

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

Airport Ground Staff Scheduling

Clausen, Tommy; Pisinger, David

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Clausen, T., & Pisinger, D. (2010). Airport Ground Staff Scheduling. Kgs. Lyngby, Denmark: Technical University
of Denmark (DTU). (DTU Management 2011; No. 2).

http://orbit.dtu.dk/en/publications/airport-ground-staff-scheduling(33c9b8bb-c87d-4e07-a85d-19e0593615d0).html

PhD thesis 2.2011

DTU Management Engineering

Tommy Clausen
March 2011

Airport Ground Staff Scheduling

Airport Ground Staff Scheduling

Tommy Clausen

Kgs. Lyngby, 2010

Dansk titel:

Planlægning af jordpersonel i lufthavne

Department of Management Engineering

Technical University of Denmark

Produktionstorvet, Building 424

DK-2800 Kgs. Lyngby, Denmark

Phone: +45 45 25 48 00, Fax: +45 45 25 48 05

info@man.dtu.dk

www.man.dtu.dk

Summary

Modern airports are centers of transportation that service a large number of
aircraft and passengers every day. To facilitate this large volume of transporta-
tion, airports are subject to many logistical and decision problems that must
continuously be solved to make sure each flight and passenger travels safely and
efficiently through the airport.

When an aircraft lands, a significant number of tasks must be performed by
different groups of ground crew, such as fueling, baggage handling and cleaning.
These tasks must be complete before the aircraft is able to depart, as well as
check-in and security services. These tasks are collectively known as ground
handling, and are the major source of activity with airports.

The business environments of modern airports are becoming increasingly com-
petitive, as both airports themselves and their ground handling operations are
changing to private ownership. As airports are in competition to attract airline
routes, efficient and reliable ground handling operations are imperative for the
viability and continued growth of both airports and airlines. The increasing lib-
eralization of the ground handling market prompts ground handling operators
to increase cost effectiveness and deliver fast and reliable service.

This thesis presents models and algorithms for general optimization and decision
problems arising within ground handling. The thesis contains an introductory
part which provide an overview of the ground handling environment and re-
views a series of optimization problems from the specific perspective of airport
ground handling. In addition, the thesis contains five scientific papers, which
consider specific optimization problems within ground handling in detail. The

iv

considered problems range from generalized approaches to workforce planning,
to highly detailed scheduling problems arising in the highly dynamic environ-
ment of airports.

Resumé

Moderne lufthavne er transportcentre som betjener et stort antal fly og pas-
sagerer dagligt. For at h̊andtere de store transportmængder er lufthavne under-
lagt mange logistiske problemer og beslutningsproblemer som løbende skal løses
for at sikre at hvert fly og passager rejser sikkert og effektivt gennem lufthavnen.

N̊ar et fly lander, skal et betydeligt antal opgaver udføres af forskellige grupper
af jordpersonel, f.eks. tankning af brændstof, bagageh̊andtering og rengøring.
Opgaverne skal være udført før flyet kan lette igen. Opgaverne benævnes i
fællesskab ground handling og er hovedkilden til aktivitet i lufthavne.

Forretningsmiljøet i moderne lufthavne bliver mere og mere konkurrencepræget,
eftersom b̊ade lufthavnene og deres ground handling operationer skifter til pri-
vat ejerskab. Da lufthavnene er i indbyrdes konkurrence for at tiltrække ruter
fra flyselskaber, er effektive og p̊alidelige ground handling-tjenester nødvendige
for at sikre rentabilitet og vækst for b̊ade lufthavne og flyselskaber. Den sti-
gende privatisering p̊a ground handling-markedet driver virksomhederne til at
øge effektiviteten og levere hurtige og driftsikre ydelser.

Denne afhandling præsenterer modeller og algoritmer for generelle optimerings-
og beslutningsproblemer der opst̊ar indenfor ground handling. Afhandlingen in-
deholder en indledende del, som giver et overblik over ground handling og behan-
dler en række optimeringsproblemer fra et konkret ground handling-perspektiv.
Derudover indeholder afhandlingen fem videnskabelige artikler som betragter
konkrete optimeringsproblemer indenfor ground handling. Problemerne strækker
sig fra generelle tilgange til planlægning af arbejdsstyrken, til detaljerede prob-
lemer indenfor opgaveallokering der opst̊ar i lufthavnens dynamiske omgivelser.

vi

Preface

The work presented in this dissertation constitute in part the fulfillment of the
requirements for acquiring the degree of Ph.D. at DTUManagement Engineering
as well as the “Industrial PhD diploma” awarded by the Danish Ministry of
Science, Technology and Innovation for Ph.D. students following the Industrial
Phd program.

The thesis was written in part at the Department of Computer Science, Univer-
sity of Copenhagen (DIKU) from February 2007 to February 2009 and later at
the Section of Operations Research, DTU Management Engineering, Technical
University of Denmark until its completion in August 2010.

As part of the Industrial Phd program, I have been employed at the privately
held Danish company WorkBridge A/S, where I have spent 50% of my time
during this study. During the time at WorkBridge, I have worked as an integral
part of the development section, where the research results presented herein
has been implemented into WorkBridge products. The majority of the work
presented in this thesis is currently in operation at WorkBridge, or at customers
worldwide.

The thesis deals with different aspects of optimization arising within airport
ground handling. The thesis consists of an introductory part outlining the
problems occurring within the field and a collection of five research papers. Of
the papers, four are motivated directly from real-life applications within the
field and two of them describe projects which are currently in operation.

viii

One of the five papers is published and four are currently submitted to peer-
reviewed journals within the field.

Kgs. Lyngby, August 2010

Tommy Clausen

Acknowledgments

This thesis could not have been written without a large number of people, to
whom I owe a great deal of thanks.

First, the conception of this thesis is owed mainly to Erik Sørensen, who gener-
ously accepted to sponsor the project. In the same vein, I would like to thank
my industrial supervisor Janus Sejr Jensen for helpful and dedicated supervision
throughout the project, and Nicolai Graff Andersen for providing both myself
and this project an integrated role within the WorkBridge development section.
A general thanks to all at WorkBridge for your kind cooperation and many inter-
esting discussions. A specific mention should go to the “algorithms team”: Sara
Bisander Nielsen, Thomas Gerken, Oliver Grandvuinet and Morten Nielsen, as
well as the many other contributors to the knowledge and algorithms presented
in this thesis.

At the university, I give a heartfelt thanks to my supervisor David Pisinger
for excellent supervision and for bringing academic perspectives to a project
that at many times has been anchored more deeply in industry than at the
university. A particular thanks as well for allowing me to join the move to
a new department at DTU, and a thanks to the entire Operations Research
Section at DTU Management for welcoming me into the group.

Special thanks go to the co-authors and readers who have contributed directly
to the written parts of this thesis: David Pisinger, to whom I owe much for
the collaboration and review on many projects. Allan Nordlunde Hjorth and
Morten Nielsen for cooperation on the long-lived Seat Reservation project. Line
Blander Reinhardt for for invaluable work and dedication on the PRM project.

x

Torben Barth, Mette Gamst, Berit Løfstedt, Christian Erdinger Munk Plum
and Bo Vaaben for the many helpful comments and discussions that arose from
your kind reviewing sessions.

Finally, I am grateful to my girlfriend Maya, as well as family members and
friends, who have endured the hardships of this projects with me and enjoyed
none of the joys and excitements in return.

xi

xii Contents

Contents

Summary iii

Resumé v

Preface vii

Acknowledgments ix

I Airport Ground Handling 1

1 Introduction 3
1.1 Motivation . 4
1.2 Optimization in Real-Life Applications 5
1.3 Thesis Overview . 7

2 Introduction to Airport Ground Handling 9
2.1 Airport Planning Problems . 10
2.2 Ground Handling . 12

3 The Planning Horizon 15
3.1 The Planning Timeline . 15
3.2 Planning and Levels of Detail . 18
3.3 A Ground Handling Planning Model 20

4 Demand Modeling 23
4.1 Aggregated Demand . 23
4.2 Demand Estimation . 25
4.3 Distributing Staffing . 28

xiv CONTENTS

4.4 Heterogeneous Demand . 29

5 Workforce Planning 35
5.1 An overview of Manpower Planning 35
5.2 Shifts . 37
5.3 Workforce Scheduling and Rostering 39

6 Task Scheduling 41
6.1 Modeling . 42
6.2 Operational Optimization . 44
6.3 Real-Time Optimization . 46

7 Overview of Papers 51
7.1 Paper A: A Dynamic Programming-Based Heuristic for the Shift

Design Problem in Airport Ground Handling 51
7.2 Paper B: A Rule-Based Local Search Algorithm for General Shift

Design Problems in Airport Ground Handling 52
7.3 Paper C: Dynamic Routing of Short Transfer Baggage 53
7.4 Paper D: Route Planning for Airport Personnel Transporting Pas-

sengers with Reduced Mobility 53
7.5 Paper E: The Offline Group Seat Reservation Problem 54

8 Conclusions 57
8.1 Contributions . 60
8.2 Directions of Future Research . 60

II Scientific Papers 63

A A Dynamic Programming-Based Heuristic for the Shift Design
Problem in Airport Ground Handling 65
A.1 Introduction . 66
A.2 The Heterogeneous Shift Design Problem 70
A.3 Basic Notation . 71
A.4 Algorithm Overview . 74
A.5 Solving the 0-1 Shift Design Problem 77
A.6 Performance Considerations . 83
A.7 Computational Results . 86
A.8 Conclusions . 92

B A Rule-Based Local Search Algorithm for General Shift Design
Problems in Airport Ground Handling 97
B.1 Introduction . 98
B.2 Definitions and Terminology . 100
B.3 Modular Components . 103

CONTENTS xv

B.4 Algorithm . 107
B.5 Computational Results . 113
B.6 Conclusions and Future Work . 120
B.7 Additional Tables . 121

C Dynamic Routing of Short Transfer Baggage 131
C.1 Introduction . 132
C.2 Formal Problem Description . 136
C.3 Real-life case study . 139
C.4 Vehicle Dispatching . 142
C.5 Computational Results . 148
C.6 Conclusion and Future Work . 157
C.7 Acknowledgments . 158

D Route Planning for Airport Personnel Transporting Passengers
with Reduced Mobility 163
D.1 Introduction . 164
D.2 Problem Description . 166
D.3 Mathematical formulation . 169
D.4 Solution method . 174
D.5 Data Instance and other parameter values 178
D.6 Tuning . 180
D.7 Test Results . 183
D.8 Conclusion . 187

E The Offline Group Seat Reservation Problem 191
E.1 Introduction . 192
E.2 Definitions and Terminology . 194
E.3 The Group Seat Reservation Knapsack Problem 198
E.4 The Group Seat Reservation Bin Packing Problem 205
E.5 Computational Results . 208
E.6 Further Work . 216
E.7 Conclusion . 216

xvi CONTENTS

Part I

Airport Ground Handling

Chapter 1

Introduction

This thesis has been written in part at the Danish company WorkBridge A/S.
The company provides software planning and scheduling solutions for resource
management of mobile workforces. The WorkBridge product line includes auto-
mated planning and optimization systems for long-term planning, rostering, and
real-time workforce scheduling, among many others. Within the field of airport
ground handling, the WorkBridge systems are used by customers in airports
worldwide.

At the time of writing, WorkBridge employs around 30 people, with the majority
of the employees situated at the head office in Copenhagen, Denmark.

The work presented in this thesis is divided into two parts. The first part (which
includes this introduction), describes airport ground handling and some of the
optimization problems within the area. Despite the physically confined airport
space, the variety of optimization problems and solution methods is extensive.
To limit the extent of the presentation, I have chosen to use my experiences
at WorkBridge as a vantage point and focus on broad issues in planning and
implementation, rather than a methodical enumeration of optimization methods
and models.

The second part of the thesis contains five scientific papers that reflect specific
projects I have worked on during the time of this study. As such, the papers

4 Introduction

should not be viewed as a selection that broadly covers the field of optimization
in airport ground handling, but rather a collection of selected topics determined
by a three year window in a lengthy and ongoing process of developing the
WorkBridge planning systems.

As a result of the cooperation, most of the work presented in this thesis is
performed on real-life optimization problems defined through discussions with
WorkBridge staff as well as workshops with customers. The majority of the
work presented herein is currently in use.

1.1 Motivation

The aviation industry is undergoing continuous development as air traffic be-
comes an increasingly important factor in our society, for both business and
leisure. As a result, airports form a pivotal part of the infrastructure and econ-
omy of any population center. In 2004, 200,000 jobs were directly supported
by aviation in the UK, and up to 600,000 jobs were supported by aviation indi-
rectly [9].

Most airports are extremely busy environments which are operating at the peak
of their capacity. Congestion in airports and in the airspace cause frequent
delays, which put additional strain on already tight schedules. While many
airports are in the process of expanding, constructing new airport facilities is
slow and expensive. As such, short and medium term growth in the aviation
sector depends on the airports to operate at high efficiency.

Airports are increasingly liberalizing their ground handling operations. Ground
handling operations that have traditionally been subsidized to corporate divi-
sions of the airport or the national airline are now being offered in free competi-
tion. In the European Union, the liberalization of the ground handling market
by directive 96/67/EChas caused a rise in the number of third party ground han-
dling companies of more than 80% between 1996 and 2007 [27]. This increased
competition has caused increased need for effectiveness and cost minimization.

The emergence of low-cost carriers in recent years causes new challenges for
ground handling operations. In contrast to traditional carriers, low cost carriers
operate with very short ground times to minimize expenditures. This causes a
highly constrained working environment for ground handling companies and an
increased risk of disruption in case of delays.

Finally, recent world events have shown that aviation is particularly vulnerable

1.2 Optimization in Real-Life Applications 5

to outside influences. The economic crisis of 2008/2009 has had a severe effect
on what was previously a booming economy. Although recent forecasts indicate
that passenger levels are rising again [62], the crisis has caused a level of cost
awareness that will undoubtedly remain in the coming years.

