agent, (i = 1, 2, ..., N), is described in

Brunovsky canonical form as

ẋi,m = xi,m+1, m = 1, 2, ..., M − 1

ẋi,M = fi(xi) + gi(xi)ui + ξi (3.1)

where xi = [xi,1, xi,2, ..., xi,M ]T ∈ �M is the state vector of ith agent and

fi(xi), gi(xi) are unknown nonlinear functions �M → �, locally Lipschitz in �M ,

with fi(0) = 0. ui ∈ � is the control input to agent i and ξi ∈ � is an unknown

bounded external disturbance. Furthermore, we assume that

|gi(xi)| ≥ gi 	= 0, i = 1, ..., N (3.2)
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where g = min(g
1
, ..., g

N
) and g

i
is the assumed known lower bound of gi(·). The

smooth function gi(xi) is strictly either positive or negative for all xi(t). The sign

of gi(xi) is assumed to be known . Without loss of generality, it is assumed that

gi(xi) > 0. It should be noted that this assumption is required for the current

study and as revealed from the literature survey, there is no general approach

that analyzes this class of systems without any knowledge of the sign of gi(xi).

In addition, a simple test in practice can determine if the system is direct-acting

(gi(xi) > 0) or reverse-acting (gi(xi) < 0).

System (3.1) can be collectively described as

ẋm = xm+1, m = 1, 2, ..., M − 1

ẋM = f(x) + g(x)u + ξ (3.3)

where , for m = 1, ..., M , xm = [x1,m, ..., xN,m]T ,

f(x) = [f1(x1), ..., fN(xN)]T ,

g(x) = diag{gi(xi), ..., gN(xN)}, u = [u1, ..., uN ]T and ξ = [ξ1, ..., ξN ]T . For in-

stance if M = 3, then x1, x2, x3 can represent global position, global velocity

and global acceleration vectors respectively. On the other hand, the leader node,

indexed as node 0, has the following dynamic model:

ẋ0,m = x0,m+1, m = 1, 2, ..., M − 1

ẋ0,M = f0(t, x0) (3.4)
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where x0 = [x0,1, ..., x0,m, ..., x0,M ]T is the state vector of the leader such that

x0,m ∈ � and x0 ∈ �M . f0(t, x0(t)) : [0,∞) × �M → � is piecewise continuous

in t and locally Lipschitz in x0 with f0(t, 0) = 0 for all t ≥ 0. It is assumed that

system (3.4) is forward complete, which means that for every initial condition,

the solution x0(t) exists for all t ≥ 0 and there is no finite escape time.

Remark 3.1:It should be noted at this point that, compared to [36], where gi is

restricted to unity, in this study the dynamics of a node i is further generalized

by allowing the function gi to be a smooth unknown function of state xi . Thus,

the proposed approach to design a distributed cooperative tracking controller for a

more generalized multi-agent system.

The mth order tracking error for node i is defined as δi,m = xi,m − x0,m. Let

δm = [δ1,m, ..., δN,m]; then δm = xm − xm
0 , where xm

0 = [x0,m, ..., x0,m]T = 1̄.x0,m ∈

�N . The objective is to develop a well-defined distributed control law capable of

driving the tracking error δm to a small neighborhood of the origin. At this stage,

one needs to define Cooperative Uniform Ultimate Boundedness (CUUB), which

represents an extension of the standard concept of uniform ultimate boundedness

(UUB) to cooperative control systems.

Definition 3.1 For any m (m = 1, ..., M), the tracking error δm is said to be

Cooperatively Uniformly Ultimately Bounded (CUUB) if there exists a compact

set Ωm ⊂ �N containing the origin, so that ∀δm(t0) ∈ Ωm, there exist a bound Bm

and a finite time Tm(Bm, δ1(t0), ..., δM(t0)), such that ‖δm(t)‖ ≤ Bm, ∀t ≥ t0+Tm.

Thus, if δm is CUUB then xi,m is bounded within the neighborhood of x0,m, for
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all i ∈ N and t ≥ t0 + Tm, thereby rendering all the follower nodes synchronized

with the leader. As such, the practical notion of ”close enough” synchroniza-

tion is guaranteed. In this thesis, the scenario in which the individual nodes are

connected through a digraph is considered . A particular node can access the

state information of its neighbor nodes only. Following [77], the neighborhood

synchronization error is defined as:

ei,m =
∑
j∈Ni

aij(xj,m − xi,m) + bi(x0,m − xi,m), (3.5)

for m = 1, ...,M and where bi ≥ 0 is the weight of the edge from the leader node

0 to node i, (i ∈ N). Note that bi > 0 if and only if there is an edge from

the node 0 to node i. Let em = [e1,m, ..., eN,m]T , f
0

= 1̄.f0(t, x0) ∈ �N , and

B = diag(b1, ..., bN) ∈ �N×N . Algebraic manipulations of (3.1) and (3.5) lead to

ėm = em+1, m = 1, ..., M − 1

ėm = −(L + B)(f(x) + g(x)u + ξ − f
0
), m = M (3.6)

where L = D − A is the Laplacian matrix. Define the augmented graph as

Ḡ = {V̄, Ē}, where V̄ = {ν0, ν1, ..., νN} and Ē ⊂ V̄ ×V̄ . The following assumption

on the graph topology is necessary.

Assumption 3.1:There exists a spanning tree in the augmented graph Ḡ with the

leader node 0 acting as a root node.

Assumption 3.1 implies that all the follower nodes have access to the leader
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node either directly or indirectly through directed paths. Without such assump-

tion, there would be at least one follower node that is isolated or acting as a

leader, making the synchronization among all of the nodes impossible. The paper

[36] enumerates a number of topologies that can verify Assumption 3.1.

The following two lemmas are important in the subsequent stability analysis

of the system under consideration. Their proofs can be found in [36].

Lemma 3.1 Graph Lyapunov Equation [36].

Define

q = [q1, ..., qN ]T = (L + B)−11̄,

P = diag(pi) = diag(1/qi),

Q = P (L + B) + (L + B)T P (3.7)

Then P > 0 and Q > 0. ♦

Note that the graph Lyapunov equation (3.7) captures the structure of the un-

derlying graph topology.

Lemma 3.2 [36].

‖δm‖ ≤ ‖em‖/σ(L + B), m = 1, ..., M. ♦

Lemma 3.4 relates the convergence of δm to that of em. The distributed cooper-

ative controller is designed to guarantee em → 0, which will imply that δm → 0

and thus xi,m → x0,m.
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3.3 Neuro-Adaptive Distributed Cooperative

Controller design

In this section, the design of the distributed adaptive neural network controllers

for the follower nodes is presented. The stability analysis of the proposed control

law and tuning rules for the NN weights are explained. The development of these

tasks is carried out as follows:

• The sliding mode error is formulated for each node as well as for the whole

network.

• Then it is explained how the two sets of neural networks are used to estimate

the unknown nonlinear functions fi(xi) and gi(xi) for each follower node i.

• The distributed control design and the tuning rules for the NN weights are

then presented.

• Existence of solution and boundedness of the discontinuous control input is

shown. In addition, it will be shown that under the switching conditions,

the control input remains smooth and well-defined.

• Stability of the closed-loop dynamics is proved.
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3.3.1 The sliding mode error

Define the sliding mode error ri for node i (i ∈ N ) as

ri = λ1ei,1 + λ2ei,2 + ... + λM−1ei,M−1 + ei,M (3.8)

where λ1, ..., λM−1 are design constants chosen such that the resulting sliding

manifold at ri = 0 is stable, and ei = [ei,1, ei,2, . . . , ei,M ]T → 0 exponentially

as t → ∞. The proposed controller aims at keeping the individual sliding mode

error ri within a close neighborhood of the sliding manifold. The collective sliding

mode error for the group is defined as r = [r1, ..., rN ]T ;

r = λ1e
1 + λ2e

2 + ... + λM−1e
M−1 + eM .

Define E1 = [e1, ..., eM−1]T ∈ �N×(M−1),

E2 = Ė1 = [e2, ..., eM ]T , l = [0, ..., 0, 1]T ∈ �M−1, and

Λ =

⎡
⎢⎢⎣ 0 I

−λ1 −λ2... − λM−1

⎤
⎥⎥⎦ ∈ �(M−1)×(M−1).

which leads to

E2 = E1Λ
T + rlT (3.9)

Since Λ is Hurwitz, then given any positive number β, there exists a matrix P1 > 0,

such that the following Lyapunov equation holds.

ΛT P1 + P1Λ = −βI (3.10)
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The dynamic equation of the sliding mode error r takes the form

ṙ = ρ − (L + B)(f(x) + g(x)u + ξ − f
0
) (3.11)

where

ρ = λ1e
2 + λ2e

3 + ... + λM−1e
M = E2λ̄ (3.12)

with λ̄ = [λ1, ..., λM−1]
T . The goal of the stability analysis is to prove that the

sliding mode error ri is ultimately bounded. The following lemma shows that

(ultimate) boundedness of ri implies (ultimate) boundedness of ei,∀i ∈ N .

Lemma 3.3 [36]. For all i = 1, ..., N , suppose

|ri(t)| ≤ ψi, ∀t ≥ t0

|ri(t)| ≤ ζi, ∀t ≥ Ti

for some bounds ψi > 0, ζi > 0, and time Ti > t0. Then there exist bounds

Ψi > 0, Ξi > 0 and time Δi > t0, such that

|ei(t)| ≤ Ψi, ∀t ≥ t0

|ei(t)| ≤ Ξi, ∀t ≥ Δi. ♦
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3.3.2 Approximation of fi(xi) and gi(xi) using NNs

Two neural networks are used to approximate fi(xi) and gi(xi). Assume that on

a compact set Ω ⊂ �M there exist ideal weights so that

fi(xi) = W T
fi

φfi
(xi) + εfi

gi(xi) = W T
gi

φgi
(xi) + εgi

(3.13)

where for � ∈ {fi, gi}, W� ∈ �vi is the ideal neural network weight vector, φ� ∈ �vi ,

is a suitable set of basis functions, and εj represents a functional approximation

error such that

‖εfi
‖ ≤ εfiN

‖εgi
‖ ≤ εgiN (3.14)

where εfiN and εgiN are known bounds.

Functional Link NN

The NNs used for the approximation of fi and gi belongs to a special class of NNs

called the Functional Link NN (FLNN), which is a simplification of two layer NN

with the input layer replaced by a matrix of fixed weights, i.e. φj(xi) = σjV
T
j (xi).

V is a matrix of fixed weights of the input (first) layer. These NNs are Linear

In Parameter (LIP) and can be easily trained compared to the classical two-layer

NNs. As shown in [78], for randomly selected Vj, the function φj(xi) is a basis, and
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the resulting Random Vector Functional Link (RVFL) NN achieves the universal

approximation property. In these NNs, σ(·) can be the standard sigmoid function.

Practically one cannot achieve neither the ideal NNs weights nor the zero

functional approximation errors. Therefore estimates of fi’s and gi’s are defined

as

f̂i(xi) = Ŵ T
fi

(t)φfi
(xi)

ĝi(xi) = Ŵ T
gi

(t)φgi
(xi) (3.15)

where {Ŵfi
(t), Ŵgi

(t)} ∈ �vi are the current weights of the corresponding two

NNs at node i. These weights are tuned with local state information only, as will

be described subsequently.

Define Wf = diag(Wf1 , ..., WfN
), Ŵf = diag(Ŵf1 , ..., ŴfN

),

εf = [εf1 , ..., εfN
]T , φf = [φT

f1
, ..., φT

fN
]T ,

Wg = diag(Wg1 , ..., WgN
), Ŵg = diag(Ŵg1 , ..., ŴgN

),

εg = diag(εg1 , ..., εgN
), φg = diag(φT

g1
, ..., φT

gN
). Note that due to the diagonal

structure of g(x), the structure of φg and εg is also diagonal, which is not the case

for φf and εf . The global nonlinearities f(x) and g(x) and their approximations

can be written as

f(x) = W T
f φf (x) + εf (3.16)

g(x) = W T
g φg(x) + εg (3.17)
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f̂(x) = Ŵ T
f φf (x) (3.18)

ĝ(x) = Ŵ T
g φg(x) (3.19)

Consequently, the associated NNs weights estimation errors are W̃f = Wf − Ŵf

and W̃g = Wg − Ŵg.

Remark 3.2: Let φfiM = maxxi∈Ω ‖φfi
(xi)‖, WfiM = ‖Wfi

‖ and φgiM =

maxxi∈Ω ‖φgi
(xi)‖, WgiM = ‖Wgi

‖. Then following the definitions of φj,Wj and

εj for j ∈ {f, g}, there exist positive numbers φjM ,WjM and εjM , such that

‖φj‖ ≤ φjM , ‖Wj‖ ≤ WjM and ‖εj‖ ≤ εjM .

3.3.3 Controller design

In this section, a new approach to design a neuro-adaptive distributed controller

based on the estimation of the system’s nonlinear dynamics using NNs is pre-

sented. The tuning rules of the NN weights are also addressed. Before proceeding

to the controller design, the following assumptions are made.

Assumption 3.2:

1. There exists a positive number XM > 0 such that ‖x0(t)‖ ≤ XM ,∀ t ≥ t0.

2. There exists a continuous function ϕ(·) : �M → �, such that |f0(t, x0)| ≤

|ϕ(x0)|,∀ x0 ∈ �M ,∀ t ≥ t0.

3. For each node i, the disturbance ξi is unknown but bounded. Or, equivalently,

the overall disturbance vector ξ is bounded by ‖ξ‖ ≤ ξM where ξM can be

unknown.
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4. There exist positive numbers gM > 0 and gm > 0 such that ‖g(x)‖ ≤

gM ,∀x ∈ Ωg and ‖ĝ(x)‖ ≤ gm,∀x ∈ Ωg, respectively, where Ωg = {x ∈

�M |‖x‖ ≤ Bg} and Bg is a finite positive number.

Remark 3.3: The nonlinearity of the leader node, f0(x0) is known a priori in

most of the practical scenarios making Assumption 3.2(1) reasonable. One can

infer from Assumption 3.2(2) , that there exists a positive number FM such that

|f0(t, x0)| ≤ FM ,∀x0 ∈ Ω0 and ∀t ≥ t0, where Ω0 = {x0 ∈ �M‖x0‖ ≤ XM}.

Assumption 3.2(4) can be deduced from equation (3.17) and Remark 3.2.

Assumption 3.2(1, 3, 4) and Remarks 3.2 and 3.3 have bounded several quan-

tities by arbitrary constants XM , ξM , FM ,WfM ,WgM , εfM , εgM , gM and gm. How-

ever, the bounds are not needed in the controller design and therefore their compu-

tation is not necessary. These bounds are only required for the stability analysis.

The bounds ΦfM and ΦgM can be explicitly expressed, because we can choose

some squashing functions, such as sigmoids, Gaussians, and hyperbolic tangents,

as the basis set.

3.3.4 Distributed control law

The control law ui at node i is composed of two components, namely uci and udi,

such that

ui = uci + udi (3.20)
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uci mainly accounts for the cancellation of the nonlinearities fi and gi. Its structure

can be adequately selected as:

uci =
1

ĝi

(−f̂i + νi) (3.21)

where

νi = cri +
1

di + bi

(λiei,2, ..., λM−1ei,M) (3.22)

and

c >
2

σ(Q)

(
γ2

f + γ2
g

κ
+

2

β
�2 + h

)
(3.23)

with

γf = −1
2
ΦfM σ̄(P )σ̄(A)‖, γg = −1

2
sΦgM‖σ̄(P )σ̄(A)‖, h = σ̄(P )σ̄(A)

σ(D+B)
‖λ̄‖ and

� = −1
2

(
σ̄(P )σ̄(A)
σ(D+B)

‖Λ‖F‖λ̄‖ + σ̄(P1)
)

The structure of uci shows that its magnitude can become undefined or ex-

tremely high if ĝi becomes zero or very small. This problem invokes the notion

of well-defined controller which restrains the magnitude of the control action to

a feasible limit during these conditions while insuring the stability of the closed

loop system.

In the literature, various approaches have been proposed to ensure the bound-

edness of the control signal. A simple solution can be proposed for a very restricted

class of systems by assuming that the estimate ĝi is constant.

Authors of [79] proposed an adaptive scheme which assumes that the initial esti-
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mates are close to the actual values of gi(xi) and that they do not leave a feasible

invariant set in which ĝi 	= 0. [80] considers these initial estimates within a region

of attraction of a stable equilibrium point that forms a feasible set. However, the

selection of initial NN weights is difficult, even with a very good knowledge of the

system.

Parameter projection is a popular approach to keep ĝi away from zero by pro-

jecting the weights Ŵgi
inside an estimated convex subset of the parameter space

(i.e. the Wgi
space) through the weight tuning law [81]. (A brief discussion on

the projection operator can be found in [82] and appendix E of [83]). A possible

candidate of such subset was shown to be the set of NN weight vectors Ŵgi
with

all elements positive. A drawback of this approach is that the actual Wgi
do not

necessarily belong to this subset.

In [24], an additional smoothly switching control term (udi) is employed to ensure

a well-defined control, even when ĝi → 0. In this study, the approach of [24],

which was originally proposed for a single system, is modified for the distributed

cooperative tracking control problem at hand. This approach does not require:

(i) any assumption on the initial estimate of Wgi
and (ii) estimation of a feasible

subset of Wgi
to project NN weights therein. More recently, [76] employed the so

called hopping approach, which is similar to the one proposed in [24].

