
.

SOME DESIGN CONSTRAINTS REQUIRED FOR THE USE OF GENERIC SOFTWARE
IN EMBEDDED SYSTEMS: PACKAGES WHICH MANAGE ABSTRACT DYNAMIC

STRUCTURES WITHOUT THE NEED FOR GARBAGE COLLECTION

Charlee S. Johnson

ABSTRACT

The embedded systems running real-time applications, f o r
which Ada was designed, require their own mechanisms for the
management of dynamically allocated storage. There is a need f o r
packages which manage their own internal structures to control
their dealkcation as well, due to the performance implications
of garbage collection by the KAPSE. This places a new
requirement upon the design of generic packages which manage
generically structured private types built-up from application-
defined input types. These kinds of generic packages should
figure greatly in the development of lower-level software such
as operating systems, schedulers, controllers and device
drivers; and will manage structures such as queues, stacks,
link-lists, files, and binary/multary (hierarchical) trees.
Generic structures like these will have to be carefully
controlled to prevent inadvertent de-designation of dynamic
elements, which is implicit in the assignment operation. A s t u d y
is made of the use of the limited private type, in solving the
problems of controlling the accumulation of anonymous, detached
objects in running systems. The use of deallocator procedures
for run-down of application-defined input types during
deallocation operations is also discussed,

INTRODUCTION

Reusability is crucial to programs developed for
Integration and Test (I & T) applications. The Ada language w a s
specifically developed for use on embedded systems where
most of the real-time applications work is performed. The
creation of a software support environment for real-time w~r-k
must first deal with the selection of a design approach which
maximizes the reusability of Ada software components. The issue
of Ada reusability does not just address problems of portability
across machines and between projects, but also reusability
within one project, and for one machine. One property of
generic abstraction is the containment of a solution f o r a
system- and application-dependent problem. Once having been
solved generically, that solution is available for re1 iab1.e
reuse by all the applications of the system.

BRIEF BACKGROUND

Kennedy Space Center/ Engineering Development/ Digital
Electronics Engineering Division is in the process of
prototyping distributed systems supporting I & T applications,
particularly the Space Station Operations Language (SSOL)

B.4.3.1

https://ntrs.nasa.gov/search.jsp?R=19890006929 2020-03-20T03:44:19+00:00Z

System, which is the I f T subset of the User Interface Language
(UIL) for the Space Station. The discussions in this paper were
developed from the results of systems designed and developed in
Ada to demonstrate the feasibility of developing reusable
software specifically targeted for real-time embedded
applications. The Ada environment used was that of VAX Ada under
VAX/VMS .

USE OF ADA IN EMBEDDED SYSTEMS

The implementation of the Ada KAPsE for a computer system
can be performed in one of two ways. The KAPSE can be layered
Over an existing operating system, using it's services and
saddled with it's limitations. The KAPSE can also be directly
layered onto the computer hardware, and act as a limited
operating system. Ancillary operating system services will then
need to be supplied by Ada applications. For most embedded
systems the latter alternative will hold, for both developnsntal
and performance reasons. Developmentally, it is harder to re-
host both the operating system and the KAPSE to new computer
hardware, than it is to re-host the KAPSE alone. A l s o , for
applications developed on a layered KAPSE, performance will
suffer as requests for system services have to be processed at
two levels. The organization and system approach for the two
levels of support, since they were not designed specifically to
be integrated, will almost certainly be mismatched in many
ways.

For systems with a native KAPSE, the optional features of
the Ada lancpisge (some pragmas, services) will be slow in
appearing, or may be seen to be negative in effect. The system
garbage collection feature in the KAPSE will be one of those
features that won't appear initially. When it does appear, in
many implementations, it's use will be precluaed in real-time
systems. 113

The garbage collection feature of the KAPSE tracks, and
deallocates anonymous objects in the Ada system, thereby freeing
the system resources that they use.

Anonymous objects are previously-designated objects
of a type associated with an access type (pointer type). A
designated object is created by an allocator, which associates
it with an access object (pointer object), which then, of
course, designates it. Designated objects are implicitly
declared by that allocation as objects of the designated subtype
(subtype of object pointed to) of the access type, and are
rompatible with all objects declared of the designated base type
foriginal type referenced in the access type definition).

