
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

2000

The Integration of Relationship Instances from
Heterogeneous Databases
Ee Peng LIM
Singapore Management University, eplim@smu.edu.sg

Roger Hsiang-Li CHIANG

DOI: https://doi.org/10.1016/S0167-9236(00)00070-1

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIM, Ee Peng and CHIANG, Roger Hsiang-Li. The Integration of Relationship Instances from Heterogeneous Databases. (2000).
Decision Support Systems. 29, (2), 153-167. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/56

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/13248438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/S0167-9236(00)00070-1
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Ž .Decision Support Systems 29 2000 153–167
www.elsevier.comrlocaterdsw

The integration of relationship instances from heterogeneous
databases

Ee-Peng Lim a,), Roger H.L. Chiang b

a Centre for AdÕanced Information Systems, School of Applied Science, Nanyang Technological UniÕersity, Nanyang AÕenue,
N4-2A-12, Singapore 639798, Singapore

b College of Business Administration, UniÕersity of Cincinnati, Cincinnati, OH 45221-0211, USA

Accepted 1 April 2000

Abstract

In the process of integrating legacy databases, one has to resolve inter-database conflicts at both the schema and instance
levels. In this paper, we discuss relationship conflicts as a special type of conflicts to be resolved during the database
integration. Relationships are properties that relate real world objects. So far, most inter-database relationship conflicts are
addressed at the schema-level by various schema integration techniques. However, instance-level relationship conflicts are
largely neglected. This paper therefore investigates the causes of instance-level relationship conflicts and proposes a
taxonomy for classifying instance-level relationship conflicts. In addition, we develop a systematic process to resolve
instance-level relationship conflicts and incorporate the resolution steps into the overall database integration process.
Instance-level relationship conflict detection algorithms have also been developed to aid the resolution process. This research
should facilitate database integration work for both multidatabase and data warehousing approaches. Most importantly, it
should improve the data quality of the integrated databases. q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Instance-level relationship conflicts; Database integration; Multidatabases; Data warehouses

1. Introduction

In the past, much database integration research
has focused on solving the schema integration prob-
lem which involves combining the conceptual

w xschemas of heterogeneous databases 1,5,7,14 . Typi-
cally, schema integration assumes the availability of
conceptual schemas for the databases involved, and
the schemas are usually represented in the Entity-Re-

) Corresponding author. Tel.: q65-799-4802; fax: q65-792-
6559.

Ž .E-mail addresses: aseplim@ntu.edu.sg E.-P. Lim ,
Ž .roger.chiang@uc.edu R.H.L. Chiang .

Ž . w xlationship ER model 3 . Schema integration tasks
Žinclude matching schema constructs i.e. entity,

.relationship and attribute types from different but
related conceptual schemas, resolving schema con-
struct conflicts, and deriving an integrated concep-

w xtual schema 1 . While schema integration is a well-
established database research area and several fully
and semi-automatic schema integration tools and
techniques have been developed, the integration of
database instances, in contrast, has not been ad-
dressed very much in database integration.

The integration of database instances is more
difficult than schema integration. Firstly, integration
of instances is carried out after schema integration

0167-9236r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0167-9236 00 00070-1

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167154

and hence very much relies on the correctness of
schema integration. Schema integration research and
methods normally tend to assume that required se-
mantics for database integration can be captured by
their schemas and different kinds of semantic-re-

w xlated assertions 5,14,15 . As it is not easy to obtain
required domain semantics and further exhaustively
validate these semantics, schema integration process
may generate an integrated schema that contains
flaws. These flaws will later surface during the
integration of data instances. Flaws resulted from
schema integration therefore have to be detected and
resolved during the instance integration process. Sec-
ondly, the volume of instances in databases for
integration is much larger than their schema ele-
ments. The large volume of data prohibits a database
integrator from performing the integration task by
meticulously matching and reconciling the database
instances without making use of domain knowledge

Ž .and meta-data e.g. the integrated schema to guide
the integration process.

For database integration, the schema integration is
better performed at the conceptual level. Likewise, in
order to perform correct instance integration, we
advocate that instances should be integrated at the
conceptual level making it necessary to tap the con-
ceptual-level knowledge about local schemas and the
integrated schema to perform correct instance inte-
gration. In our research, instances from the databases
to be integrated are viewed as entity and relationship
instances, and integrated entity and relationship in-
stances are derived by combining these local entity
and relationship instances.

The integration of entity instances has been stud-
ied in the entity identification and attribute Õalue

w xconflict 9,10 . There are a few solution techniques
proposed for these two instance integration issues.
However, the integration of relationship instances
has not been properly addressed. There is also a lack
of database integration methodology that incorpo-
rates the integration of not only entity, but also
relationship instances. Without such a methodology,
relationship instances captured as tuples in the under-
lying local databases may have to be treated as entity
instances and be wrongly integrated without consid-
ering the semantics of relationship instances.

For example, assume that there are two databases
containing overlapping but not identical sets of em-

ployee and project instances. Let EMPPROJ A–
Ž . Ž .- eno,pno and EMPPROJ B eno,pno be the rela-–

tional tables storing information about the many-to-
many relationship instances between employees and
projects in the two databases. Let e and p be an
employee instance and a project instance, respec-
tively, and they can be found in both databases. They
are found together in a EMPPROJ A tuple but not–
in EMPPROJ B. If tuples from the two tables are–
integrated as entity instances, it would not be possi-
ble to discover that the relationship between e and p
is missing in EMPPROJ B. If it is known that–
EMPPROJ B contains more up-to-date information,–
one should ensure that the relationship instance be-
tween e and p be excluded from the integrated
database. Unfortunately, this instance-level relation-
ship conflict is usually not considered in the existing
database integration approaches. By blindly treating
relationship instances as entity instances and over-
looking the semantics of relationships, one could
result in incorrectly integrated databases.

