3,209 research outputs found

    Algorithms for Approximate Subtropical Matrix Factorization

    Get PDF
    Matrix factorization methods are important tools in data mining and analysis. They can be used for many tasks, ranging from dimensionality reduction to visualization. In this paper we concentrate on the use of matrix factorizations for finding patterns from the data. Rather than using the standard algebra -- and the summation of the rank-1 components to build the approximation of the original matrix -- we use the subtropical algebra, which is an algebra over the nonnegative real values with the summation replaced by the maximum operator. Subtropical matrix factorizations allow "winner-takes-it-all" interpretations of the rank-1 components, revealing different structure than the normal (nonnegative) factorizations. We study the complexity and sparsity of the factorizations, and present a framework for finding low-rank subtropical factorizations. We present two specific algorithms, called Capricorn and Cancer, that are part of our framework. They can be used with data that has been corrupted with different types of noise, and with different error metrics, including the sum-of-absolute differences, Frobenius norm, and Jensen--Shannon divergence. Our experiments show that the algorithms perform well on data that has subtropical structure, and that they can find factorizations that are both sparse and easy to interpret.Comment: 40 pages, 9 figures. For the associated source code, see http://people.mpi-inf.mpg.de/~pmiettin/tropical

    A Combinatorial Algorithm for All-Pairs Shortest Paths in Directed Vertex-Weighted Graphs with Applications to Disc Graphs

    Full text link
    We consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. For an n×nn\times n 0-1 matrix C,C, let KCK_{C} be the complete weighted graph on the rows of CC where the weight of an edge between two rows is equal to their Hamming distance. Let MWT(C)MWT(C) be the weight of a minimum weight spanning tree of KC.K_{C}. We show that the all-pairs shortest path problem for a directed graph GG on nn vertices with nonnegative real weights and adjacency matrix AGA_G can be solved by a combinatorial randomized algorithm in time O~(n2n+min⁡{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) As a corollary, we conclude that the transitive closure of a directed graph GG can be computed by a combinatorial randomized algorithm in the aforementioned time. O~(n2n+min⁡{MWT(AG),MWT(AGt)})\widetilde{O}(n^{2}\sqrt {n + \min\{MWT(A_G), MWT(A_G^t)\}}) We also conclude that the all-pairs shortest path problem for uniform disk graphs, with nonnegative real vertex weights, induced by point sets of bounded density within a unit square can be solved in time O~(n2.75)\widetilde{O}(n^{2.75})

    Generalizations of Bounds on the Index of Convergence to Weighted Digraphs

    Get PDF
    We study sequences of optimal walks of a growing length, in weighted digraphs, or equivalently, sequences of entries of max-algebraic matrix powers with growing exponents. It is known that these sequences are eventually periodic when the digraphs are strongly connected. The transient of such periodicity depends, in general, both on the size of digraph and on the magnitude of the weights. In this paper, we show that some bounds on the indices of periodicity of (unweighted) digraphs, such as the bounds of Wielandt, Dulmage-Mendelsohn, Schwarz, Kim and Gregory-Kirkland-Pullman, apply to the weights of optimal walks when one of their ends is a critical node.Comment: 17 pages, 3 figure

    Cyclic classes and attraction cones in max algebra

    Full text link
    In max algebra it is well-known that the sequence A^k, with A an irreducible square matrix, becomes periodic at sufficiently large k. This raises a number of questions on the periodic regime of A^k and A^k x, for a given vector x. Also, this leads to the concept of attraction cones in max algebra, by which we mean sets of vectors whose ultimate orbit period does not exceed a given number. This paper shows that some of these questions can be solved by matrix squaring (A,A^2,A^4, ...), analogously to recent findings concerning the orbit period in max-min algebra. Hence the computational complexity of such problems is of the order O(n^3 log n). The main idea is to apply an appropriate diagonal similarity scaling A -> X^{-1}AX, called visualization scaling, and to study the role of cyclic classes of the critical graph. For powers of a visualized matrix in the periodic regime, we observe remarkable symmetry described by circulants and their rectangular generalizations. We exploit this symmetry to derive a concise system of equations for attraction cpne, and we present an algorithm which computes the coefficients of the system.Comment: 38 page

    An Overview of Transience Bounds in Max-Plus Algebra

    Get PDF
    We survey and discuss upper bounds on the length of the transient phase of max-plus linear systems and sequences of max-plus matrix powers. In particular, we explain how to extend a result by Nachtigall to yield a new approach for proving such bounds and we state an asymptotic tightness result by using an example given by Hartmann and Arguelles.Comment: 13 pages, 2 figure