For airlines, crew expenditures account for a large amount of the airline’s total
expenses. Airlines have therefore devoted large resources to crew scheduling,
and as a result airline crew scheduling has been an important research area in
operations research for some years (see e.g. [60]). According to Herbers [57],
the area of airport ground staff scheduling has in comparison received much less
attention.

Crew for ground handling operations are typically less expensive than airline
crew (e.g. pilots), where salaries can be very high. Also, since ground crews are
located at the airport at all times, it is possible to call in extra hands if needed.
This has made the need for a good planning solution less pressing for ground
handling companies than airlines in the past. However with increasing cost
awareness and more constrained working conditions, the need for automated
planning aids is becoming significant.

1.2 Optimization in Real-Life Applications

When introducing planning systems into an organization that currently uses
manual planning, there are large savings to be made. The direct, and most of-
ten quoted, saving is the minimization of resources obtained by producing more
efficient schedules. Such savings have the advantage of being easy to communi-
cate, but not all parts of the receiving organization may like the message. As
pointed out by Brusco “for purposes of employee relations, it is not advantageous
to associate software enhancements with employee reductions” [23].

Introducing planning systems within a company also has less visible benefits
which may be just as important as cost minimization. Increasing the quality of
schedules does not necessarily mean resource minimization. Better utilization
of existing staff may lead to higher service levels, a better ability to absorb
changes due to robustness and a higher level of fairness which leads to more
employee satisfaction. Furthermore, automated planning can be used to create
more uniform schedules to ensure a consistent level of service on different days.

The large number of rules and regulations inherent to many service organizations
impose the same difficulties for manual planners as for optimization systems.
In some cases it may be impossible to satisfy all constraints, in which case

6 Introduction

optimization systems can be used to quickly examine different scenarios to find
the least undesired solution. The fast validation of feasibility is an advantage
that can save a lot of time. Bechtold [14] reports that the introduction of a
computer-based planning system saved the planning staff a day or more each
week, which can be used for other work than manually creating schedules.

When designing optimization systems for use in real-life applications, the models
must also satisfy the large set of constraints inherent to real-life workplaces.
An additional difficulty is that not all such constraints can be made explicitly
known or modeled. This may be due to simplifications of the model for the sake
of simplicity or tractability. Most optimization problems are NP-hard even in
simplified forms, so it is common to have to “cut some corners” to obtain models
that can be solved in reasonable time on the large instances required in real-life
applications. Also, faulty interfaces to information systems may be unable to
present relevant information in time. Finally, some information is difficult to
input into the model, because it is conveyed by other means of communication,
such as telephone calls, written notices or simple conversations between planners
and scheduled personnel. Such analogue means of communication is a particular
problem in organizations which are not accustomed to working with computer
systems. Another aspect of this problem is the so-called “tacit knowledge”
that is not explicitly formulated or written down. In the study by Powell et
al. [83], discrepancies between information in the workforce and information in
the model may lead to user noncompliance, where users may opt not to follow
the recommendations of the schedule, because the user possess more accurate
information than the model. The ability to strengthen decision making for all
levels of information is a key challenge for optimization and decision support
systems.

In most real-life applications, the schedules provided by the algorithm are used
as a decision support tool to augment and support the work of a manager
or planner. If the schedules deviate from the old way of doing things in the
organization, carrying out the plans in practice becomes more difficult. As a
consequence, a significant part of modeling for real-life problems is to replicate
the existing behavior of the organization.

In a study of introducing planning software at airport stations, Brusco [23]
notes that an important requirement for planning personnel to accept the use
of the software is fast running times of less than five minutes. Although the
study is now more than ten years old, the attitude of manual planners is not
likely to have changed considerably. We therefore consider fast running times a
requirement.

1.3 Thesis Overview 7

1.3 Thesis Overview

This thesis is structured in two parts. Part I provide an overview of optimization
problems occurring within the field of airport ground handling. Part II consists
of five individual scientific papers related to the topic.

Part I is divided into several chapters. Chapter 2 introduces the ground han-
dling and the role of ground handling service companies in modern airport oper-
ations. In Chapter 3 planning problems are presented using a general timeline.
The planning problems arising in ground handling are presented in the con-
text of the timeline. Chapter 4 considers demand modeling, as well as topics
in assigning a workforce to demand. Chapter 5 introduces problems and mod-
els for workforce planning and scheduling. Chapter 6 presents operational and
dynamic problems with a review of literature relevant for problems arising in
airport ground handling. Finally, Chapter 7 present the papers that constitute
the second part of the thesis and Chapter 8 contain the conclusions of the thesis
and directions of further work.

Part II contains the five papers that constitute the major scientific contribu-
tions of this thesis. Paper A presents a construction heuristic for the shift
design problem, in which shifts must be created to cover a given demand as
well as possible. Paper B presents a local search algorithm for the shift de-
sign problem in a generalized context, where the objectives and constraints are
specified using a varying set of rules. Paper C presents an algorithm for dy-
namically dispatching vehicles transporting baggage for transfering passengers.
Paper D presents a two-stage algorithm for scheduling a heterogeneous fleet of
service vehicles for transporting passengers with reduced mobility through an
airport. Finally, Paper E presents a branch-and-bound algorithm for a variant
of two-dimensional packing with applications in seat reservation.

The layout of the papers follow the style of the remainder of the thesis, but the
papers are otherwise sought to be as close to their most recent form as possible.

8 Introduction

Chapter 2

Introduction to Airport

Ground Handling

Modern airports are centers of transportation that service a large number of
aircraft and passengers every day. Statistics from London Heathrow (one of the
world’s busiest airports) report more than 450,000 annual flights transporting
more than 65 million passengers [99], which is slightly less than 1300 flights
and 185,000 passengers per day on average. To facilitate this large volume of
transportation, airports are subject to many logistical and decision problems
that must continuously be solved to make sure each flight and passenger travels
safely and efficiently through the airport.

Airports are an important part of the infrastructure in modern society. In par-
ticular, airports combine two prevalent modes of transportation, land-based and
air transportation. According to Ashford et al. [6], the successful operation of
any airport must balance the interaction of air transportation’s main compo-
nents:

• The airport operator

• The airlines

• The passengers

10 Introduction to Airport Ground Handling

In most airports, decisions are made in a hierarchical fashion, where infrastruc-
ture resources and flights are planned first, leaving the scheduling of ground
handling tasks to react to decisions and related changes. This hierarchy can be
the result of a separation of responsibilities following de-regulation, limitations
in current planning capabilities or simply historical conventions. Nevertheless,
the ground handling area is often in the position of having to react not only to
individual disruptions but also to compound disruptions caused by a combina-
tion of many airport and airline decisions.

2.1 Airport Planning Problems

In this section, we review the layout of a typical airport and some of the planning
problems which arise at different levels of the airport planning hierarchy.

Figure 2.1 illustrates a typical layout of a modern airport. Airports consist of
one or several terminal building, which contain public and restricted passenger
areas. Public areas, which are accessible from the street, holds check-in counters,
service desks, and so on. Restricted areas are only avialable through security
security areas and holds lounges, shopping facilities, and a series of gates, which
passengers pass through to board the airport. Some terminals use piers to
extend terminals and increase the number of gates. The walking distances from
the center of a terminal (where the recreational areas are usually located) can be
significant, particularly with the use of piers. From the gate, the passengers may
be able to walk directly into the flight, if the gate is equipped with a walkway.
If not, they must walk to the flight across the stand where the aircraft is parked.
In some cases, the flight may be parked at a remote stand, which is not adjacent
to the terminal. In this case, the passengers must be transported by bus to and
from the gate. The combination of adjacent / remote stands and availability of
walkways varies from airport to airport. Due to capacity problems, some major
airports have a significant number of remote stands [101]. Finally, airports
house a number of auxiliary facilities to accommodate baggage handling, airport
security, crew quarters, cargo, maintenance, etc. These facilities may be located
in terminal buildings or in separate structures within the airport grounds.

The airport’s operating hours may vary as some airports or operations within
the airport operate continuously in 24/7 operation [21], while others do not
operate at night [90].

Scheduling the use of runways for aircrafts to and from the airports is modeled
by the aircraft landing problem which schedules the order of landing aircraft [13,
102] and the related aircraft departure problem which considers departures [7].

2.1 Airport Planning Problems 11

Terminal 1

A

BC

Public Area

Terminal 2

D

E

Ramp Area

Gates

Remote Stands

Adjacent Stands

F
a
ci
li
ty

Figure 2.1: Schematic of airport with two terminal buildings T1 and T2, with
piers A–E. The ramp area contains adjacent and remote stands, as well as aux-
iliary facility buildings. Public areas within terminals house check-in counters,
service desks, etc.

12 Introduction to Airport Ground Handling

The stand allocation problem determines stands for aircraft in order to minimize
passenger walking distance [10, 56], to avoid congestion on taxiways [30] or to
minimize the effects of delays in the form of waiting aircraft or relocations [43].
Other planning problems with focus on airport infrastructure include scheduling
baggage conveyor belts [1] and the allocation of check-in counters [34, 47].

Common for all these problems are that they consider fixed airport resources,
some of which are denoted terminal resources by Dorndorf [45], or infrastructure
resources. As many airports operate at high capacity, efficient scheduling of
these resources is increasingly important.

A second source of planning problems in airports is airlines. Each airlines flight
schedules determine the activities at the airport, and are typically updated for
each six month season. Minor updates to flight plans are made regularly and
re-timings are done dynamically to minimize delays [67]. For airports that
serve as airline bases, maintenance must be planned for the aircraft at regular
intervals [3].

Some recent literature consider scheduling problems that cross the decision hi-
erarchy by combining stand allocation with other areas of planning, such as
workforce scheduling [90] and bus transportation [42]. In this text we consider
ground handling from the perspective of a third-party service provider, which is
not affiliated with the airport operator or a resident airline. For this reason, we
do not include fixed terminal or infrastructure resources on our considerations.

2.2 Ground Handling

Ground handling is a common term to describe tasks that are performed at or
around aircraft while the aircraft is on the ground, or otherwise relating to the
aircraft’s arrival or departure. This can include technical operations, such as
refueling, or more service oriented work, such as check-in counter manning.

Ground handling work is commonly divided into ramp (or apron) tasks and
terminal tasks. Figure 2.2 illustrate an overview of tasks occurring in ground
handling, from the terminal and ramp perspectives. For an in-depth description
of the tasks and processes involved in ground handling, see Ashford et al. [6].

Ramp tasks take place on the stands where aircraft are parked while they are on
the ground. These tasks include handling the aircraft at the stand - pushback,
power supply, etc. Other common ramp tasks include aircraft cleaning, toilet &
water, catering, and baggage loading and de-loading, as well as transportation

2.2 Ground Handling 13

Figure 2.2: An illustration of tasks related to a flight. Terminal tasks (horizon-
tal) are performed within the terminal for each passenger upon departure (left
of column) and arrival (right of column). Ramp tasks (vertical) are performed
while the aircraft is on the ground.

of passengers, baggage and cargo to and from the aircraft.

The teams performing the tasks will travel from task to task using vehicles.
Major airports span a sizable geographical area that includes many stands and
often multiple terminal buildings. For some examples of optimization problems
relating to ramp work, see [31, 32, 59].

Terminal tasks are performed within the terminal buildings, and are usually cen-
tered around passenger service. Tasks in this category include manning check-
in counters, boarding and de-boarding assistance. These tasks are performed
within the terminals, in or adjacent to passenger areas. Examples of terminal
work include [23] and [92]. Although tasks in passenger services are usually
limited to the confines of a single terminal building, the travel distances can be
significant [90].

Due to historical developments and economical consolidations, ground handling
service providers are rarely small independent companies which provide a single
service. Commonly, these divisions will handle multiple areas of service and
be linked to similar divisions providing other services within the same airport
or similar services at other airports. Ground handling operations are often
handled by divisions of the airport management [42], one of the resident airline
companies [88, 23, 76], or a large international service company [59].

14 Introduction to Airport Ground Handling

The structure of subsidiaries and service companies is the result of de-regulari-
zation and privatization laws. Previously, many airports and airlines were state-
owned, naturally causing the ground handling operations to be performed by a
division of either the airport or the airline. More recently, the de-regularization
has caused other service providers to enter the venue and it is common to have
two or three service companies for many ground handling activities in the air-
port, each servicing a different set of airlines.

Most ground handling work is performed by service companies that are sub-
sidized to handle the operations of one or more airlines at the airport. Each
service company may offer a specific range of services, causing each airline to
have several ground handling companies servicing the aircraft in various ways.
For example, one company may handle check-in while another company handles
refueling. Service operations are economies of scale, so ground handling com-
panies will often provide several ground handling services to stay competitive.
This may either be several types of services at the same airport, the same type
of service at different airports, or both. See for example Brusco et al. [23] or Ho
and Leung [59] for examples of planning in ground handling for multi-facility
operations. To fully achieve the benefits of combining operations, it is essential
to utilize cross-operational planning, particularly with similar operations within
the same airport.

Chapter 3

The Planning Horizon

In this chapter we review a general model of planning problems and how they
are linked with regard to the time of decision making and the level of detail they
consider. In the final part of this chapter, we introduce a model of planning and
decision making for ground handling operations and use the model to motivate
the following chapters.

The planning timeline is introduced in Section 3.1 and the connection between
the planning horizon and levels of detail is presented in Section 3.2. Finally, a
planning horizon model for ground handling is presented in Section 3.3.

3.1 The Planning Timeline

Planning problems exist in a large variety, spanning many different industries
and applications. Depending on the industry and application, the information
available may vary. So may the complexity of carrying out the decisions made
when solving the planning problem. Some planning problems may require the
solution to another planning problem, dictating that some problems should be
solved before others. As an example, consider two decisions that need to be
made within a company:

16 The Planning Horizon

Figure 3.1: Planning timeline

1. What are the goals for the next ten years?

2. What should be done tomorrow?

These are very different questions that will have very different answers.

The first question asks the decision maker to generate a long-term strategy for
the company. The second asks for a detailed plan for the following day. The
problems operate on different levels of abstraction and complexity, and have
different requirements to the time used to solve them. The long term question
will probably need a series of meetings with top executives to formulate an
answer.