In this paper, the integration of relationship in-
stances from heterogeneous databases is studied as
an essential part of instance integration. Our main
objective is to develop an overall database integra-
tion methodology to address both the schema and
instance integration issues by incorporating the rela-
tionship semantics. In summary, there are three re-
search objectives.

Ø We present a novel database integration
methodology that encompasses schema and instance
integration tasks as well as other essential integration
tasks such as reverse engineering of data instances.
The resolution of instance-level relationships con-
flicts has been incorporated into the methodology.
We also elaborate on the inter-dependence of schema
and instance integration tasks. To our best knowl-
edge, such a complete treatment of database integra-
tion problem has not been mentioned in the research
literature.

Ø We provide a classification of instance-level
relationship conflicts. The causes of different types
of conflicts have also been identified.

Ø We outline a systematic process to detect and
resolve the instance-level relationship conflicts. It is
a step-by-step instance integration process that can
be carried out by a database integrator manually or
with some help from a semi-automatic tool.

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167 155

Our research studies and probes the semantic
issues of instance integration. It is different from

w x w xexisting data cleaning techniques 13 and tools 2
available in the market for data warehousing and
data mining. Data cleaning methods focuses on auto-
matic identification and correction of inconsistent
data format and value coding together with incom-
plete and incorrect data in a target data warehouse. It
focuses mainly on the syntactic inconsistency resolu-
tion in data consolidation and integration. However,
without resolving semantic differences between in-
stances, incorrectly integrated databases are most
likely produced during data integration. Therefore,
instance integration should consist of not only data
cleaning but also semantic conflict identification and
reconciliation.

In the following discussions, we assume that
databases for integration are relational. We adopt ER
model to represent the export conceptual schemas
and instances, and the integrated databases. The
reminder of this paper is organized as follows. In
Section 2, we present our database integration
methodology. This methodology divides the integra-
tion task into a set of processes, which can be
adapted for use in either multidatabases or data
warehouses. Section 3 discusses schema-level rela-
tionship conflicts. The discussion and classification
of these conflicts will facilitate the understanding of
relationship conflicts at the instance level. Section 4
examines the instance-level relationship conflicts and
their causes. Sections 5 and 6 discuss the instance-
level relationship conflicts detection and resolution,
respectively. Section 7 provides the conclusions and
discusses future research directions.

2. Overview of database integration

2.1. Physical Õs. Õirtual database integration

Database integration is performed whenever two
or more databases have to be combined together
either physically or virtually. Physical database inte-
gration requires the original databases to be dis-
carded after the integrated database has been con-
structed and all existing application software to be
migrated to the database systems operating the inte-
grated database. Virtual database integration, on the

other, deploys a multidatabase or data warehousing
system to support queries on an integrated Õiew
constructed upon the original databases. It retains
both the original databases and its application soft-
ware.

Regardless the mode of database integration, the
basic integration tasks remain essentially the same.
We view the entire database integration as a set of
processes which derives the integrated schema and
instances. For physical database integration, the
schemas and instances of heterogeneous databases
are combined at the time physical integrated
databases are created. For virtual database integra-
tion, only the local schemas are integrated at the time
integrated views are defined upon the heterogeneous
databases. The integrated view definition specifies
how the integrated instances can be obtained.

The physical instance integration is performed
when the global applicationsrusers issue queries for
multidatabase systems. For data warehouse systems,
local data instances are extracted and integrated prior

w xto global query processing 16 . Therefore, the in-
stance integration is performed according to the
changes in the local databases rather than according
to the ad hoc global queries. The global queries are
evaluated directly against the data warehouse. To
construct a data warehouse, monitoring systems must
be implemented on the local databases to actively
detect changes to them, and to propagate the changes
to the data warehouse. These changes are trans-
formed into updates to the data warehouse by a data
integrator subsystem.

2.2. Database integration methodology

Our proposed database integration methodology is
shown in Fig. 1. The methodology is unique in the
way it considers not only the schema integration but
also the instance integration. It highlights the re-
quirement of integrating instance at the conceptual
level making it possible to explore relationship se-
mantics. It also presents database integration as a set
of inter-related processes so that it can be tackled by
solutions to inter-related sub-problems. There are
two inter-related dichotomies of database integration
issues. The first dichotomy is based on the database

Ž .components i.e. schemas and instances for integra-
tion. The second one is based on the representation

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167156

Fig. 1. Database integration methodology.

abstraction level of database components to be inte-
Žgrated i.e. implementation data models and concep-

.tual data models .
As most local databases are implemented on rela-

tional database systems, they are stored as implemen-
tation schemas and instances, i.e. relational tables
and tuples. By performing database reÕerse engi-

w xneering 4,12 , the conceptual schemas and instances
of these local databases can be derived. In some
cases, the conceptual schemas of local databases are
well documented and maintained by database design-
ers and the reverse engineering process could focus
only on deriving the conceptual entity and relation-
ship instances from the local database tuples. Here,
we have extended the traditional database reverse
engineering process to include the task of reverse
engineering instances. Traditionally, database reverse
engineering research deals with only database
schemas. There is no research done on the reverse
engineering of database instances. However, it is
better to reverse engineer and represent instances of
heterogeneous databases for integration at the con-
ceptual level to facilitate the integration work.

Schema integration combines the conceptual
schemas of local databases into an integrated concep-
tual schema. Unlike traditional schema integration,
the conceptual schemas of the local databases and

some mapping information1 are determined during
the schema integration process. In schema integra-
tion, an export conceptual schema is defined for each
local database according to the portion of its in-

Ž .stances to be integrated i.e. export database . The
export schemas also serve to ensure that export
databases look compatible before their instances are
to be further integrated.