The control component udi is defined as

udi =

⎧⎪⎪⎨
⎪⎪⎩

1
2
(uri − uci) expγ(|uci|−s), If Ii = 1

(uri − uci)(1 − 1
2
exp−γ(|uci|−s)), If Ii = 0

(3.24)
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where s > 0 and γ > 0 are design parameters. The robustifying term uri is given

by

uri = μ
|ĝi|
g

|uci|sgn(ri), μ > 0 (3.25)

Ii is the indicator function

Ii =

⎧⎪⎪⎨
⎪⎪⎩

1, If |ĝi| ≥ g and |uci| ≤ s

0, Otherwise

(3.26)

Using (3.24) in (3.20) gives

ui =

⎧⎪⎪⎨
⎪⎪⎩

uci + uri−uci

2
expγ(|uci|−s), If Ii = 1

uri − uri−uci

2
exp−γ(|uci|−s), If Ii = 0

(3.27)

For simplicity, define

ĝ = diag(ĝ1, ..., ĝN)

such that

ĝ−1 = diag( 1
ĝ1

, ..., 1
ĝN

), and

ν = [ν1, ..., νN ]T = cr + (D + B)−1ρ.

Collectively

uc = [uc1, ...ucN ]T = ĝ−1(−f̂ + ν)

= ĝ−1(−f̂ + cr + (D + B)−1ρ)

such that

ν = ĝuc + f̂ (3.28)
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Also

ud =

⎧⎪⎪⎨
⎪⎪⎩

1
2
E1(ur − uc), I = 1

(IN − 1
2
E0)(ur − uc) I = 0

(3.29)

and

u = uc + ud

=

⎧⎪⎪⎨
⎪⎪⎩

uc + E1
ur−uc

2
, If I = 1

ur − E0
uc−ur

2
, If I = 0

(3.30)

with uc = [uc1, ..., ucN ]T , ud = [ud1, ..., udN ]T ,

ur = μ1
g
ĝS|uc|,

S = diag(sgn(r1), ..., sgn(rN))

I = diag(Ii, ..., IN)

E1 = diag(expγ(|uc1|−s)), ..., expγ(|ucN |−s)),

and

E0 = diag(exp−γ(|uc1|−s)), ..., exp−γ(|ucN |−s)).

Boundedness of control and existence of solution

The control proposed law switches its structure on the basis of the value of bi-

nary indicator Ii. Addition of switching action in the control law has been a

common practice in adaptive control theory, to avoid control singularity or very

high magnitude (see for instance: [81] , [84], [85]). Literature survey reveals that
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the existence of solution in the closed-loop feedback systems with switching and

discontinuous terms in the control law can be explained using two prominent ap-

proaches: (i) Filippov’s theory of differential equations with discontinuous right

hand side, for example, [84], (ii) modifications to smooth out the switching term

in the control or parameter tuning laws. For example, modifications to smoothen

the parameter projection can be found in [81] and [85].

The switching of the proposed controller is smoothed out by adding an exponen-

tial term in Eq. (3.27), originally proposed in [24]. One should note that the

second term on the right hand side of equation (3.27) has been introduced to

smooth out the transition from uci to uri. The controller operation strategy is

that when ĝi ≥ g and |uci| < s, the total control action is set to uci; otherwise

control is switched to the auxiliary input uri. Following (Lewis et al 1998), the

boundedness of control input and smooth transition between uci and uri and vice-

versa are guaranteed by the addition of the exponential term + expγ(|uci|−s), when

switching from uri to uci and − exp−γ(|uci|−s) when switching form uci to uri. These

exponential terms are necessary when the switching is due to having ĝi < g. In

the case where the switching is due to the control input |uci| ≥ s, the switching

occurs at |uci| = s. Therefore both exponential terms on the right hand side of

(3.27) are equal to one and ui = 1
2
(uci + uri) before and after the switching. This

creates the hopping feature of the smoothing scheme as it hops over the expected

singularity.

From the above discussion, it can be concluded that the transition of ui from
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uci to uri and vice versa is smooth and therefore the existence of the solution is

guaranteed. Furthermore, the smoothly switching control (3.27) keeps the control

action ui well defined when ĝi → 0. Further details of the existence of solution

and boundedness of the control can be found in [24].

3.3.5 NNs tuning rule

In the following, the tuning rules for Wfi
and Wgi

are proposed.

˙̂
Wfi

= −Fiφfi
ripi(di + bi) − κFiŴfi

(3.31)

˙̂
Wgi

= −Ii

[
Giφgi

uciripi(di + bi) + κGiŴgi

]
(3.32)

or collectively,

˙̂
Wf = −FφfrdP (D + B) − κFŴf (3.33)

˙̂
Wg = −I

[
GφgucrdP (D + B) + κGŴg

]
(3.34)

where the design parameters Fi = F T
i ∈ �(vi×vi) and Gi = GT

i ∈ �(vi×vi) are arbi-

trary positive definite matrices and F = diag(F1, ..., FN), G = diag(G1, . . . , GN);

the tuning gain κ is a positive scalar, P is as defined in Lemma 1, and uc =

diag(uc1, . . . , ucN) and rd = diag(r1, ..., rN). At this stage, it is emphasized that

the control law and NNs tuning rules do not require global state information and

are implemented using the local state information of node i and its Ni neighbors,

making this cooperative tracking scheme a distributed one. Fig. 3.1 shows the
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Figure 3.1: The proposed neuro-apative distributed cooperative control scheme

block-diagram representation of the proposed controller.

Remark 3.4: The proposed approach for controller design is different from [24],

in two major aspects. First and most important, the proposed controller is dis-

tributed and hence the control law in [24] cannot be applied directly. Second, in the

same work, the authors assume a prior knowledge of some design constants, e.g. c3

and c4 relating r with some unknown nonlinearity, say f(x) as, f(x) ≤ c3 + c4|r|.

On the other hand, the current approach does not require such constraints.

Remark 3.5: The proposed controller at hand can be applied to the type of sys-

tems considered in [36], [34], and [35], but not vice versa.

Before proceeding to the stability analysis, the controller operating space is

divided the into four different regions, according to the magnitude of ĝi and uci

(Table 3.1). However, it should be noted that the ith indicator function Ii has the
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Table 3.1: Regions of controller operation
Region

no.
Condition

on |ĝi|
Condition
on |uci|

Indicator
Ii

1 |uci| ≤ s |ĝi| ≥ g 1
2 |uci| ≤ s |ĝi| < g 0
3 |uci| > s |ĝi| ≥ g 0
4 |uci| > s |ĝi| < g 0

same value in regions 2-4. Consequently, there is no switching within regions 2-4.

Among the four regions in Table 3.1, region 1 is the one in which the controller is

expected to operate. However, it is extremely important that the magnitude of the

control signal remains within practical limits and preserves closed-loop stability

when the controller operates in the other regions (2-4).

Remark 3.6: It can be easily inferred from the control law structure (3.20) -

(3.26) and the tuning rules (3.31) - (3.32) that the magnitude of the control effort

is always bounded by some finite limit. At this stage, let’s assume that in regions

2-4, ‖uc‖ ≤ Sm < ∞, where Sm ∈ � is unknown but Sm > s. Its knowledge for

controller design is not required and will be only used in the subsequent stability

analysis.

In the following, stability analysis is performed under the proposed control

law, firstly in the region 1, and then in the other regions.

3.3.6 Stability analysis

After adding [−(L + B)(ν − ν)] to the sliding mode error dynamics (3.11), and

considering (3.28), one has
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ṙ = ρ − (L + B)
(
f(x) + g(x)u + ξ − f

0
+ ν − ν

)

= ρ − (L + B)
(
f(x) + g(x)u + ξ − f

0
− ĝuc − f̂ + ν

)

= ρ − (L + B)
(
f − f̂ + (g − ĝ)uc + gud + ξ − f

0
+ ν

)

= ρ − (L + B)
(
f − f̂ + (g − ĝ)uc + ξ − f

0
+ cr + (D + B)−1ρ + gud

)

(3.35)

The stability of the cooperative system (3.1) to synchronize with the leader (3.4)

under the proposed controller is established in the following theorem.

Theorem 3.1 Consider the leader-follower system described by (3.1) and (3.4).

Suppose that Assumptions 3.1 and 3.2 hold. Then the use of distributed control

law described by (3.20)- (3.24), with the NNs tuning rules, (3.33)-(3.34), results

into the following:

1. The tracking errors δ1, ..., δM are cooperatively uniformly ultimately bounded,

implying that all nodes in graph G synchronize to the leader node 0 with

bounded residual errors.

2. The states xi(t), (i = 1, ..., N) are bounded ∀ t ≥ t0

proof: To prove part 1, one can select the following Lyapunov function candidate

V = V1 + V2 + V3 + V4 (3.36)
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where V1 = 1
2
rT Pr, V2 = 1

2
tr{W̃f

T
F−1W̃f},

V3 = 1
2
tr{W̃g

T
G−1W̃g} and V4 = 1

2
tr{E1P1E

T
1 }

The stability analysis can be performed region-by-region, as follows:

Region 1: (|ĝi| ≥ g and |uc| ≤ s)

V̇1 = rT P ṙ

= rT P
[
ρ − (L + B)(f − f̂ + (g − ĝd)uc + ξ − f

0
+ cr

+(D + B)−1ρ + gud)
]

(3.37)

Using, Eqs. (3.16)-(3.19) and definitions of W̃f and W̃g,

V̇1 = −rT P (L + B)(εf + εguc + gud + ξ − f
0
)

−crT P (L + B)r + rT Pρ − rT P (L + B)(D + B)−1ρ

−rT P (L + B)W̃ T
f φf − rT P (L + B)W̃ T

g φguc

= −crT P (L + B)r

−rT P (L + B)(εf + εguc + gud + ξ − f
0
)

−rT P (D + B)W̃ T
f φf + rT PAW̃ T

f φf

+rT PAW̃ T
g φguc

−rT P (D + B)W̃ T
g φguc + rT PA(D + B)−1ρ (3.38)
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Using the identity, xT y = tr{yxT}∀{x, y} ∈ �N and considering (3.7) yields

V̇1 = −1

2
crT Qr − rT P (L + B)(εf + εguc + gud + ξ − f

0
) − tr{W̃ T

f φfr
T P (D + B)}

+tr{W̃ T
f φfr

T PA} − tr{W̃ T
g φgucr

T P (D + B)}

+tr{W̃ T
g φgucr

T PA} + rT PA(D + B)−1ρ (3.39)

One should note that ˙̃Wj = Ẇj − ˙̂
Wj = − ˙̂

Wj, j ∈ {f, g}, and consider

V̇2 + V̇3 = −tr{W̃ T
f F−1 ˙̂

Wf} − tr{W̃ T
g G−1 ˙̂

Wg}

= tr{W̃ T
f φfrdP (D + B) + κW̃ T

f Ŵf}

+ tr{W̃ T
g φgucrdP (D + B) + κW̃ T

g Ŵg} (3.40)

Since in this region |uci| ≤ s, therefore, ‖uc‖ ≤ √
Ns. Also, define TM = εf +

εgs + ξM + FM and ς = gm/g. Combining (3.39), (3.40) and considering (3.9) and

(3.12), one has

V̇1 + V̇2 + V̇3 = −1

2
crT Qr

−rT P (L + B)(εf + εguc + ξ − f
0
)

−rT P (L + B)g
1

2
E1(

μ

g
S|ĝ||uc| − uc)

+κtr{W̃fŴf} + tr{W̃ T
f φfr

T PA}

+κtr{W̃gŴg} + tr{W̃ T
g φgucr

T PA}
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+rT PA(D + B)−1E1Λ
T λ̄ + rT PA(D + B)−1rlT λ̄

≤ −1

2
cσ(Q)‖r‖2 + σ̄(P )σ̄(L + B)TM‖r‖

+
1

2
σ̄(P )σ̄(L + B)gM(

μ

g
‖ĝ‖‖uc‖ + ‖uc‖)‖r‖

−κ(‖W̃f‖2
F + ‖W̃g‖2

F )

+σ̄(P )σ̄(A)(ΦfM‖W̃f‖F + sΦgM‖W̃g‖F )‖r‖

+
σ̄(P )σ̄(A)

σ(D + B)
‖r‖2‖l‖‖λ̄‖

+‖r‖ σ̄(P )σ̄(A)

σ(D + B)
‖E1‖F‖Λ‖F‖λ̄‖

+κWfM‖W̃fM‖F + κWgM‖W̃gM‖F

≤ −1

2
cσ(Q)‖r‖2 + σ̄(P )σ̄(L + B)TM‖r‖

+
1

2

√
NsgM σ̄(P )σ̄(L + B)(μς + 1)‖r‖

−κ(‖W̃f‖2
F + ‖W̃g‖2

F )

+σ̄(P )σ̄(A)(ΦfM‖W̃f‖F + sΦgM‖W̃g‖F )‖r‖

+
σ̄(P )σ̄(A)

σ(D + B)
‖r‖2‖l‖‖λ̄‖

+‖r‖ σ̄(P )σ̄(A)

σ(D + B)
‖E1‖F‖Λ‖F‖λ̄‖

+κWfM‖W̃fM‖F + κWgM‖W̃gM‖F

≤ −1

2
cσ(Q)‖r‖2 + σ̄(P )σ̄(L + B)TM‖r‖

+
1

2

√
NsgM σ̄(P )σ̄(L + B)(μς + 1)‖r‖

−κ(‖W̃f‖2
F + ‖W̃g‖2

F )

+σ̄(P )σ̄(A)(ΦfM‖W̃f‖F + sΦgM‖W̃g‖F )‖r‖

+
σ̄(P )σ̄(A)

σ(D + B)
‖r‖2‖l‖‖λ̄‖
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+‖r‖ σ̄(P )σ̄(A)

σ(D + B)
‖E1‖F‖Λ‖F‖λ̄‖ (3.41)

+κWfM‖W̃fM‖F + κ‖WgM‖W̃gM‖F

Now consider,

V̇4 = tr{E2P1E
T
1 } (3.42)

Substituting (3.9) into (3.42) and applying (3.10)

V̇4 = −β

2
tr{E1E

T
1 } + tr{rlT P1E

T
1 }

≤ −β

2
‖E1‖2

F + σ̄(P1)‖r‖‖E1‖F (3.43)

Thus

V̇ ≤ −
(

1

2
cσ(Q) − σ̄(P )σ̄(A)

σ(D + B)
‖λ̄‖

)
‖r‖2 − β

2
‖E1‖2

F

+
(
σ̄(P )σ̄(A)(ΦfM‖W̃f‖F + sΦgM‖W̃g‖F

)
‖r‖

+

(
1

2

√
NsgM σ̄(P )σ̄(L + B)(μς + 1 + 2

TM√
NsgM

)

)
‖r‖

−κ(‖W̃f‖2
F + ‖W̃g‖2

F )

+

(
σ̄(P )σ̄(A)

σ(D + B)
‖Λ‖F‖λ̄‖ + σ̄(P1)

)
‖r‖‖E1‖F

+κWfM‖W̃fM‖F + κWgM‖W̃gM‖F (3.44)
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Let γf = −1
2
ΦfM σ̄(P )σ̄(A)‖,

γg = −1
2
sΦgM‖σ̄(P )σ̄(A)‖, h = σ̄(P )σ̄(A)

σ(D+B)
‖λ̄‖

and � = −1
2

(
σ̄(P )σ̄(A)
σ(D+B)

‖Λ‖F‖λ̄‖ + σ̄(P1)
)
. Rearranging (3.44) leads to

V̇ ≤ −zT Kz + ωT
1 z = −Vz(z), (3.45)

where

z =
[
‖E1‖F , ‖W̃f‖F , ‖W̃g‖F , ‖r‖

]T

(3.46)

ω1 = [0, κWfM , κWgM , Υ1]
T (3.47)

with Υ1 = 1
2

√
NsgM σ̄(P )σ̄(L + B)(μς + 1 + 2 TM√

NsgM
),

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β
2

0 0 �

0 κ 0 γf

0 0 κ γg

� γf γg θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and θ = −1
2
cσ(Q) − h.

Eq. (45) implies that Vz(z) is positive definite if the following two conditions are

satisfied:

C1. K is positive definite

C2. ‖z‖ > ‖ω1‖
σ(K)

.

According to Sylvester’s criterion, K is positive definite if

β > 0

βκ > 0

βκ2 > 0
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κ(βθ − 2�2) − β(γ2
f + γ2

g) > 0.

The solution of the above inequalities gives the condition on c described in (3.23).

At this stage of the proof, the discussion of condition (C2) is postponed after

the remaining regions have been investigated and the corresponding ωi vectors

obtained.