The second question must be answered before the next day starts and it is
unlikely that the top executives can spare the resources to contribute to the
solution. Nevertheless, the two problems are related. The executives would
expect the daily plans to adhere to the strategy they have formulated. Naturally,
if this is to happen, the long-term problem should be solved before the short-
term problem.

It is typical to classify planning problems according to the temporal depen-
dencies between them. Long-term problems are denoted strategic, mid-term
problems are denoted tactical and planning problems that deals with an actual
day is denoted operational or real-time. For operational and real-time problems,
the day they model is denoted the Day of Operation. Figure 3.1 illustrates the
temporal dependencies of the problem categories and their comparative distance
to the day of operation.

3.1 The Planning Timeline 17

3.1.1 Strategic Planning

In this model, strategic planning occurs farthest from the day of operation
and is mainly concerned with long-term decision making. We define for this
purpose strategic planning as decision making that significantly modifies the
size and composition of the workforce. Strategic applications include contract
bidding, scenario analysis, and determining the workforce for a new operation.
The demand modeling step is considered strategic when designing engagement
standards and service levels for new operations or new contracts.

For ground handling operations, such decisions may include hiring or firing
personnel, equipment acquisitions and scenario analysis for bidding on new con-
tracts.

3.1.2 Tactical Planning

Tactical planning is concerned with planning problems closer to the day of
operation. Problems in this category may generally be viewed as problems
that determine availability on the day of operation from a pool of resources that
has been fixed during the strategic planning phase.

Tactical planning considers planning for a workforce where the size is predeter-
mined. This step is by some references referred to as workforce scheduling [48].
A typical scenario of tactical planning is to create rosters for a running opera-
tion that covers a future time period, such as next month or next season. In our
model, tactical planning then covers rostering and may include parts of shift
design and staff management. When rostering for a new season, an updated
flight schedule can cause changes to the demand, which may require additional
demand modeling and thus includes this step as well.

3.1.3 Operational Planning

Operational planning generates detailed execution plans for the day of oper-
ation. At this step, the demand and the resource availability is fixed. The
problem is then to assign the work to individual resources as efficiently as possi-
ble under the conditions specified by the previous planning steps. This usually
means performing as many tasks as possible with the available personnel, while
ensuring that all operational constraints are satisfied.

18 The Planning Horizon

Operational planning covers decisions specific to a day of operation, which in
this context mainly covers daily planning problems in task scheduling. These
may be calculated at the beginning of the day, or within a few days of the day
of operation. Some staff management decisions may be viewed as operational,
such as shift swaps, sickness and overtime handling.

3.1.4 Real-time Planning

In the final phase, real-time planning is concerned with adapting an existing
plan for the day of operation to handle disruptions that may occur during the
day.

Finally, real-time (or dynamic) planning reacts to events occurring during the
day of operation, which in this model occur solely within task scheduling.

3.2 Planning and Levels of Detail

The planning timeline is a useful planning tool for several reasons. First, it illus-
trates the tendency that some decisions are naturally made before others, such
as determining the size of the workforce (strategic planning), before determining
how the workforce should be applied (tactical and operational planning).

A second useful aspect is the fact that reliable information becomes available at
different times throughout the planning horizon. This tendency is of course most
visible in real-time planning, where actual events deviates from their expected
behavior. Another example is determining vacation and other absences such as
training for individual workers. These decisions are typically made relatively
close to the day of operation, in contrast to general decisions on managing the
workforce, such as hiring or firing employees, as employee vacation wishes are
collected.

As the day of operation approaches, more and more unknown factors become
known. This increases the level of detail that should be modeled in the prob-
lems. The additional factors stem both from decisions arriving from external
sources (such as vacation wishes), but also from an increased need to consider
the context of the planning. As an example of this, consider the problem of
designing weekend schedules for workers. Such a problem may be computed for
a monthly planning horizon, but any restrictions on the placement of weekends
may overlap with the previous planning period. If no two working weekends can

3.2 Planning and Levels of Detail 19

Figure 3.2: Expected trade-off between running time and level of detail. The
level of detail increases as the day of operation approaches (solid axis and line),
while the available computational time decreases (dashed axis and line).

be placed in a row, for instance, work in the final weekend of planning period
p−1 and work in the first weekend of period p will violate this constraint. Such a
constraint can only be expected to be satisfied if the context determined by the
previous planning period is also considered. There is usually a direct trade-off
between the available level of detail and the computational time available. This
is illustrated in Figure 3.2.

In general, the implicit or explicit planning period will be shortened as the day
of operation approaches. Decisions made in strategic planning may affect the
organization for years to come, while planning for the day of operation will only
affect the day itself.

20 The Planning Horizon

Strategic

Tactical

Operational

Real-time

Demand
Modeling

Shift
Design Rostering

Staff
Mgmt.

Task
Scheduling

Figure 3.3: Problems in the ground handling planning model with references
to the planning timeline. Demand Modeling and Shift Design may be viewed
in a strategic or tactical context. Rostering is only considered for a predeter-
mined workforce, which we consider tactical planning. Staff Management may
be considered tactical or operational. Finally, Task Scheduling contains aspects
of both operational and real-time planning.

3.3 A Ground Handling Planning Model

With reference to the planning timeline of Section 3.1, we can present a ground
handling planning model, which conceptualizes the steps and planning flow of
planning and scheduling in airport ground handling. The steps of such a plan-
ning model also reflect how and when different levels of detail are introduced
to the planning process. The ground handling planning model is presented in
Figure 3.3.

The planning model provides the basis for this presentation on workforce schedul-
ing. It illustrates the specific steps observed within airport ground handling, and
forms the basis of the review of specific problems in Chapters4.1, 5 and 6, as
well as the papers introduced in Chapter 7. The different steps should not be
considered as isolated problems. The output of one problem provides input to
the subsequent problems. A a feedback loop may be imagined between each
step, such that a step can be revisited to change the conditions for later steps.
For example, if a problem is rendered infeasible, or if more robustness is desired.

The planning timeline division into strategic, tactical, operational and real-time
planning can be combined with the decision-step based ground handling model
as illustrated in Figure 3.3.

3.3 A Ground Handling Planning Model 21

The main steps of the planning model are presented briefly in the sections below.
We will focus on particular steps of the model, which are presented in detail in
later sections.

3.3.1 Demand Modeling

Demand modeling is concerned with determining the amount of work that must
be performed. Demand modeling is described in detail in Chapter 4.

3.3.2 Shift Design

Shift design is the problem of computing a set of shifts to cover the demand,
which was determined in the previous step. The shift design step can be viewed
as strategic when used to determine the minimum workforce size for an opera-
tion. When the size of the workforce is fixed, the characteristics of the workforce
are added as constraints to the shift design problem, which can then be con-
sidered a tactical problem. We review shifts and the shift design problem in
Section 5.2

3.3.3 Rostering

Rostering (or workforce scheduling) is the process of combining shifts into
stretches of shifts and rest days to comply with labor regulations, fairness con-
siderations, etc. We consider rostering in Section 5.3.

3.3.4 Staff Management

Staff management is the process of handling the work details of individual em-
ployees. The main part of this process is assigning employees to roster lines
(thus detailing their work schedule), but may also include holiday considera-
tions, the scheduling of training programs and shift bidding, sick leaves, etc.
The area of staff management has not been an object of study in this thesis, so
we will not consider it further. We refer to the survey by Ernst et al. [48] for a
review of problems relating to staff management.

22 The Planning Horizon

3.3.5 Task Scheduling

Task scheduling assigns tasks to shifts (which may in the broad sense include
teams, equipment, or resources) for execution on the day of operation. Task
scheduling include both operational and real-time problems. Both problem
types are discussed in details in Chapter 6.

Chapter 4

Demand Modeling

In this chapter, we review aspects of the representation of work, or demand. An
aggregated demand representation is reviewed in Section 4.1. Various types of
demand are discussed in Section 4.2. The distribution of staffing is discussed in
Section 4.3 and aspects of heterogeneous demand is presented in Section 4.4.

4.1 Aggregated Demand

Manpower planning uses an aggregated description of work that is used to make
high-level decisions. For long-term planning in airports, it is common to model
the work to perform using demand curves [46, 58]. An example demand curve
for a single day is presented in Figure 4.1. For each time slot t an integer value
dt specifies the number workers required for the time slot.

These curves are commonly denoted workload or the (forecast) demand. The
workload specifies the number of workers required during each time slot through-
out the planning period. The demand curve representation is common in other
applications in the service industry as well, such as call center manning [74, 81]

In airports, the majority of the demand is tied to the arrival or departure of
flights, which leads the demand curves to retain traits of the airport’s flight

24 Demand Modeling

Figure 4.1: Example demand curve for a day of planning. For each time slot
from 0 (midnight) to 24 (midnight) a number of required workers is specified

schedule. Many airlines have a tendency to group their flights into “banks”
with many arrivals and departures within a short time, divided by intermediate
periods of relative calm [67]. The banks cause the ground handling workload
to fluctuate as well, causing large variations in staffing requirements from one
time slot to the next [23].

More recent planning work in airports tends toward de-banking, i.e. spread-
ing arrivals and departures more throughout the day [79]. The main focus of
de-banking considerations are minimizing aircraft delays, which is another con-
sequence of banked airline operations, but this will invariably have effect on
ground handling operations as well.

For the purposes of the discussion in the remainder of this chapter, we consider
the demand curve representation to be fixed as the method of representing work,
as this is the representation that fit the proposed planning model of Section 3.3.
Although this representation is widely used in ground handling and other service
sectors, other approaches have been used as well. Herbers [58] propose a task-
based workload representation and considers the shift design problem on the
task-based workload [57]. Quimper and Rousseau [85] consider a shift scheduling
problem that use a demand formulated on activities.

4.2 Demand Estimation 25

4.2 Demand Estimation

Models that use a demand curve representation of the work to fulfill, can in
their basic form be presented as a variant of the original shift scheduling model
proposed by Dantzig[39]:

min f(x) (4.1)

s.t.
n
∑

i=1

Aitxi ≥ dt 1 ≤ t ≤ T (4.2)

xi ∈ {0, 1} (4.3)

The model minimizes a cost function over the vector x of decision variables,
where each xi contributes to the demand dt at time slot t if xi = 1 and Ait = 1.
A is a matrix of constant entries, A ∈ {0, 1}n×T . The demand dt is integer.

From the perspective of the demand model (4.1)–(4.3), the problem of demand
estimation is simple to formulate: Which value of dt, 1 ≤ t ≤ T best describe
the actual workload. The demands must be feasible, i.e. allow work schedules
that cover the entire demand to perform all inherent work. Several demand
representations can be feasible for the same amount of work and in this case it is
desired to obtain a representation that can be covered with greatest efficiency, for
example by containing the least units of demand, having the fewest fluctuations
or satisfying some other property.

4.2.1 Sources of Demand

Estimation of the demand can be done in a variety of ways, which depend on
the source of the demand. Some examples are given in the following.

Most ground handling work stems from tasks, which specify contiguous and
isolated periods of work in a limited period of time. Tasks are usually obtained
by combining the flight schedule with engagement standards which specify the
type and volume of required work for each type of flight [58]. A collection of
tasks may be converted into demand levels dt by superimposing the tasks, i.e.
adding all tasks covering each time unit.

For individual items which are handled identically, such as passengers and bags,
it is common the use forecasts, which detail the expected number of items to
arrive at different times. An example of this is the expected arrival times of
passengers at check-in counters [92], which can be derived from the flight’s de-
parture time, destination, number of passengers, etc. Forecast can be derived

26 Demand Modeling

from advanced methods, such as queuing models. Lin et al. [74] use a combi-
nation of simulation and regression analysis of historical data to determine the
demand for a call center. Mason et al. [77] use a greedy heuristic for minimizing
demand for airport customs officers, while using simulation to ensure feasibility.

Static workload represents work that is predetermined by service contracts,
rather than depend directly on passenger volume or flight movements. An ex-
ample of this type of demand within an airport is the manning of service desk
counters [23].

The main advantage of representing demand as individual dt units is that de-
mand stemming from all sources can be represented in this way. This means
that it is easy to combine demand from different sources, or to use the same
model for different operations. Using demand curves to represent task-based
workload is an abstraction of the tasks considered in operational planning. This
means that a number of dimensions of the underlying tasks cannot be modeled,
including transportation times and time windows. We consider these special
cases in the following.

4.2.2 Demand with Flexibility

When transforming work specifications into the demand curve representation,
the essential decision is to decide which time slot should contain which unit of
work in order to best represent the underlying demand. In the simplest terms,
any demand can be added together to form a greater mass of workload. This
works well when there is no flexibility in the underlying demand, such as when
the demand is a set of stationary tasks or a forecast demands.

When the demand is more complex, some decisions must be made to create
the workload, leading to the demand transformation becoming optimization or
modeling problems in itself.

For tasks with time windows there is a flexibility in determining the execution
time of the task. Transforming the demand into the demand curve, the flexi-
bility and time windows disappear, so the placement of tasks will influence the
subsequent planning problems. The problem of placing the tasks to generate a
workload as smooth as possible is known as the resource leveling problem and
is well-known from project planning [18].

Alfares and Bailey [5] present an integrated approach of project task scheduling
and manpower scheduling where the workload profile can be changed by altering
the start time, duration and worker assignments of each project task. A variant

4.2 Demand Estimation 27

of this can be observed in ground handling, when several close flights can be
handled by the same crew by an optional or mandatory merging of tasks.

4.2.3 Demand from Transportation Problems

The planning and scheduling of personnel in transportation problems is well-
studied in the literature. The scheduling and rostering of airline crew has in
particular been subject to a high degree of interest, see for instance Hoffman
and Padberg [60], Vance et al. [100] and the more recent survey by Kohl and
Karisch [66]. Similar problems arise in the scheduling of railways crew [26] and
bus drivers [104]. Common for these problems is that a task starts in one lo-
cation and ends in another after a period of time, and both time and space
considerations limit a crew members ability to perform other tasks. Demand in
transportation problems are often considered as time/space networks. Schedul-
ing and rostering problems for transportation crew are usually done by deter-
mining paths through the network, corresponding to the assignment of crew
members to specific transportation legs.