Based on the conceptual schemas of local
databases, instance exportation can be performed on
the instances in order to derive the conceptual in-
stances for integration, i.e. entity and relationship
instances. Instance exportation requires the instances
from different local databases to be formatted ac-
cording to the export conceptual schemas. Each en-
tity instance consists of a unique entity identifier and
the values for attributes prescribed to the correspond-
ing entity type. Each relationship instance consists of
the identifiers of participating entity instances and
the values for attributes prescribed to the correspond-
ing relationship type. The mappings from local con-
ceptual schema to export conceptual schema, as part

1 These are mappings from local conceptual schema to export
conceptual schema, and from export conceptual schemas to inte-
grated conceptual schema.

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167 157

of the output of schema integration, facilitates the
derivation of conceptual instances. Since export con-
ceptual schemas are compatible with one another,
instance integration can then be performed on the
conceptual instances.

In this proposed database integration methodol-
ogy, we examine instance integration at conceptual
leÕel. It involves three major tasks: entity identifica-
tion, attribute Õalue conflict resolution, and rela-
tionship conflict resolution. Entity identification
involves matching local database instances that cor-
respond to the same real world objects. Attribute
value conflict resolution handles the differences be-
tween attribute values of matching local database
instances. In some ways, entity identification and
attribute value conflict resolution for instance inte-
gration are similar to matching entity and attribute
types, respectively, at the schema level. In previous
research, entity identification and attribute value con-
flict resolution have been investigated within the
implementation data model, e.g. relational. Relation-
ship conflict resolution reconciles the different in-
stance values that represent the same real-world rela-
tionship. Relationship conflicts can occur due to
undetectable flaws during schema integration, entity
identification, or inconsistent content of local
databases.

A close relationship exists between entity identifi-
cation and relationship conflict resolution. Each rela-
tionship instance is defined by a set of inter-related
entity instances. In the case of an integrated database,
a relationship instance is derived from one or more
local relationship instances from the local databases.
When the local entity instances involved in these
relationship instances are identified wrongly in the
integrated database, the integrated relationship in-
stance will inevitably be incorrect. Nevertheless, er-
roneous entity identification is not the only cause of
relationship conflicts. Further details about the causes
of instance-level relationship conflicts will be given
in Section 4.1.

To carry out instance integration, the mapping
from export conceptual schemas to integrated con-
ceptual schema has to be provided by schema inte-
gration. As shown in Fig. 1, entity identification is
performed first in order to obtain the matching in-
stances for attribute value and relationship conflict
resolutions. The dotted edge from relationship con-

flict resolution to entity identification indicates that
erroneous entity identifications may be detected dur-
ing relationship conflict resolution. The detected er-
roneous entity identification has to be fedback for
resolution. Similarly, the dotted edge indicates that
flaws in the integrated schema may be detected
during instance integration. The detected flaws should
be fedback to schema integration for correction.
Finally, the integrated schema and instances are

Žtransformed into an implementation data model e.g.
.relational that are later utilized by the new applica-

tions developed on the integrated database. The
transformation is performed as part of a database
mapping process.

As illustrated by the example given in Section 1,
relationship conflicts at the instance level have been
largely neglected by the database integrators as local
instances are often integrated at the implementation
level without considering their conceptual level se-
mantics. Therefore, in this paper, we focus on the
resolution of instance-level relationship conflicts. Our
proposed integration methodology attempts to over-
come the deficiency of previously proposed integra-
tion approaches in dealing with this problem. To do
so, we first examine the schema integration of rela-
tionship types. We point out that this integration
work does not necessarily resolve instance-level rela-
tionship conflicts. However, this is a common misbe-
lief in database integration. Then, we discuss the
classification, detection and resolution of instance-
level relationship conflicts, respectively, in Sections
4 to 6.

3. Relationship conflicts at schema level

At the schema level, relationship conflicts occur
when associations in real world objects are modeled
differently in the conceptual schemas of local
databases. Typically, schema-level relationship con-
flicts are handled for the relationship types among
those local entity types to be included into the
integrated schema. Hence, the matching entity types
from different local conceptual schemas have to be
determined before one can proceed to resolve
schema-level relationship conflicts.

For example, Fig. 2 depicts the conceptual
schemas of two local databases A and B that are to

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167158

Fig. 2. Schema-level relationship conflicts.

be integrated. Having determined that the entity types
WORKER and DIVISION from database A matches
with entity types EMP and DEPT from database B,
respectively, one proceeds to create the correspond-
ing EMPLOYEE and DEPARTMENT entity types
in the integrated schema. After the matching entity
types have been identified, one has to determine if
the relationship type HIRED BY matches with AS-–
SIGNED TO from database B. As shown in the–
figure, the two relationship types have been matched
and integrated into the WORK IN relationship type–
in the integrated schema.

Note that the above example scenario captures
only one type of schema-level relationship conflicts.
There are other types of schema-level relationship
conflicts that require attention during schema inte-
gration. Interestingly, in the traditional schema inte-

w xgration research 8,11,14 , schema-level relationship
conflicts are rarely mentioned. Some classification of
schema level conflicts has been proposed in Refs.
w x6,11 . Schema-level conflicts have been classified
into entity-Õs.-entity, attribute-Õs.-attribute, entity-
Õs.-attributes, and different representation for equiÕ-

w xalent data in Ref. 6 . On the other hand, schema-
level conflicts are classified into naming, structural,

w xkey, cardinality and domain conflicts in Ref. 11 .
We adopt the classification scheme proposed in Ref.
w x11 to classify schema-level relationship conflicts as
follows.

Ø Naming conflicts: Naming conflicts occur when
different names are used for relationship types that
are semantically the same, or when same names are
used for semantically different relationship types.
For example, a WORK IN relationship type in a–
conceptual schema may correspond to WORK FOR–
relationship type in another conceptual schema. This
is an example of synonym problems. Note that
homonym problem can also occur when the local

relationship types with the same name actually carry
different semantics. For example, there are two IS
ASSIGNED TO relationships between EMPLOYEE–
and DEPARTMENT. One of the relationships is the
employee work-for relationship. Another is the man-
ager-assignment relationship between employees and
departments.