Designated abjects become anonymous objects by three means,
all have to do with assignment:

1. The access object designating the object is assigned
to the value of another access object of the same

0

type.

B . 4 . 3 . 2

2 . The access object designating the object is assigned

3 . The access object designating the object is assigned

to a new value by an allocator.

to tha value %ulll@.

Unless the previously-designated object was designated by
mcI,-e than one access object, after access object reassignment 1t
becomes an anonymous object.

The use of access types is necessary if a system is to be
flexible, and capable of creating objects in response to needs
that cannot be specified until the need arises. Release of the
system resources used by objects of designated subtypes, is
essential in that flexibility {or static types rather than
dynamic types could have been initially specifisd) .

In layered systems built on general-purpose operating
systems, the tracking down and subsequent deallocation of the
resources consumed by these anonymous objects (the garbage-
collection process) will be a built-in feature. In VAX-VMS the
KAPSE performs this service. In ATCT Ada f o r the AT&T UNIX
System V (Release 3) , this service is implicit in the system,
because all Ada objects are created on the system heap, which 2 s
managed by the system. In both cases, there is an ever-Dresent
background process, perfonning rundown o f dynamic objects
declared in the system. The performance detriment due to this
background process is unpredictable, both for when i+- occ,:irs (it
is concurrdnt and unsynchronized with the applications) and f o r
the systen resources it consumes.

It is noted here that acc--- types can be both data arie
task types. The problem of garbage-collection exists f o r b o t h
task and data types. In this paper, only the data type problem
will be discussed.

There is no requirement in the Ac'a Reference Manual (ARY;
[2] f o r the garbage collection feature to be implemented in t h e
KAPSE. For many embedded systems running real-time applications,
it will be required that the garbage-collection feature, if
present in the KAPSE, retain the capability of being turned off.
The preFIence of unpredictable resowce consumption 1 s
ccntradictory to the principals of real-time cmputiiv-j,
in particular, the response to external interrupts in a tirnel).
and reliable manner.

i'his poses a new problem. Without garbage-collection, the
only time that anonymous objects are collected by the s y s t e m
(deallocated), is upcn the expiration of the scope of the
application which contains the definition of the access typc.
For anything 0'-her than restrictive vse of the access t y p e ,
this will usually be a package specified at the highest scope in
the program. This szope, by not expiring, implies that normal
collection will never occur (without garbage-collection) .

For proqrams running on embedded systems, this means
dynamic objects will continuously be converted into anonymous
objects, corrsuming more and more system resources, until the
program aborts when the system resources are exhausted. This
self-destructive behavior may not be noticed during verification

B . 4 . 3 . 3

Or validation, if the process of creating anonymous objects is
sufficiently slow. Indeed, well-written processes that are
conservative in their exhaustion of syntem resources may live
long before the limitations are breached.

These programs must, then, control their own storage
allocation and deallocation. A pragma for declaring the storage
management for an object as being controlled by the application
(Pragma CONTROLLED), and a generic package for deallocating
controlled objects (UNCHECXED-DEALLOCATION) Will be available
f o r embedded systems development. The problem is that the
implementation of these features must be standardized in the
development of the application system, for there to be any
assurance that anonymous objects will not collect.

A design philosophy encouraging abstraction would tend to
drive the Ada source code using these features into the hidden
scape of a package. This would create, in the system, an
assortment of packages which define, declare and manage private
access types, while retaining complete control of the allocation
and deallocation of objects designated by those types. The
control of the storage allocation in these packages would need
to be implemented in an efficient way, such that the use of the
package types would be flexible and easy (to encourage package
use). A requirement of these packages, stemming from real-time
considerations, would be that the behavlor of systems using
these packages should differ from that of systems using garbage-
collection. The overhead incurred by the deallocation of storage
should occur in predictable amounts, and in synchrony with, or
under the control of the operation that incurs the overhead.