In ground handling, many work types have an element of transportation as well,
because work is centered around terminal or ramp locations, such as check-in
counters, gates, aircraft stands, etc. As the allocation to these resources change
throughout the day, the personnel travel between the locations to perform their
tasks. An approximation of the transportation times can be modeled by ex-
tending each task with an average transport time. This may be sufficient when
the transportation times are not significant, or if the times are largely similar.

If transportation times or other interdependent work characteristics are sig-
nificant, determining feasibility is a bigger problem. A simple approach is to
aggregate the demand into average capacities, such as “x demand items per
hour”, which by simple calculations can provide an approximate workload, which
bounds the workload at each time period. This essentially considers transporta-
tion volume as a forecast workload.

An alternative is to use a simulation approach to determine a suitable demand.
The simulation approach presented in Paper C of Part II for the baggage dis-
patch problem, could for example be extended to produce a demand curve.

28 Demand Modeling

4.3 Distributing Staffing

In the earliest references of shift scheduling, such as the set covering model (4.1)–
(4.3), the demand per time unit was considered as constraints that must be met.
Failure to meet the demand would result in an infeasible solution. The total
cost of used shifts was minimized, thus implicitly minimizing surplus worker
time units (overstaffing) as well. No care was given to the placement of the
overstaffing, if any.

More recent references consider problems where the deviance of staffing from
the demand is of interest. In these papers, the demand is sometimes denoted
the target demand to emphasize that the specified levels are desired, rather than
required.

In more recent literature, there are a number of references which deal with
deviations from the target demand in different ways. Reasons for doing so
include limitations on the availability [93], employee satisfaction in making all
time slots “equally busy” [23], and increasing robustness by distribution the
ability to absorb changes [76].

In some cases it may be desirable or unavoidable to consider understaffing,
i.e. shortage of manpower, as well. This may be the case when the size of
the workforce is fixed, as noted by Bailey [11]. Bailey proposed a model for
this case, where understaffing is considered a “customer inconvenience” and
receives a linear penalty depending on the time of the occurrences. Quimper
and Rousseau [85] describe the cost of unperformed activities as opportunity
costs, implying that it may be beneficial to avoid performing some activities.

Model (4.4)–(4.6) introduce a generalized model which extend the set covering
model (4.1)–(4.3).

min αc · f(x) + αu · Φu(u) + αo · Φo(o) (4.4)

s.t.
n
∑

i=1

Aitxi + ut − ot = dt 1 ≤ t ≤ T (4.5)

xi ∈ {0, 1} (4.6)

The objective function (4.4) is a weighted sum of three terms, cost, understaffing
and overstaffing, using weights αc, αu and αo. The functions for understaffing
Φu(u) and overstaffing Φo(o) is a generalized representation of the cost associ-
ated with the staffing deviances. To simplify the model, we use the vector vari-

4.4 Heterogeneous Demand 29

ables u = (u1, . . . , uT) and o = (o1, . . . , oT) for understaffing and overstaffing in
the objective. Constraint (4.5) balances the occurrence of shifts, understaffing
ut and overstaffing ot with the demand dt at each time unit 1 ≤ t ≤ T .

The method of pricing understaffing and overstaffing represented by the Φu

and Φo functions vary significantly in the literature. An overview of different
approaches is given in Table 4.1. We describe some of the approaches in more
detail in the following.

The simplest method is to penalize understaffing linearly, imposing an identical
cost for each unit of understaffing and overstaffing. This approach, used by e.g.
Thompson [95] and Musliu et al. [81] directs staffing levels to reach the target
demand, but do not consider the distribution of understaffing or overstaffing
across time.

Brusco and Johns [24] consider a two-stage approach that in the second step
minimizes the maximum ratio of demand to overstaffing. Dowling [46] squares
the overstaffing at each time unit. Chu [32] minimizes the maximum overstaffing.

Thompson [94] describes a model where different staffing levels can provide
different levels of (acceptable) service, and thus generate varying profit levels,
denoted Net Present Value (NPV). A unique cost is associated with each unit
of overstaffing, reflecting the marginal profit of providing better service.

Keith [65] used a bounded and an unbounded variable for both overstaffing and
understaffing (yielding four variables per time unit in total), where the bounded
variables have lower penalty than the unbounded. The bounded variables create
a “band” of acceptable (though still undesired) deviances from the ideal staffing
levels.

Lusby et al. [76] adds an additional contingency demand, taken as the maximum
of the previous time unit’s demand and 15% of the time unit’s original demand.
The contingency demand can be left uncovered at a lesser penalty then the
regular demand.

4.4 Heterogeneous Demand

In large organizations it is common for employees to be divided into different
groups. If the groups are dissimilar enough, they can be considered in sepa-
rate planning problems. However, there is often sufficient overlap between the
employee groups to require that they are scheduled together.

30 Demand Modeling

Type Example Reference Φu(u) Φo(o)
Constrained Dantzig [39] ∞ -

Lin [74]
- ut < u′

t

∞ ut ≥ u′
t

- ot < o′t
∞ ot ≥ o′t

Linear Thompson [95]
T
∑

t=1
ut

T
∑

t=1
ot

Time-dependent Bailey [11]
T
∑

t=1
Γ(t) · ut -

NPV Thompson [94] ∞ −
T
∑

t=1

ot
∑

i=1

Γ(i, t)

Banded Keith [65]

T
∑

t=1
ut, ut ≤ u′

t

T
∑

t=1
ut, ut > u′

t

T
∑

t=1
ot, ot ≤ o′t

T
∑

t=1
ot, ot > o′t

Lusby [76]
T
∑

t=1
ut

−
T
∑

t=1
ot, ot ≤ o′t

- ot > o′t

Quadratic Dowling [46]
T
∑

t=1
(st − dt)

2

Paper B
T
∑

t=1
u2
t

T
∑

t=1
o2t

Ratio Brusco [24] ∞
T
∑

t=1

(

st
dt

)

McGinnis [78]
T
∑

t=1

(

st
dt

)2

-

Max Chu [32] ∞ max
1≤t≤T

{ut}

Table 4.1: Examples of schemes for distributing deviances from the target de-
mand dt. The value st is the number of active shifts at time t and ut and ot
are the units of overstaffing, respectively. Some models use preset limits o′t and
u′
t, or a function Γ, which depend on its parameters. When several formulas

are given for the same type, different weights are implied. Formulas using o′t
and u′

t are weighted lower than their unbounded counterparts. Note that some
formulas are negative, indicating a gain rather than a penalty. The value ∞
means that any amount is infeasible by a constraint and - means that amounts
of the type is ignored.

4.4 Heterogeneous Demand 31

In the most simple case of a heterogeneous workforce planning, employees are
working under different contracts but are otherwise identical. This is commonly
observed when the company employs both fulltime and part-time workers. The
sets of constraints for different contracts can be completely parallel, such that all
contract types have the same (full) set of constraints, but with different values,
see e.g [20].

The capabilities of employees in the workforce may also differ. Due to seniority
or different levels of training, not all employees are equally productive [96]. More
experienced staff may be able to perform more advanced tasks in addition to
the basic work. See e.g. [61] and [16] for further on the so-called hierarchical
workforce problem.

More generally, the workforce may be multi-skilled [75] in which the workforce
is divided into several types of capabilities. In the modelling of multi-skill work-
forces, the degree of overlap between skills in the workforce lie somewhere in
between being completely separate (in which case the groups could be scheduled
separately) and completely homogeneous.

To describe the level of cohesiveness between requirements r ∈ R and qualifica-
tions (capabilities) q ∈ Q we can use the interaction level int:

int =
∑

q∈Q

|{q | q → r}|
|Q| , (4.7)

where q → r denotes that qualification q ∈ Q can cover requirement r ∈ R.
The interaction levels calculates the average number of requirements covered
per qualification. The interaction level is introduced in Paper A.

A key difficulty in modeling technical personnel is that seemingly similar tasks
may require many different combinations of workers or resources [17]. This
is particularly true in airports, where different aircraft can require different
equipment, or may require different forms of service, and different airlines can
have unique requirements [59, 71, 91].

During check-in and boarding, some airlines require that check-in personnel
wear the uniform of that particular airline. Computer terminals in check-in
may vary from airline to airline, thus requiring specialized training. Specific
language skills may also be a requirement for certain flights.

On the ramp, not all types of aircraft may be compatible with any type of vehicle
or equipment. Thus, some lifts, loaders or pushback vehicles may only be able
to service certain aircraft. For cleaning, different airlines will have contracted
different levels of service for their fleet, or for specific flights. Certain parts of

32 Demand Modeling

the airport may be restricted and require special security access, that not all
personnel will have.

4.4.1 Heterogeneous Coverage

When workload for different skill combinations exist, they are modeled using
separate demand curves. Shifts may be able to cover work from more than one
workload. When this is the case, the shift can cover different workload at each
time period.

Calculating workload coverage may be seen as assigning segments of shifts to
units of workload. As a shift is free to cover different workload at different time
periods, the assignment can be made for each time period independently. For
each time period, all shift segments must either be assigned a suitable unit of
workload, or be assigned to cover nothing, which means overstaffing. Units of
workload where no shift piece is assigned will not be performed and will figure
as understaffing for workload of that skill.

In a homogeneous workforce, the assignment of (fixed) shifts, understaffing,
and overstaffing to the demand is trivial, as it is simply the evaluation of the
objective function of model (4.4)–(4.6). In a heterogeneous workforce the shifts
(and thereby understaffing and overstaffing) can be allocated to different parts of
workload. This means for an existing set of shifts, an assignment problem must
be solved to find the mix between overstaffing and understaffing of different
types. The heterogeneous workforce scheduling problem can be modeled by
augmenting the homogeneous model (4.4)–(4.6) as follows

min αc · f(x) + αu · Φu(U) + αo · Φo(O) (4.8)

s.t.
n
∑

i=1

Airtxi + Urt −Oqt ≥ Drt ∀r ∈ R, 1 ≤ t ≤ T (4.9)

n
∑

i=1

∑

r∈R

Airtxi +
∑

r∈R

Urt +
∑

q∈Q

Oqt =
∑

r∈R

Drt 1 ≤ t ≤ T (4.10)

xi ∈ {0, 1} (4.11)

In comparison to the homogeneous model, the vectors d, u, and o has been
replaced with matrices D ∈ N

|R|×T , U ∈ N
|R|×T and O ∈ N

|Q|×T . The re-
quirements r ∈ R represent a minimum set of skills required to cover a type of
demand. Demand and understaffing exist for each requirement r. Qualifications
represent the combined skills of a worker following shift i. The overstaffing ma-
trix O holds a separate value for each qualification. The objective function (4.8)

4.4 Heterogeneous Demand 33

is a weighted sum of cost and the generalized understaffing and overstaffing func-
tions Φu and Φo. It is identical to the objective function of the homogeneous
model (4.4), except that the understaffing and overstaffing vectors have been
replaced with two-dimensional matrices. Constraint (4.9) enforces staffing lev-
els for each requirement and constraint (4.10) links the staffing levels across
requirements and qualifications.

The problem of determining the right way of modeling deviances from the target
demand is naturally more complicated than in the homogeneous case, which has
had a number of different models, as seen in Table 4.1.

The simplest approach is to assign weights to each requirement and qualification
and assign staffing to minimize weights. A simple observation, which is used in
Papers A and B lends to the following hierarchy:

• If not all demand can be covered, the uncovered demand should be of
the lowest priority. This can reflect that it does not (to the same degree)
need to be covered, or that it will be easiest to find temp workers for this
workload.

• Overstaffing should occur for the shift pieces with the highest priority.
This allows key personnel to remain available for additional tasks of high
priority.

The observations provide ideas to extend the majority of the modeling ap-
proaches of Table 4.1 to the heterogeneous case. For the quadratic approaches,
an even distribution of staffing across requirements and qualifications may give
a lower objective value than assigning hierarchically. This is also discussed in
Paper B.

34 Demand Modeling

Chapter 5

Workforce Planning

The field of workforce planning in an organization is concerned with making
sure the organization’s workforce is capable of efficiently performing the work
specified by service contracts. There are many aspects of workforce scheduling,
ranging from large-scale decisions that affects the entire organization for years,
to very detailed decisions on a very specific area of execution. Objectives of
workforce planning problems include minimizing the cost of assigned workers,
observing employee preferences or fairness, maximizing service levels, as well as
many other considerations.

In this chapter, we give an overview of workforce planning and highlight some
of the optimization problems that arise within the area. The overview is pro-
vided in Section 5.1 and in the following sections, we review individual steps
of workforce planning in detail: The design of shifts is reviewed in Section 5.2.
Workforce scheduling and rostering is considered in Section 5.3,

5.1 An overview of Manpower Planning

Manpower planning is concerned with determining work schedules for workers,
in order to fulfill the demand. Following the time-dependent decision making

36 Workforce Planning

illustrated by the planning timeline, manpower planning can be subdivided into
a number of subsequent decision or optimization problems. In many organiza-
tions, decision making for manpower planning is a step-wise process where each
step covers higher levels of detail than the previous.

The subdivision of workforce scheduling problems has been noted by several
influential papers in the literature. In the survey by Baker [12] three problems
are cited: Day off scheduling, shift scheduling and tour scheduling. The first
determines the days without work (or analogously the working days) for each
employee. Shift scheduling determines a shift for each working day and tour
scheduling is the combination of the two problems.

Tien and Kamiyama [97] present a more elaborate five-step procedure:

1. Temporal Manpower Requirement. This step determines the number
of workers required at each time, by determining the type and number of
shifts to follow.

2. Total Manpower Requirement determines the total workforce size re-
quired to meet the demand

3. Recreation blocks determines the size and numbers of contiguous blocks
of days off, such as weekends.

4. Recreation / Work Schedule assigns the created recreation blocks to
specific placements within the roster, thereby creating a day off schedule.

5. Shift Schedule Assigns shifts to each of the work days determined by
the previous step, thereby producing a fully scheduled roster.