Ø Structural conflicts: Relationship types in the
integrated database may be modeled by different
schema constructs in the local databases. For exam-
ple, at the conceptual level, a real world association
may be represented as a relationship type in one
local database but as an entity type in another local
database. Often, structural conflicts at the logical
schema level arise from the differences in represent-

Ž .ing the one-to-many 1:N binary relationship types.
A 1:N binary relationship type can be represented as
a foreign key into an entity relation with the relation-
ship attributes as the non-key attributes of the entity
relation. Or, it can be represented by an individual
relationship relation.

Ø Identifier conflict: Different identifiers are used
for uniquely determining relationships. The identifier
of a relationship type is usually defined by the
concatenation of key attributes of the participating
entity types, or the relationship type’s own

Ž .attribute s . If different identifiers are used in local
databases for the same relationship type, they have to
be resolved.

Ø Cardinality conflict: Cardinality conflicts arise
when the local databases have different cardinalities
for the same relationship type in the integrated
schema. For example, a local database may have

Ž .one-to-many 1:N WORK IN relationship type–
while another local database may have many-to-many
Ž .N:M WORK IN relationship type.–

Ø Domain conflict: Domain conflicts arise when
the attributes of local databases corresponding to the

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167 159

same relationship type in the integrated schema have
different domain values, or data types. For example,
a WORK IN relationship type in a local database–
may have start date represented as a text attribute
while WORK IN relationship type in another local–
database may have start date represented as three
integer attributes, i.e. DAY, MONTH and YEAR.

4. Relationship conflicts at instance level

Instance-level relationship conflicts occur when
export instances are not related to one another in a
consistent manner, or when export instances are not
consistent with the relationship types defined in the
integrated schema. Like other instance-level con-
flicts, these conflicts cannot be addressed by examin-
ing the schemas alone. In this section, we identify
different types of instance-level relationship conflicts
and their causes.

4.1. Causes of instance-leÕel relationship conflicts

Instance-level relationship conflicts are resulted
from three most common categories of problems.

4.1.1. Incorrect or stale schema integration
Schema integration is itself a complicated process

Ž .that may require users or DBA supply domain
knowledge, schema as well as instance-level seman-
tics. However, it is possible that users may supply
incorrect knowledge. In some cases, users may give
semantics that are not validated against local
databases for performance reasons. It is also possible
that semantics extracted from local databases for
schema integration may not be valid for the same
databases some time later for instance integration.
For example, starting from 1999, employees can
work for more than one department at the same time.
Therefore, the relationship cardinality derived previ-
ously during schema integration is not valid anymore
for current instance integration. Any such errors will
contribute to either incorrect or stale schema integra-
tion as well as instance-level conflicts including
relationship conflicts.

4.1.2. Incorrect instance-leÕel entity identification
Instance-level entity identification essentially

matches entity instances from different local

databases representing same real world objects. En-
tity identification also requires knowledge given by
users. For example, to integrate an Employee
database containing employee id as key with another
database containing social security number as key,
one may have to rely on the name and age attributes
to match the employee entity instances. If the two
attributes fail to distinguish some pairs of entity
instances, one may have to refer to additional at-
tributes such as address, phone, etc. A rule-based
approach to entity identification has been given in

w xRef. 9 . Similar to schema integration, errors in the
given knowledge will affect the entity identification
outcome as well as the relationship conflict resolu-

w xtion. In Ref. 9 , several entity identification ap-
proaches have been mentioned. These approaches
differ in their identity rules, which are criteria used
for matching entity instances, as well as other knowl-
edge about the databases.

4.1.3. Instance inconsistencies existed in local
databases

Inter-database conflicts can be manifested at the
instance level in many ways. Even when export
databases consist of compatible schemas, it is still
possible to find some export instances in one database
but not in another, and corresponding instances from
different export databases having different values.
For example, one database may indicate that an
employee is not affiliated to any department. How-
ever, another local database indicates that the same
employee works for some department. We classify
the common causes of instance inconsistency in
database integration as follows.

Ø Incomplete data: Databases for integration may
contains missing instances, or null values which may
be either resulted from no verification and editing
during data entry, or various update anomalies.

Ø Incorrect data: It is similar to the previous case
that databases for integration may contains inconsis-
tent data which may be either entered without verifi-
cation and editing, resulted from invalid updates, or
inconsistent calculation for the derived attributes. For
example, the sales data for a firm or an order can be
calculated by different functions, or even with the
same function at different time using different cur-
rency exchange rates.

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167160

Ø Representation inconsistency: When databases
for integration are developed autonomously, there

Žmay easily exist inconsistent representations e.g.
format, data type, measurement unit, precision level,

.coding, etc. to capture same data. We call them
instance-level synonyms. Another type of representa-
tion inconsistency is instance-level homonyms, the
same data from different databases represent differ-
ent real world objects. For example, two warehouses
use the same item code for different products. The
representation inconsistencies can be detected at the
schema level with domain or schema information,
and reconciled at the instance level through mapping
functions derived from schema integration. However,
some of them can only detected by examining data
instances. For example, two databases have the same
attribute for sex, which has the same data type, size
and data domain. But, one database uses 0 and 1 to
represent male and female, respectively, and the
other uses these two codes vice verse. Another com-
mon representation inconsistency example is the date
format. For instance, the date, August 9, 1998, can
be represented as 8r9r98 in one database and
9r8r98 in another database. However, information
regarding the coding of sex and the format of date is
not available during the schema integration.

Ž .Ø Time-variancy temporal conflicts : Temporal
conflicts arise when local databases for integration
capture instance values of real world objects at dif-
ferent moments of time. This is due to that databases
for integration may have different requirement of
timeliness of data. This difference will result in
update inconsistency. The data instances from local
databases may capture values with different time
snapshots. For example, there should be only one
salary level for each employee. However, if an orga-
nization has multiple databases capture employees’
information, due to the update inconsistency, there
may exist more than one salary level for an em-
ployee. The temporal conflicts may be caused by the
evolution of real world objects across time. For
example, the marketing department was split into
three departments, sales, customer service and
adverting on January 1, 1998, and the sales and
accounting departments were merged into one de-
partment called finance on September 1, 1998. All
employees in these departments should be reassigned
into the new departments accordingly. During in-

stance integration, there may exist WORK IN rela-–
tionship instances which have not been updated.
Department reassignment table for involved employ-
ees should be established to facilitate the detection
and resolution of this type of temporal conflicts.