Region 2: |uc| < s and |ĝ| < g

In the remaining three regions
˙̂

Wg = 0, and therefore

V̇ = −1

2
crT Qr

−rT P (L + B)(εf + (g − ĝ)uc + gud + ξ − f
0
)

+κtr{W̃fŴf} + tr{W̃ T
f φfr

T PA}

+rT PA(D + B)−1E1Λ
T λ̄ + rT PA(D + B)−1rlT λ̄

−β

2
tr{E1E

T
1 } + tr{rlT P1E

T
1 } (3.48)

One can see that in this region as well as in regions 3 and 4, apart from the terms

involving g and g̃, the stability analysis essentially remains the same as in region

1. To simplify the analysis, define

V̇g = −rT P (L + B)(g̃uc + gud)

= −rT P (L + B)((g − ĝ)uc + gud)

= −rT P (L + B)(−ĝuc + gu) (3.49)
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Substituting the controller corresponding to this region, one has

V̇g = rT P (L + B)ĝuc − rT P (L + B)g(uc + ud)

= rT P (L + B)ĝuc

−rT P (L + B)g

(
ur − 1

2
E0(ur − uc)

)

= rT P (L + B)ĝuc − μ

g
rT PBg

(
IN − 1

2
E0

)
|ĝ|S

− μ

g
rT PLg

(
IN − 1

2
E0

)
|ĝ|S

−1

2
rT P (L + B)gE0uc (3.50)

Since P > 0, B ≥ 0, g > 0, |ĝ| > 0,
(
IN − 1

2
E0

)
> 0 and rTS > 0, the term

μ
g
rT PBg

(
IN − 1

2
E0

) |ĝ|S in (3.50) is always non-negative. Furthermore, the K

matrix in regions 2-4 is slightly affected, i.e. γg = 0 maintaining the condition

(3.23) on c essentially the same. The variations in ωi, i = 1, ..., 4, which have no

influence on the overall controller structure, represent the only changes.

Define

Υ2 = 1
2
σ̄(P )

(
(2sg + sgm)σ̄(L + B) + μςgM σ̄(L)

)
,

then

V̇g ≤ Υ2‖r‖ (3.51)

Note that in this case γg = 0

Region 3:|ĝ| > g and |uc| > s

77



With straightforward manipulations, it can be shown that, in this region,

V̇g ≤ Υ3‖r‖ (3.52)

where

Υ3 = 1
2
σ̄(P )

(
(2Smg + Smgm)σ̄(L + B) + μςgM σ̄(L)

)
,

Region 4:|ĝ| < g and |uc| > s

Similarly it can be shown that in this region

V̇g ≤ Υ4‖r‖ (3.53)

where

Υ4 = 1
2
σ̄(P )

(
(2Smg + Smgm)σ̄(L + B) + μgM σ̄(L)

)
,

Define Υ = max(Υ1, Υ2, Υ3, Υ4) and

ω = [0, κWfM , κsWgM , Υ]T .

Since ‖ω‖1 > ‖ω‖, condition (C2) holds if ‖z‖ ≥ Bd with

Bd =
κWfM + κsWgM + Υ

σ(K)
(3.54)

Therefore, under condition (3.23), we obtain

V̇ ≤ −Vz(z), ∀‖z‖ ≥ Bd.

with Vz(z) being a positive definite function.
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To complete the proof, the same steps are followed as in the proof of Theorem

1 in [36]. Eqs. (3.36) and (4.24) imply that

σ(Γ)‖z‖2 ≤ V ≤ σ̄(T )‖z‖2, (3.55)

where

Γ = diag
(

σ(P1)
2

, 1
σ̄(F )

, 1
σ̄(G)

, σ(P )
2

)
∈ �4×4 and T = diag

(
σ̄(P1)

2
, 1

σ(F )
, 1

σ(G)
, σ̄(P )

2

)
∈

�4×4. Then following Theorem 4.18 in [19], it can be concluded that for any initial

condition z(t0) (or equivalently V (t0)), there exists a time T0 such that

‖z(t)‖ ≤
√

σ̄(T )

σ(Γ)
Bd, ∀t ≥ t0 + T0. (3.56)

Define k = min‖z‖≥Bd
Vz(z). Then proceeding essentially same as in [19], it can be

shown that

T0 =
V (t0) − σ̄(t)B2

d

k
(3.57)

The definition of z, (4.24) and (3.56) imply that r(t) is ultimately bounded. Then

ri(t) is ultimately bounded. By Lemma 3.3, ei(t) is ultimately bounded (∀i ∈ N ),

which implies that em(t) (∀m = 1, ..., M) is ultimately bounded. Then, following

Lemma 3.2, the tracking errors δ1, ..., δM are CUUB and all nodes in graph G

synchronize, in the sense of Definition 3.1, to the trajectory x0(t) of the leader

node.

To prove part 2 of the Theorem, it can be shown that the state xi(t) is bounded
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∀i ∈ N and ∀t ≥ t0. Equation (3.45) implies that

V̇ ≤ −σ(K)‖z‖2 + ‖ω‖‖z‖ (3.58)

The combination of (3.55) and (3.58) leads to

d

dt
(
√

V ) ≤ − σ(K)

2σ̄(T )

√
V +

‖ω‖
2
√

σ(Γ)

Thus V (t) is bounded for all t ≥ t0 by Corollary 1.1 in [86]. Since (3.36) implies

that ‖r‖2 ≤ 2V (t)
σ(P )

, boundedness of r(t) is guaranteed for all t ≥ t0. By Lemmas 3.2

and 3.3, δm(t) is also bounded. Since by definition δm = xm−x0,m and considering

Assumption 3.2, xm(t),∀m = 1, ..., M , is bounded for all t, i.e., xi(t) is bounded.

Equivalently, xi(t) is contained in a compact set Ωi,∀i ∈ N and t ≥ t0. This

completes the proof. �

Remark 3.7: Since the existence of ideal weights is assumed for fi and gi on a

compact set Ω ⊂ RM , our results are semi-global. However, the size of Ω has no

impact on the controller, and it can be arbitrarily very large [24]. The results will

be global if the ideal weights exist for all xi ∈ �M .

3.4 Simulation Examples

In the following, the proposed approach is applied to two different examples. In

both examples, five followers nodes have to be synchronized with the leader node,

connected through the digraph G as shown in Fig. 3.2.
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Figure 3.2: Topology of augmented graph Ḡ

3.4.1 Example 1:

In this example, the dynamics of the leader and all of the followers are similar

to those in the example of [36], with the only difference that in this thesis, all

gi(xi)’s are non-unity but unknown functions of the states xis. The example

has been selected to illustrate the performance of the proposed approach. The

dynamic model of the leader is

ẋ0,1 = x0,2

ẋ0,2 = x0,3

ẋ0,3 = −x0,2 − 2x0,3 + 1 + 3sin(2t) + 6cos(2t)

1

3
(x0,1 + x0,2 − 1)(x0,1 + 4x0,2 + 3x0,3 − 1)

The dynamics of the follower nodes are expressed as in (3.1).

ẋ1,3 = x1,2sin(x1,1) + cos2(x1,3) + (0.1 + x2
1,2)u1 + ξ1

ẋ2,3 = −x2,1x2,2 + 0.01x2,1 − 0.01x2
2,1

+(1 + sin2(x2,1))u2 + ξ2
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ẋ3,3 = x3,2 + sin(x3,3) + (1 + cos2(x3,2))u3 + ξ3

ẋ4,3 = −3(x4,1 + x4,2 − 1)2(x4,1 + x4,2 + x4,3 − 1) − x4,2

−x4,3 + 0.5sin2t + cos(2t) + (1 + 0.5x2
4,2)u4 + ξ4

ẋ5,3 = cos(x5,1) − x5,2 + (1 + x2
5,1)u5 + ξ5

When initially at rest, the unit step responses of the first three nodes are un-

stable. The fourth node is stable and similar to the leader node with different

parameters. The fifth node has a ramp-like response to unit step input. The

unknown disturbances ξi’s are random but bounded (|ξi| < 1). In the simulation,

each neural network is composed of six neurons. The NN weights are initialized

as Wfi
(0) = [0, 0, 0, 0, 0, 0]T∀i and Wgi

(0) = [1, 1, 1, 1, 1, 1]T∀i to avoid ĝi = 0,∀i,

initially. Also, the simulations are performed with λ1 = 1, λ2 = 2, γ = 0.05, g =

0.01, c = 1000, μ = 1, κ = 0.001, pi > 0, Fi = Gi = I. Profiles of the tracking

errors (Figs.3.4–3.6) show that they converge to a close vicinity of zero within a

small period of time. Fig.3.7 shows the magnitudes of control efforts. Controller

switching is shown in Fig.3.8 for the first 100 ms. This switching is indicated by

the magnitude of indicator function Ii.

3.4.2 Example 2:

In this example the synchronization of five inverted pendulums (such as the one

shown in Fig.3.3) is considered. They are networked through the same graph as

in example 1.
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Table 3.2: Parameters in Example 2
Node No. Mi [Kg] mi [Kg] Li [m]

1 0.8 0.08 0.4
2 0.9 0.09 0.45
3 1 0.1 0.5
4 1.1 0.11 0.55
5 1.2 0.12 0.6

The virtual leader’s dynamics are:

Figure 3.3: Inverted pendulum in example 2.

ẋ0,1 = x0,2

ẋ0,2 = −3π3

40
cos(2πft)

where f = 3/4 Hz. The follower nodes are described by (3.1) with fi(xi) and

gi(xi), for i = 1, ..., 5, defined in [33] and [86]:

fi(xi) =
gsin(xi,1)−0.5miLix

2
i,2sin(2xi,1)(Mi+mi)

−1

Li(
4
3
−(Mi+mi)−1mcos2(xi,1))

gi(xi) =
(Mi+mi)

−1cos(xi,1)ui

Li(
4
3
−(Mi+mi)−1micos2(xi,1))

where xi,1 and xi,2 are the angular position and speed of the pole of the ith pen-

dulum, respectively. Furthermore, Mi and mi are masses of the cart and pole,

respectively, and Li is half-length of the pole of the ith pendulum. the values of

the simulation parameters are given in Table 3.2. It is assumed that the initial
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angular positions, i.e. xi,1 of all the pendulums’ poles are much less then π/2

radians, to ensure that gi(xi) > 0. The controller and NNs tuning parameters as

well as the external disturbances remain the same as in example 1. Figs. 3.9–

3.10 show the evolution of the leader and followers’ states and the corresponding

tracking errors, respectively.

In both of the above examples, though with small residual errors, all of the fol-

lowers are synchronized with the leader in a short period of time. The system is

stable and the control signal is within practical limits.

3.5 Conclusion

The distributed cooperative tracking control of higher order nonlinear multi-agent

systems is presented in this chapter. The nonlinearities in the systems’ dynamics

are completely unknown Lipschitz functions. The proposed controller at a cer-

tain node does not require the global state knowledge and works with the state

information of neighboring nodes only. The control signal is well defined and en-

sures system’s stability. Two neural networks are used to estimate the unknown

system nonlinearities. The leader acts as a command generator and the followers

synchronize with the leader in a finite time with a small residual error.
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Figure 3.4: Evolution of position error, δi,1
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Figure 3.5: Evolution of velocity error, δi,2
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Figure 3.6: Evolution of acceleration error, δi,3
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Figure 3.7: Control inputs, ui
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Figure 3.8: Indicator Ii

0 2 4 6 8 10
−0.5

0

0.5

M
ag

ni
tu

de
 o

f x
i,1

 [r
ad

.]

0 2 4 6 8 10
−1

−0.5

0

0.5

1

Time [Sec.]

M
ag

ni
tu

de
 o

f x
i,2

 [r
ad

.]

x0,1 x11 x21 x31 x41 x51

x0,2 x12 x22 x32 x42 x52
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CHAPTER 4

L2 NEURO-ADAPTIVE

TRACKING CONTROL OF

UNCERTAIN PORT

CONTROLLED

HAMILTONIAN SYSTEMS

In this chapter a practical method of neural network adaptive tracking control

of uncertain Port Controlled Hamiltonian (PCH) systems is presented. The de-

velopments of this chapter are important as a significant step prior to the design

of robust cooperative controller for a networked group of PCH systems discussed

in the next chapter. A neural network is used to compensate for the parametric

uncertainty. The dynamics of the the proposed neural network tuning law are
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driven by both the position as well as the velocity errors by introducing the novel

idea of information preserving filtering of Hamiltonian gradient. PCH structure

of the closed-loop system is preserved. Moreover, the controller also achieves the

L2 disturbance attenuation objective. Simulation examples show the efficacy of

the proposed controller.

Chapter Organization: Sec. 4.1 introduces the problem discussed in this

chapter and the relevant literature. Sec. 4.2 briefly describes the PCH systems

and the generalized canonical transformation theory which is important for the

development of tracking controllers. Sec. 4.3 explains in detail the main problem

treated in the chapter. The main results of this chapter are described in Sec. 4.4.

Sec. 4.5 explains the application of the proposed controller to standard mechanical

systems. A couple of simulation examples is detailed in Sec. 4.6. The chapter

ends with a conclusion in Sec. 4.7.

4.1 Introduction

The major concern of this chapter is to design a robust controller for single PCH

systems. If uncertainties in the system parameters and model structure are not

taken into account during the controller design stage, they can significantly de-

grade the performance and stability of the closed-loop system. Few attempts on

the robust control of uncertain PCH systems have been reported in the literature.

A variable structure controller is proposed in [87] and [18] to cope with para-

metric uncertainties. However, in most practical situations, chattering caused by
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discontinuous control actions hinder the implementation of the proposed variable

structure controller. The authors of [88] used an adaptive controller to achieve

robust simultaneous stabilization of multiple PCH systems. However a restriction

on the form of Hamiltonian limits the application of such approach to a narrow

class of systems. An adaptive control approach is proposed in [27] for stabilizing

uncertain PCH systems. In [26] a similar approach is presented for time-varying

uncertain PCH systems, by employing the canonical transformation proposed in

[23], to address both, stabilization and tracking problems. A potential drawback

of [27] and [26] is that the adaptive laws proposed in these papers are driven by

the passive output, i.e. the velocity error, and therefore significant position error

can occur in the steady state. The inclusion of the position error in the adaptive

laws is avoided to preserve the PCH structure of the closed loop system. Recog-

nizing such drawback, authors of [28] proposed the power-based Brayton-Moser

(BM) formalism as an alternative to energy-shaping based PCH formalism with

the motive of incorporating position error in the adaptive law. This has been

achieved at the cost of losing the freedom of tuning certain design parameters, a

feature well exploited in the canonical transformation of PCH models.

In addition, the adaptive control schemes mentioned above, require the para-

metric uncertainty to be in Linear-In-Parameter (LIP) form, which asserts that

uncertainty is expressed as a product of a known regressor matrix and a vector of

unknown parameters. In many practical situations, finding the regressor matrix

is either very difficult or, in some cases impossible, and therefore LIP property
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may not be exactly fulfilled.

Motivated by the limitations of the above works(i.e. the adaptive laws driven by

the velocity errors only, and the LIP requirement), in this thesis a novel approach

based on neural network (NN) adaptive control of PCH systems with L2 distur-

bance attenuation is presented. The novel idea of Information Preserving (IP)

filtering of Hamiltonian gradient is introduced. With the incorporation of this IP

filtering, NN tuning law is driven by, both, the position as well as velocity errors.

PCH structure of the closed loop dynamics is preserved. The intuition behind

the proposed NN tuning law stems from the well-known filtered-error approach

of adaptive and NN control theory, where the adaptive laws are driven by filtered

error, and thus by position as well as velocity error [89], [24]. The concept of IP

is introduced to reflect that in the proposed NN tuning law with IP filtering of

Hamiltonian gradient, the information contained in the position error is preserved

and utilized, in contrast to available results, for example, [27] and [26], where this

information is lost and only the velocity error information is utilized. This idea

has been recognized in [26], but their approach proposes to further transform the

system dynamics into filtered error space and drive the adaptive law by position

error as well as velocity error. However, such transformation complicates the con-

troller design. The NN tuning law proposed in this chapter does not require any

extra transformation. Moreover the proposed neuro-adaptive approach is direct

i.e. off-line training of the NN is not required. Another advantage of the NN

based control is that, both the LIP assumption on the uncertainty, and therefore,
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the evaluation of a regressor matrix are no longer required, making the proposed

approach much simpler. Furthermore, the so called Nerendra e-modification [90]

is employed in the NN tuning law to avoid the need for persistence of excitation

condition and therefore making the NN tuning law more robust.

In summary, the contribution of this chapter to the literature is twofold:

1. L2 neuro-adaptive control of PCH systems is proposed and,

2. a novel NN tuning law is proposed which is driven by both the position as

well as velocity errors, by introducing the concept of IP filtering.

4.2 Preliminaries

A PCH system is generally described as:

ẋ = [J(x, t) − R(x, t)]
∂H

∂x
(x, t) + g(x, t)u

y = g(x, t)T ∂H

∂x
(x, t) (4.1)

where x ∈ �n is the state vector. The Hamiltonian function H(x, t) : �n �→ � is a

Positive semi-definite function and represents the energy stored in the system. The

column vector ∂H
∂x

(x, t) = [∂H(x,t)
∂x1

...∂H(x,t)
∂xn

]T denotes the gradient of the scalar func-

tion H(x, t). Matrices J(x, t) = −J(x, t)T ∈ �n×n and g(x, t) ∈ �m×n collectively

define the interconnection structure of the system. R(x, t) = RT (x, t) ≥ 0 ∈ �n×n

represents the dissipation. All these matrices, may, smoothly depend on x.