This subdivision illustrates the gradual introduction of details and decision vari-
ables into the decision making process. As also noted by Tien, the complexity
of each step will vary from application to application. In this thesis, step 1
is covered by demand modeling, presented in Chapter 4, step 2 is covered by
the shift design problem considered in Section 5.2 and in Papers A and B. The
remaining steps are covered by Section 5.3.

A more recent survey by Ernst et al [48] for rostering problems subdivides
workforce scheduling even further, into a set of modules where each application
of manpower scheduling includes all or a subset of the modules.

A common message of the aforementioned surveys is that although all workforce
planning and scheduling systems have common traits, the composition of a spe-
cific system depends on the application and must consider the organization and

5.2 Shifts 37

operation it targets. Mason et al. [77] consider several modules in an application
for staffing customs at an airport. Lin [74] describes a system for call center
staffing which also consider several modules.

Musliu et al. [80] consider a four-step framework for general workforce schedul-
ing, where each module generates a set of solutions which is passed to the next
step. As each subsequent steps has a set of solutions as input, the schedules
obtained at the end of the final step are improved.

5.2 Shifts

Shifts represent contiguous periods of work for a single worker, which start as
the worker arrives at the workplace and end when the worker leaves for home.
During the shift, a worker may perform tasks, move between tasks, hold breaks
or be idle. It is preferred to have the worker perform tasks. Transport between
tasks cannot be avoided and is part of the worker’s day, but can be minimized by
distributing tasks among workers in an efficient way. This is the main concern
of task scheduling problems, which are described in Chapter 6. Time spent on
breaks is mandatory and specified by labor regulations or union agreements.

The design and assignment of shifts can be subject to diverse set of constraints
as well. Basic rules cover the minimum and maximum shift lengths, the number
of breaks and their placement during a shift, minimum rest times between shifts
and a minimum and maximum number of consecutive workings days allowed
before the worker is entitled to one or more days of rest. Recent approaches use
methods from constraint programming to model the many constraints inherent
to workforce scheduling problems. See for example [37] and [85].

There can be a great variance in the flexibility of shift design. In some countries
or organizations, employees in the service sector (and hence airports) can be
subject to a large flexibility in their working hours, see e.g. [23] or [92]. A
special case of flexibility in working hours is the handling of overtime, which
may be paid as a supplementary salary or converted to additional rest time.
The annualized hours considered by Azmat [8] may be considered an example
of the latter, where the total number of working hours is fixed on a yearly basis.

Flexibility in starting times is usually considered across several days. A con-
strained set of starting time can replace the minimum rest time between shifts
considered in more flexible applications. For example, Jacobs and Brusco con-
sider a maximum variance on the start of shifts across consecutive days [64],
as well as an airport staffing application where the number of different start-

38 Workforce Planning

ing times is limited and a minimum gap between starting times must be ob-
served [20].

When designing shifts, a significant source of difficulty is in the flexibility of
the shifts. The higher degree of flexibility, the more difficult the problems will
typically be to solve. Introducing flexibility in starting times alone causes the
number of shift combinations to grow rapidly [90]. Most shift scheduling prob-
lems therefore consider a small set of possible shifts to ensure that the problem
is tractable [22].

The problem of creating shifts for the workforce to efficiently cover the demand
is known as the shift design problem. It is a complicated problem that aims
to cover the demand as efficiently as possible while observing the structure and
many restrictions of the workforce. The shift design problem is investigated in
Paper A where a dynamic programming heuristic is presented and in Paper B
where an adaptive local search metaheuristic is presented that uses a flexible
representation of workforce rules.

Other references have considered the shift design problem as well, using different
methodologies. Musliu et al. [81] present a tabu search algorithm for the shift
design problem. A tabu search algorithm is also used by Di Gaspero et al. to
solve the minimum shift design problem [40] in which the number of different
shifts should be minimized. Herbers [57] propose a branch-and-price approach
to solve the shift design problem on tasks and an improvement algorithm using
large neighborhood search based on constraint programming. The combination
of local search and constraint programming is also used by Di Gaspero et al.
for the combined shift and break design problem [41].

Workers are commonly entitled to a number of meal and relief breaks during
a shift. If there is flexibility in the placement of breaks, the decision of when
breaks should be held is often taken on the day of operation. It is not uncom-
mon for breaks to contribute significantly to the duration of the shift, so in
many operations the consideration of breaks is required for volume alone. The
placement breaks can be subject to a complex set of constraints, such as feasi-
ble location of the breaks, minimum or maximum working time between breaks
and settings where the number of breaks depends on the length of the shift.
Complex constraints on the placement of breaks are considered by for example
Rekik et al. [87] and in Paper A.

The break scheduling problem considers the placement of breaks within an ex-
isiting set of shifts. See e.g. Beer et al. [15] and Widl and Musliu [103] for
further details on break scheduling problems. A combination of shift and break
scheduling is considered by Di Gaspero et al [41], using a hybrid local search
and constraint programming approach.

5.3 Workforce Scheduling and Rostering 39

5.3 Workforce Scheduling and Rostering

Workforce scheduling is concerned with the assignment of workers to specific
working days and shifts, in order to cover the demand. Note that we gener-
ally assume the size of the workforce to be fixed, which is not assumed in all
references.

In the original model by Dantzig [39], workforce scheduling is modeled using a
set covering model:

min
n
∑

i=1

cixi (5.1)

s.t.
n
∑

i=1

Aitxi ≥ dt 1 ≤ t ≤ T (5.2)

xi ∈ {0, 1} (5.3)

The objective function (5.1) minimizes the cost ci of each active shift, indicated
by the decision variable xi. Constraint (5.2) enforces that the demand dt is
covered at every time t in the planning horizon 1 ≤ t ≤ T . The matrix entry
Ait is 1 if shift i is active at time t and 0 otherwise. Finally, (5.3) enforces that
all shifts are used at most once.

The basic model (5.1)– (5.3) can be extended in several ways. By setting Ait = 0
at times within shifts, breaks can be modeled. The planning horizon T can
be extended to consider several days, in which each column can describe the
activities of a worker through the planning horizon. In this way, constraints
such as rest time between shifts and the placement of days off.

Historically, work on workforce scheduling can be divided into three groups [12]:
(i) day off scheduling, (ii) shift scheduling and (iii) tour scheduling. Day off
scheduling considers only the distribution of work days and days off. Shift
scheduling determines the shifts to use on a single day. The model (5.1)–(5.3) is a
shift scheduling model. Tour scheduling consider both problems in combination.
Several surveys highlight workforce scheduling problems, for example Tien and
Kamiyama [97] and Ernst et al. [48]. For tour scheduling in particular, see [4].

A limitation of the above model is that it grows rapidly with the size and detail
level of the planning horizon, as well flexibility of the shifts. In particular the
flexibility of breaks can cause a huge increase in the size of the model, as each
shift must be represented in the model for any combination of break placements.

Several approaches have been taken to limit the size of the model. Some ref-
erences use delayed column generation to iteratively introduce columns to the

40 Workforce Planning

model. Since only a few of the many columns are used in the final solution, this
approach can significantly reduce the size of the model. See e.g. [57, 76]. Other
methods to reduce the size of the model include implicit formulations, where
the flexibility of shifts and (in particular) breaks is represented by special con-
straints, thus limiting the number of shifts. See e.g. [2, 21, 57, 87] for examples
of this approach.

A closely related problem to workforce scheduling is rostering in which the
goal is to produce a roster - a timetable of shifts and days off. Although the
problems are largely synonymous and consider the same types of objectives and
constraints, some circumstances are related directly to the roster.

Rosters are considered either named or anonymous. In named rosters, a specific
employee is assigned to each roster line during the roster construction. This
means that individual constraints and preferences can be taken into account.
Named rostering is mainly considered within health care, such as nurse roster-
ing[25].

In anonymous rostering, the employees are not assigned to roster lines until after
the roster is complete. This means that personal preferences are not considered
until after the rostering process, along with other personal considerations, such
as vacation planning. This simplifies the rostering process, which can be nec-
essary for organizations with a large workforce. Anonymous rostering is con-
sidered for most applications in the service industry, including airport ground
handling [57].

A special case of anonymous rostering is the use of cyclic rosters. In these
rosters, an employee does not follow a particular line in the roster, but moves to
the next line when a line is complete. Cyclic rosters are inherently fair, since all
employees will follow all lines. Although cyclic rosters are more complex than
individual line rosters, a compact roster is valid for many weeks of operation.
For examples of the use of cyclic rosters, see Brusco and Jacobs [19], Mason et
al. [77], and Felici and Gentile [50].

Chapter 6

Task Scheduling

In this chapter we review problems relating to task scheduling, where the de-
mand is considered as individual tasks with a high level of detail. Task schedul-
ing is the set of problems dedicated to assigning tasks to shifts. Ground han-
dling problems in this category are often solved close to the operation, and thus
constitute the final steps of the planning timeline of Section 3.1: Operational
problems and real-time problems.

Operational problems are concerned with the calculation of work schedules on
a specific Day of Operation, where the actual work takes place. To achieve
the maximum amount of detailed information, the operational problems are
calculated as late as possible, often at the beginning at the day of operation, or
at the end of the preceding day.

The related group of real-time problems is concerned with reacting to changes
that occur during the day of operation, by updating the existing schedules.

In the remainder of the chapter, we review the specific problems in further
detail. The modeling of the elements in task scheduling problems is presented
in Section 6.1. Aspects of operational planning in ground handling are reviewed
in Section 6.2 and real-time planning is reviewed in Section 6.3.

42 Task Scheduling

6.1 Modeling

In this section, we review the building blocks of the task scheduling problems:
Locations, Resources, tasks, and skills.

A location l represents a physical area within the airport, such as a check-in
counter, gate, aircraft stand or other area of importance to the operation. When
performing work, it is often necessary to move from location to location during
the day, which takes additional time. The time required to travel between two
locations l1 and l2 is denoted the travel distance, d(l1, l2).

A resource r represents a worker or a team of cooperating workers that is able
to perform specific types of work. The resource has a shift that determines
the start and end of the resource’s work period. The shift of each resource is
determined in previous planning steps, and is the result of shift planning or
rostering optimization problems.

During the shift, the resource may have a number of breaks, where work cannot
be performed. Associated with the shift are a location rl where the resource
must start and end the shift, as well as a location brl where the resource must
start and end its breaks.

A task represents a contiguous block of work to be performed by a single resource
(worker or team). A task t is represented by a start time st, duration dt, and
location lt. If there is flexibility in the time of the task, this is represented by a
time window (at, bt) that the task must be performed within, i.e. that at ≤ st
and et ≤ bt must hold. Travelling from one task to the next will usually also
mean changing location. When moving from location li to lj , a travel time tij
must be added to the schedule of the resource. Task tj cannot be started after
ti is complete if stj < eti + tij . If there is flexibility in the times of the tasks,
the tasks can be moved to accommodate the transport time, if permitted by the
time windows. If there is no flexibility, ti and tj cannot be performed by the
same resource.

A skill represents a singular capability of work that is associated with both
resources and tasks. A resource can have a number of skills that specifiy the
types of work the resource is able to perform. If the resource represents a team of
workers, the skills reflect the types of work the team is able to perform in unison.
Associated with a task is the set of skills required to perform the task. A task
can only be performed by a resource, if all skills required for the task is posessed
by the resource. The relationship between required (task) skills and posessed
(resource) skills can be complicated, similar to the multi-skill considerations for
workforce planning presented in Section 4.4.1.

6.1 Modeling 43

6.1.1 Transportation Problems

Although task scheduling problems are more similar in time and scope than
the class of manpower scheduling problems, there can still be a high degree of
variation, originating either from general problem aspects or from the additional
consideration of operational details.

A key factor in the general differentiation of task scheduling problems is the
impact of transportation time. Some problems are mostly stationary problems,
where the tasks are long and gathered within a small geographical area. This
means only a small time of a shift’s active time will be spent travelling between
tasks, and the coordination required for travelling is reduced. Such problems
can arise when manning check-in counters or service desks.

In other types of operations, the impact of traveling between tasks is greater. In
these types of operations, the workers will spend more time traveling between
tasks. Also, the tasks themselves are shorter, allowing the workers to perform
more tasks during a shift, with more transport segments as well. Many ramp op-
erations fall in this category, including aircraft cleaning, toilet & water services
and catering. Problems in this category are similar to Vehicle Routing Problems
in the literature. Solution methods to this kind of problem are typically inspired
by this kind of literature.

Finally, other problems are almost purely transportation problems, where the
stationary part of the work is minimal compared to the transport segments.
This includes problems such as delivery of baggage, cargo, or transportation of
passengers. These kinds of problems are naturally related to vehicle routing
problems as well. Some problems are based on richer vehicle routing problems,
such as pickup and delivery problems or multiple trip vehicle routing problems.

6.1.2 Mobile Workforce Scheduling

Many aspects of ground handling work contain a mix of transportation time
between different locations and stationary work. Scheduling problems on this
type of work is denoted mobile workforce scheduling. In airports, the geographi-
cal dispersion of tasks is limited. While the transportation times between tasks
can be significant, they rarely exclude large enough portions of the remaining
work to motivate using time/space networks used in the pure transportation
problems, such as airline . In addition to airports, mobile workforce arise in
the utility [53] and telecommunication [17] sectors. As noted by Borenstein et
al [17], mobile workforce scheduling can be viewed as a combination of vehicle

44 Task Scheduling

routing and resource constrained project scheduling.

The literature of vehicle routing problems (VRP) is rich with examples of dif-
ferent application areas and operational constraints, see for instance Toth and
Vigo [98] and Golden et al. [54] for references. The main concern of the VRP
and variants is the performance of the scheduled fleet of vehicles, so the main
objectives of these problems are minimizing the number of vehicles and the total
travel length, as these are the direct contributions of the overall transportation
cost.

In contrast, the resource constrained project scheduling problem (RCPSP) is
concerned with the distributions of activities to resources such that all activi-
ties are performed as efficiently as possible while satisfying constraints on the
precedence of activity completion and the capacities of individual resources. See
e.g. [68] for a details on the resource constrained project scheduling problem.
The most common objective for RCPSP is to minimize the makespan, i.e. the
total time required to perform all activities.