Ø Instance heterogeneities: Some instance incon-
sistencies are real heterogeneities which should be
accommodated and retained for processing global
queries in the integrated database. These hetero-
geneities are resulted from different observation,
judgement, business rules and requirements, or appli-
cation need. For example, different departments may
have different definitions of the volume of ‘inven-
tory’ and ‘sales’. To support business transactions’
needs, a firm may assign multiple classification codes
for the same product. Furthermore, different depart-
ments may assign different sets of classification codes
for the same supplier. From the business point of
view, these heterogeneities are necessary to reflect in
the integrated database. Then the challenge in in-
stance integration is to accommodate these hetero-
geneities rather than to adopt only one sales defini-

Ž .tion calculation , one code for each item, or the
same set of classification codes for each supplier in
the integrated database. In order to accommodate
instance heterogeneities, we need to acquire and
adopt these heterogeneous definitions, business rules
and requirements in the integration process.

Ž .Without knowing the domain context knowledge
of each database for integration along with the global
requirements of the integrated database, sometimes,
it is difficult to determine whether an instance con-
flict is an inconsistency to reconcile or a heterogene-
ity to accommodate. In addition, most of the required
knowledge for instance integration is not captured by
the data dictionaries of local databases. Therefore, it
is better to acquire and accumulate instance integra-
tion knowledge during the integration process.

4.2. Taxonomy of instance-leÕel relationship con-
flicts

Since an instance-level relationship conflict may
be resulted from different causes, we must not only
detect the conflicts, but also find out the exact cause
of each conflict in order to resolve or accommodate
the each conflicts accordingly. Therefore, we classify
the instance-level relationship conflicts according to

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167 161

the way that they can be detected into the following
three categories:

Ø Relationship Cardinality Conflicts
Ø Missing Relationship Instances
Ø Inconsistent Relationship Attribute Values.

We use an integration example to discuss and
illustrate each type of instance-level relationship
conflicts . Let A and B be two local databases to be
integrated. Suppose the schemas of these local
databases have undergone schema integration and
the integrated schema is derived. Using the inte-
grated schema, we also determine the schema and
instances to be exported from A and B. The inte-
grated schema and the export schemas are therefore
compatible. To simplify our explanation, we assume
that they are identical and the schema is shown in
Fig. 3.

As shown in Fig. 3, each export schema consists
of the Product and Factory entity types. Each factory
can only produce one product. Some of the factories
have the capacity to store the manufactured products.
To keep the stock-taking process simple, the stock of
each product can only be stored at one factory. The
quantity of each product stored in a factory is cap-
tured in the schema.

4.2.1. Relationship cardinality conflicts
While export instances always conform to the

relationship cardinalities in the export schemas, ex-
ports instances after integration may not always con-
form to the relationship cardinalities in the integrated
schema.

Fig. 3. The integrated schema and export schemas for databases A
and B.

Example. The 1:1 PRODUCE relationships in
export schema A and export schema B, are inte-
grated into a 1:1 PRODUCE relationship in the
integrated schema. At the instance level, product
P1 is produced by F1 in export database A but is
produced by F2 in export database B where F1
and F2 do not represent the same real world
factory. Conflicts with the relationship cardinali-
ties in the integrated schema can be attributed to
the following.
Incorrect integrated schema: In the example, the
conflict may be caused by errors made during
schema integration. Instead of 1:1 PRODUCE
relationship type, one may want to choose 1:M
PRODUCE relationship type for the integrated
schema. Clearly, when a relationship cardinality
in the integrated schema can be wrongly deter-
mined, it may not be possible to detect the error
unless some export instances are found to violate
the constraint.
Incorrect entity identification: In the above exam-
ple, the conflict may be caused by two export
FACTORY instances wrongly identified to repre-
sent the same factory entity. This can occur due
to two reasons. First, there exist instance inconsis-
tencies between the export databases. For exam-
ple, the factory information of the real world
object represented by F1 in export database B
may not be updated. Second, there are some
errors in the knowledge used to perform entity
identification. For example, we may have wrongly
used factory name to determine if export factory
instances correspond to the same real world fac-

Žtory object i.e. homonym and synonym problems
.at the instance level .

Erroneous local data: When local relationship
instances are created with errors, they may not be
detectable in the local databases. However, when
erroneous relationship instances from multiple
databases are to be integrated together, the errors
may be revealed as relationship cardinality con-
flicts. For example, the relationship instance asso-
ciating P1 and F2 may be incorrect. In reality, P1
should not be produced by F2.
Temporal conflicts: The conflict may be caused
by the time variancy of local databases’ data.
Temporal conflicts arise when local databases for
integration capture snapshots of real world associ-

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167162

ations at different moments of time. For example,
product P1 can be produced by both factories F1
and F2 as shown in local databases A and B,
respectively. Actually, each product can be pro-
duced by only one factory at a time, and P1 is
produced by F1 and F2 at different points in time.
To resolve this type of conflicts, integrated schema

Žshould be modified e.g. including the time stamp
.attribute to incorporate time semantics of rela-

tionships.

4.2.2. Missing relationship instances
This type of conflicts arises when a relationship

instance from one export database cannot be found
in another export database.