In this chapter the tracking problem is directly addressed, however, these theoret-
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ical developments are equally applicable to stabilization and regulation problems

as well. Depending upon the problem at hand, (stabilization, regulation or track-

ing,) an appropriate canonical transformation is performed before the particular

controller design is carried out. In control theory, such canonical transformations

are very common to transform a dynamic system to an equivalent one, to facili-

tate, both, the analysis and synthesis of the controller. The theory of canonical

transformation of PCH systems is briefly described in Sec. 2.3.6. and further

details can be found in [22] and [23]. The main concern of this chapter is now

stated in the following section.

4.3 Problem Statement

The Generalized canonical transformation and trajectory tracking problems de-

scribed in Sec. 2.3.6 are based on the exact knowledge of system parameters and

the assumption that external disturbances are zero. However, in many real world

applications, parameters deviate from their nominal values caused by several fac-

tors. For instance, certain parameters of robot manipulators can suffer from sig-

nificant variations due to unknown loads during the operations. An autonomous

under-water vehicle (AUV) experiences parameter variations and external dis-

turbances due to waves and ocean currents. As another example, a helicopter

transporting slung load may experience significant variations in its dynamics due

to cable length flexibility and aerodynamic drags and wind gusts due to varying

weather conditions. Ignoring such uncertainties and disturbances will ultimately
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degrade the controller performance and sometimes may affect the stability of the

closed-loop system. Thus, a scheme for the estimation of the collective impact

of the parameter uncertainties and robustness against external disturbances can

effectively enhance the controller performance. Controller design with estimation

of such parametric uncertainties using NN and L2 attenuation of external distur-

bances is the main subject of this chapter.

In this chapter the following uncertain autonomous PCH system is considered.

ẋ = [J(x, εJ) − R(x, εR)]
∂H

∂x
(x, εH) + g(x)(u + ξ) (4.2)

y = g(x)T ∂H

∂x
(x, εH) (4.3)

where εj, j ∈ {J,R, H} denotes the uncertainties in the parameters and ξ ∈ �m is

the unknown but bounded disturbance.

To facilitate the analysis, let the uncertain structure matrices in (4.2) be repre-

sented as:

J(x, εJ) = J0(x) + ΔJ(x, εJ)

R(x, εR) = R0(x) + ΔR(x, εR)

∂H

∂x
(x, εH) =

∂H0

∂x
(x) + ΔH(x, εH)

(4.4)

where J0(x), R0(x) and H0(x) denote the nominal values. Define ε = [εR εJ εH ]T

and let β(x, εβ) as obtained from the solution of PDE (2.49) for the uncertain
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system (4.2) and expressed as

β(x, εβ) = β0(x) + Δβ(x, εβ) (4.5)

where β0(x) corresponds to the solution for the nominal system. Δβ(x, εβ) is the

corresponding uncertainty.

Application of β0(x) transforms the uncertain system(4.2) from state space to the

following system in tracking-error space.

˙̄x =
[
J̄(x̄, εJ) − R̄(x̄, εR)

] ∂H̄

∂x̄
(x̄, εH)

+ḡ(x̄)(Δβ(x, εβ) + ū + ξ) (4.6)

ȳ = ḡ(x̄)T ∂H̄

∂x̄
(x̄, εH) (4.7)

Define F̄(x̄, ε) ∈ �n as

F̄(x̄, ε) = [J̄(x̄, εJ) − R̄(x̄, εR)]
∂H̄

∂x̄
(x̄, εH)

−[J̄0(x̄) − R̄0(x̄)]
∂H̄0

∂x̄
(x̄) + ḡ(x̄, t)Δβ(x, εβ) (4.8)

Using (4.8), the uncertain error system (4.6) can be expressed as:

˙̄x = [J̄0(x̄) − R̄0(x̄)]
∂H̄0

∂x̄
(x̄)

+F̄(x̄, ε) + ḡ(x̄)(ū + ξ) (4.9)
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Note that F̄ collectively represents the parametric uncertainty of transformed

system (4.6).

Assumption 3.1:The collective parametric uncertainty F̄ in (4.8) can be ex-

pressed as:

F̄(x̄, ε) = Z ḡ(x)F(x̄, ε) (4.10)

where the so called information preserver Z ∈ �n×n is a symmetric design matrix

and the unknown function F(x̄, ε) ∈ �m is locally Lipschitz.

Further explanation of Z is given in the Sec. 4.3.3. The unknown function

F(x̄, ε) will be approximated by a neural network.

Let

ū = −C(x̄, t)ȳ + ϑ (4.11)

where −C(x̄, t)ȳ is the passive output feedback part of the control input according

to Theorem 2.2 (Ch. 02), and ϑ is the L2 neuro-adaptive component of the control

to account for all parametric uncertainties and disturbance attenuation. Applying

ū of (4.11) to the uncertain system (4.6) yields

˙̄x = [J̄0(x̄) − R̄c(x̄)]
∂H̄

∂x̄
(x̄) + Z ḡF(x̄, ε) + ḡ(x̄)(ϑ + ξ) (4.12)

where

R̄c(x̄) = R̄0(x̄) + ḡ(x̄, t)C(x̄, t)ḡT (x̄, t) (4.13)

Technically, the objective of this chapter is threefold;
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1. find a NN tuning law for estimation of F(x̄, ε). The NN tuning law should

be driven by both, the position as well as the velocity error.

2. design the feedback controller ϑ to compensate for the uncertainties in PCH

error system (4.2) using the NN approximation of F(x̄, ε). The controller

should achieve the L2 disturbance attenuation objective and preserve the

PCH structure of the closed-loop system as well.

3. ensure the Uniform Ultimate Boundedness(UUB) of the error vector x̄ and

W̃ (defined in eq. (4.32)) under the proposed controller.

4.3.1 Approximation of uncertainties using neural net-

works

Let Ω ⊂ �n be a compact, simply connected set and F(·) : Ω → �m. Define

Cm(Ω) as the space of continuous function F(·). Then, for all F(·) ∈ Cm(Ω),

there exists a weight vector W such that F(x̄, ε) can be expressed as

F(x̄, ε) = φ(x̄N)T W + ε (4.14)

The weights W =
[
W T

1 ...W T
m

] ∈ �mν with Wi ∈ �ν , i = 1, ..., m are the ideal

neural network weights, φ = diag(φ1, ....φ
T
m)�mν×m with φi ∈ �ν , i = 1, ...m are

some basis functions. x̄N is the NN input given by:

x̄N =
[
x̄T ˙̄xT xT

d ẋT
d ẍT

d

]T
(4.15)
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ε ∈ �m is the NN approximation error.

In practical applications the ideal weights W and error ε can not be evaluated,

rather, the function F(·) is approximated as:

F̂(x̄, ε) = φ(x̄N)T Ŵ (t) (4.16)

where Ŵ (t) ∈ �mν are the actual time-varying weights of the NNs.

Remark 4.1: Similar to the NNs used in Ch. 3, the FLNN is also used here for

the approximation of F(·).

In addition to guarantying the closed-loop system’s stability, the objective here

is to propose a NN tuning law that

1. preserves the PCH structure of the closed-loop dynamics augmented with

the NNs’ dynamics, and

2. its dynamics are driven by both position as well as velocity errors, unlike in

[27] and [26], where only velocity error is used and may result in a steady

state position error.

4.3.2 NN tuning law

The following NN tuning law is proposed for the approximation of F(·).

˙̂
W = Γφ(x)ḡT (x̄)Z ∂H̄

∂x̄
− κΓ‖ḡT (x̄)Z ∂H̄

∂x̄
‖Ŵ (4.17)
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where Γ = diag(Γ1, ..., Γm) and Γi ∈ �ν×ν , for i = 1, ..., m, is a user defined

symmetric positive definite design matrix. κ > 0 is a scaler design parameter.

Define the manifold Ξ as:

Ξ = {x̄ | ḡT (x̄)Z ∂H̄

∂x̄
(x̄) = 0} (4.18)

The following subsection explains the advantages associated with the intro-

duction of Z in the NN tuning law (4.17).

4.3.3 Information-preserving gradient filtering

Incorporation of Z causes the NN tuning law (4.17) to be driven by a combination

of position and velocity errors. The manifold Ξ can be judiciously termed as an

information-preserving filtered Hamiltonian-gradient. In some cases, e.g. simple

pendulum and linear spring-mass-damper systems, it can be shown that Ξ is

equivalent to the filtered error or sliding manifold in error space. The proposed

approach of driving the NN tuning law by IP filtered Hamiltonian-gradient is

inspired by filtered error approach, which is very popular in the literature of

adaptive and NN control theory, [24] and [89]. The advantage of the proposed NN

tuning law is that information contained in ∂H̄
∂x̄

(x̄) is fully utilized. The concept

of information preservation is well explained by considering the example of a

standard mechanical system (explained in Sec. 4.5) for which

H̄(q̄, p̄) =
1

2
p̄T M−1(q)p̄ +

1

2
q̄T Kpq̄ (4.19)
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where [q̄T p̄T ]T = x̄ and

∂H̄

∂x̄
(x̄) =

∂H̄

∂(q̄, p̄)
(q̄, p̄) =

⎡
⎢⎢⎣ Kpq̄ + fH̄(q̄, p̄)

˙̄q

⎤
⎥⎥⎦ (4.20)

where q̄ and p̄ are the error vectors of the generalized configuration coordinates

and generalized momenta, respectively. fH̄(q̄, p̄) =
∂(p̄T M(q)p̄)

∂q̄
and Kp is a positive

definite gain matrix. M(q) ∈ �n×n is the inertial matrix. Note that q̄ and ˙̄q

represent the position and velocity errors, respectively. Let [q̄T p̄T ]T ∈ �4, then

for a fully actuated system m = 2 and

ḡ =

⎡
⎢⎢⎣ 0 0 1 0

0 0 0 1

⎤
⎥⎥⎦

T

Now, for q̄ = [q̄1 q̄2]
T , consider

ḡT ∂H̄

∂(q̄, p̄)
=

⎡
⎢⎢⎣ ˙̄q1

˙̄q2

⎤
⎥⎥⎦ = ˙̄q (4.21)

In contrast to (4.21), it is possible to choose Z and U such that for a positive

definite matrix Λ = diag(λ1, λ2) ∈ �2×2,

ḡTZ ∂H̄

∂(q̄, p̄)
=

⎡
⎢⎢⎣ λ1q̄1 + ˙̄q1

λ2q̄2 + ˙̄q2

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣ f1(q̄, p̄)

f2(q̄, p̄)

⎤
⎥⎥⎦

= Λq̄ + ˙̄q + f(q̄, p̄) (4.22)
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where f(·) = [f1(·) f2(·)]T . A comparison of (4.21) and (4.22) explains the fact

that all of the information contained in ∂H
∂x̄

(x̄) is fully preserved and utilized by the

proposed NN tuning law (4.17) driven by Λq̄ + ˙̄q + f(q̄, p̄), while in contrast, the

adaptive laws in [27] and [26] are driven by only ˙̄q. With this additional feature

of information preservation, the proposed law is applicable to reference tracking

as well, and hence is more general in its application than in [27] and [26].

With the above explanation, it is justified to name the RHS of (4.22) as the fil-

tered Hamiltonian-gradient which is similar to the filtered error in [24] and [89].

Remark 4.2: Another possibility of driving the NN tuning law by both, the po-

sition and velocity errors, as suggested in [26], is to perform another coordinate

transformation resulting into an equivalent PCH system with a passive output

which is function of both position and velocity errors. However, analysis and de-

sign of controller becomes more complex with such transformation.

Selection of Z

In the filtered error based adaptive control, the coefficients of the filter are selected

such that the resulting dynamics of the filter are stable [24], [89]. Likewise, the

filter Z is selected such that the the dynamics of the resulting filtered Hamiltonian

gradient represent a stable auxiliary dynamic system.

The L2 disturbance attenuation objective, in the context of this work is now

described in the following (see [27]):

Given the desired trajectory xd ∈ �n, a penalty signal z = q(x̄) such that q(x̄0) = 0

and a disturbance attenuation level γ > 0. Let ω be the combination of external
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disturbance ξ and some multiple of the NN approximation error ε. Find a feed-

back control law ϑ = f(x, Ŵ ), NN approximation of F(·) and a modified positive

definite, (with respect to x̄0), storage function V (x̄) such that for the closed loop

system consisting of (4.12) with the feedback law, the γ-dissipation inequality

V̇ + Q(x̄) ≤ 1

2

{
γ2‖ω‖2 − ‖z‖2

}
,∀ω (4.23)

holds along all trajectories remained in X ⊂ �n, where Q(x̄) is a given non-

negative definite function, with Q(x̄0) = 0. This problem is called the L2

neuro-adaptive disturbance attenuation. The γ-dissipation inequality (4.23)

ensures that L2-gain from the disturbance ω to the penalty signal z is less than

the given level γ.

4.4 L2 Neuro-Adaptive Control

Let the penalty signal z be defined as:

z(x̄) = h(x̄)ḡT (x̄)
∂H̄

∂x̄
(x̄) (4.24)

where h(x̄) (h(0) = 0) is a weighting matrix.

The following assumption is made on ḡ(x̄).

Assumption 4.2: The Moore-Penrose pseudoinverse of ḡ denoted by ḡ†(x̄) exists

for all x̄.
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Assumption 4.2 can appear as a restriction on the application of the proposed

controller. Fortunately most of the models of physical systems have ḡ indepen-

dent of x̄, e.g. n-link robot manipulator, magnetic levitation systems and power

generation systems etc.

The proposed L2 neuro-adaptive control law is given as:

ϑ(x,W ) = −K∂H̄

∂x̄
− ḡ†Z ḡF̂(x̄, ε) (4.25)

where

K =
1

2

{
1

γ2
I + hT (x̄)h(x̄)

}
ḡT (4.26)

Note that the first term on the RHS of (4.25) represents the L2 disturbance attenu-

ation component, while the second term represents the neuro-adaptive component

of the control law (4.25).

Application of (4.25) to (4.12) yields

˙̄x = [J̄0(x̄) − R̄c(x̄) − ḡ(x̄)K]
∂H̄

∂x̄
(x̄)

+Z ḡ(x̄)φT (W − Ŵ (t)) + ḡ(x̄)(ξ + ḡ†Z ḡε) (4.27)

To augment the NNs dynamics with the closed-loop system’s dynamics and to

obtain the augmented dynamics in PCH form, define the shaped Hamiltonian as:

H̄S(x̄, Ŵ ) = H̄(x̄) + H̄
N
(Ŵ ) (4.28)
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where

H̄N(Ŵ ) =
1

2
(W − Ŵ (t))T Γ−1(W − Ŵ (t)) (4.29)

To facilitate the analysis, the transformed state vector x̄ is augmented with Ŵ to

form the augmented state vector X as:

X =

⎡
⎢⎢⎣ x̄

Ŵ

⎤
⎥⎥⎦ (4.30)

Gradient of H̄S(x̄, Ŵ ) w.r.t. X is given by:

∂H̄S

∂(x̄, Ŵ )
(x̄, Ŵ ) =

∂H̄S

∂X (X ) =

⎡
⎢⎢⎣

∂H̄(x̄)
∂x̄

∂H̄N (Ŵ )

∂Ŵ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂H̄
∂x̄

(x̄)

−Γ−1W̃

⎤
⎥⎥⎦ (4.31)

where

W̃ = W − Ŵ (t) (4.32)

Applying controller (4.25) to system (4.12), and augmenting the resulting dynam-

ics to NN dynamics (4.17) yields the following PCH system

Ẋ =

⎡
⎢⎢⎣ ˙̄x

˙̂
W

⎤
⎥⎥⎦ =

[⎛
⎜⎜⎝ J̄0 −Z ḡφT Γ

(Z ḡφT Γ
)T

0

⎞
⎟⎟⎠
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−

⎛
⎜⎜⎝ R̄c + ḡK 0

0 κΓ‖ḡTZ ∂H̄
∂x̄

‖Γ

⎞
⎟⎟⎠

]⎡
⎢⎢⎣

∂H̄
∂x̄

∂H̄N

∂Ŵ

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣ ḡ 0

0 I

⎤
⎥⎥⎦
⎡
⎢⎢⎣ ω

−κΓ‖ḡTZ ∂H̄
∂x̄

‖W

⎤
⎥⎥⎦ (4.33)

where ω = ξ + ḡ†Z ḡε.

The following theorem establishes the main results of this chapter.

Theorem 4.1 Consider the uncertain PCH system (4.2) and its corresponding

error system (4.6). Suppose Assumptions 4.1–4.2 hold, then

1. for any γ > 0, the L2 disturbance attenuation objective is achieved by appli-

cation of control law (4.25).

2. x̄ and W̃ are UUB with practical bounds given by (4.47) and (4.48), respec-

tively .