A number of project scheduling variants have been considered in the literature,
with varying objective functions and constraints. See e.g. [18] for an overview of
project scheduling variants. Compared to vehicle routing, project scheduling is
more concerned with the scheduling of tasks and do not consider transportation
times. As noted by Borenstein et al. [17], the need of transportation consid-
erations makes VRP the preferred reference for mobile workforce scheduling
problems.

Cowling et al. [38] consider a mobile workforce scheduling problem as a gener-
alization of the RCPSP in which some activities can be left unperformed.

Other problems related to mobile workforce scheduling include the manpower
allocation problem in which workers mare assigned to jobs (or vice versa), and
the team orientation problem in which team members cooperate to visit as many
destinations as possible. For examples of the manpower allocation problem, see
Chu and Lin [33], Lim et al. [73] or Li et al. [72]. For details of the team
orienteering problem see Chao et al. [28].

6.2 Operational Optimization

For operational scheduling problems, most decisions relating to employees have
already been made at the time of planning. The employees or teams available
for scheduling are fixed to shifts where most parameters are fixed at the time of

6.2 Operational Optimization 45

calculation.

Operational ground handling problems are often viewed as steps in the overall
planning process, rather than individual optimization problems. As such the
goals of operational problems are rarely to minimize costs or resources but
rather to execute daily plans under the conditions set by the solutions of the
previous planning problems. Objectives for operational problems may include
the even distribution of work throughout the day and across resources, and
placing flexible breaks as advantageous as possible for the workers.

As unforeseen events may also occur from planning time to execution, it may not
be possible to solve all tasks and the main objective is to schedule the resources
to maximize the work solved.

In airports, a large diversity exists in the constraints imposed by the equipment,
contractual obligations and work practices in different areas of ground handling
work. Some examples are:

In the short baggage transportation problem considered in Paper C, each bag
arriving in the airport and departing on another flight should be injected into
the airport’s regular (departure only) baggage handling process. This causes a
transportation problem with a large number of bags, and where each bag can
be delivered to a designated handling station if delivered early and must be
delivered directly to the departing aircraft if close to departure.

In Paper D, a transportation problem is considered for passengers with reduced
mobility, which must travel by several vehicles without being left unattended.
This creates a large number of synchronization constraints to ensure that vehi-
cles are present at the same time during each passenger hand-over.

Other references include Dohn et al. [44] who consider a mobile workforce
scheduling problem for cleaning crews. On some flights, the aircraft is either
very large or must be cleaned in a short period of time. These flights require
a combination of crew who must coordinate their activities on the flight by
beginning at the same time. Ho and Leung [59] present an algorithm for the
scheduling of catering truck, which must coordinate the pickup and delivery of
meal carts to the flights by either combining the pickup and delivery or split-
ting the flight for two trucks. In addition, the trucks can be manned by several
combination of crew.

46 Task Scheduling

6.3 Real-Time Optimization

Real-time optimization consider problems in which changes occur during the
day of operation. The schedule produced initially is naturally oblivious to the
changes and cannot incorporate them directly.

By reacting to the changes during the day, the efficiency of the workforce can be
maintained. For example by continuously scheduling tasks to ensure that the
work is distributed fairly between workers. The process of updating schedules
during the day is referred to as re-planning. We adopt the term decision epoch
from Goto et al. [55] to describe a time instant where re-planning occurs. The
set of decision epoch is identical to the set of re-plannings, as each decision
epoch implies a re-planning.

In the creation of initial schedules, the schedules can be made robust to be
able to cope with changes occurring during the day. Robustness is usually
incorporated by adding buffers in the schedules to absorb changes. By necessity,
buffers imply periods of idle workers, which contradicts the commonly used
planning objective of minimizing cost. The inclusion of robustness is then a
multi-objective scheduling problem, which aims at finding a trade-off between
minimum cost and acceptable robustness.

In both robust and non-robust schedules, failing to react to changes invariably
leads to deterioration of the schedule’s effectiveness. This means that even for
robust plans, re-planning can be beneficial to maintain effectiveness. In the case
of severe changes, re-planning is required to ensure that the plan is feasible.

The uncertainty that prompts changes and decision epochs may stem from a
variety of sources. In the following, we describe two ways of re-planning, which
is separated by the type of uncertainty, and the objectives of the re-planning
optimization. Dynamic problems are presented in Section 6.3.1 and disruption
management is reviewed in Section 6.3.2.

6.3.1 Dynamic Optimization Problems

Dynamic optimization problems consider reactions to changes that occur during
the day of operation. The goal of dynamic optimization is to create updated
schedules that incorporate the changes, while minimizing costs (or maximizes
profits). A main cause for dynamic properties is when the late arrival of orders
means that not all tasks are known at the beginning of the day of operation,
and re-planning is then required to accommodate the new tasks into the plans.

6.3 Real-Time Optimization 47

This is relevant in settings such as courier mail services (see Larsen et al. [69]) or
within health care (see e.g. Cordeau and Larporte [36]), or in settings involving
on-call repair or service personnel. Other causes of uncertainty in dynamic
problems can include vehicle breakdowns or alterations in travel times [51, 63].

Tasks in dynamic problems can be divided into advance tasks, which are known
before the day of operation, and immediate tasks, which arrive during the day.
Depending on the type of problem, different priorities can be given to each type
of task. in some cases, advance requests are given higher priority to reward
requests that are given early and allows advance planning. The transportation
of passengers with reduced mobility presented in Paper D is an example of this
approach, by giving preference to passengers who have prebooked. In other cases,
immediate tasks represent emergencies that must be considered with high prior-
ity. Borenstein et al. [17] considers this case for telecommunication technicians.

A proposed measure for dynamic problems is the so-called degree of dynamism
which measures the ratio of advance and immediate tasks [69]. Variants of this
measure can be used to also consider the arrival times and reaction time (the
time from the request arrives until its latest scheduling time).

Dynamic problems have been studied for a number of application settings. In
the vehicle routing literature, dynamic variants of a number of existing problems
have been considered [84] Dynamic systems for route planning are becoming
more and more widespread due to advances in information and communica-
tion technology according to a recent survey [70]. Other areas considered are
workforce scheduling [17] and supply chain management [89].

Solution strategies for dynamic problems may be divided into two groups ac-
cording to Chen and Xu [29]. Local approaches, which considers only orders
available at the decision time and solves a static problem on the available or-
ders. Look-ahead approaches considers also the expected arrival of additional
work which is regarded with some uncertainty.

The local approaches are in two senses the simplest. First, they consider only
work currently available at the decision epoch, which makes the problem smaller
than the full problem. Secondly, it may be difficult to model certain and un-
certain work at the same time. A main complication in look-ahead algorithm is
therefore how to integrate probabilistic future work with already received tasks,
see e.g. Goto et al. [55].

Commonly, dynamic problems are event-driven where each incident triggers a
decision epoch, implying that re-planning occurs at the arrival of each new
incident. Dynamic problems can require many decision epochs if the trigger-
ing events occur frequently and it seems intuitive to assume that frequent re-

48 Task Scheduling

planning provides a more fluent responses to dynamic systems. Therefore, dy-
namic problems are often solved by fast and simple heuristics, see e.g. Larsen
et al. [69] or Regan et al. [86].

Using more complicated methods to solve dynamic problems will naturally re-
quire higher solution times. However, as later work is uncertain there is no
guarantee that better solutions will come from more time-consuming solution
methods. Ghiani et al [52] note that the level of uncertainly in future demand
influences the success of more complex solution methods.

In the study of Powell et al.[83] users are allowed to reject changes if they have
more accurate information than is present in the model. In the simulations per-
formed in the study, simple greedy heuristics was shown to perform comparably
or better than optimal methods.

6.3.2 Disruption Management

Disruption management forms a separate approach to real-time optimization, in
which a key component is an existing schedule that reflects “normal” operations.
As such, some of the main objectives of disruption management are to minimize
the changes made to the schedule and to return to completely normal operations
as soon as possible.

Disruption management has been studied extensively for transportation problem
that operate on a fixed schedule, particularly airlines where deviances from
the flight schedule can be extremely costly. Overviews of airline disruption
management are provided in Kohl et al- [67] and Clausen et al. [35].

A related problem of airline crew recovery is studied in e.g. Yu et al. [105] and
Nissen and Haase [82]. Disruption management is highly relevant in a number
of other areas, including logistics, manufacturing and project scheduling. An
overview of applications and solution methods is given by Yu and Qi [106].

A common trait for disruption management is that the decision epochs are not
triggered by individual changes. Instead they may be the result of a planners
experience that a replanning is needed, or occur continuously at fixed time
intervals to ensure that the number of unhandled updates are kept low at all
times.

In some applications, schedule changes arrive continuously and a while single
update may not be significant to trigger a decision epoch, the many updates
will eventually compound to a state that requires replanning. In these cases,

6.3 Real-Time Optimization 49

it is impossible to derive decision epochs from the arrival of updates. This
is particularly true in airports, where updated information on arrival and de-
parture times, passenger numbers, baggage information and stand allocations
are constantly being transmitted. According to Dorndorf, the frequency of air-
port updates can be as high as several per second [45]. In ground handling,
the majority of tasks are linked directly to properties in these airport updates,
such as a flight’s arrival or departure time, gate assignment, etc. This means
that real-time planning for ground handling must include elements of disruption
management.

In ground handling problems resembling mobile workforce scheduling, the re-
planning model can be a combination of dynamic optimization and disruption
management. Some information updates are both significant and immediate
enough to warrant a direct decision epoch, for example a team finishing a task
late or an aircraft being redirected to another stand. Other changes may re-
quire less immediate attention, such as updates to a flight’s estimated arrival
or departure, which is some time away. As these updates happen frequently, it
is often not practical to trigger a decision epoch for each individual update. in
practical cases, some crew will prefer to have an overview of the next few tasks
that do not change repeatedly. Instead, they prefer working from a predomi-
nantly fixed schedule, from which changes should be kept minimal. In short,
ground handling operations can contain aspects of both dynamic optimization
and disruption management.

50 Task Scheduling

Chapter 7

Overview of Papers

This chapter introduces the papers of this thesis, which are provided in full
length in Part II. A brief introduction to each paper is given, along with details
of how the work has been disseminated.

7.1 Paper A: A Dynamic Programming-Based

Heuristic for the Shift Design Problem in

Airport Ground Handling

This paper presents a construction heuristic for the heterogeneous shift design
problem where there can be several demands and each shift can help cover
a specified subset of the demands. The heuristic iteratively calculates non-
overlapping sequences of shifts which cover a one-dimensional projection of the
workload demand. The best sequence of shifts is determined by considering
several objectives, including overstaffing, understaffing, skill usage, and cost.
The “optimal” sequence of shifts is determined using a dynamic programming
recursion. Furthermore, the paper discusses the complexity of shift planning in
relation to the flexibility allowed for the shifts and the consequences for the size
requirements and running time for the dynamic programming recursion.

52 Overview of Papers

The developed algorithm integrates with the WorkBridge Prepare software sys-
tem for workforce planning. The heuristic can be used within the system as a
stand-alone heuristic for shift design or as a constructive heuristic for providing
an initial solution for the local search algorithm described in Section 7.2.

• The paper is submitted to European Journal of Operational Research,
2010.

7.2 Paper B: A Rule-Based Local Search Algo-

rithm for General Shift Design Problems in

Airport Ground Handling

This paper introduces a local search metaheuristic for the shift design problem
based on simulated annealing. The algorithm uses multiple neighborhoods to
efficiently explore different parts of the solution space and an adaptive scoring
framework to select neighborhoods based on their past performance. A combina-
tion of relaxed constraints and a loosely coupled rule engine provides a tradeoff
between constraint satisfiability, flexibility of navigating the solution space, and
an highly extendable software base.

The algorithm is evaluated using different heuristics for generating initial so-
lutions and is applied to problem instances from real-life operations in airport
ground handling.

• Preliminary work was presented at the ALGO-talk seminar series at DIKU
in 2007.

• The work was presented at 3rd Nordic Optimization Symposium in 2009.

• The algorithm has been implemented in the WorkBridge Prepare software
system for manpower planning.

• The paper is submitted to European Journal of Operational Research,
2010.

7.3 Paper C: Dynamic Routing of Short Transfer Baggage 53

7.3 Paper C: Dynamic Routing of Short Trans-

fer Baggage

This paper describes a greedy algorithm for dynamic dispatch of baggage trans-
portation vehicles for delivering bags of transferring passengers in a major Eu-
ropean airport. A greedy algorithm is presented that constructs a route by
using a score function that considers several measures of desirability of deliver-
ing each available bag. The score function uses piece-wise linear time-dependent
functions to model complex aspects of the delivery process. Experiments are
presented that show that the algorithm performs well for generated scenarios
with increasing levels of disruption.

• This work was presented at the ORSEM seminar at DTU Management in
2009.

• The paper has been submitted to Transportation Research Part E in 2010.

• A variant of the described algorithm is currently in operation at the com-
pany responsible for the handling of all transfer baggage at one of Europe’s
busiest airports.

7.4 Paper D: Route Planning for Airport Per-

sonnel Transporting Passengers with Reduced

Mobility

Paper D introduces and solves a model for the scheduling of passengers with
reduced mobility (PRM) in a complex airport setting where passengers can
be required to travel between terminal buildings and where both arriving and
departing aircraft can be parked remotely. To ensure that PRMs are not left
unattended, synchronization constraints are imposed on hand-overs of the PRM
between agents of different airport areas.

The paper presents a two-level meta-heuristic that separates a declarative de-
cision level with a constraint-observant assignment level. The assignment level
is implemented by a greedy insertion heuristic that inserts each PRM into the
route network in the order specified by the declarative layer. The declarative
order of insertion is modified by Simulated annealing using neighborhood oper-
ations. A preference is given to prebookings, i.e. advance notices.

