13,574 research outputs found

    The Incremental Garbage Collection of Processes

    Get PDF
    Key Words and Phrases: garbage collection, multiprocessing systems, processor scheduling. "lazy evaluation, "eager" evaluation. CR Categories: 3.60, 3.80, 4.13, 4.22, 4.32. This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-75-C-0522. This paper was presented at the AI*PL Conference at Rochester, N.Y. in August, 1977.This paper investigates some problems associated with an argument evaluation order that we call "future" order, which is different from both call-by-name and call-by-value. In call-by-future, each formal parameter of a function is bound to a separate process (called a "future") dedicated to the evaluation of the corresponding argument. This mechanism allows the fully parallel evaluation of arguments to a function, and has been shown to augment the expressive power of a language. We discuss an approach to a problem that arises in this context: futures which were thought to be relevant when they were created become irrelevant through being ignored in the body of the expression where they were bound. The problem of irrelevant processes also appears in multiprocessing problem-solving systems which start several processors working on the same problem but with different methods, and return with the solution which finishes first. This parallel method strategy has the drawback that the processes which are investigating the losing methods must be identified, stopped, and re-assigned to more useful tasks. The solution we propose is that of garbage collection. We propose that the goal structure of the solution plan be explicitly represented in memory as part of the graph memory (like Lisp's heap) so that a garbage collection algorithm can discover which processes are performing useful work, and which can be recycled for a new task. An incremental algorithm for the unified garbage collection of storage and processes is described.MIT Artificial Intelligence Laboratory Department of Defense Advanced Research Projects Agenc

    A Cyclic Distributed Garbage Collector for Network Objects

    Get PDF
    This paper presents an algorithm for distributed garbage collection and outlines its implementation within the Network Objects system. The algorithm is based on a reference listing scheme, which is augmented by partial tracing in order to collect distributed garbage cycles. Processes may be dynamically organised into groups, according to appropriate heuristics, to reclaim distributed garbage cycles. The algorithm places no overhead on local collectors and suspends local mutators only briefly. Partial tracing of the distributed graph involves only objects thought to be part of a garbage cycle: no collaboration with other processes is required. The algorithm offers considerable flexibility, allowing expediency and fault-tolerance to be traded against completeness

    Some design constraints required for the use of generic software in embedded systems: Packages which manage abstract dynamic structures without the need for garbage collection

    Get PDF
    The embedded systems running real-time applications, for which Ada was designed, require their own mechanisms for the management of dynamically allocated storage. There is a need for packages which manage their own internalo structures to control their deallocation as well, due to the performance implications of garbage collection by the KAPSE. This places a requirement upon the design of generic packages which manage generically structured private types built-up from application-defined input types. These kinds of generic packages should figure greatly in the development of lower-level software such as operating systems, schedulers, controllers, and device driver; and will manage structures such as queues, stacks, link-lists, files, and binary multary (hierarchical) trees. Controlled to prevent inadvertent de-designation of dynamic elements, which is implicit in the assignment operation A study was made of the use of limited private type, in solving the problems of controlling the accumulation of anonymous, detached objects in running systems. The use of deallocator prodecures for run-down of application-defined input types during deallocation operations during satellites

    Towards Vulnerability Discovery Using Staged Program Analysis

    Full text link
    Eliminating vulnerabilities from low-level code is vital for securing software. Static analysis is a promising approach for discovering vulnerabilities since it can provide developers early feedback on the code they write. But, it presents multiple challenges not the least of which is understanding what makes a bug exploitable and conveying this information to the developer. In this paper, we present the design and implementation of a practical vulnerability assessment framework, called Melange. Melange performs data and control flow analysis to diagnose potential security bugs, and outputs well-formatted bug reports that help developers understand and fix security bugs. Based on the intuition that real-world vulnerabilities manifest themselves across multiple parts of a program, Melange performs both local and global analyses. To scale up to large programs, global analysis is demand-driven. Our prototype detects multiple vulnerability classes in C and C++ code including type confusion, and garbage memory reads. We have evaluated Melange extensively. Our case studies show that Melange scales up to large codebases such as Chromium, is easy-to-use, and most importantly, capable of discovering vulnerabilities in real-world code. Our findings indicate that static analysis is a viable reinforcement to the software testing tool set.Comment: A revised version to appear in the proceedings of the 13th conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), July 201

    Analysing Temporal Relations – Beyond Windows, Frames and Predicates

    Get PDF
    This article proposes an approach to rely on the standard operators of relational algebra (including grouping and ag- gregation) for processing complex event without requiring window specifications. In this way the approach can pro- cess complex event queries of the kind encountered in appli- cations such as emergency management in metro networks. This article presents Temporal Stream Algebra (TSA) which combines the operators of relational algebra with an analy- sis of temporal relations at compile time. This analysis de- termines which relational algebra queries can be evaluated against data streams, i. e. the analysis is able to distinguish valid from invalid stream queries. Furthermore the analysis derives functions similar to the pass, propagation and keep invariants in Tucker's et al. \Exploiting Punctuation Seman- tics in Continuous Data Streams". These functions enable the incremental evaluation of TSA queries, the propagation of punctuations, and garbage collection. The evaluation of TSA queries combines bulk-wise and out-of-order processing which makes it tolerant to workload bursts as they typically occur in emergency management. The approach has been conceived for efficiently processing complex event queries on top of a relational database system. It has been deployed and tested on MonetDB
    • …
    corecore