Example. In export database A, product P1 is
stored in factory F1 but in export database B,
such relationship instance does not exist between
P1 and F1. When we say that relationship in-
stance does not exist in export database B, it can

Ž .be due to: 1 P1 or F1 or both are not repre-
Ž .sented in export database B, or 2 P1 and F1 are

represented in export database B but there is not
relationship instance between them. This type of
conflict can be caused by the following factors.
Incorrect entity identification: The P1 and F1
have not been properly identified in export
database A or B, or both.
Erroneous local data: It is possible that P1 should
actually be stored in a factory different from F1
in database A. It is also possible that the informa-
tion about the factory storing P1 is erroneous in
database B. Both kinds of errors in local relation-
ship instances will therefore lead to missing rela-
tionship instances.
Temporal conflict: In this case, an export database
just does not capture the relationship. This is
possible when one or both of the export databases
is not up-to-date.

4.2.3. Inconsistent relationship attribute Õalues
This kind of conflicts arises when export relation-

ship instances identified to represent the same real
world association do not share the same attribute

Ž .value s . Their corresponding attribute values may be

inconsistent, or some may be missing. It can be
detected by examining the export relationship in-
stances.

Example. The 1:1 PRODUCE relationships in
export schema A and export schema B are inte-
grated into a 1:1 relationship in the integrated
schema. Suppose product instance P1 is produced
by the factory F1, product P2 is produced by
factory F2, P1 and P2 have been determined to
represent the same product entity, and F1 and F2
have been determined to represent the same fac-
tory entity. However, the two export relationships
have conflicting relationship attributes’ values.
For example, P1 is produced by F1 with a capac-
ity different from that between P2 and F2. Or,
one of the capacities is missing. The conflicts can
be caused by the following.
Incorrect integrated schema: When the two ca-

Žpacities carry different semantics e.g. capacity at
.peak or average capacity , it is clearly incorrect to

consider the relationship attributes with the same
Žname attribute to be the same attribute homonym

.problem .
Incorrect entity identification: This can occur

Ž .when: 1 there are instance inconsistencies among
Ž .the export databases, or 2 there are some errors

in the knowledge used to perform entity identifi-
cation, for example, either F1 and F2, or P1 and
P2 are homonyms.
Instance inconsistencies of relationship at-
tributes: The inconsistency may be caused by the
error in one or both of the capacities.
Temporal conflict: Inconsistent relationship at-
tribute values can also be caused by time differ-
ences in updating the databases involved.

5. Instance-level relationship conflict detection

In this section, we outline algorithms for detecting
instance-level relationship conflicts. As pointed out
in Section 4, the instance-level relationship conflicts
can be detected in three ways, i.e. relationship cardi-
nality conflicts, missing relationship instances, and
inconsistent relationship attribute values. Hence, we
have developed the appropriate algorithms for detect-

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167 163

ing the three types of anomalies. To simplify our
explanation, we have restricted the discussion to
binary relationship types. The algorithms can be
further extended to handle relationship types involv-
ing more than two entity types.

Since instance-level relationship conflicts are only
meaningful after entity identification is performed on
the export entity instances, we assume that one-to-one
mappings between export entity instances have been
established. Each matching pair of entity instances is
represented by the pair consisting of their key values.
In other words, as part of entity identification, a
mapping table MapEntity is constructed for a pair of

Ž .entity types say E1 and E2 representing the same
Ž .global entity type say E as follows:

MapEntityŽE1, E2.

<s e Pkey, e Pkey e gE1, e gE2, and� Ž .1 2 1 2

4they correspond to the same real-world entity

<j e Pkey, NULL e gE1,� Ž .1 1

4e does not have matching entity in E21

<j NULL, e Pkey e gE2,� Ž .2 2

4e does not have matching entity in E12

5.1. Relationship cardinality conflict detection

Let e be an export entity instance of entity type1

E1, and e be an export entity instance of entity type2

E2 where E1 and E2 are integrated into a global
entity type E. Let E1 and F1 be related by a
relationship type R1 and E2 and F2 be related by a

Ž .relationship type R2 such that F1 R1 and F2
Ž . Ž .R2 are matching entity types relationship types .
In other words, these entity types and relationship
types should be integrated together, as shown in Fig.

Ž .4. Given the export entity instance e e , we define1 2
Ž . Ž .the F1 F2 instances that are related to e e by1 2

the following functions:

<Inst e , R1 s f Pkey e is related to f via R1� 4Ž .1 i 1 i

<Inst e , R2 s f Pkey e is related to f via R2 .Ž . � 42 j 2 j

Ž . Ž Ž ..Note that Inst e ; R1 Inst e ; R2 returns an1 2
Ž . Ž .empty set if e e is not related to any F1 F21 2
Ž .instances via R1 R2 .

Fig. 4. Integrating matching entity and relationship types.

To check for relationship cardinality conflicts, the
following algorithm is used.

Ø Step 1: For each pair of matching relationship
types, say R1 and R2, do Step 2.

Ž .Ø Step 2: For each entity pair ek , ek g1 2

MapEntity , ek /NULL, ek /NULL, doŽE1, E2. 1 2

Steps 3 and 4.
Ø Step 3: Evaluate:

FK1s Inst e , R1 where e PkeysekŽ .1 1 1

FK 2s Inst e , R2 where e PkeysekŽ .2 2 2

<T1s fk , fk fk gFK1, fk gFK 2� Ž .1 2 1 2

and fk , fk gMapEntity .Ž . 41 2 ŽF1, F 2.

< <Ø Step 4: Check if T1 is consistent with the
relationship cardinality assigned to F of R. For
example, if the relationship cardinality assigned to F

< <is 1, T1 should be F1. If the above condition is
not met, the relationship cardinality conflict is re-
ported.

Note that the above detection is not required for
those global relationship types with many-to-many
cardinalities.

5.2. Missing relationship instance detection

To detect missing relationship instances, the fol-
lowing algorithm is used:

Ø Step 1: For each pair of matching relationship
types, say R1 and R2, do Step 2.

Ž .Ø Step 2: For each e ,P key, e P key g1 2

MapEntity such that e Pkey/NULL andŽE1, E2. 1
Ž .e Pkey/NULL, for each fk g Inst e , R1 , do2 1 1

Steps 3 and 4.