54 Overview of Papers

The PRM routing problem is a highly complex problem of increasing relevance,
since the number of PRMs can be expected to rise with the number of gen-
eral passengers. Additionally, regulation in the European Union (regulation
1107/2006) has since 2006 mandated that all PRMs in EU airports are entitled
to free and fair service. As awareness is increased and the capacity of PRM han-
dling in airport is increased, this is expected to significantly affect the number
of PRMs. It is estimated that 10% of the population in EU member states is
classified as PRMs [49].

The implemented algorithm is validated on real-life data from a major European
airport and show that the algorithm can calculate efficient solutions with a few
minutes. This allows the algorithm to be used in a dynamic context, where
schedules can be updated to handle delayed flights and the arrival of immediate
PRMs requiring service.

• A preliminary version of this work was presented at the 2nd Nordic Opti-
mization Symposium in 2007.

• A variant of the preliminary work was implemented in the WorkBridge
resource management system.

• The work in its current form was presented at the ORSEM seminar at
DTU Management in 2010 by Line Blander Reinhardt.

• The paper is submitted to Transportation Research Part B in 2010.

7.5 Paper E: The Offline Group Seat Reserva-

tion Problem

This paper describes a two-dimensional packing problem in which the elements
to be packed are fixed in one of the dimensions. The paper is motivated by
an application in reserving multiple adjacent seats in a train, where the fixed
dimension is the train’s route, defining the origin and destination stops of the
reservations.

The objective of the problem is to fill the train as efficiently as possible with the
available reservations. Two versions are evaluated: In the knapsack version of
the problem, the train has a fixed size and some reservations may be rejected.
In the bin packing version, the train consists of a number of smaller cars or
compartments and the objective is to minimize the number of cars used to
accommodate all reservations.

7.5 Paper E: The Offline Group Seat Reservation Problem 55

Although this project was not initially intended for applications in ground han-
dling, some aspects of the problem can be transferred to this application. In
areas such as service desk manning the staffing is constant throughout the day.
The reservations would then represent tasks with varying capacity requirements
to be solved at specific times during the day. The knapsack version determines
how many requests can be met for a specific capacity and the bin packing version
then determines how many service desks are needed to fulfill all requirements.
Of interest for this application is also the bounds considered for the knapsack
variant. The bounds U1 and U2 split the splits the reservation to multiple single-
seat reservations and U4 splits into single-station reservations. The analogous
bounds for the staffing problem split the requests according to capacity require-
ments or time. Each of the simpler problems produced by the bounds would be
of interest to consider in this context as well.

• The paper has been published in the European Journal of Operational
Research, 2010.

56 Overview of Papers

Chapter 8

Conclusions

In this chapter, the main achievements and contributions of the thesis is re-
viewed. A summary of the thesis contributions is given below, and a shorter
list of major contributions is presented in Section 8.1. In addition, directions
for future research within ground handling are discussed in Section 8.2.

The subject of this thesis is the application of operations research techniques to
solve both specific and generalized problems in airport ground handling. The
venue of ground handling contains a large number of diverse problems, which
are subject to the unique environments of modern airports. As many practices
are almost identical in any airport, it is possible to provide common models for
ground handling problems. Although individual problems have been studied in
a number of papers within recent years, the study of generalized models and
algorithms for airport ground handling is a relatively new research area.

The work presented in this thesis has been created through cooperation with
the industrial partner WorkBridge A/S. During the time spent at WorkBridge,
knowledge of ground handling operations has been obtained through cooperation
with developers and consultants at WorkBridge, as well as through airport visits
and workshops with customer companies.

As a result of the cooperation, the research presented in this thesis is also
applied within WorkBridge products. Two of the five presented research papers

58 Conclusions

describe algorithms which are in operation. In addition, the remaining research
conducted as part of this thesis has been disseminated at WorkBridge, thus
consolidating the knowledge and experience of operations research techniques
within the company.

This thesis is divided into two parts. The first part of this thesis provides a
general description of operations research problems arising in the field of airport
ground handling. The venue of airport optimization has been introduced, with
details of the decision hierarchy of modern airports, as well as an airport’s
physical layout.

A planning timeline for ground handling problems was presented and problems
arising within the model is described. Elements with specific relation to ground
handling was considered in detail.

For workforce planning problems, a detailed analysis of demand modeling was
presented with emphasis on the airport case, where demand is highly fluctuating
and uncertain. Additionally, a review of methods for distribution coverage was
presented with extensions to the multi-skill case.

For task-based planning problems, ground handling operations are related to
common optimization problems from the literature. The mobile workforce prob-
lem was identified to cover the majority of ground handling work, and modeling
approaches for the mobile workforce problem was discussed.

To the knowledge of the author, Part I of this thesis is among the first to provide
a cohesive description of ground handling work with emphasis on operations
research.

In the second part of the thesis, five research papers are presented, which cover
various projects undertaken within the period of this project. Two papers de-
scribe algorithms for the shift design problem, in which shifts must be created
to cover a demand, subject to a large number of objectives and constraints.

Paper A presents a construction heuristic based on dynamic programming that
iteratively creates shift sequences for the widest line of uncovered demand. The
heuristic terminates when the best shift sequence can no longer efficiently cover
the remaining demand. Experiments on real-life instances from different ground
handling companies show that the heuristic can efficiently cover large shift design
problems within a few minutes of running time. In a subsequent study presented
in Paper B, the construction heuristic is shown to provide better results than a
front-loading heuristic, also presented in Paper B, on almost all instances.

In Paper B an adaptive local search metaheuristic with multiple neighborhoods

59

based on simulated annealing is presented for the shift design problem. The
algorithm allows each neighborhood to satisfy a subset of the constraints, in
order to reduce the difficulty of adding new constraints or neighborhoods after its
initial deployment. Experimental results are presented on a varying set of real-
life instances from ground handling, where the algorithm is consistently shown
to significantly improve the results found by the initial runs of a construction
heuristic, even within short running times on a normal desktop computer.

An algorithm for dynamic dispatch of vehicles transporting baggage for trans-
ferring passengers is presented in Paper C. The algorithm is run when a vehicle
returns to the dispatch hall to pick up new bags for delivery, and is used to select
the bags to deliver on the vehicle’s new route. The algorithm is evaluated using
a simulation framework that simulates vehicle behavior under different levels of
uncertainty in arrival times of bags and vehicle travel times. Simulation exper-
iments on real-life data show that the case company can achieve a comparable
level of service using about half their current fleet size.

A two-stage heuristic for the problem of transporting passengers with reduced
mobility is presented in Paper D. The problem is a highly constrained variant of
the vehicle routing problem with pickup and delivery, in which multiple agents
must cooperate to transport the passengers through different areas of the air-
port, without leaving passengers unattended. The problem is highly dynamic,
where new passengers can arrive continuously throughout the day, and be sub-
ject to very short connection times. The algorithm is evaluated on real-life data
from a case company, handling averagely 450 passengers a day. the results show
that for a short running time of two minutes, a maximum 2% of the passengers
was left unscheduled.

Finally, an exact algorithm is presented for the off-line group seat reservation
problem, in which reservations for groups of passengers must be assigned to seats
within a train to maximize the utilization of the train without separating the
passengers of each group. The problem is considered in two variants, a knapsack
variant, where the train has a fixed size and the best set of reservations must be
selected, and a bin packing variant where all reservations are accepted and the
number of train wagons should be minimized. The algorithm considers several
relaxations which is applicable in a ground handling context to schedule jobs at
service desks. Experimental results are presented, in which it is shown that the
proposed algorithm outperforms a standard integer programming model solved
using CPLEX.

60 Conclusions

8.1 Contributions

The main contributions of this thesis consist of the description of the role and
application of optimization problems within airport ground handling given in
Part I, and in the individual projects presented in the papers of Part II.

• A comprehensive description of planning and scheduling problems in air-
port ground handling has been provided.

• A discussion of modeling approaches for demand modeling has been pro-
vided with specific emphasis on areas which are relevant to airport ground
handling.

• A versatile heuristic for a shift design problem with high variance in de-
mand has been developed. The heuristic can consider a large number of
constraints and allows a direct trade-off between high running times and
the quality of the solutions found.

• A meta-heuristic framework for generalized optimization problems with
a varying set of constraints has been proposed. The framework allows
several layers of integration of every rule, which allow new rules to be
added effortlessly. Good and stable results are shown for real-life data
instances of highly varying size and complexity.

• A dynamic algorithm for dispatching baggage for transferring passengers
with short connection times has been presented. A weighted selection
method using piecewise linear scoring functions is used to model complex
constraints within the airport. Simulations on actual data show that the
algorithm efficiently dispatches high volumes of baggage with a signifi-
cantly smaller fleet size than is currently used.

• A simulation framework is presented for the baggage dispatching problem
which models several kinds of uncertainty as well as driver reaction to
disruptions.

• An algorithm is presented for a complex scheduling and routing of disabled
passengers in airports, which successfully combine a high-level decision
layer with a greedy heuristic encapsulating complex constraints.

8.2 Directions of Future Research

This thesis presents a number of papers which can each be investigated fur-
ther within their own scope, as indicated in the papers themselves. There are

8.2 Directions of Future Research 61

many interesting directions of future research for the individual projects, and
for ground handling problems in general. We present a few possible directions
in this section.

The discussion of demand modeling in Chapter 5 contains several areas to con-
sider. With the current representation of demand, it is difficult to incorporate
flexibility (such as task windows) and uncertainty of certain tasks or flights. In
the current literature, flexibility is mainly handled by considering the underlying
tasks explicitly. However, this may be intractable for large workforces.

Some of the models for the task scheduling problems described in Chapter 6
are well-studied in the literature, such as the vehicle routing problem and the
resource constrained project scheduling problem. A less studied problem is
the mobile workforce scheduling problem, which is of high relevance for many
types of airport ground handling. An interesting direction of future research
would be to consider this problem in detail for a broad base of ground handling
problems, where the mixture of transportation time and stationary work time
varies. A further area of interest for the mobile workforce problem is disruption
management, where schedules must be re-planned to handle flight delays.

For the rule-based local search framework considered in Paper B, it would be
interesting to consider the framework for other generalized problems, within
ground handling or otherwise. It would furthermore be of interest to consider
neighborhoods that are more “intelligent” in their selection of new solutions, and
how neighborhoods with additional logic perform within the proposed frame-
work.

The two-level simulated annealing heuristic presented in Paper D could be ap-
plied to other highly constrained problems. It would in particular be interesting
to examine the possibility of using different greedy insertion heuristics. Either
by using different heuristics to handle different sets of constraints, or by using
different heuristics competitively to modify the solution in different ways.

62 Conclusions

Part II

Scientific Papers

Paper A

A Dynamic

Programming-Based Heuristic

for the Shift Design Problem

in Airport Ground Handling

Tommy Clausen

Submitted to European Journal of Operational Research

66 Paper A

A Dynamic Programming-Based Heuristic for

the Shift Design Problem in Airport Ground

Handling

Tommy Clausen

We consider the heterogeneous shift design problem for a work-
force with multiple skills, where work shifts are created to cover a
given demand as well as possible while minimizing cost and satisfying
a flexible set of constraints.

We focus mainly on applications within airport ground handling
where the demand can be highly irregular and specified on time in-
tervals as short as five minutes. Ground handling operations are
subject to a high degree of cooperation and specialization that re-
quire workers with different qualifications to be planned together.
Different labor regulations or organizational rules can apply to dif-
ferent ground handling operations, so the rules and restrictions can
be numerous and vary significantly. This is modeled using flexible
volume constraints that limit the creation of certain shifts.

We present a fast heuristic for the heterogeneous shift design
problem based on dynamic programming that allows flexibility in
modeling the workforce. Parameters allow a planner to determine
the level of demand coverage that best fulfills the requirements of
the organization. Results are presented from several diverse real-life
ground handling instances.

A.1 Introduction

The Heterogeneous Shift Design Problem (H-SDP) is concerned with designing
a set of work details (shifts) for an organization that specify requirements of
different types of employees within the planning period. The shift design prob-
lem provide a transformation of the demand from a demand curve (temporal
requirements) to more simple shift based requirements. This provides an impor-
tant tool for organizations to estimate the capabilities of an existing workforce
or the need to adjust the workforce to adequately meet the demand.

A.1 Introduction 67

The shifts should be designed such that they allow the organization to satisfy
constraints from labor regulations or the capacity of the workforce. Such con-
straints include the construction of individual shifts, such as shift lengths, the
placement and number of relief breaks or the allowed placement of shifts with
regards to office hours or similar requirements. Special volume constraints spec-
ify a maximum number of shifts within time periods, which may be used to
model the size of the workforce and several regulatory constraints such as limits
on nights or weekend shifts.

We consider the shift design problem with specific emphasis on the venue of
airport ground handling. There is a large number of tasks that must be carried
out for every aircraft that lands at an airport, before it is ready for departure.
Many airports are extremely busy and are already operating at full or near-full
capacity, whilst expecting further growth in passenger numbers in the future.
Furthermore, the emergence of low-cost carriers has created additional demands
for short aircraft turnaround times, while the hub-and-spoke network structures
of larger carriers are creating demand for reduced connection times between
airports. The flight arrival or departure times are often placed at periods of
high demands or to provide short waiting times for transferring passengers. This
means that airport activity can be extremely high during periods of frequent
arrivals and departures, whilst other periods of the day are relatively quiet [9].

The demand at airports is usually represented as a demand curve, in which
the planning period is divided into a number of equal-sized periods called time
slots, each having a number of required workers. Arrival and departure times
are planned for five minute intervals, yielding a demand interval length of five
minutes as well. The combination of short time slots and flight schedules with
high variance in activity means that the demand may contain a high level of
irregularity, where the difference between requirements of two adjacent time
slots can be large.

When the demand is irregular, it is unlikely that a set of shifts can cover the
demand perfectly, or even come close. Covering a single peak may require a lot
of workers, that will be idle before and after the peak. Therefore, it is up to a
planner to find a balance between covering the entire demand and minimizing
expenditures. This emphasizes the need to consider both staff shortage (under-
staffing) and surplus (overstaffing) as part of the desired solution quality. The
desired level of coverage for an organization depends on the demand and the
available workforce.