A design philosophy encouraging maximum reusabi1it.y of
software for the system, would tend to drive those packages,
whera possible, into a smaller family of generic packages using
reneric formal parameters which determine the differences
between instantiations. Maximum reasability of these generic
packages could be accomplished by the use of generic formal
parameters matching the widest variety of input types, and by
declarin9 internally controlled dynamic types which match the
w i d e s t variety of applications (flexibility of use).

0

GENERICALLY STRUCTURED ABSTRACT TYPES

At some point in most Ada textbooks, a generic package is
described that maintains a generically structured abstract type.
The type is declared inside the package, and contains a
component type within it which is defined from a generic forrnal
type parameter (an application defined type contained within a
generic structure). The example given is typically for a generic
stack, list or queue, and the generically structured object may
Le hidden within the package, or declared as private type, or
j u s t as a type.

The important point of these textbock examples is the
demonstration that the procedures for managing even very complex
structures such as lists, queues, binary trees, multary
(hierarchical) trees and files can be made general and
separated from the procedures for managing the objects that they

0 B . 4 . 3 . 4

0 t Contain. And, of course, that Ada supports the separation of
these management procedures in a slick and easy-to-use manner.

If the design constraints on the system (storage control)
ccn be embedded into the packages managing generic structures
composed of application-defined types, many possibilities open
Up. The creation of what could be very complex systems such as
operating systems containing schedulers, controllers and drivers
becomes much simpler. These kinds of programs can be based on
the use of just a few simple types of structure.

In an example, if a generic structure such as an index were
managed in a storage controlled way, many system structures and
much system processing could be based upon it. An index is EI

list of elements of one type (can be composite), ordered b y
elements of a second type, the index key. Many sample
applications are possible. Logons could be controlled by a list
of user names versus passwords, ID'S, priorities, etc. Batch
printing could be performed using a priority ordered list of
print files. 9 disk c'irectory could be held as a list of files
ordered by nde, or lists of lists. Batch scheduling of tasks
could be ordered by priority or timestamp. More pertinent to I L
T applications, a list of logical designators for the control of
hardware on a Test System could order the blocks which contain
their logical-to-physical access information. In this case a
hierarchically ordered list of designators versus access blocks
would probably be more useful.

The focal point of the impact of this technology is on the
reuse of software components within a project. The system-
dependent functiocing buried in the body of packages , x i 1 1
not be nearly as portable between machines and areas of
application as it is reusable within a project. Some external
software will be incorporated, of course, like it is today:
DBMS, graphics support, user interface packages, communications
support. These kinds of packages will be available where there
are broad areas of commonality of function, and where system-
dependent features can be profitably developed in packages by
vendors.

Standardization by the use of generically manacjed
structures makes p o s s i b l e the idea of technology i n s e r t . i c n
directly into the applications of a system. If a sys ten-
or application-dependent problem is solved one time, in :
flexible and reusable manner, the developer can beat t h . i , .
solution to d.?ath, reusing it over and over.

Maintenancs of reusable software enhances the sysce . : :
effectiveness. That reusable solution can be tuned at a minimx!n
number of locations in the system, and re-iiiserted into t!?t?
applications. If a better hashing function is fotnd for the key
of our index example, for instance, a widespread increase in
performance will result.

D E S I G N G O A L S A N D C O N S T R A I N T S

The design of packages managing generically structureLl
abstract objects must begin with the establishment of goals a n d

B . 4 . 3 . 5

constraints. The goals and some of the constraints are
independent of the problem of embedded systems. [3] :

1. Package-managed generic objects that are declared in
the application software should, where possible, be
defined as abstract types, that is, made private.

2 . Maximize the generality of the package. This comes
from tho use of formal generic parameters,
particularly for types, that match the widest variety
of application input types (type private instead of
digits <>, for example).

Maximize the usability of the application interface to
the package. Extend, as far as possible into the
application domain, access to the structures managed
in the package, without violating the integrity of the
internals, or the independence of the application
from the generic software component (generality).

Maximize the completeness of the application interface
to the package. Give the application developer all the
operations required to access and manipulate the
internal structures, in a package-controlled manner.

5 . Support, if possible, multiple objects with the same
package. This limits the need to re-instantiate the
package several times within the same scope, for
processing of multiple objects.

6. Design for flexibility: a single tool, suited to a
wide range of applications, is more likely to be
remembered, and used by developers.