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167164

Ž .Ø Step 3: Find fk such that fk , fk g2 1 2

MapEntity , fk /NULL.ŽF1, F 2. 2
Ž .Ø Step 4: Check if fk g Inst e , R2 . If the above2 2

condition is not met, a missing relationship in-
stance is found.

5.3. Inconsistent relationship attribute Õalue detec-
tion

Inconsistent relationship attribute values can only
occur for those relationships that have relationship
attributes. For such relationship types, the following
conflict detection algorithm can be used.

Ø Step 1: For each pair of matching relationship
types, say R1 and R2, do Step 2.

Ž .Ø Step 2: For each entity pair e Pkey, e Pkey1 2

gMapEntity such that e Pkey/NULL andŽE1, E2. 1
Že Pkey/NULL, for each entity pair f Pkey, f P2 1 2

. Žkey gMapEntity such that f Pkeyg Inst e ,ŽF1, F 2. 1 1
. Ž .R1 , f Pkeyg Inst e , R2 , f Pkey/NULL and2 2 1

f Pkey/NULL, do Step 3.2
ŽØ Step 3: If the relationship attributes of e , R1,1

. Ž .f are different from those of e , R2, f , a1 2 2

relationship attribute value conflict is detected.

6. Instance-level relationship conflicts resolution

The resolution of instance-level relationship con-
flicts is a complicated matter. First, it is not easy to
detect the existence of conflicts. Second, when a
relationship conflict is detected, it is difficult to
identify its cause in order to take the necessary
actions to resolve the conflict. According to the
nature of relationship conflicts and the present state-
of-the-art database integration technology, we be-
lieve that human involvement is required in the
resolution process although some semi-automatic in-
tegration tools can be useful.

We propose a systematic process to detect differ-
ent types of relationship conflicts and to resolve
them. This process is depicted in Fig. 5. There are
three conflict resolution steps and they are illustrated
using the example presented in Section 4.2.

6.1. Instance matching

The process begins with checking if an export
relationship instance exists in another export
database. For example, to resolve the relationship
instances of STORE between export databases A and

Fig. 5. Instance-level relationship conflict resolution.

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167 165

B, we match every STORE instance in A with
STORE instances in B. If the corresponding STORE
instance in B cannot found for a STORE instance in

Ž .A, there are three possibilities: a the relationship
instance is valid but not captured by database B or
the relationship instance is not valid in database A;
Ž .b there is an error in the entity identification pro-

Ž .cess; or c one of the databases is not up-to-date.
The appropriate rectification can be performed by
consulting the database integrator andror local
database administrators.

If a valid relationship instance is captured by one
database but not the other, the integrator or adminis-
trator can decide whether to capture this relationship
instance in the integrated database, while informing
the administrators of the affected local databases. If
the integrator or administrator determines a relation-
ship instance that is not valid, it should be excluded
from the integrated database.

To further assist the database integration process,
a semi-automatic tool can be developed to identify
all entities affected if the missing relationship in-
stance is caused by incorrect entity identification.
For example, let database A contain the information
that product P1 is stored in factory F1 but the
relationship instance does not exist in database B. It
would be useful for an intelligent tool to suggest the
factory records in database B that may be matched
with F1 in database A, and the product records in
database B that may be matched with P1 in database
A. In this case, the database integrator can save some
effort in re-examining the affected entities and cor-
recting the entity identification errors.

w xIn Ref. 9 , Instance-leÕel Functional Dependency
Ž .ILFD , as a special form of knowledge about the
entity instances, was proposed to aid the resolution
of entity identification conflicts. It can also be ap-
plied here to further disambiguate different possible
matching of entity instances.

When a missing relationship instance is caused by
temporal conflicts between two local databases, here
are two ways to resolve the conflict. The database
integrator can add a temporal attribute to the rela-
tionship making it a part of the relationship’s key.
With the additional temporal attribute, the validity
duration of a relationship instance can be accommo-
dated by the integrated database. If it is the intention
of the database integrator to keep only the latest

information in the integrated database, the out-dated
relationship information should be discarded.

6.2. Cardinality Õerification

If the corresponding relationship instance is found
in another export database, one may check if the
integration of the two relationship instances will
violate the relationship cardinalities. Violation of
relationship cardinalities can be due to entity identi-
fication errors or incorrect relationship cardinalities.

Given a relationship type, it may be useful to
count the number of relationship instances that vio-
late the relationship cardinalities. It will give the
database integrator an idea about the possibility of
incorrect relationship cardinalities assigned to the
relationship type. In resolving the relationship con-
flicts due to entity identification, the techniques men-

Ž .tioned in instance matching Section 6.1 can also be
used.

If the conflict with relationship cardinalities is
caused by incorrect relationship cardinalities in the
integrated schema, the database integrator should
correct the schema and determine if the correction
leads to other changes in the integrated schema.

6.3. Attribute Õalue Õerification

Even when there is no conflict with the relation-
ship cardinalities, it is necessary to check if the two
corresponding relationship instances have conflicts
in their attribute values. The conflicts in attribute
values may be caused by incorrect entity identifica-
tion or inconsistent database states. The approaches
to deal with conflicts due to the two causes have
been described as part of instance matching.

Sometimes, the conflict in relationship attribute
values may be caused by different semantics associ-
ated with the relationship attributes to be merged. In
this case, the local database administrators have to
consider making the two attributes distinct in the
integrated schema.

If the conflict in relationship attribute values is
caused by some inconsistency between the local
databases, some additional semantics about the
database domain may be required to resolve the
inconsistency in relationship attribute values between
the local databases. One possible approach here is to

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167166

examine the reliability of databases and determine
Ž .the database s that gives the most credible values

for the relationship attribute concerned. In this case,
the less credible relationship attribute value will be
discarded.

