44 research outputs found

    Spectral properties of the hierarchical product of graphs

    Get PDF
    The hierarchical product of two graphs represents a natural way to build a larger graph out of two smaller graphs with less regular and therefore more heterogeneous structure than the Cartesian product. Here we study the eigenvalue spectrum of the adjacency matrix of the hierarchical product of two graphs. Introducing a coupling parameter describing the relative contribution of each of the two smaller graphs, we perform an asymptotic analysis for the full spectrum of eigenvalues of the adjacency matrix of the hierarchical product. Specifically, we derive the exact limit points for each eigenvalue in the limits of small and large coupling, as well as the leading-order relaxation to these values in terms of the eigenvalues and eigenvectors of the two smaller graphs. Given its central roll in the structural and dynamical properties of networks, we study in detail the Perron-Frobenius, or largest, eigenvalue. Finally, as an example application we use our theory to predict the epidemic threshold of the Susceptible-Infected-Susceptible model on a hierarchical product of two graphs

    The hierarchical product of graphs

    Get PDF
    A new operation on graphs is introduced and some of its properties are studied. We call it hierarchical product, because of the strong (connectedness) hierarchy of the vertices in the resulting graphs. In fact, the obtained graphs turn out to be subgraphs of the cartesian product of the corresponding factors. Some well-known properties of the cartesian product, such as a reduced mean distance and diameter, simple routing algorithms and some optimal communication protocols are inherited by the hierarchical product. We also address the study of some algebraic properties of the hierarchical product of two or more graphs. In particular, the spectrum of the binary hypertree TmT_m (which is the hierarchical product of several copies of the complete graph on two vertices) is fully characterized; turning out to be an interesting example of graph with all its eigenvalues distinct. Finally, some natural generalizations of the hierarchic product are proposed

    Spectral properties of the hierarchical product of graphs

    Get PDF
    The hierarchical product of two graphs represents a natural way to build a larger graph out of two smaller graphs with less regular and therefore more heterogeneous structure than the Cartesian product. Here we study the eigenvalue spectrum of the adjacency matrix of the hierarchical product of two graphs. Introducing a coupling parameter describing the relative contribution of each of the two smaller graphs, we perform an asymptotic analysis for the full spectrum of eigenvalues of the adjacency matrix of the hierarchical product. Specifically, we derive the exact limit points for each eigenvalue in the limits of small and large coupling, as well as the leading-order relaxation to these values in terms of the eigenvalues and eigenvectors of the two smaller graphs. Given its central roll in the structural and dynamical properties of networks, we study in detail the Perron-Frobenius, or largest, eigenvalue. Finally, as an example application we use our theory to predict the epidemic threshold of the susceptible-infected-susceptible model on a hierarchical product of two graphs

    On the Hierarchical Product of Graphs and the Generalized Binomial Tree

    Get PDF
    In this paper we follow the study of the hierarchical product of graphs, an operation recently introduced in the context of networks. A well-known example of such a product is the binomial tree which is the (hierarchical) power of the complete graph on two vertices. An appealing property of this structure is that all the eigenvalues are distinct. Here we show how to obtain a graph with this property by applying the hierarchical product. In particular, we propose a generalization of the binomial tree and some of its main properties are studied

    The Wiener, Eccentric Connectivity and Zagreb Indices of the Hierarchical Product of Graphs

    Get PDF
    Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs having a distinguished or root vertex, labeled 0. The hierarchical product G2 ⊓ G1 of G2 and G1 is a graph with vertex set V2 × V1. Two vertices y2y1 and x2x1 are adjacent if and only if y1x1 ∈ E1 and y2 = x2; or y2x2 ∈ E2 and y1 = x1 = 0. In this paper, the Wiener, eccentric connectivity and Zagreb indices of this new operation of graphs are computed. As an application, these topological indices for a class of alkanes are computed. ACM Computing Classification System (1998): G.2.2, G.2.3.The research of this paper is partially supported by the University of Kashan under grant no 159020/12

    Revan weighted PI index on some product of graphs

    Get PDF
    In chemical graph thoery, PI index is an additive topological index which has been used to measure the characteristics of chemical compounds. In this paper we introduce the weighted version of PI index of graph called the Revan Weighted PI index and we have obtained it for the hierarchical product of graphs, cartesian product, subdivision and join of two graphs. Also we have derived this index for some molecular graphs.Publisher's Versio

    On the metric dimension and fractional metric dimension for hierarchical product of graphs

    Full text link
    A set of vertices WW {\em resolves} a graph GG if every vertex of GG is uniquely determined by its vector of distances to the vertices in WW. The {\em metric dimension} for GG, denoted by dim(G)\dim(G), is the minimum cardinality of a resolving set of GG. In order to study the metric dimension for the hierarchical product G2u2G1u1G_2^{u_2}\sqcap G_1^{u_1} of two rooted graphs G2u2G_2^{u_2} and G1u1G_1^{u_1}, we first introduce a new parameter, the {\em rooted metric dimension} \rdim(G_1^{u_1}) for a rooted graph G1u1G_1^{u_1}. If G1G_1 is not a path with an end-vertex u1u_1, we show that \dim(G_2^{u_2}\sqcap G_1^{u_1})=|V(G_2)|\cdot\rdim(G_1^{u_1}), where V(G2)|V(G_2)| is the order of G2G_2. If G1G_1 is a path with an end-vertex u1u_1, we obtain some tight inequalities for dim(G2u2G1u1)\dim(G_2^{u_2}\sqcap G_1^{u_1}). Finally, we show that similar results hold for the fractional metric dimension.Comment: 11 page

    Metric Dimension of Amalgamation of Graphs

    Full text link
    A set of vertices SS resolves a graph GG if every vertex is uniquely determined by its vector of distances to the vertices in SS. The metric dimension of GG is the minimum cardinality of a resolving set of GG. Let {G1,G2,,Gn}\{G_1, G_2, \ldots, G_n\} be a finite collection of graphs and each GiG_i has a fixed vertex v0iv_{0_i} or a fixed edge e0ie_{0_i} called a terminal vertex or edge, respectively. The \emph{vertex-amalgamation} of G1,G2,,GnG_1, G_2, \ldots, G_n, denoted by VertexAmal{Gi;v0i}Vertex-Amal\{G_i;v_{0_i}\}, is formed by taking all the GiG_i's and identifying their terminal vertices. Similarly, the \emph{edge-amalgamation} of G1,G2,,GnG_1, G_2, \ldots, G_n, denoted by EdgeAmal{Gi;e0i}Edge-Amal\{G_i;e_{0_i}\}, is formed by taking all the GiG_i's and identifying their terminal edges. Here we study the metric dimensions of vertex-amalgamation and edge-amalgamation for finite collection of arbitrary graphs. We give lower and upper bounds for the dimensions, show that the bounds are tight, and construct infinitely many graphs for each possible value between the bounds.Comment: 9 pages, 2 figures, Seventh Czech-Slovak International Symposium on Graph Theory, Combinatorics, Algorithms and Applications (CSGT2013), revised version 21 December 201
    corecore