3 .

4 .

7. Cover the infrequent failure modes. Most failures of
algorithms and processing logic in programs occur at
the extremes of their domain of applicability.
Testing should cover the ends of rapges and the
infrequent states of the application. If the software
component is reusable, it will be used in a wider
range of applications, and the infrequent failure
modes will occur more frequently.

Some of the constraints on the design of packages managing
generically-structured abstract objects stem from requirements
generated by the use of Ada on embedded systems, and are
therefore application-dependent:

8 . The package operations must control and deallocate any
internally allocated dynamic storage.

9. The package must, by it's implementation, disallow any
inadvertent de-designation of package managed dynamic

B . 4 . 3 . 6

structures or elements. The application must be
prevented from creating anonymous objects.

10. The overhead involved i n the processing of package
operations must be predictable and controllable by the
application (in contrast to the garbage ColleCtion of
anonymous objects by the KAPSE).

SELECTION OF DESIGN APPROACH

The index package, which was described above as a list of
elements ordered by another set of associated index key
elements, will be used as an example for the selection of design
approach. The index structure itself should be some kind of
private type. Functions for index lookup by key item, element
add/delete, and for stepping through the index sequentially
should provide a useful set of operations for index
manipulation. The INDEX type itself should be defined in the
package specification, not hidden, so that it can be declared as
an object in the package scope.

The importance of having the index object in the scope of
the application is in the flexibility of use of the object at
the application level. The developer should be capable of
passing the object as a parameter to subprograms developed at
the higher level. If the object of type INDEX is hidden, this
flexibility is not there.

This generates a conflict with the application-specific
constraint about allowing the application to inadvertently
generate anonymous objects. If the object of type INDEX is
declared in the user scope, any kind of assignment operation tc
it will create an anonymous INDEX object.

USE OF THE LIMITED PRIVATE TYPE

The definition of the INDEX type as limited privatc
prevents reassignment of it's value in any operation. It cannct
be reassigned in the deepest level of any procedure (Ada) , c r
generic software component that knows of it's typing. Thls
allows the access object to be declared in the user scope, ar *

used as a parameter, without any chance of creating anonymous
objects from reassignment (unless the package itself does).

The removal of needed functionality by the definition of
the type as limited private, creates a need f o r the definitior
of analogous functions: assignability, comparab 11 1 t ir ,
nullability.

The assignment function which has been removed cannot be
replaced exactly. If the application is given the ability r -
assign the same value to INDEX objects, even controlling t h e
creation of anonymous objects during reassignment \/on't h e l p .
Having two INDEX objects of the same value implies that the
package cannot explicitly deallocate either INDEX designatecl
object , without creating an erroneous circumstance (an I N D E x
object designating a deallocated object). This cannot be
allowed. Therefore assignment (call it ASSIGN the I' : - - I '

B . 4 . 3 . 7

ORlOlNAL PAGE: IS
OF KK)R QUALITY

operator cannot be overloaded) will first clear the access
object value by deallocating the current designated object, and
then copy the object designated for assignment, eleml-nt for
element, until two copies exist,

If the need f o r mutual designation by the same INDEA object
was a requirement, creation of anonymous objects could be
controlled by the installation in the structure of the
INDEX designated object of a semaphore-type variable, which
would provide concurrent access to the structure along with the
protection by mutual exclusion. This would allow the package to
keep a count of the number of INDEX objects accessing the
structure of the index, with the capability to deallocate the
INDEX designated object upon the reassignment of the last INDEX
object designating it.

The compare function, !I=)(, can be overloaded for limited
private types, and should be defined to compare the elements
designated by the two objects of type INDEX, one for one,
to establish equality. It should be noted here, that the
application itself could define 11=)1, if the capability of
stepping through the INDEX elements one by one, and retrieval
functions for each element are provided.

The re-initialization of the INDEX object ("nulltt
assignment) is replaced by a DELETE function which deallocates
the designated object (the entire structure).

