28 research outputs found

    Constant-Factor Approximation for TSP with Disks

    Full text link
    We revisit the traveling salesman problem with neighborhoods (TSPN) and present the first constant-ratio approximation for disks in the plane: Given a set of nn disks in the plane, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in time that is polynomial in nn. Our result is the first constant-ratio approximation for a class of planar convex bodies of arbitrary size and arbitrary intersections. In order to achieve a O(1)O(1)-approximation, we reduce the traveling salesman problem with disks, up to constant factors, to a minimum weight hitting set problem in a geometric hypergraph. The connection between TSPN and hitting sets in geometric hypergraphs, established here, is likely to have future applications.Comment: 14 pages, 3 figure

    The traveling salesman problem for lines, balls and planes

    Full text link
    We revisit the traveling salesman problem with neighborhoods (TSPN) and propose several new approximation algorithms. These constitute either first approximations (for hyperplanes, lines, and balls in Rd\mathbb{R}^d, for d3d\geq 3) or improvements over previous approximations achievable in comparable times (for unit disks in the plane). \smallskip (I) Given a set of nn hyperplanes in Rd\mathbb{R}^d, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in O(n)O(n) time, when dd is constant. \smallskip (II) Given a set of nn lines in Rd\mathbb{R}^d, a TSP tour whose length is at most O(log3n)O(\log^3 n) times the optimal can be computed in polynomial time for all dd. \smallskip (III) Given a set of nn unit balls in Rd\mathbb{R}^d, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in polynomial time, when dd is constant.Comment: 30 pages, 9 figures; final version to appear in ACM Transactions on Algorithm

    Tabu Search: A Comparative Study

    Get PDF

    A Systematic Review of Approximability Results for Traveling Salesman Problems leveraging the TSP-T3CO Definition Scheme

    Full text link
    The traveling salesman (or salesperson) problem, short TSP, is a problem of strong interest to many researchers from mathematics, economics, and computer science. Manifold TSP variants occur in nearly every scientific field and application domain: engineering, physics, biology, life sciences, and manufacturing just to name a few. Several thousand papers are published on theoretical research or application-oriented results each year. This paper provides the first systematic survey on the best currently known approximability and inapproximability results for well-known TSP variants such as the "standard" TSP, Path TSP, Bottleneck TSP, Maximum Scatter TSP, Generalized TSP, Clustered TSP, Traveling Purchaser Problem, Profitable Tour Problem, Quota TSP, Prize-Collecting TSP, Orienteering Problem, Time-dependent TSP, TSP with Time Windows, and the Orienteering Problem with Time Windows. The foundation of our survey is the definition scheme T3CO, which we propose as a uniform, easy-to-use and extensible means for the formal and precise definition of TSP variants. Applying T3CO to formally define the variant studied by a paper reveals subtle differences within the same named variant and also brings out the differences between the variants more clearly. We achieve the first comprehensive, concise, and compact representation of approximability results by using T3CO definitions. This makes it easier to understand the approximability landscape and the assumptions under which certain results hold. Open gaps become more evident and results can be compared more easily

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order

    Airport Ground Staff Scheduling

    Get PDF

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum
    corecore