43,334 research outputs found

    Schema architecture and their relationships to transaction processing in distributed database systems

    Get PDF
    We discuss the different types of schema architectures which could be supported by distributed database systems, making a clear distinction between logical, physical, and federated distribution. We elaborate on the additional mapping information required in architecture based on logical distribution in order to support retrieval as well as update operations. We illustrate the problems in schema integration and data integration in multidatabase systems and discuss their impact on query processing. Finally, we discuss different issues relevant to the cooperation (or noncooperation) of local database systems in a heterogeneous multidatabase system and their relationship to the schema architecture and transaction processing

    Ontology-assisted database integration to support natural language processing and biomedical data-mining

    Get PDF
    Successful biomedical data mining and information extraction require a complete picture of biological phenomena such as genes, biological processes, and diseases; as these exist on different levels of granularity. To realize this goal, several freely available heterogeneous databases as well as proprietary structured datasets have to be integrated into a single global customizable scheme. We will present a tool to integrate different biological data sources by mapping them to a proprietary biomedical ontology that has been developed for the purposes of making computers understand medical natural language

    NOSQL design for analytical workloads: Variability matters

    Get PDF
    Big Data has recently gained popularity and has strongly questioned relational databases as universal storage systems, especially in the presence of analytical workloads. As result, co-relational alternatives, commonly known as NOSQL (Not Only SQL) databases, are extensively used for Big Data. As the primary focus of NOSQL is on performance, NOSQL databases are directly designed at the physical level, and consequently the resulting schema is tailored to the dataset and access patterns of the problem in hand. However, we believe that NOSQL design can also benefit from traditional design approaches. In this paper we present a method to design databases for analytical workloads. Starting from the conceptual model and adopting the classical 3-phase design used for relational databases, we propose a novel design method considering the new features brought by NOSQL and encompassing relational and co-relational design altogether.Peer ReviewedPostprint (author's final draft

    Towards a Novel Cooperative Logistics Information System Framework

    Get PDF
    Supply Chains and Logistics have a growing importance in global economy. Supply Chain Information Systems over the world are heterogeneous and each one can both produce and receive massive amounts of structured and unstructured data in real-time, which are usually generated by information systems, connected objects or manually by humans. This heterogeneity is due to Logistics Information Systems components and processes that are developed by different modelling methods and running on many platforms; hence, decision making process is difficult in such multi-actor environment. In this paper we identify some current challenges and integration issues between separately designed Logistics Information Systems (LIS), and we propose a Distributed Cooperative Logistics Platform (DCLP) framework based on NoSQL, which facilitates real-time cooperation between stakeholders and improves decision making process in a multi-actor environment. We included also a case study of Hospital Supply Chain (HSC), and a brief discussion on perspectives and future scope of work

    Ontology mapping: the state of the art

    No full text
    Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping
    corecore