    Negative weights make adversaries stronger

    Full text link
    The quantum adversary method is one of the most successful techniques for proving lower bounds on quantum query complexity. It gives optimal lower bounds for many problems, has application to classical complexity in formula size lower bounds, and is versatile with equivalent formulations in terms of weight schemes, eigenvalues, and Kolmogorov complexity. All these formulations rely on the principle that if an algorithm successfully computes a function then, in particular, it is able to distinguish between inputs which map to different values. We present a stronger version of the adversary method which goes beyond this principle to make explicit use of the stronger condition that the algorithm actually computes the function. This new method, which we call ADV+-, has all the advantages of the old: it is a lower bound on bounded-error quantum query complexity, its square is a lower bound on formula size, and it behaves well with respect to function composition. Moreover ADV+- is always at least as large as the adversary method ADV, and we show an example of a monotone function for which ADV+-(f)=Omega(ADV(f)^1.098). We also give examples showing that ADV+- does not face limitations of ADV like the certificate complexity barrier and the property testing barrier.Comment: 29 pages, v2: added automorphism principle, extended to non-boolean functions, simplified examples, added matching upper bound for AD

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.Comment: 19 pages, 4 figures. This version of the paper will appear in the Journal of the ACM. The earlier conference version in STOC'12 had the title "Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds

    On the Linear Extension Complexity of Regular n-gons

    Full text link
    In this paper, we propose new lower and upper bounds on the linear extension complexity of regular nn-gons. Our bounds are based on the equivalence between the computation of (i) an extended formulation of size rr of a polytope PP, and (ii) a rank-rr nonnegative factorization of a slack matrix of the polytope PP. The lower bound is based on an improved bound for the rectangle covering number (also known as the boolean rank) of the slack matrix of the nn-gons. The upper bound is a slight improvement of the result of Fiorini, Rothvoss and Tiwary [Extended Formulations for Polygons, Discrete Comput. Geom. 48(3), pp. 658-668, 2012]. The difference with their result is twofold: (i) our proof uses a purely algebraic argument while Fiorini et al. used a geometric argument, and (ii) we improve the base case allowing us to reduce their upper bound 2⌈log⁥2(n)⌉2 \left\lceil \log_2(n) \right\rceil by one when 2k−1<n≀2k−1+2k−22^{k-1} < n \leq 2^{k-1}+2^{k-2} for some integer kk. We conjecture that this new upper bound is tight, which is suggested by numerical experiments for small nn. Moreover, this improved upper bound allows us to close the gap with the best known lower bound for certain regular nn-gons (namely, 9≀n≀139 \leq n \leq 13 and 21≀n≀2421 \leq n \leq 24) hence allowing for the first time to determine their extension complexity.Comment: 20 pages, 3 figures. New contribution: improved lower bound for the boolean rank of the slack matrices of n-gon

    P?=NP as minimization of degree 4 polynomial, integration or Grassmann number problem, and new graph isomorphism problem approaches

    Full text link
    While the P vs NP problem is mainly approached form the point of view of discrete mathematics, this paper proposes reformulations into the field of abstract algebra, geometry, fourier analysis and of continuous global optimization - which advanced tools might bring new perspectives and approaches for this question. The first one is equivalence of satisfaction of 3-SAT problem with the question of reaching zero of a nonnegative degree 4 multivariate polynomial (sum of squares), what could be tested from the perspective of algebra by using discriminant. It could be also approached as a continuous global optimization problem inside [0,1]n[0,1]^n, for example in physical realizations like adiabatic quantum computers. However, the number of local minima usually grows exponentially. Reducing to degree 2 polynomial plus constraints of being in {0,1}n\{0,1\}^n, we get geometric formulations as the question if plane or sphere intersects with {0,1}n\{0,1\}^n. There will be also presented some non-standard perspectives for the Subset-Sum, like through convergence of a series, or zeroing of ∫02π∏icos⁥(φki)dφ\int_0^{2\pi} \prod_i \cos(\varphi k_i) d\varphi fourier-type integral for some natural kik_i. The last discussed approach is using anti-commuting Grassmann numbers Ξi\theta_i, making (A⋅diag(Ξi))n(A \cdot \textrm{diag}(\theta_i))^n nonzero only if AA has a Hamilton cycle. Hence, the P≠\neNP assumption implies exponential growth of matrix representation of Grassmann numbers. There will be also discussed a looking promising algebraic/geometric approach to the graph isomorphism problem -- tested to successfully distinguish strongly regular graphs with up to 29 vertices.Comment: 19 pages, 8 figure

    New Dependencies of Hierarchies in Polynomial Optimization

    Full text link
    We compare four key hierarchies for solving Constrained Polynomial Optimization Problems (CPOP): Sum of Squares (SOS), Sum of Diagonally Dominant Polynomials (SDSOS), Sum of Nonnegative Circuits (SONC), and the Sherali Adams (SA) hierarchies. We prove a collection of dependencies among these hierarchies both for general CPOPs and for optimization problems on the Boolean hypercube. Key results include for the general case that the SONC and SOS hierarchy are polynomially incomparable, while SDSOS is contained in SONC. A direct consequence is the non-existence of a Putinar-like Positivstellensatz for SDSOS. On the Boolean hypercube, we show as a main result that Schm\"udgen-like versions of the hierarchies SDSOS*, SONC*, and SA* are polynomially equivalent. Moreover, we show that SA* is contained in any Schm\"udgen-like hierarchy that provides a O(n) degree bound.Comment: 26 pages, 4 figure
    • 

    corecore