7. Conclusions

Relationship conflicts have been studied only at
the schema level. In this paper, we address the
relationship conflicts at the instance level by investi-
gating the different types of conflicts and their causes.
We first describe the overall database integration
methodology and present instance-level relationship
conflict resolution as a subtask to be handled during
instance integration. As the conflict resolution pro-
cess is inherently complicated, it is not practical to
propose automatic solutions. Therefore, we propose
a systematic approach to classify instance-level rela-
tionship conflicts as well as their causes. This ap-
proach allows us to detect the different types of
instance-level relationship conflicts and to suggest
solutions corresponding to sources of conflicts. This
research should facilitate and enhance the database
integration work and result in the improvement of
the data quality of integrated databases. More impor-
tantly, this research advocates a novel database re-
search methodology to consider and examine a broad
of integration issues and their inter-relationships.

As part of our future work, we will develop a
semi-automatic intelligent integration tool to assist
users to detect and resolve different types of in-
stance-level relationship conflicts. Furthermore, by
examining data instances of export databases, the
tool should help to accelerate the instance integration
process, reduce the inter-database inconsistencies,
and accommodate necessary instance heterogeneities
into integrated databases.

Acknowledgements

The authors wish to thank the Editor-in-chief and
the anonymous reviewer for their very supportive
comments during the preparation of this manuscript.

References

w x1 C. Batini, M. Lenzerini, S.B. Navathe, A comparative analy-
sis of methodologies for database schema integration, ACM

Ž . Ž .Comput. Surv. 18 4 1986 December.
w x2 A. Berson, S.J. Smith, Data extraction, cleanup, and transfor-

mation tools,Data Warehousing, Data Mining, and OLAP,
McGraw-Hill, New York, 1997, Chap. 10.

w x3 P. Chen, The Entity-Relationship model — toward a unified
Ž . Ž .view of data, ACM Trans. Database Syst. 1 1 1976 9–36.

w x4 R.H.L. Chiang, T.M. Barron, V.C. Storey, Reverse engineer-
ing of relational databases: extraction of an eer model from a

Ž . Ž .relational database,, March Data Knowl. Eng. 12 2 1994 .
w x5 M. Garcia-Solaco, F. Saltor, M. Castellanos, Semantic het-

erogeneity in multidatabase systems, in: O.A. Bukhres, A.K.
Ž .Elmagarmid Eds. , Object-Oriented Multidatabase Systems:

A Solution for Advanced Applications, Prentice-Hall, Engle-
wood Cliffs, NJ, 1996, pp. 129–202, Chap. 5.

w x6 W. Kim, J. Seo, Classifying schematic and data heterogene-
Ž .ity in multidatabase systems, IEEE Comput. 1991 Decem-

ber.
w x7 R. Krishnamurthy, W. Litwin, W. Kent, Interoperability of

heterogeneous databases with schematic discrepancies, in:
International Workshop on Interoperability in Multidatabase
Systems,1991.

w x8 J.A. Larson, S.B. Navathe, R. Elmasri, A theory of attribute
equivalence in databases with application to schema integra-

Ž . Ž .tion, IEEE Trans. Software Eng. 15 4 1989 April.
w x9 E.-P. Lim, J. Srivastava, S. Prabhakar, J. Richardson, Entity

identification problem in database integration, in: Proceed-
ings of IEEE Data Engineering Conference, Vienna, Austria,
1993.

w x10 E.-P. Lim, J. Srivastava, S. Shekhar, Resolving attribute
incompatibility in database integration: an evidential reason-
ing approach, in: IEEE International Conference on Data
Engineering, Houston, February, 1994.

w x11 T.W. Ling, M.L. Lee, Issues in an Entity-Relationship feder-
ated database system, in: International Symposium on Coop-
erative Database Systems for Advanced Applications, Kyoto,
Japan, December, 1996.

w x12 W.J. Premerlani, M.R. Blaha, An approach for reverse engi-
neering of relational databases, in: IEEE Working Confer-
ence on Reverse Engineering, Baltimore, 1993.

w x13 E. Simoudis, B. Livezey, R. Kerber, Using recon for data
cleaning, in: Proceedings of the First Int. Conference on
Knowledge Discovery and Data Mining, Montreal, Ouebec,
Canada, 1995.

w x14 S. Spaccapietra, C. Parent, Y. Dupont, Model independent
assertions for integration of heterogeneous schemas, Very

Ž . Ž .Large Database J. 1 1 1992 81–126.
w x15 M.W.W. Vermeer, P.M.G. Apers, On the applicability of

schema integration techniques to database interoperation, in:
Entity-Relationship Conference, Cottbus, Germany, 1996, pp.
282–287.

w x16 J. Widom, Integrating heterogeneous databases: lazy or ea-
Ž . Ž .ger?, ACM Comput. Surv. 28 4es 1996 91.

()E.-P. Lim, R.H.L. ChiangrDecision Support Systems 29 2000 153–167 167

Ž .Ee-Peng Lim received his BS Honours degree in Information
Systems and Computer Science from the National University of
Singapore, in 1989, and his PhD degree in Computer Science
from the University of Minnesota, Minneapolis, in 1994. Since
1994, he has been on the faculty of the School of Applied Science
at the Nanyang Technological University, Singapore, where he

Ž .founded the Centre for Advanced Information Systems CAIS .
His current research interests include database integration, web
warehousing, and digital libraries.

Roger H.L. Chiang is an Associate Professor of Information
Systems at College of Business Administration, University of
Cincinnati. His research interests are in data and knowledge
management and intelligent systems, particularly in database re-
verse engineering, database integration, data mining, and common
sense reasoning and learning. His research has been published in a
number of international journals including ACM Transactions on
Database Systems, Data and Knowledge Engineering, Decision
Support Systems, and the Journal of Database Administration.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2000

	The Integration of Relationship Instances from Heterogeneous Databases
	Ee Peng LIM
	Roger Hsiang-Li CHIANG
	Citation

	PII: S0167-9236(00)00070-1

