3 research outputs found

    A survey of usability issues in mobile map-based systems

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesHow geospatial information could be represented in map or other forms of communication to display in mobile phones to convey spatial knowledge to users more effective and efficient with less ambiguity? This triggering question stems from the usability problems available in mobile map-based systems, that made using mobile navigation services and applications for pedestrians, a tedious and complicated task which is rather confusing to be helpful. Problems such as; losing the spatial overview of the area, overload of information in small screens of mobile phones, visibility issue of off-screen entities, weaknesses in orienting users with real environment, too much engagement of users with interface which causes environment distraction and so on. There are a lot of solutions have proposed to mitigate these available issues in mobile map-based systems, but each one has its pros and cons that is not complete enough to tackle above mentioned issues alone, and most of the time a combination of them is proposing. We tried with systematic literature review (SLR) that is more reliable, replicable and valid [1], find the most frequently applied usability evaluation method in the available studies to detect the usability issues in mobile map-based systems (MMSs), then find the most frequently usability issues that detected among the reviewed literatures and how to categorize them, in what contexts they mostly happened and what solutions proposed so far to resolve them. We operated tree iterations of systematic literature review (SLR) with totally 8667 identified publications (within 6 relevant databases and a search engine with priority of 4 most prominent and relevant journals and conferences in the field of mobile HCI and location based services), that 196 one of them included in first screening1, were thoroughly read in order to check with predefined inclusion criteria and overall, 56 papers (between those 196 papers) that qualified with our well-defined and updated inclusion criteria properties read in-depth at least two times to extract the data. In the first iteration 25 papers have reviewed and relevant data with considering our research questions has extracted and reflected in the first iteration table. In the second iteration, 24 papers which had adjusted inclusion criteria parameters have included to data extraction for filling the updated table. The last iteration according to the scarcity of publications in this realm and time limitation, has operated only with 7 literatures and relevant data extracted to fill in the last updated table. Results of the SLR showed the most frequently usability evaluation method was “Questionnaire” to achieve effectiveness and efficiency of the system, and the most frequently usability issue that detected within available literatures was “losing the spatial overview” which followed by “too much zooming and panning operations by users” that stems from the same problem; small screen size of mobile devices. We categorized the issues into two main groups of technological and spatial issues, which we only here focused on the usability issues relevant to map interfaces in mobile phones (spatial issues), not the technological problems relevant to the server or the hardware perspective (sensors, connectivity, battery drainage, GPS accuracy etc.). We have noticed the most frequently usability issue has happened in the mobile phone with average screen size of 3.83 inches, 87% of the cases in the laboratory environment, with users (not experts) with average age of 26 years old that 64.2% of them had relevant knowledge (GI2 knowledge). The low amount of field-based studies highlights the lack of considering real context in available case studies that in usability evaluation of location based mobile systems is highly important. Some traditional solutions have proposed to address the most frequently occurred usability problem in mobile map-based systems such as the techniques for visualizing the off-screen objects (such as Overview&Detail, Scaled Arrows, Wedge etc.) and some techniques for enhancing the zoom and pan operations (such as vario-scale maps, semi-automatic zooming (SAZ), tilt zooming, content zooming, anchored zoom etc.) that none of them were not completely suitable enough to be applied in these systems and the most famous systems such as Google Maps still working without taking advantage of such approaches, techniques and widgets, with a lot of usability issues

    Smartphone Based Tele-Rehabilitation

    Get PDF
    Lefebvre Thierry, Mattei Jean-Pierre, Marie Michel, Bleys Jean-Pierre. Les Journées du cinéma muet de Pordenone. In: 1895, revue d'histoire du cinéma, n°14, 1993. pp. 103-113

    Enhanced sensor-based interaction techniques for mobile map-based applications

    Get PDF
    Mobile phones are increasingly being equipped with a wide range of sensors which enable a variety of interaction techniques. Sensor-based interaction techniques are particularly promising for domains such as map-based applications, where the user is required to interact with a large information space on the small screen of a mobile phone. Traditional interaction techniques have several shortcomings for interacting with mobile map-based applications. Keypad interaction offers limited control over panning speed and direction. Touch-screen interaction is often a two-handed form of interaction and results in the display being occluded during interaction. Sensor-based interaction provides the potential to address many of these shortcomings, but currently suffers from several limitations. The aim of this research was to propose enhancements to address the shortcomings of sensor-based interaction, with a particular focus on tilt interaction. A comparative study between tilt and keypad interaction was conducted using a prototype mobile map-based application. This user study was conducted in order to identify shortcomings and opportunities for improving tilt interaction techniques in this domain. Several shortcomings, including controllability, mental demand and practicality concerns were highlighted. Several enhanced tilt interaction techniques were proposed to address these shortcomings. These techniques were the use of visual and vibrotactile feedback, attractors, gesture zooming, sensitivity adaptation and dwell-time selection. The results of a comparative user study showed that the proposed techniques achieved several improvements in terms of the problem areas identified earlier. The use of sensor fusion for tilt interaction was compared to an accelerometer-only approach which has been widely applied in existing research. This evaluation was motivated by advances in mobile sensor technology which have led to the widespread adoption of digital compass and gyroscope sensors. The results of a comparative user study between sensor fusion and accelerometer-only implementations of tilt interaction showed several advantages for the use of sensor fusion, particularly in a walking context of use. Modifications to sensitivity adaptation and the use of tilt to perform zooming were also investigated. These modifications were designed to address controllability shortcomings identified in earlier experimental work. The results of a comparison between tilt zooming and Summary gesture zooming indicated that tilt zooming offered better results, both in terms of performance and subjective user ratings. Modifications to the original sensitivity adaptation algorithm were only partly successful. Greater accuracy improvements were achieved for walking tasks, but the use of dynamic dampening factors was found to be confusing. The results of this research were used to propose a framework for mobile tilt interaction. This framework provides an overview of the tilt interaction process and highlights how the enhanced techniques proposed in this research can be integrated into the design of tilt interaction techniques. The framework also proposes an application architecture which was implemented as an Application Programming Interface (API). This API was successfully used in the development of two prototype mobile applications incorporating tilt interaction
    corecore