Proof:1). Let the shaped Hamiltonian (4.28) be the Lyapunov function candi-

date. Taking its time derivative along the trajectory of augmented system (4.33)

yields

˙̄HS(x̄, Ŵ ) =
∂H̄

∂x̄

T

˙̄x − (W − Ŵ )T Γ−1 ˙̂
W

=

[
∂H̄T

∂x̄

∂H̄T
N

∂Ŵ

]⎡⎢⎢⎣ ˙̄x

˙̂
W

⎤
⎥⎥⎦

=

[
∂H̄
∂x̄

T ∂H̄N

∂Ŵ

T

][⎛
⎜⎜⎝ J̄0 −Z ḡφT Γ

(Z ḡφT Γ
)T

0

⎞
⎟⎟⎠
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−

⎛
⎜⎜⎝ R̄c + ḡK 0

0 κΓ‖ḡTZ ∂H̄
∂x̄

‖Γ

⎞
⎟⎟⎠

]⎡
⎢⎢⎣

∂H̄
∂x̄

∂H̄N

∂Ŵ

⎤
⎥⎥⎦

+

[
∂H̄
∂x̄

T ∂H̄
N

∂Ŵ

T
]⎡⎢⎢⎣ ḡ 0

0 I

⎤
⎥⎥⎦
⎡
⎢⎢⎣ ω

−κΓ‖ḡTZ ∂H̄
∂x̄

‖W

⎤
⎥⎥⎦

= −∂H̄

∂x̄

T

Rc
∂H̄

∂x̄
− κ

∂H̄N

∂Ŵ

T

Γ‖ḡTZ ∂H̄

∂x̄
‖Γ∂H̄N

∂Ŵ

−∂H̄

∂x̄

T

ḡK
∂H̄

∂x̄
+

∂H̄

∂x̄

T

ḡω

−κ
∂H̄N

∂Ŵ

T

Γ‖ḡTZ ∂H̄

∂x̄
‖W (4.34)

Using the definitions r = ḡTZ ∂H̄
∂x̄

, Rc = (ZT ḡ)†Rc(ḡ
TZ)†, WB = ‖W‖, substitut-

ing K from (4.26) and noting that ∂H̄N

∂Ŵ
= −Γ−1W̃ , Eq. (4.34) becomes

˙̄HS = −rTRcr − κW̃ T‖r‖W̃ + κW̃‖r‖W

−1

2

∂H̄

∂x̄

T

ḡ

{
1

γ2
I + hT (x̄)h(x̄)

}
ḡT ∂H̄

∂x̄

+
∂H̄

∂x̄

T

ḡω

≤ −σ(Rc)‖r‖2 − κ‖r‖‖W̃‖2 + κ‖W̃‖‖r‖‖W‖

−1

2

∂H̄

∂x̄

T

ḡ

{
1

γ2
I + hT (x̄)h(x̄)

}
ḡT ∂H̄

∂x̄

+
1

2γ2

∂H̄

∂x̄

T

ḡḡT ∂H̄

∂x̄
+

1

2
γ2ωT ω

≤ −σ(Rc)‖r‖2 − κ‖r‖‖W̃‖2 + κ‖W̃‖‖r‖WB

+
1

2

{
γ2‖ω‖2 − ‖z‖2

}
(4.35)
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Let

ρ =

[
‖r‖ ‖W̃‖

]T

(4.36)

M =

⎡
⎢⎢⎣ σ(Rc) 0

0 κ‖r‖

⎤
⎥⎥⎦ (4.37)

θ =

[
0 κ‖r‖WB

]T

(4.38)

Inequality (4.35) can be written as

˙̄HS ≤ −ρTMρ + θT ρ +
1

2

{
γ2‖ω‖2 − ‖z‖2

}
≤ −Q(ρ) +

1

2

{
γ2‖ω‖2 − ‖z‖2

}
(4.39)

where Q(ρ) = ρTMρ − θT ρ

Q(ρ) is non-negative definite if the following conditions, C1 and C2, hold:

(C1) M is non-negative definite.

(C2) ‖ρ‖ > ‖θ‖
σ(M)

Condition (C1) is obviously satisfied. Since ‖θ‖1 > ‖θ‖, condition (C2) holds if

‖ρ‖ ≥ B with

B =
‖θ‖1

σ(M)
=

κ‖ḡT r‖WB

σ(M)
(4.40)

Thus,

Q(ρ) ≥ 0, ∀‖ρ‖ ≥ B (4.41)
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Since ρ explicitly depends on x̄, (4.39) is re-written as:

˙̄HS + Q(x̄) ≤ 1

2

{
γ2‖ω‖2 − ‖z‖2

}
(4.42)

Equation (4.41) with B defined in (4.40) implies that the function Q(x̄) is non-

negative definite. This completes the the proof of the first part of this theorem.

2). UUB of x̄ and W̃

Let

Vr(r) = −σ(Rc)‖r‖2 − κ‖r‖‖W̃‖2 + κ‖W̃‖‖r‖WB (4.43)

Using definition (4.43), inequality (4.35) can be written as

˙̄HS ≤ Vr(r) +
1

2

{
γ2‖ω‖2 − ‖z‖2

}
(4.44)

UUB of x̄ and W̃ is proven by showing the negative definiteness of Vr, as follows.

Re-write Vr(r) as

Vr(r) = −‖r‖
[
kcmin

‖r‖ + κ‖W̃‖
(
‖W̃‖ − WB

)]
(4.45)

where kcmin
= σ(Rc). Vr(r) is negative as long as the term in brackets is strictly

positive. Completing the square yields

kcmin
‖r‖ + κ‖W̃‖

(
‖W̃‖ − WB

)

= κ

(
‖W̃‖ − 1

2
WB

)2

− κW 2
B/4 + kcmin

‖r‖ (4.46)
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which is positive as long as

‖r‖ >
κW 2

B/4

kcmin

≡ br (4.47)

or

‖W̃‖ > WB/2 +
√

κW 2
B/4 ≡ bW (4.48)

Thus Vr(r) is negative outside the compact set {Sr|‖r‖ < br}. Eq. (4.47) implies

that sufficiently large value of kcmin
obtained by selecting a large C in eq. (4.11),

significantly reduce the magnitude of the ball br, Thus ensuring the UUB of both

x̄ and W̃ . This completes the proof �

Remark 4.3: The arbitrary bounds WB, bW and br are just needed in the sta-

bility analysis. Their knowledge is not needed in the controller design, though in

most practical problems, it is possible to find the numerical values of these bounds.

Similar arguments can be found in [24].

Remark 4.4: The concept of filtered Hamiltonian-gradient introduced in this

chapter can also be applied to the adaptive laws proposed in [27] and [26] with-

out affecting the PCH structure and stability of the closed-loop system, further

strengthening their results.

Remark 4.5: Similar to the NN tuning laws in Ch.3, Persistence of excitation

(PE) in this chapter is also not needed, thus making the NN tuning law (4.17)

robust against unmodeled dynamics and unforeseen situations.
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4.5 Application to Standard Mechanical Sys-

tems

Consider the following standard mechanical system in PCH form.

⎡
⎢⎢⎣ q̇

ṗ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ 0 I

−I −D(q, p)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

∂H
∂q

∂H
∂p

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣ 0

G

⎤
⎥⎥⎦u

y =

[
0 GT

]⎡⎢⎢⎣
∂H
∂q

∂H
∂p

⎤
⎥⎥⎦ = GT ∂H

∂p
(4.49)

where q ∈ �n and p ∈ �n are vectors of generalized configuration coordinates

and generalized momenta, respectively. I is the nth-order identity matrix and

D(q, p) ∈ �n×n is a positive definite damping matrix. Note that the system order

is 2n. u ∈ �m and y ∈ �m is the pair of passive inputs and outputs, respectively.

Compared to the PCH system defined in (4.1), the interconnection matrix J , the

dissipation matrix R and input matrix g for a standard mechanical system (4.49)

are expressed as

J =

⎡
⎢⎢⎣ 0 I

−I 0

⎤
⎥⎥⎦ (4.50)

R =

⎡
⎢⎢⎣ 0 0

0 D(q, p)

⎤
⎥⎥⎦ (4.51)
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and

g =

⎡
⎢⎢⎣ 0

G

⎤
⎥⎥⎦ (4.52)

The Hamiltonian of this system is equal to the sum of kinetic and potential ener-

gies, and is given by

H(q, p) =
1

2
pT M−1(q)p + V (q) (4.53)

where M(q) = M(q)T > 0 is the system’s mass matrix. Let qd, be the twice

differentiable desired trajectory to be tracked by the system (4.49). In [23], and

[91], system (4.49) is transformed to a passive error system in PCH form using

the following canonical transformation:

Φ(q, p, t) =
[
q̄T p̄T

]T
(4.54)

⎡
⎢⎢⎣ q̄

p̄

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ q − qd(t)

p − M(q)q̇d(t)

⎤
⎥⎥⎦ (4.55)

ȳ = M−1(q)p − q̇d(t) (4.56)

The positive definite Hamiltonian function of the transformed system is

H̄ = H(q, p) +
1

2
q̇T
d (t)M(q)q̇d(t)

−pT qd(t) + Ū(q − qd(t))

=
1

2
(q̇ − q̇d(t))

T M(q)(q̇ − q̇d(t)) + Ū(q − qd(t)) (4.57)
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For nominal systems, the transformed input ū defined in (2.44) is given by

ū = u + β0

= u − Mq̈d +
∂Ū

∂q
+

∂V

∂q
+

(
1

2

∂(M(q)q̇d)
T

∂q

−1

2

∂M(q)q̇d

∂q
+

1

2
M(q)

(∂(M−1(q)p)

∂q
− D

)
q̇d (4.58)

The resultant error PCH system is

⎡
⎢⎢⎣ ˙̄q

˙̄p

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ 0 I

−I J̄2 − D̄

⎤
⎥⎥⎦
⎡
⎢⎢⎣

∂H̄
∂q̄

∂H̄
∂p̄

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣ 0

Ḡ

⎤
⎥⎥⎦ ū

ȳ = ḠT ∂H̄

∂p̄
(4.59)

with J̄2 a skew symmetric matrix. Using (2.49) - (2.53), one has D̄ = D, Ḡ = G,

and as shown in [25],

J̄2 = ∂(M(q)q̇d)T

∂q
− ∂M(q)q̇d

∂q

For a positive definite matrix Kp, let

Ū =
1

2
q̄T Kpq̄ (4.60)

For the transformed system, the Hamiltonian (4.57) can be expressed as

H̄(q̄, p̄) =
1

2
p̄T M−1(q)p̄ +

1

2
q̄T Kpq̄ (4.61)
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Note the fact that, since q̄ = q − qd, therefore,
∂(p̄T M(q)p̄)

∂q
=

∂(p̄T M(q)p̄)
∂q̄

. The

gradient of H̄ is given by

∂H̄

∂(q̄, p̄)
(q̄, p̄) =

⎡
⎢⎢⎣

∂H̄
∂q̄

(q̄, p̄)

∂H̄
∂p̄

(q̄, p̄)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ Kpq̄ +

∂(p̄T M(q)p̄)
∂q

˙̄q

⎤
⎥⎥⎦ (4.62)

A proper selection of Z yields

Ξ = ḡTZ ∂H̄

∂(q̄, p̄)
(q̄, p̄) = ˙̄q + Λq̄ + f(q̄) (4.63)

where Λ > 0 ∈ �n×n. Note that by the virtue of IP filter Z, The proposed NN

tuning law (4.17) is driven by the RHS of (4.63), which is a combination of velocity

as well as position error.

4.6 Simulation Examples

In the following subsections, the proposed L2 neuro-adaptive controller is applied

to some benchmark dynamic systems.

4.6.1 Simple pendulum

A simple pendulum is shown in Fig. 4.1. A ball of mass m is attached to the

lower end of the pendulum rod of length l and negligible mass. The upper end

of the pendulum rod is attached to a motor which provides the input torque u

to the system. In this example, θ is the generalized configuration coordinate,
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Figure 4.1: Simple pendulum

Table 4.1: Pendulum Parameters & Uncertainties
Parameter Nominal magnitude Uncertainty (%)

m 1Kg 100
l 1m 20

i.e. q = θ and G = 1. Assume that there is no friction, i.e. D = 0. Further

description of the system is given as

M = ml2 (4.64)

The Hamiltonian of the system is given by:

H(θ, p) = K.E + P.E

=
1

2

p2

ml2
+ mgl(1 − cosθ) (4.65)

where p = ml2θ̇. The nominal magnitudes of pendulum parameters and uncer-

tainties are given in Table 4.1. It is desired to stabilize the system at θd = π
2

rad.

As a straightforward choice,

Φ(θ, t) = θ̄ = θ − θd.
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With such θd, pd = ml2θ̇2
d = 0 and therefore p̄ = p . Hamiltonian of the trans-

formed system is given by

H̄(θ̄, p̄) =
1

2ml2
p2 + mgl

(
1 − cosθ̄

)
+

1

2
kpθ̄

2 (4.66)

such that, from (2.44),

U = mgl
(
1 − cosθ̄

)
+

1

2
kpθ̄

2 − mgl (1 − cosθ)

= mgl{cosθ − cosθ̄} +
1

2
kpθ̄

2 (4.67)

NN and controller parameters: To estimate the uncertainty F(·), a NN with

six neurons (ν = 6) is used. Γ = 1000I6 and κ = 0.001. A Hyperbolic tangent is

used as an activation function. Note that there is no need to find a regressor, as

required in other adaptive control schemes. Furthermore, to compute the penalty

signal z(·) in Eq. (4.24), h(·) is chosen as

h(x̄) = h(θ̄) = θ − θd,

C = Kp = 10

The initial condition is [θ0 θ̇0]
T = [0 0]T . The NN weights are initialized to

zero. The disturbance attenuation gain γ is set to 0.1. The external disturbance

ξ is the unit variance Gaussian random noise. The filter Z is chosen as:

Z =

⎡
⎢⎢⎣ 0 0.5

0.5 1

⎤
⎥⎥⎦

which yields Λ = 5, and
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ḡTZ ∂(H̄)

∂(θ̄)
= ˙̄θ + 5θ̄ + f(θ̄) (4.68)

where f(θ̄) = 0.5mglsin(θ̄).

Fig. 4.2 shows that the application of the proposed controller drives the difference

between the actual angle and the desired angle to zero when the IP filtering is

employed in the NN tuning law. A significant error is observed when IP filtering

is not employed in the NN tuning law. This controller performance is achieved

within the PCH formalism only by incorporating the IP filtering and unlike [28] no

extra transformation is needed. Furthermore, the steady-state error is minimized

without any integral action in the control law.
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Figure 4.3: 2-Link manipulator

4.6.2 2-link planar manipulator

A fully actuated 2-link, 2 degrees of freedom planar manipulator is a benchmark

mechanical system . This robot arm has all the nonlinear effects common to

general robot system. Consider a manipulator, shown in Fig. 4.3, with masses

mi and link lengths ai for i = 1, 2. The generalized configuration coordinates are

the link angles θ1 and θ2, and therefore q = θ = [θ1 θ2]
T . The system is described

by (4.49) with

u =

[
τ1 τ2

]T

, where τ1 and τ2 are the torques applied to joint 1 and 2,

respectively. G = I2, D = diag(d1, d2),

M(θ) =

⎡
⎢⎢⎣ M11(θ) M12(θ)

M21(θ) M22(θ)

⎤
⎥⎥⎦ where

M11(θ) = (m1 + m2)a
2
1 + m2a

2
2 + 2m2a1a2cosθ2,

M12(θ) = M21(θ) = m2a
2
2 + m2a1a2cosθ2,

M22(θ) = m2a
2
2.

Note that θ̄ = θ − θd. The manipulator works in the horizontal plane, therefore,

the gravity effects are negligible and V (θ) = 0. The nominal magnitudes of

the system parameters and uncertainties are given in Table 4.2. The desired
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Table 4.2: Manipulator Parameters & Uncertainties
Parameter Nominal magnitude Uncertainty (%)
m1, m2 1Kg 100
a1, a2 1m 10
d1, d2 1N-s/m 150

trajectories are:

θ1d = sin(t), θ2d = cos(t). NN and controller parameters: Since there are two

inputs, two separate NNs are used, each with six neurons (ν = 6). All parameters

of the two NNs are the same as those used in Example 1. Furthermore,

h(x̄) = h(θ̄) = θ − θd,

C = Kp = diag(20, 20)

The initial condition is [θT
0 θ̇T

0 ] = [1 0 0 0]rad. The disturbance attenuation

gain γ is set to 0.1. The external disturbance ξ is the unit-variance random

Gaussian noise. The filter Z is chosen as:

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.25 0

0 0 0 0.25

0.25 0 1 0

0 0.25 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which yields Λ = diag(5, 5), and

ḡTZ ∂(H̄)

∂(θ̄)
= ˙̄θ + Λθ̄ + f(θ̄) (4.69)

with f(θ̄) = [0 −0.125{m2a1a2
˙̄θ1(

˙̄θ1 + ˙̄θ2)sinθ2}]T . Fig. 4.4 shows that the links

follow the desired trajectories with negligible errors. Fig. 4.5 shows the tracking

errors.
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4.7 Canonical Transformation of PCH Systems

Using Neural Networks

For the trajectory tracking control, a PCH system is first transformed from state-

space to error-space using the state feed-back β(x), which is obtained from the

solution the PDE (2.49). Solution of a similar PDE is also required in the IDA-

PBC, described in Sec. 2.3.4, to obtain a state feedback component of the control

law. As a matter of fact, as mentioned in [16], it is well known that solving PDEs

is, in general, not easy.