APPLICATION DEFINED DEALLOCATOR PROCEDURES

There is one last potential for the inadvertent creation of
anonymous objects by the package itself. The package allocates a
node when it adds an element to the INDEX designated object, and
it deallocates a node when a delete of an element occurs.
However, ii: the type that was passed as the formal generic
parameter for the key type or the element type is itself an
access type, deallocation of the node will create anonymous
objects that were previously designated by access objects of the
application-defined input types.

The solution f o r this problem depends upon the developer.
For every application-defined component type which is passed
into the generic package as a generic formal parameter to be
incorporated into a generically-structured storage-managed type,
there must be an accompanying generic formal parameter
in2icating a procedure which deallocates any objects designated
by an object of the application defined component type. This
allows the generic package to invoke that procedure for the
components of the structure, so that the subsequent component
deallocation will not create any anonymous objects.

For application-defined types that are not or do not
contain access objects, the deallocator procedure passed would
simply provide a null return, and do nothing.

To repeat this rather complicated rule in other words,
there is a need for every generic formal parameter of an
application-defined type for a structural component, to have an
accompanying deallocator procedure, not fo r the type itself, but
for designated objxts of that type, and designated objects of

B . 4 . 3 . 8

.I " ~

those designated objects, and so on. If the developer wishes to
incorporate structures within structures, the price of this
complexity must he paid.

INCREMENTAL DELETE FEATURE

It is not reasonable to assume that the size of the
structure being managed by the generic is known before
the application is coded, or else the developer might have
chosen a static rather than a dynamic type. The processing
overhead incurred from the deletion of an entire structure or
one part of a structure is then also not predictable. This c a n
put the real-time performance of the package operations back to
square one.

If a real-time application performs a delete operation,
the return from the subprogram must be made within application
defined time-constraints for the package to be useful. In
an example indicating the problem, a real-time application,
while in between accepting interrupt entries from a hardware
device (a timewcritical operation, for hardware interrupts a r e
not queued), attempts to initialize the access object
designating a structure, during the time window that is known t o
exist between interrupts. During initialization of tke
structure it is necessary, of course, to run down the enzire
structure, deallocating each component of the current structure
exhaustively, until the access object can be initialized.
Unfortunately, during the time that the subprogram took control
away from the real-time application, several interrupts wsre
overwritten, and critical data was lost.

The solution to this problem is to supply an incremental
delete function. The overhead incurred from the delete a r d
subsequent deallocation of a single element is knowable. Ar.
incremental delete operation can then be defined, such that upon
input of the logical parameter indicating how much of t h e
structure to remove, and a physical parameter indicating t h c
number of elements to remove for each successive invocation, t!%t
structure will be whittled away incrementally. The order of
deletion/deallocation should be such that a reference alwa
exists to the remaining increments of the section of t ' : ~
structure that are to be removed (for example, delete a t r i e
from the leaves in toward the root).

CONCLUSION

It is concluded, by our studies, that it is feasible to
create families of highly reusable generic software components,
specifically tailored to support kinds of applications. These
generic packages can maximize the reusability of software
developed within and for a particular project. At the same time
they can address the performance requirements of software
developed for embedded systems running real-time applications.
These requirements stipulate that such software be responsive
and controllable in terms of direct processing overhead, and
incur little or no background processing overhead of an

B . 4 . 3 . 9

unpredictable nature (in contrast to the garbage collection of
anonymous objects by the KAPSE).

a
ACKNOWLEDGEMENT

I gratefully acknowledge the support given by the Kennedy
Space Center/ Engineering Development/ Systems Integration
Branch in supplying the computer facilities for the feasibility
studies that provided the basis of this work. I also thank mY
wife, Bronwen Chandler, for her support.

REFERENCES

1. Burns, A. 1985. Concurrent Programming In Ada. Cambridge,
Great Britain: Cambridge University Press.

2 . United States Department of Defense. February 17, 1983.
Reference Manual for the ADA Programming Language.
ANSI/MIL-STD-1815A-1983. New York, New York: Springer-
Verlag.

3. Johnson, C., 1986. ItSome Design Constraints Required for
the Assembly of Software Components: The Incorporation of
Atomic Abstract Types into Generically Structured Abstract
Typestt, Proceedings of the First International Conference
On Ada* Programming Language Applications For The NASA
Space Station, E.l.l.

B. 4.3.10