On the other hand, literature survey reveals that NNs have been successfully

applied to the problem of feedback-linearisation of nonlinear systems, when there

are uncertainties in the systems’s dynamics, or, when a particular system fails

to fulfill the conditions of feedback-linearisation [74], [29], [92], [93]. Indeed, the

so-called feedback-linearisation is a process of transforming a nonlinear system

to a linear one by some state-feedback control. Such successful application of

NNs to the problem of feedback-linearisation (or transformation) gives a strong

motivation to use the NNs in a likewise manner for the canonical transformation of

PCH systems, since, solving the PDEs to obtain β(x) can become very complicated

in some practical cases. Estimation of the stat-feedback β(x) for the canonical

transformation of PCH systems using NNs is explained in the following.

Recall the lumped uncertainty, represented by the unknown function F̄ and

defined in Eq. (4.8). This unknown function is redefined to include the state-

feedback component β(x) as well. The new unknown function, denoted by F̄β, is
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obtained by a slight modification of (4.8), as follows:

F̄β(x̄, ε) = [J̄(x̄, εJ) − R̄(x̄, εR)]
∂H̄

∂x̄
(x̄, εH)

−[J̄0(x̄) − R̄0(x̄)]
∂H̄0

∂x̄
(x̄) + ḡ(x̄, t)β(x) (4.70)

Note that the last term, ḡ(x̄, t)Δβ(x, εβ), in Eq. (4.8) is replaced by ḡ(x̄, t)β(x) in

Eq. (4.70), which simply means that, this time, the modified unknown function

F̄β(x̄, ε) also includes the state-feedback component β(x). In this case, the NN

will be used to estimate the F̄β(x̄, ε) to compensate for the uncertainties as well

as to perform the canonical transformation. It is straightforward to observe that

the NN tuning law (4.17) as well as the control law (4.25) do not require any

alteration and essentially remain unchanged, and thus, the closed-loop stability is

guaranteed.

4.7.1 Trajectory tracking control of an Autonomous Un-

derwater Vehicle (AUV)

The dynamics of an AUV in PCH form is given by:

⎡
⎢⎢⎣ η̇

ṗ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ 0 Ja

−JT
a −D̄(ν)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

∂H
∂η

∂H
∂p

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣ 0

I

⎤
⎥⎥⎦ [τ − g(η) + ξ]

y =

[
0 I

]⎡⎢⎢⎣
∂H
∂q

∂H
∂p

⎤
⎥⎥⎦ =

∂H

∂p
(4.71)
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Figure 4.6: MARES trajectories

where η ∈ �6 denotes position and attitude vector in the earth fixed frame, p ∈ �6

denotes the vector of generalized momenta. The Hamiltonian, H = 1
2
νT Mν, where

ν ∈ �6 denotes the body fixed linear and angular velocity vector. M ∈ �6×6 is the

inertia matrix. Ja ∈ �6 is a rotation transformation matrix. D̄ ∈ �6×6 is the drag

matrix. g(η) ∈ �6 is the vector of gravitational forces and moments. Simulations

are performed on MARES AUV [94], which is a highly nonlinear system due to

the structures of drag matrix D(ν) and inertia M . Details of the MARES model

can be found in [94], [95] and [96]. Solving the PDE (2.49) in this case becomes

very difficult to obtain β(·) for the canonical transformation.

The AUV is desired to move in the xy-plan with xd = −100cos( π
400

t) and yd =

−100sin( π
400

t).

NN and controller parameters: A total of six NNs are used, each with six

neurons. Γ = 0.1I6 and κ = 0.001.
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Information preserver Z =

⎡
⎢⎢⎣ I6 I6

I6 I6

⎤
⎥⎥⎦ .

Hamiltonian in the transformed space is: H̄ = 1
2
ν̄T Mν̄ + 1

2
η̄T η̄. Disturbance

attenuation gain, γ = 0.1. Fig. 4.6 shows that the AUV follows the desired

trajectories, with bounded error.

4.8 Conclusion

In this chapter, a novel structure preserving neuro-adaptive control of uncertain

PCH system is presented. The proposed controller is applicable to stabilization

as well as regulation and tracking problems. The NN tuning law is driven by

both the position and velocity errors by introducing the so-called information

preserving filtered Hamiltonian-gradient. The proposed controller achieves the L2

disturbance attenuation objective. The UUB of the tracking errors and NN weight

errors has been shown. The proposed controller is successfully applied to some

standard mechanical systems. Simulations are performed on a simple pendulum

and a 2-link planar manipulator to illustrate the proposed control scheme. In

addition to neuro-adaptive control of PCH systems, this chapter also presents

the NN-based canonical transformation of PCH systems. Simulations on an AUV

illustrates the idea of NN-based canonical transformation.

124



CHAPTER 5

ROBUST NEURO-ADAPTIVE

COOPERATIVE CONTROL OF

MULTI-AGENT PORT

CONTROLLED

HAMILTONIAN SYSTEMS

This chapter presents the distributed cooperative tracking control of multi-agent

Port Controlled Hamiltonian (PCH) systems networked through a directed graph.

A leader node generates the desired trajectory to be tracked by all the individual

PCH nodes in the group. Only few nodes can access the information from the

leader node. Communication among the follower nodes is limited to the informa-

tion of their neighbor nodes only. The controller is made robust against parametric
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uncertainties using Neural Networks. The robust neuro-adaptive control strategy

developed in the previous chapter is modified for application to the cooperative

control problem in this chapter with guaranteed stability of the closed loop dy-

namics. The PCH structure of the closed-loop system is preserved. The dynamics

of the individual PCH agents are transformed to a normalized local synchroniza-

tion error (NLSE) space using the canonical transformation theory described in

the previous chapter. The controller also achieves the L2 disturbance attenua-

tion objective. Simulations are performed on a group of robotic manipulators to

demonstrate the efficacy of the proposed controller.

Chapter Organization: Sec. 5.1 presents the introduction to the chapter.

In Sec. 5.2, some mathematical preliminaries are detailed. Problem formulation

is described in Sec. 5.3. Distributed controller design for nominal PCH system is

presented in Sec. 5.4, and then robustified in Sec. 5.5. Simulations are presented

in Sect. 5.6. Finally Sec. 5.7 concludes the chapter.

5.1 Introduction

It has been asserted in Sec. 2.1 and Sec. 3.1 that most real-life systems pos-

sess nonlinear dynamics and researchers have developed a number of cooperative

control schemes on the basis of a particular class of such nonlinear systems. The

present work steps forward in the same direction by considering an important class

of dynamics systems, namely the Port Controlled Hamiltonian (PCH) Systems,

networked through a communication link. With the study of the available liter-
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ature, it can be argued that the cooperative control of a group of PCH systems

is addressed for the first time in this thesis. The only exception is [97], where

passivity theory is utilized as a tool for group coordination.

In this chapter, a group of PCH systems interlinked through a communication

network is considered. Exchange of information among the individual PCH sys-

tems can be well described by a graph with vertices representing the individual

nodes i.e. the PCH systems and edges representing communication links among

the nodes. The leader node generates the trajectory or command to be followed

by other members of the group. Only a subset of the follower nodes have access

to the trajectory information of the leader node. Information-sharing among the

follower nodes is also limited to the neighbor nodes only. All of the follower nodes

have to track (or follow) the leader node in spite of such constrained communica-

tion. In other words, all of the group nodes have to synchronize with the leader

node as well as with one another. The strategy to achieve this goal is composed

of the following steps.

1. a normalized local synchronization error (NLSE) at each node is defined,

and then the dynamics of the individual PCH nodes is transformed from

state-space to the NLSE space by employing the canonical transformation

theory developed in [22] - [22] and briefly described in Ch. 2.

2. In the second step a distributed cooperative controller is designed using

passive output feedback of the individual transformed systems with nominal

dynamics and no external disturbance.
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3. In the third step the real world scenario is considered by taking into ac-

count the parametric uncertainties and external disturbance. At this step

use of Neural Network (NN) is made for the compensation of parametric

uncertainties. A robust neuro-adaptive distributed cooperative controller is

proposed, which also achieves the L2 disturbance attenuation.

Note that the neuro-adaptive controller is direct, i.e. off-line training of NN is not

required.

In short, the contribution of this chapter is threefold, as described in the

following.

• A mathematical framework for cooperative control of PCH systems is pre-

sented for the first time in the literature.

• To robustify the proposed approach against parametric uncertainties, neu-

ral network based adaptive controller with information-preserving filtered-

gradient based novel tuning laws is proposed.

• Due to the generality of PCH systems, application of the proposed frame-

work is not limited to standard mechanical systems, rather it can be applied

to several other engineering systems, such as power systems and process

control to name a few.
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5.2 Preliminaries

Consider a group of N(N ≥ 2) PCH systems networked through a communication

link. The ith(i = 1, 2, ..., N) PCH system is described as:

ẋi = [Ji(xi, t) − Ri(xi, t)]
∂Hi

∂xi

(xi, t) + gi(xi, t)ui

yi = gi(xi, t)
T ∂Hi

∂xi

(xi, t) (5.1)

where, for the ith agent, xi ∈ �n is the state vector. Positive semi-definite function

Hi(xi, t) : �n �→ � is the Hamiltonian function representing the energy stored in

the ith system. The column vector ∂Hi

∂xi
(xi, t) = [∂H(xi,t)

∂xi1
...∂H(xi,t)

∂xin
]T denotes the

gradient of scalar function H(x, t). Matrices Ji(xi, t) = −Ji(xi, t)
T ∈ �n×n and

gi(xi, t) ∈ �m×n collectively define the interconnection structure of the system.

Ri(xi, t) = RT
i (x, t) ≥ 0 ∈ �n×n represents the dissipation. All these matrices,

may, smoothly depend on xi. Note that all these definitions are the same as those

used in the previous chapter, and are repeated here for the sake of clarity.

In this chapter, the cooperative tracking problem is directly addressed, however,

the theoretical developments are equally applicable to the consensus and (in the

case of Euler-Lagrange systems,) to the attitude alignment problems as well. De-

pending upon the problem at hand, (tracking, alignment or consensus) appropriate

canonical transformation is performed before the required controller is designed.

The theory of canonical transformation of PCH systems has been described in the

Ch. 2. The canonical transformation theory is applicable to a PCH system which
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is operated either independently or as part of multi-agent group. The subscript i

is retained for notational uniformity throughout the thesis.

5.3 Problem Formulation

In this section, the cooperative tracking control problem of a networked group of

N PCH systems is formulated. Define

x = [xT
1 xT

2 ... xT
N ]T ∈ �nN

Then the group of N PCH systems can be collectively described as

ẋ = [J(x, t) − R(x, t)]
∂H

∂x
(x, t) + gi(x, t)u

y = G(x, t)T ∂H

∂x
(x, t) (5.2)

where J = −JT = diag(J1, J2, ..., JN) ∈ �nN×nN

R = RT = diag(R1, R2, ..., RN) ≥ 0 ∈ �nN×nN

H = H1 + H2 + ... + HN ∈ �
∂H(x,t)

∂x
= [

∂HT
1 (x1,t)

∂x1

∂HT
2 (x2,t)

∂x2
...

∂HT
N (xN ,t)

∂xN
]T ∈ �nN

g = diag(g1, g2, ..., gN) ∈ �nN×mN

u = [uT
1 uT

2 ... uT
N ] ∈ �mN

y = [yT
1 yT

2 ... yT
N ] ∈ �mN

Let the virtual leader generate the desired trajectory x0(t) = [x01 x02 ... x0n ]T ∈

�n to be tracked by all the agents and let xi = [xi1xi2 ...xin ]T . For k = 1, 2, ..., n,

the kth order tracking error for node i(i ∈ N ) is defined as δik = xik − x0k
. Let
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δi = [δi1 δi2 · · · δin ]T ∈ �n,

δk = [δ1k
, · · · , δNk

]T ∈ �N ,

xk = [x1k
x2k

, · · · , xNk
] and

x0k
= [x0k

, · · · , x0k
] ∈ �N then δk = xk − x0k

.

Note the difference between δi ∈ �n and δk ∈ �N . Further developments of this

chapter are accomplished in the following two stages:

1. Design of distributed controllers with global asymptotic stability of tracking

errors δk
i (t).

2. In the second stage, the parametric uncertainty and the presence of external

disturbance in the dynamics of all the followers is considered and is followed

by the design of the distributed controllers such that the global tracking

error δk
i (t) for k = 1, 2, ..., n converges to a close neighborhood of zero.

Convergence of global tracking error δ(t) can be well explained by extending the

well known notion of cooperative uniform ultimate boundedness (CUUB) defined

in Ch. 3. Since the structure of controller to be designed in this chapter is dis-

tributed, only relative state information is used in the controller design. Equiva-

lently, following [77], the neighborhood synchronization error, ei ∈ �n, at node i

is given by

ei =
∑
j∈Ni

aij(xi − xj) + bi(xi − x0), i = 1, ..., N (5.3)

where bi ≥ 0 is the weight of the edge from the leader node 0 to node i, (i ∈ N).

Note that bi > 0 if and only if there is an edge from the node 0 to node i.
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Let e = [eT
1 eT

2 ...eT
N ]T ∈ �nN be the global synchronization error vector, then

straightforward algebra yields

e = (L + B) ⊗ In(x − x0)

e = (L + B) ⊗ Inδ (5.4)

where ⊗ represents the Kronecker product operator, and

δ = [δT
1 δT

2 · · · δT
N ]T ∈ �nN (5.5)

Let ek = [e1k
... eNk

]T ∈ �N , for k = 1, 2, ..., n, then from (5.4), one has

ek = (L + B)δk (5.6)

Define

xA = [xT xT
0 ]T ∈ �n(N+1)

Bc = [b1 b2 ... bN ]T ∈ �N

AB = [A Bc] ∈ �N×(N+1),

Let ABi
be the ith row of AB, then (5.3) can be rewritten as

ei = (di + bi)xi − ABi
⊗ InxA (5.7)
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Define the normalized local synchronization reference (NLSR) as

xdi
=

1

di + bi

ABi
⊗ InxA (5.8)

The normalized local synchronization error (NLSE) x̄i =∈ �n is defined as

x̄i =
1

di + bi

ei = xi − xdi
(5.9)

Let x̄ = [x̄1 x̄2 ... x̄N ]T ∈ �nN , then (5.7) and (5.9) imply that

x̄ = (D + B)−1 ⊗ Ine = x − (D + B)−1AB ⊗ InxA (5.10)

Now the canonical transformation is performed at each node, to transform the

system from state space xi to the NLSE space x̄i. Defining Φi = x̄i, it can be

argued that the transformed system represents the error system, because

x̄i = 0 =⇒ xi = xdi
(5.11)

The following Lemma relates the convergence of x̄ with the convergence of δ, and

will be required later in the stability analysis.

Lemma 5.1

x̄ = 0 ⇐⇒ δ = 0 (5.12)
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Proof: If x̄ = 0 then Eq. (5.10) implies that e = 0. Eq. (5.4) further implies

that if e = 0 then δ = 0. �

The ith PCH system in transformed space is given by

˙̄xi =
[
J̄i(x̄i, t) − R̄i(x̄i, t)

] ∂H̄i

∂x̄i

(x̄i, t) + ḡi(x̄i)ūi (5.13)

ȳi = ḡi(x̄i)
T ∂H̄i

∂x̄i

(x̄i, t) (5.14)

The combination of N tracking error systems described by (5.13) operating

cooperatively through a communication network can be termed as cooperative

tracking error system.

The augmented graph Ḡ is defined as, Ḡ = {V̄, Ē}, where V̄ = {ν0 ν1, ..., νN} and

Ē ⊂ V̄ × V̄. As in Ch. 3, the following assumption is made on the graph topology

for the distributed cooperative control of this paper.

Assumption 5.1 There exists a spanning tree in the augmented graph Ḡ having

the leader node 0 as the root node.

5.4 Distributed Cooperative Controller Design

Design of the distributed cooperative tracking controller is accomplished in two

steps. First, the individual PCH systems (5.1) are transformed to the NLSE space

134



using both Theorem 2.3 and the following transformation

Φi(xi, xdi
) = xi − xdi

= x̄i (5.15)

In the second step, the transformed system is stabilized with the static output

feedback controls, (using Theorem 2.2). The βi for Φi defined in (5.15) is computed

as follows. Eq. (5.15) implies that

dx̄

dt
=

∂Φi

∂xi

dx

dt
+

∂Φi

∂t

=⇒ ∂Φi

∂t
= −ẋdi (5.16)

. Using Eq. (5.15) and (5.16), one has

∂Φi

∂(xi, t)
=

[
1 −ẋdi

]
(5.17)

Putting (5.17) in (2.49) and noting that ∂Φi

∂x
= ∂Φi

∂x̄
, one obtains

giβi = −[Ji − Ri]
∂Hi

∂xi

− [Ki − Si]
∂(Hi + Ui)

∂xi

− ẋdi (5.18)

Applying ui = ū − βi, transforms the PCH system (5.1) to the equivalent PCH

system (5.13). Applying the output feedback control,

ūi = −Cȳi = −CḡT
i

∂H̄

∂x̄
(5.19)
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to system (5.13) yields the following closed-loop dynamics

˙̄xi =
[
J̄i(x̄i, t) − R̄ci(x̄i, t)

] ∂H̄i

∂x̄i

(x̄i, t) (5.20)

where H̄i = Hi + Ui and

R̄ci = R̄i + giCgT
i . For i = 1, 2, ..., N the networked closed loop PCH systems

(5.20) can be combined as

˙̄x =
[
J̄(x̄, t) − R̄c(x̄, t)

] ∂H̄

∂x̄
(x̄, t) (5.21)

where x̄ = [x̄T
i x̄T

2 · · · x̄T
N ]T ∈ �nN ,

J̄ = diag
(
J̄1, J̄2, · · ·J̄N

) ∈ �nN×nN ,

R̄c = diag
(
R̄c1i, R̄c2i, · · ·R̄cN

) ∈ �nN×nN and

∂H̄
∂x̄

(x̄) =

[
∂H̄T

1

∂x̄1
(x̄1)

∂H̄T
2

∂x̄2
(x̄2) · · · ∂H̄T

N

∂x̄N

T

(x̄N)

]
∈ �nN .

The following corollary of Theorem 2.2 establishes the fact that the group of

N PCH follower systems cooperatively track the leader with asymptotic stability

using local information only.

Corollary 5.1 Suppose that Assumption 5.1 holds. The group of N PCH systems

(5.1) networked through a directed communication graph G, cooperatively track

the leader trajectory x0 using the distributed cooperative tracking controller de-

fined in (5.18) and (5.19), rendering the local synchronization error system (5.13)

asymptotically sta ble. ♦

Corollary 5.1 presents the fundamental result of distributed cooperative track-
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ing control of PCH systems. The controller performance is further improved by

considering the practical issues of parametric uncertainty and external distur-

bance, in the next section.

5.5 L2 Neuro-Adaptive Distributed Cooperative

Tracking Control

The performance of the distributed cooperative controller (5.18) and (5.19) de-

pends upon the exact knowledge of system parameters (J,R) and on the accurate

computation of Hamiltonian H. However, in practice, parametric uncertainty

may exist and, in some cases, such uncertainties may become so significant as to

adversely affect the controller performance. Furthermore, external disturbances

and sensor noise may also significantly degrade the controller performance. In this

section, the controller given by (5.18) and (5.19), is modified such that the result-

ing controller is robust to parametric uncertainties and external disturbances.

The strategy is to employ Neural Networks (NNs) for the estimation of the col-

lective impact of the parameter uncertainties. This estimate will be incorporated

in the controller structure to significantly reduce the effect of parametric uncer-

tainties. In addition, the controller design will also consider the L2 disturbance

attenuation of a class of external disturbances.

The analysis given in the subsequent sections of this chapter is a straightforward

application of the theory developed in Ch. 4. However, in most places the analysis
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is repeated for the purpose of clarity. Similar to Ch. 4, consider the following

uncertain autonomous PCH system.

ẋ = [Ji(xi, εJi
) − Ri(xi, εRi

)]
∂Hi

∂xi

(xi, εHi
)

+gi(xi)(ui + ξi) (5.22)

yi = gi(xi)
T ∂Hi

∂xi

(xi, εHi
) (5.23)

where ξi ∈ �m is the unknown but bounded disturbance.

To facilitate the analysis, let the uncertain structure matrices in (5.22) be repre-

sented as:

Ji(xi, εJi
) = J0i(xi) + ΔJi

(xi, εJi
)

Ri(xi, εRi
) = R0i(xi) + ΔRi

(xi, εRi
)

∂Hi

∂xi

(xi, εHi
) =

∂H0i

∂xi

(xi) + ΔHi
(xi, εHi

)

(5.24)

where εj, j ∈ {Ji, Ri, Hi} denotes the uncertainties in the parameters. Define

ε = [εRi
εJi

εHi
]T . Let βi(xi, εβi

) as obtained from the solution of the PDE

(2.49) for the system (5.22) with ε = 0 and expressed as:

β(xi, εβi
) = β0i(xi) + Δβi

(xi, εβi
) (5.25)
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where β0i(xi) corresponds to the solution for the nominal system. Δβi
(xi, εβi

) is

the corresponding uncertainty.

Application of βi(xi) transforms the uncertain system(5.22) from state space to

the following system in neighborhood synchronization error space.

˙̄xi =
[
J̄i(x̄i, εJi

) − R̄i(x̄i, εRi
)
] ∂H̄i

∂x̄i

(x̄i, εHi
)

+ḡi(x̄i)(Δβi
(xi, εβi

) + ūi + ξi) (5.26)

ȳi = ḡi(x̄i)
T ∂H̄i

∂x̄i

(x̄i, εHi
) (5.27)

Define F̄i(x̄i, εi) ∈ �n as

F̄i(x̄i, εi) = [J̄i(x̄i, εJi
) − R̄i(x̄i, εRi

)]
∂H̄i

∂x̄i

(x̄i, εHi
)

−[J̄0i(x̄i) − R̄i0(x̄i)]
∂H̄0i

∂x̄i

(x̄i)

ḡi(x̄i, t)Δβi
(xi, εβi

) (5.28)

Using (5.28), the uncertain error system (5.26) can be expressed as:

˙̄xi = [J̄0i(x̄i) − R̄0i(x̄i)]
∂H̄0i

∂x̄i

(x̄i)

+F̄i(x̄i, εi) + ḡi(x̄i)(ūi + ξi) (5.29)

Note that F̄ collectively represents the parametric uncertainty of the trans-

formed system (5.26).

Assumption 5.2 The collective parametric uncertainty F̄ in (5.28) can be ex-
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pressed as:

F̄i(x̄i, εi) = Ziḡi(xi)Fi(x̄i, εi) (5.30)

where the so called information preserver Zi ∈ �n×n is a symmetric design matrix

and the unknown function Fi(x̄i, εi) ∈ �m is locally Lipschitz.

Let

ūi = −Ci(x̄i, t)ȳi + ϑi (5.31)

where [−Ci(x̄i, t)ȳi] is the passive output feedback part of the control input ac-

cording to Theorem 2.2 and ϑi is the L2 neuro-adaptive component of the control

to account for all parametric uncertainties and disturbance attenuation. Applying

ūi in (5.31) to the uncertain system (5.26) leads to

˙̄xi = [J̄0i(x̄) − R̄ci(x̄)]
∂H̄0i

∂x̄i

(x̄i) + ZiḡiFi(x̄i, εi)

+ḡi(x̄i)(ϑi + ξi) (5.32)

where

R̄ci(x̄i) = R̄0i(x̄i) + ḡi(x̄i, t)Ci(x̄i, t)ḡ
T
i (x̄i, t) (5.33)

The focus of this chapter can now be stated as:

1. Find a NN tuning law for the estimation of Fi(x̄i, εi). The NN tuning law

should be driven by both, the position as well as the velocity error.

2. Design the feedback controller ϑi to compensate for the uncertainties in the
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PCH error system (5.22) using the NN approximation of Fi(x̄i, εi). The con-

troller should achieve the L2 disturbance attenuation objective and preserve

the PCH structure of the closed loop system as well.

3. The controller should ensure the Cooperative Uniform Ultimate Bounded-

ness(CUUB) of the local synchronization error x̄ and W̃ (as defined later in

eq. (5.49)).

5.5.1 Approximation of uncertainties using neural net-

work

Let Ωi ⊂ �n be a compact, simply connected set and Fi(·) : Ωi → �m. Define

Cm
i (Ωi) as the space of continuous function Fi(·). Then, for all Fi(·) ∈ Cm

i (Ωi),

there exist weights Wi such that

Fi(x̄i, εi) = φi(x̄nni)
T Wi + εi (5.34)

The weights Wi =
[
W T

i1 ...W
T
im

] ∈ �mν with Wij ∈ �ν , i = 1, ..., N, j = 1, ..., m are

the ideal neural network weights, φi = diag(φi1, ....φ
T
im)�mν×m with φij ∈ �ν , i =

1, ..., N, j = 1, ..., m are some basis functions. x̄nni is the input to the NN at node

i, given by:

x̄nni =
[
x̄T

i
˙̄xT
i xT

d ẋT
id ẍT

di

]T
(5.35)

εi ∈ �m is the NN approximation error.

In practical applications ideal weights Wi and error εi can not be evaluated, rather,
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the function Fi(·) is approximated instead as:

F̂i(x̄i) = φi(x̄nni)
T Ŵi(t) (5.36)

where Ŵi(t) ∈ �mν are the actual time-varying weight of the NNs.

Remark 5.1 Similar to Ch. 3 & 4, FLNN is used in this chapter for the approx-

imation of Fi(·)

In addition to the closed-loop system’s stability, the particular motivations behind

our proposed NN tuning law are:

1. PCH structure of the closed-loop dynamics augmented with NN’s dynamics

is preserved.

2. NN dynamics are driven by position as well as velocity errors.

The concept of IP filtering introduced in Ch. 4 is utilized here to drive the NN

tuning law by position as well as velocity errors.

5.5.2 NN tuning law

The following NN tuning law is proposed for the approximation of Fi(·).

˙̂
Wi = Γiφi(x)ḡT

i (x̄i)Zi
∂H̄0i

∂x̄i

− κΓi‖ḡT
i (x̄i)Zi

∂H̄i

∂x̄i

‖Ŵi (5.37)

where Γi = diag(Γi1, ..., Γim) and Γij ∈ �ν×ν , for i = 1, ..., N, j = 1, ..., m, is a

user-defined symmetric positive-definite design matrix. κ > 0 is a scalar design
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parameter.

NN dynamics for the whole group of N agents can be combined as:

˙̂
W = Γφ(x)ḡT (x̄)Z ∂H̄0

∂x̄
− κΓ‖ḡT (x̄)Z ∂H̄

∂x̄
‖Ŵ (5.38)

where Ŵ = [Ŵ T
1 Ŵ T

2 · · · Ŵ T
N ]T ∈ �mνN , Γ = diag (Γ1, Γ2, · · ·ΓN),

φ = diag (φ1, φ2, · · ·φN) ∈ �mνN×mN , ḡ = diag (ḡ1, ḡ2, · · ·ḡN) ∈ �nN×mN and

Z = diag (Z1,Z2, · · ·ZN) ∈ �nN×nN .

Define the manifold Ξi as:

{Ξi | ḡT
i (x̄i)Zi

∂H̄i

∂x̄i

(x̄i) = 0} (5.39)

The advantages associated with the introduction of Zi have already been explained

in detail in Ch. 4.

5.5.3 Controller design

Let the penalty signal zi for L2 disturbance attenuation be defined as:

zi(x̄i) = hi(x̄i)ḡ
T
i (x̄i)

∂H̄i

∂x̄i

(x̄i) (5.40)

where hi(x̄i) (hi(0) = 0) is a weighting matrix. The following assumption is made

on ḡi(x̄i).

Assumption 5.3 The Moore-Penrose pseudoinverse of ḡi denoted by ḡ†
i (x̄i) exists
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for all x̄i.

As explained in Ch. 4, most of the models of physical systems have ḡi independent

of x̄i, therefore, Assumption 5.3 does not prevent applicability of the proposed

controller to the practical systems.

The proposed L2 neuro-adaptive control is given as:

ϑ(x̄i, Ŵi) = −Ki
∂H̄i

∂x̄i

− ḡ†
iZiḡiF̂i(x̄i) (5.41)

where

Ki =
1

2

{
1

γ2
In + hT

i (x̄i)hi(x̄i)

}
ḡT

i (5.42)

Note that the first term in the RHS of (5.41) represents the L2 disturbance attenu-

ation component, while the second term represents the neuro-adaptive component

of the control law (5.41).

Application of (5.41) to (5.32) yields

˙̄xi = [J̄i(x̄i) − R̄ci(x̄i) − ḡi(x̄i)Ki]
∂H̄i

∂x̄i

(x̄i)

+Ziḡi(x̄i)φ
T
i (Wi − Ŵi(t))

+ḡi(x̄i)(ξi + ḡ†
iZiḡiεi) (5.43)

To augment the NNs dynamics with the closed-loop system’s dynamics and to

obtain the augmented dynamics in PCH form, define the shaped Hamiltonian as:

H̄Si
(x̄i, Ŵi) = H̄i(x̄i) + H̄Ni

(Ŵi) (5.44)
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where

H̄Ni
(Ŵi) =

1

2
(Wi − Ŵi(t))

T Γ−1
i (Wi − Ŵi(t)) (5.45)

The shaped Hamiltonian of the whole group of N agents is given by:

H̄S(x̄, Ŵ ) =
N∑

i=1

H̄Si
(x̄i, Ŵi)

=
N∑

i=1

H̄i(x̄i) +
N∑

i=1

H̄Ni
(Ŵi)

= H̄(x̄) + H̄N(Ŵ ) (5.46)

where

H̄(x̄) =
N∑

i=1

H̄i(x̄i) (5.47)

and

H̄N(Ŵ ) =
1

2
(W − Ŵ (t))T Γ−1(W − Ŵ (t))

=
1

2
W̃ (t)T Γ−1W̃ (t) (5.48)

where W = [W T
1 W T

2 · · · W T
N ]T ∈ �mνN and

W̃ = W − Ŵ ∈ �mνN (5.49)
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To facilitate the analysis, the error vector x̄ defined earlier is augmented with Ŵ

to form the augmented state vector X as:

X =

⎡
⎢⎢⎣ x̄

Ŵ

⎤
⎥⎥⎦ (5.50)

Gradient of H̄S(x̄, Ŵ ) w.r.t. X is given by:

∂H̄S

∂X (X ) =
∂H̄S

∂(x̄, Ŵ )
(x̄, Ŵ )

=

⎡
⎢⎢⎣

∂H̄(x̄)
∂x̄

∂H̄N (Ŵ )

∂Ŵ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∂H̄
∂x̄

(x̄)

−Γ−1W̃

⎤
⎥⎥⎦ (5.51)

Applying the controller (5.41) to system (5.32), and augmenting the resulting

dynamics to NN dynamics (5.37) yields the following PCH system

Ẋ =

⎡
⎢⎢⎣ ˙̄x

˙̂
W

⎤
⎥⎥⎦ =

[⎛
⎜⎜⎝ J̄ −Z ḡφT Γ

(Z ḡφT Γ
)T

0

⎞
⎟⎟⎠

−

⎛
⎜⎜⎝ R̄c + ḡK 0

0 κΓ‖ḡTZ ∂H̄
∂x̄

‖Γ

⎞
⎟⎟⎠

]⎡
⎢⎢⎣

∂H̄
∂x̄

∂H̄N

∂Ŵ

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣ ḡ 0

0 I

⎤
⎥⎥⎦
⎡
⎢⎢⎣ ω

−κΓ‖ḡTZ ∂H̄
∂x̄

‖W

⎤
⎥⎥⎦ (5.52)

where K = diag (K1,K2, · · ·KN) ∈ �Nn×Nn, ω = [ωT
1 ωT

2 · · · ωT
N ]T ∈ �Nm and

ωi = ξi + ḡ†
iZiḡiεi ∈ �m.

146



The following theorem establishes the main results of this chapter.

Theorem 5.1 Consider the uncertain PCH system (5.22) and its corresponding

error system (5.26).

1). Suppose Assumptions 5.1-5.3 hold. Then for any γ > 0, the L2 disturbance

attenuation objective is achieved by application of control law (5.41).

2). x̄ and W̃ are CUUB with practical bounds given by (5.66) and (5.67), respec-

tively.

Proof: 1). Let the shaped Hamiltonian (5.44) be the candidate Lyapunov func-

tion. Taking its time derivative along the trajectory of augmented system (5.52)

yields

˙̄HS =
∂H̄

∂x̄

T

˙̄x − (W − Ŵ )T Γ−1 ˙̂
W

=

[
∂H̄T

∂x̄

∂H̄T
N

∂Ŵ

]⎡⎢⎢⎣ ˙̄x

˙̂
W

⎤
⎥⎥⎦

=

[
∂H̄
∂x̄

T ∂H̄N

∂W̄

T

][⎛
⎜⎜⎝ J̄ −Z ḡφT Γ

(Z ḡφT Γ
)T

0

⎞
⎟⎟⎠

−

⎛
⎜⎜⎝ R̄c + ḡK 0

0 κΓ‖ḡTZ ∂H̄
∂x̄

‖Γ

⎞
⎟⎟⎠

]⎡
⎢⎢⎣

∂H̄
∂x̄

∂H̄N

∂Ŵ

⎤
⎥⎥⎦
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+

[
∂H̄
∂x̄

T ∂H̄
N

∂Ŵ

T
]⎡⎢⎢⎣ ḡ 0

0 I

⎤
⎥⎥⎦
⎡
⎢⎢⎣ ω

−κΓ‖ḡTZ ∂H̄
∂x̄

‖W

⎤
⎥⎥⎦

= −∂H̄

∂x̄

T

Rc
∂H̄

∂x̄
− κ

∂H̄N

∂Ŵ

T

Γ‖ḡTZ ∂H̄

∂x̄
‖Γ∂H̄N

∂Ŵ

−∂H̄

∂x̄

T

ḡK
∂H̄

∂x̄
+

∂H̄

∂x̄

T

ḡω

−κ
∂H̄N

∂Ŵ

T

Γ‖ḡTZ ∂H̄

∂x̄
‖W (5.53)

Using the definitions r = ḡTZ ∂H̄
∂x̄

, Rc = (ZT ḡ)†Rc(ḡ
TZ)†, WB = ‖W‖, substitut-

ing K from (5.42) and noting that ∂H̄N

∂Ŵ
= −Γ−1W̃ , eq. (5.53) becomes

˙̄HS = −rTRcr − κW̃ T‖r‖W̃ + κW̃‖r‖W

−1

2

∂H̄

∂x̄

T

ḡ

{
1

γ2
I + hT (x̄)h(x̄)

}
ḡT ∂H̄

∂x̄

+
∂H̄

∂x̄

T

ḡω

≤ −σ(Rc)‖r‖2 − κ‖r‖‖W̃‖2 + κ‖W̃‖‖r‖‖W‖

−1

2

∂H̄

∂x̄

T

ḡ

{
1

γ2
I + hT (x̄)h(x̄)

}
ḡT ∂H̄

∂x̄

+
1

2γ2

∂H̄

∂x̄

T

ḡḡT ∂H̄

∂x̄
+

1

2
γ2ωT ω

≤ −σ(Rc)‖r‖2 − κ‖r‖‖W̃‖2 + κ‖W̃‖‖r‖WB

+
1

2

{
γ2‖ω‖2 − ‖z‖2

}
(5.54)

Let

ρ =

[
‖r‖ ‖W̃‖

]T

(5.55)
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M =

⎡
⎢⎢⎣ σ(Rc) 0

0 κ‖r‖

⎤
⎥⎥⎦ (5.56)

θ =

[
0 κ‖r‖WB

]T

(5.57)

Inequality (5.54) can be written as

˙̄HS ≤ −ρTMρ + θT ρ +
1

2

{
γ2‖ω‖2 − ‖z‖2

}
≤ −Q(ρ) +

1

2

{
γ2‖ω‖2 − ‖z‖2

}
(5.58)

where Q(ρ) = ρTMρ − θT ρ

Q(ρ) is non-negative definite if the following conditions, C1 and C2, hold:

(C1) M is non-negative definite.

(C2) ‖ρ‖ > ‖θ‖
σ(M)

Condition (C1) is obviously satisfied. Since ‖θ‖1 > ‖θ‖, condition (C2) holds if

‖ρ‖ ≥ B with

B =
‖θ‖1

σ(M)
=

κ‖ḡT r‖WB

σ(M)
(5.59)

Thus,

Q(ρ) ≥ 0, ∀‖ρ‖ ≥ B (5.60)

Since ρ explicitly depends on x̄, (5.58) is re-written as:

˙̄Hs + Q(x̄) ≤ 1

2

{
γ2‖ω‖2 − ‖z‖2

}
(5.61)
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Equation (5.60) with B defined in (5.59) implies that the function Q(x̄) is non-

negative definite. This completes the the proof of the first part of the theorem.

2). CUUB of x̄ and W̃

Let

Vr(r) = −σ(Rc)‖r‖2 − κ‖r‖‖W̃‖2 + κ‖W̃‖‖r‖WB (5.62)

Using definition (5.62), inequality (5.54) can be written as

˙̄HS ≤ Vr(r) +
1

2

{
γ2‖ω‖2 − ‖z‖2

}
(5.63)

CUUB of x̄ and W̃ is proven by showing the negative definiteness of Vr, as follows.

Re-write Vr(r) as

Vr(r) = −‖r‖
[
kcmin

‖r‖ + κ‖W̃‖
(
‖W̃‖ − WB

)]
(5.64)

where kcmin
= σ(Rc). Vr(r) is negative as long as the term in the brackets is

strictly positive. Completing the square yields

kcmin
‖r‖ + κ‖W̃‖

(
‖W̃‖ − WB

)

= κ

(
‖W̃‖ − 1

2
WB

)2

− κW 2
B/4 + kcmin

‖r‖ (5.65)

which is positive as long as

‖r‖ >
κW 2

B/4

kcmin

≡ br (5.66)
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or

‖W̃‖ > WB/2 +
√

κW 2
B/4 ≡ bW (5.67)

Thus Vr(r) is negative outside the compact set {Sr|‖r‖ < br}. Eq. (5.66) implies

that a sufficiently large value of kcmin
obtained by selecting a large Ci in eq. (5.31),

will significantly reduce the magnitude of the ball br, thus ensuring the CUUB of

both x̄ and W̃ . According to Lemma 5.1, CUUB of x̄ implies the CUUB of both

the synchronization error e and tracking error δ. The proof is complete. �

Remark 5.2 As mentioned in the previous chapter, the arbitrary bounds WB, bW

and br are just needed for the stability analysis. Their knowledge is not needed in

the controller design, though in most practical problems, it is possible to find the

numerical values of these bounds. Similar arguments can be found in [24].

5.6 Simulation on a networked group of 2-link

planar manipulators

The proposed controller is applied to a group of five 2-link planar manipulators,

shown in Fig. 5.1, networked through the graph shown in Fig. 5.2. Application

of canonical transformation from state space [qT
i pT

i ]T to NLSE space [q̄T
i p̄T

i ]T

can be explained exactly as in Sec. 4.5. Consider an ith manipulator with masses

mi1, mi2 and link lengths ai1, ai1. The generalized configuration coordinates are

link angles θi1 and θi2, and therefore qi = θi = [θi1 θi2]
T . Similar to the case

of a single system described by (4.49), the ith agent in this example can also be
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Figure 5.1: ith 2-Link manipulator

Figure 5.2: Communication graph

described by

ui =

[
τi1 τi2

]T

, Gi = I2, Di = diag(di1, di2),

Mi(θ) =

⎡
⎢⎢⎣ Mi11(qi) Mi12(qi)

Mi21(qi) Mi22(qi)

⎤
⎥⎥⎦ where

Mi11(qi) = (mi1 + mi2)a
2
i1 + mi2a

2
i2 + 2mi2ai1ai2cos(qi2),

M(qi)12 = M(qi)21 = mi2a
2
i2 + mi2ai1ai2cos(qi2),

Mi22(qi) = mi2a
2
i2.

The manipulators work on the horizontal plane, therefore, gravity effects are neg-

ligible and Vi(θi) = 0. The nominal magnitudes of the system parameters and

uncertainties are given in Table 5.1. The virtual leader trajectories are:

q01 = sin(t), q02 = cos(t).
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Table 5.1: Manipulator Parameters & Uncertainties
Parameter Nominal magnitude Uncertainty (%)
mi1, mi2 1Kg 100
ai1, ai2 1m 10
di1, di2 1N-s/m 150

NN and controller parameters: Controller parameters are similar to those in

the example of Sec. 4.6.2. Since there are two inputs for each manipulator, two

separate NNs are used at every node, each with six neurons (ν = 6). Γi = 10I6

and κ = 0.001. Hyperbolic tangent is used as activation function. Note that

there is no need to find a regressor here, as is required in other adaptive control

schemes. Furthermore, to compute the penalty signal zi(·) in Eq. (5.40), hi(·) is

chosen as

hi(q̄i) = qi − qdi,

Ci = Kpi = 20

The initial condition is [qi0 q̇i0 ]
T = [0 0]T . NN weights are initialized to zero.

The disturbance attenuation gain γi is set to 0.1. The external disturbance ξi is

the unit variance Gaussian random noise. The filter Zi is chosen as:

Zi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.25 0

0 0 0 0.25

0.25 0 1 0

0 0.25 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which yields Λi = diag(5, 5).
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Figure 5.3: State evolution
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Figure 5.4: Synchronization errors with IP filtering
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Figure 5.5: Synchronization errors without IP filtering

Fig. 5.3 shows that links follow the desired trajectories with negligible errors.

Figs. 5.4–5.5 show the synchronization errors, with and without IP filtering,

respectively. Significant synchronization errors are observed when IP filtering is

not employed in the NN tuning law (i.e. Zi = I4). Flatness of these errors

indicates that the corresponding velocity errors are zero.

5.7 Conclusion

The distributed cooperative tracking control of PCH systems has been addressed

in this chapter. Canonical transformation theory of PCH systems is employed

to formulate the tracking of the leader node by all the follower nodes, and the

synchronization among the follower nodes themselves as well. Neural networks

(NN) are employed to deal with the parametric uncertainties. The NN tuning

laws are driven by both position as well as velocity errors. The proposed con-
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troller also achieves the L2 disturbance attenuation objective. The CUUB of the

tracking errors and NN weight errors has been shown. The proposed controller is

successfully applied to standard mechanical systems. Simulations are performed

on a group of five 2-link planar manipulators to verify the proposed scheme.
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CHAPTER 6

CONCLUSION AND FUTURE

WORK

This chapter summarizes the contributions of this thesis and recommends some

important future extensions to them. Due to several attractive features as well as

the growing needs in several civil and military applications, cooperative control

of multi-agent autonomous systems has become an area of active research. On

the other hand, it has been asserted in the literature survey presented in Chap. 2

that due to the vast variety of the nonlinear systems dynamics representing the

majority of the real-life systems, research in the cooperative control of nonlin-

ear multi-agents systems needs greater attention from researchers in the control

community. This thesis considers cooperative control of two important classes of

nonlinear systems, the Port Controlled Hamiltonian (PCH) systems and higher-

order nonlinear affine systems in the Brunovsky Canonical Form (BCF).
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6.1 Neuro-Adaptive Cooperative Tracking Con-

trol of Unknown Higher-Order Affine Non-

linear Systems

In Ch.3, a neural network-based distributed adaptive cooperative tracking control

of nonlinear BCF systems is presented. Dynamics of the individual agents are

unknown to the controller and can be different from one another i.e. the group

can be heterogenous. Similar works in the available literature assume the input

function of individual agent to be known and equal to unity. The results presented

in this thesis generalize the available results by allowing the input function to be

a smooth function of the states. The synchronization error and the NNs weight

error are proved to be CUUB. Efficacy of the proposed controller is demonstrated

through simulations on a group of five heterogeneous nonlinear systems with leader

dynamics described by a Fitzhugh-Nagumo model and, also on another group of

five inverted pendulums networked through a directed graph. It should be noted

that all of the neuro-adaptive controller proposed in this thesis are direct i.e.

off-line system identification is not needed.

6.2 Cooperative Control of PCH Systems

PCH systems represent a wide range of real life physical systems like robotic ma-

nipulators and several types of unmanned vehicles. PCH systems are inherently

passive and are therefore, best suited for Passivity-Based Control (PBC). A no-
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ticeable flexibility offered by the PCH formalism is its ability to accept the shaping

of kinetic energy in addition to potential energy as compared to the only allowable

shaping of potential energy in another class of passive systems described by the

Euler-Lagrange (EL) formalism. This feature of PCH systems is particularly use-

ful in the design of trajectory tracking controllers. As another attractive feature,

controller design under PCH formalism offers a straightforward interpretation of

controller implementation in terms of energy storing and energy dissipating com-

ponents. This feature is demonstrated in Interconnection and Damping Assign-

ment Passivity Based Control (IDA-PBC) methodology. This thesis exploits these

attractive features of PCH systems in the design of cooperative control applicable

to numerous real life multi-agents systems.

6.2.1 Neuro-Adaptive Trajectory Tracking Control of Sin-

gle Uncertain PCH Systems

Parametric uncertainty has always been an issue of great concern in control engi-

neering and several other engineering fields and, if ignored, can result in serious

performance and stability problems. In Chap. 4, a robust neuro-adaptive con-

troller design is presented for PCH systems. Unlike in other adaptive control

schemes, in this thesis the parametric uncertainties are not restricted to be in

the so called Linear-in-Parameter form, thus making the proposed scheme appli-

cable to much complicated uncertainty forms. The proposal of this controller is

considered as an important step prior to the design of cooperative controller of
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multi-agent PCH system.

Introduction of novel information-preserving filtering

A novel contribution of the proposed neuro-adaptive controller is that the neural

networks tuning law is driven by velocity as well as position errors, when applied

to mechanical systems. In the available literature, the adaptive laws are driven by

only the velocity error, which can result in significant steady state position error,

even when velocity error is zero. Inclusion of position error in these adaptive laws

is avoided to preserve the PCH structure of the closed loop system. In this thesis,

a novel idea of Information-preserving (IP) filtering of the Hamiltonian gradient

is introduced to drive the NN tuning law by both the velocity and position error,

while preserving the PCH structure of the closed-loop systems as well.

L2 attenuation of bounded external disturbance

In addition to the parametric uncertainties, the proposed controller also achieves

the L2 disturbance attenuation objective against a class of external disturbance

with known bounds appearing through input channels.

Canonical transformation of PCH systems using neural networks

Canonical transformation of PCH systems, which is required in the trajectory

tracking control, often involves the solution of PDEs, which is not easy, in gen-

eral. In the literature, NNs have been successfully applied to the state-feedback

linearisation (i.e. the transformation) of nonlinear systems. In addition to neuro-
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adaptive control of PCH systems, this thesis also presents the NN-based canonical

transformation of PCH systems.

6.2.2 Distributed Cooperative Control of Multi-Agent

PCH Systems

As a major goal of this thesis, the cooperative control of PCH systems is presented

in Chap.5. The individual systems are networked through a directed graph. The

generalized canonical transformation theory of PCH systems is utilized as a tool

in the formulation of the cooperative control problem. Dynamics of each group

member are transformed from state space to a local synchronization error space,

and then a stabilizing controller is designed for the resultant synchronization er-

ror system. Stability of the transformed global error system is guaranteed by

a straightforward application of the stability theory of the trajectory tracking

control of a single PCH system.

6.2.3 L2 Neuro-Adaptive Trajectory Tracking Control of

Uncertain PCH Systems

Cooperative control of multi-agent PCH system is robustified against parametric

uncertainties and bounded external disturbances using NNs. The novel idea of

information-preserving filtering introduced in the Ch.4 is utilized to drive the NNs

tuning law by velocity as well as position errors. The synchronization error and

the NNs weight error are proved to be CUUB. Simulations are performed on a
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group of five networked 2-link robotic manipulators to demonstrate the efficacy

of the proposed controller.

6.3 Future Recommendations

The developments in this thesis can be further extended in several aspects. These

extensions will expectedly result in several contributions to further enhance the

cooperative control theory literature towards the goal of developing robust and

practical autonomous multi-agent systems. The following extension are recom-

mended to be considered in the future.

6.3.1 Formation control of PCH systems

In the formation control problem, a group of autonomous agents is coordinated to

achieve some desired formation i.e. a desired geometrical shape, and then accom-

plish some tasks through the collaboration of the agents. Applications of forma-

tion control include formation flying, cooperative transportation, sensor networks,

as well as combat intelligence, surveillance, and reconnaissance [15]. Formation

control of PCH systems can be a natural extension of this thesis. Advantages

associated with the passivity based control (PBC) together with the PCH for-

malism can expectedly result in more attractive formation control algorithms. In

particular, the generalized canonical transformation theory of PCH systems can

be well utilized to study the formation tracking control problem. Moreover, the

experience of direct neuro-adaptive control can be further exploited to develop
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robust formation control algorithms.

6.3.2 Cooperative control of underactuated systems

This thesis considers the cooperative control of fully actuated PCH systems. There

are several mechanical systems with number of actuators less than the degree of

freedom. These are called the underactuated systems. Some researchers also

categorize the non-holonomic systems as underactuated systems [15]. Failure of

an actuator of a fully actuated system can also make it an underactuated system.

Extension of the present work to the case of underactuated systems can be an

interesting research work. Stabilization control of underactuated systems under

PCH formalism has already been studied in [98] which can be a good starting

point for this future extension.

6.3.3 Cooperative control under communication con-

straints

In multi-agent systems, information among the constituent group members is

shared through a communication network which is often a wireless one. Problems

associated with the data communication cause spurious effects on the cooperative

control performance and can even destabilize the cooperative system in some

cases. In the following, some future extensions are suggested for consideration of

significant communication constraints.
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Time delay and packet drops

Network latency or time delay is an essential phenomenon in data communication.

A major reason for the occurrence of time delay is the limited communication

speed or the limited channel bandwidth. In addition to time delay, packet drops

can also affect the performance. Packet drops are modeled as a special case of time

delay when dropped data packets are re-transmitted and then received. Extension

of the results of this thesis by considering the time delay will further enhance the

applicability of the proposed controller.

Intermittent connectivity, switching and reconfigurable topology

In many practical situations, the topology of the communication graph does not

remain fixed, and rather varies due to several factors, like distance variation among

the agents, loss of communication link, mobility of the agents, or even sometimes

dictated by the requirements of an application e.g. in simultaneous localization

and mapping (SLAM). A cooperative control scheme must be pliable enough to

maintain the group objective in the cases of intermittent connectivity, switching

and reconfigurable topology. This has been a problem of great concern for the

researchers and as a result numerous schemes have been appeared in the litera-

ture for particular classes of dynamics systems [15]. In future, such pliability of

cooperative control of the systems considered in this thesis should also be targeted.

164



6.4 Concluding Remarks

Cooperative control of multi-agents systems has emerged as an active area of

research in control community due to its numerous valuable benefits to society.

Research in the cooperative control of nonlinear systems has several problems to

be solved yet. Much has already been done but still much more is yet to be done.

This thesis contributes to the literature by presenting robust cooperative control

of two important classes of higher order nonlinear systems: higher order nonlinear

systems in BCF and the PCH systems. As such, it represents a small step in the

drive to expand and exploit this powerful control tool.
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