The work performed within airports is highly specialized. The ability to perform
a specific task may require certain security clearances, training or specialized
equipment. The requirements may vary greatly across tasks. Different aircraft
types may require different types of equipment; different locations in the air-

68 Paper A

port may require different security clearances, and different computer systems
(such as check-in terminals) may require different abilities. Many workers may
have training in several fields or different certificates, which provide them with
capabilities for different partially overlapping areas [10].

The consequence is that shift design for ground handling must handle a hetero-
geneous demand and workforce. The specialization is modeled by using several
demand curves. Similarly, the workforce is divided into groups, each with sep-
arate constraints and the ability to cover one or more types of demand.

A.1.1 Workforce Scheduling

The shift design problem may be viewed as part of a more general problem, the
workforce scheduling or staff scheduling problem. In the workforce scheduling
problem, timetables (rosters) are created for workers, such that each worker
has a sequence of shifts and rest days that in combination meets a specified
demand. Various aspects of the workforce scheduling problem consider different
levels of detail and relevant data is available or required at different times. It
is therefore common to subdivide the problem into several subproblems that
can be solved at different times. One such division into five subproblems (or
stages) is proposed by Tien and Kamiyama [14]: Stage 1 considers the temporal
manpower requirements, i.e. demand at each time period or shift. In stage
2 the total manpower requirements are determined. Stage 3 considers blocks
of recreation days and Stage 4 combines recreation and work days. Finally,
Stage 5 assigns shifts to workers. More recently, Ernst et al. [7] provides a
comprehensive survey of workforce scheduling. The survey proposes a taxonomy
of different modules of which most workforce scheduling references implement
one or more.

In the subdivision of Tien and Kamiyama, shift design is part of Stage 1, with
some overlap into Stage 2. In the taxonomy of Ernst et al. [7], shift design falls
under the area of demand modeling, in that it transforms flexible demand into
shift based demand.

There are only a few references in the literature that deal directly with shift de-
sign. Musliu et al. [12] present a local search algorithm and show experiments
for both random and real-life data from a call-centre. Herbers [8] presents an al-
gorithm based on constraint programming for a task-based demand. DiGaspero
et al. [5] presents a local search metaheuristic for the minimum shift design prob-
lem, where the number of different shifts should be minimized. A construction
heuristic based on a min cost flow model is also presented.

A.1 Introduction 69

Dowling [6] describes a metaheuristic based on local search for staff scheduling at
an airport. After each neighborhood iteration, the updated solution is checked
for feasibility using an external rule engine. Lau [10] considers the changing
shift assignment problem where the shift scheduling problem is augmented with
constraints that specify feasible transitions between shifts. These shift change
constraints are used to model airport ground handling problems, where required
skills are determined by aircraft type.

To the knowledge of the author, no prior references exist in the literature for
the heterogeneous shift design problem.

A.1.2 Overview

In this paper we describe a fast construction heuristic for the heterogeneous
shift design problem. The heuristic emphasizes the ability to balance demand
satisfaction versus minimizing excess shifts, while maintaining an even distribu-
tion of coverage shortage and surplus. The heuristic uses dynamic programming
to iteratively build sequences of shifts to evenly distribute overstaffing and un-
derstaffing across the demand period, while satisfying the constraints of the
problem that limits the number of shifts created from different groups.

Experiments are performed on real-life data from ground handling operations
in major airports around the world. The data is obtained from the WorkBridge
PlanManager software product that specializes in workforce scheduling for air-
port ground handling. The developed algorithm is intended for integration into
WorkBridge PlanManager. The experiments show that good solutions can be
found for most instances in less than a minute.

The paper is organized as follows: In Sections A.2 and A.3 we present the H-SDP
in detail. Section A.4 presents an overview of the solution strategy for iteratively
solving relaxations of the H-SDP. In Section A.5, we define the 0-1 Shift Design
problem as a relaxation of the H-SDP that produces a single sequence of shifts
and an algorithm for the 0-1 Shift Design problem based on dynamic program-
ming. Performance considerations are discussed in Section A.6. Computational
results for diverse problem instances from ground handling are presented in
Section A.7 and conclusions are presented in Section A.8.

70 Paper A

A.2 The Heterogeneous Shift Design Problem

A main characteristic of the shift design problem is that there are conflicting
goals, which can be difficult to obtain simultaneously. In this paper, we con-
sider three conflicting goals: Understaffing and overstaffing, and cost. We shall
consider understaffing and overstaffing to be most important, and use cost to de-
scribe the preferential placement of shifts in cases where coverage is not affected.
If the cost is derived directly from the worker’s salary, the algorithm will at-
tempt to avoid expensive shifts, such as nights and weekends. The cost can also
be used to model the possibility of adding overtime, the expected availability of
temp workers or the preferences of the workers.

When the demand is highly irregular, it is impossible to create solutions which
are good in terms of both understaffing and overstaffing. Adding shifts to cover
peaks in the demand will introduce a lot of overstaffing as well. Often it will be
up to the individual planner to decide the optimal balance between understaffing
and overstaffing. A good balance between understaffing and overstaffing will
depend on the workforce available and the ability to absorb peaked demand
into the shifts. If there are few high, thin peaks, the planner may decide not the
cover them, in the expectation that the workers will be able to solve them on
the day of operation. In other cases, the planner may require that all demand
is covered. The correct balance is obtained by allowing the planner to assign
weights to the importance of understaffing, overstaffing and cost.

Sometimes peaks in the demand are explicitly removed by a process known as
peak cutting before planning is done. However, the weighted approach allows
the planner to integrate planning and decision making, rather than making the
decision a priori.

Another focus of shift planning is the distribution of shifts throughout the plan-
ning period. When understaffing and overstaffing exists, it should be distributed
as much as possible to increase the robustness of the solution. A good distri-
bution of understaffing increases the chance for the workers to cover more de-
mand than scheduled (and thus further reducing understaffing), as well as the
likelihood that enough additional workers from a temp agency will be available.
Distributed overstaffing decreases the effect of additional work, illness and other
disruptions.

A.3 Basic Notation 71

A.3 Basic Notation

Shifts are created for a multi-skilled environment, in which a workload demand
may require several skills at once, and a worker may be able to fulfill several
types of demand. To model capabilities for workers and demand, we introduce
the notion of shift qualifications q ∈ Q and demand requirements r ∈ R. A
requirement (which may include several skills) describes an ability to perform a
certain work and a qualification describes all capabilities of a worker following
a shift. By using qualifications, shifts are created anonymously, so there is
no direct link to the employee that will eventually follow the shift except the
implicit expectation that the employee will possess the required skills. In this
way, a large degree of flexibility in the workforce is maintained, while the ability
to distinguish different employees is preserved.

The shift design problem is specified for at time period, which is subdivided
into T smaller time units. Each time unit t ∈ [0;T − 1] has the same duration g
(typically 5 minutes) and identifies the time interval [t · g; (t+1) · g). We denote
g the granularity of the problem. The time period [0;T) is called the planning
period and is typically one week or one month.

A.3.1 The Composition of Shifts

A shift specifies the presence of a single worker and the ability to perform certain
types of work, thus covering a portion of the demand. A shift s is defined by a
qualification q, a start time ts, and a length ls. The qualification q serves two
purposes. First it determines the expected capabilities of a worker following
shift s. Second, it serves as an index for the rules and regulations valid for the
worker, so it is assumed that all workers with qualification q work under the
same conditions and constraints.

The shifts are typically not allowed to start at every time t, since for g = 5
minutes, the resulting set of shifts would be impossible to manage. The allowed
starting times are determined by the shift granularity gq. A starting time t is
then valid if t mod gq = 0. The feasible shift lengths are determined by gq and
minimum and maximum lengths Lmin

q and Lmax
q . Typical shift granularities are

15, 30, or 60 minutes, which for g = 5 minutes set gq = 3, 6, 12, respectively.

Additionally, a shift may have several breaks in which the worker is not able to
cover demand. These breaks are specified by break rules b(ls) = (tmin

blq , tmax
blq , lbq)

that define valid start positions relative to the shift start and the length of
the break lbq. The valid start positions of the break are subject to the shift

72 Paper A

granularity and the shift length ls. This allows the break’s time window to
expand with the shift, and to specify that a break is not relevant for certain
shift lengths. A longer shift may for instance require more breaks than a shorter
shift. We denote by Bq the set of all break rules for qualification q and by
B =

⋂

q∈Q Bq the set of all break rules.

A special kind of break can arise where workers may be allotted time for brief-
ings, wardrobe changes, etc. These are denoted preparation and de-preparation
times and are fixed to the start or end of the shifts. These types of breaks
are not uncommon in the airport or ground handling industry [11]. We say in
general that a shift is active when it is capable of covering demand, and inactive
otherwise.

Preparation Breaks De-preparation

ts es
ls

Figure A.1: Illustration of shift composition and related variable names for a
shift s. Inactive time from preparation time, de-preparation time and three
breaks is shown in hatched boxes.

Depending on the flexibility of the shift parameters, a very large number of
different shifts can be created. The number of possible shifts is a key factor in
the complexity of shift design and related problems. In particular the added
dimensions of breaks increase the number of shifts significantly.

The total number of possible shifts is

|S| =
∑

q∈Q

T

gq
· L

max
q − Lmin

q

gq
·
∏

b∈Bq

tmax
blq − tmin

blq

gq
(A.1)

We may bound both Lmax
q −Lmin

q and tmax
blq −tmin

blq by the maximum shift length,
which we may denote Lmax . This gives the following bound on the number of
possible shifts

|S| = O(|Q| · T · Lmax · |B|). (A.2)

To reduce the size of shifts that needs to be represented in the algorithm, we
define a shift template s′. A shift template represents all shifts s that have
different starting times ts, but are otherwise identical. This means that any
shift s can be obtained from the corresponding shift template s′ by adding a

A.3 Basic Notation 73

starting time: s = s′(ts). Each shift template spans l′s time slots that are either
covered or uncovered, so we may consider s′ as a binary vector of length l′s. We
denote the set of shift templates S′, which by reduction from (A.2) has size

|S′| = O(|Q| · Lmax · |B|). (A.3)

Although the size reduction by T is only linear in the size of the algorithm’s
input (as D has dimensions |R|×T), the decrease may still be significant. For a
planning period of one week with a granularity of 5 minutes, we get T = 2016.

A.3.2 Volume Constraints

To model restrictions of the workforce or organizational settings, the overall shift
set can be limited by the use of volume constraints. Each volume constraint
vi = (Vi, v

max
i) limits the number of shifts allowed within a (not necessarily

continuous) time period. The set Vi ∈ S contains all shifts affected by the
constraint. Thus, we may write each such constraint as

∑

s∈Vi

s ≤ vmax
i .

Adjusting the constraint set Vi or the volume limit vmax
i allow volume con-

straints to model a large number of different scenarios. If vmax
i = 0, all shifts in

Vi are prohibited, allowing a planner to model closing times or periods where
shifts are not allowed to start or end. Setting other values for vmax

i allows the
planner to limits varying types of shifts to match the workforce or labor regula-
tions. For example, the total number of shifts, the number of shifts on a single
day or the number of certain shift types (e.g. night shifts) may be limited using
volume constraints.

The constraint set Vi can easily be adjusted to shift templates by considering
the combination of shift template and start time, i.e. Vi ∈ {S′ × T }.

∑

(s′,t)∈Vi

s′(t) ≤ vmax
i .

This adjustment allows us to use shift templates directly in volume constraints.

A.3.3 Workload Demand

The workload demand is represented as a two-dimensional integer matrix D ∈
N

|R|×T
0 . Each entry Drt specifies the required number of active shifts with

suitable qualification to cover requirement r at time unit t.

74 Paper A

The link between qualifications and requirements can be complex. A shift with
qualification q ∈ Q may be able to cover demand from several different require-
ments r ∈ R. Similarly, demand for requirement r can be covered by shifts
with different qualifications. We say that q covers r, or q → r, if shifts with
qualification q can contribute to the coverage of demand of requirement r.

To describe the level of complexity between requirements and qualifications we
introduce the interaction level of an operation as

int =
∑

q∈Q

|{q | q → r}|
|Q| , (A.4)

the average number of requirements covered. Analogously, we may define the
interaction of a single qualification as intq = |{q | q → r}| and for a requirement
as intr = |{r | q → r}|.

We assume that requirements are ordered by increasing interaction level, r1, · · · , r|R|

such that i < j ⇒ intri ≤ intrj . We say that r1 is the most restrictive require-
ment, as it can be covered by the fewest number of qualifications. We similarly
assume that qualifications are ordered by decreasing interaction levels, such that
q1 can cover the largest number of requirements.

A shift with qualification q can cover a demand for at most one requirement r at
each time t. It is allowed for a shift to cover different requirements at different
times. This is because shift qualifications are considered “daily qualifications”,
which detail the requirement a worker is able to cover within a single day. For
practical purposes, this means that given a shift set S∗, the coverage can be
calculated independently for each time unit.

A.4 Algorithm Overview

We wish to develop a solution method with fast running times, and which can
be terminated prematurely due to time limitations and still produce a solution
of reasonable quality. In this way, the method can be used as a stand-alone
heuristic and as a construction heuristic for the initial stage of a local search
metaheuristic, similar to the approach of DiGaspero et al. [5].

Due to the possible time limitation, we will prefer an algorithm that throughout
the majority of its run is able to return a solution that satisfies the volume
constraints and has a good coverage distribution across the planning period.

A.4 Algorithm Overview 75

The H-SDP may be formally described as minimizing the weighted sum of un-
derstaffing, overstaffing and cost. To achieve the desired distribution of shifts in
regard to the demand, understaffing and overstaffing is squared. As we consider
cases where coverage takes precedence over cost, the weight of the cost term is
set lower than the others.

The integer programming model of the H-SDP is

z∗ = min φu

T
∑

t=1

∑

r∈R

(urt)
2 + φo

T
∑

t=1

∑

q∈Q

(oqt)
2 + φc

n
∑

i=1

cixi (A.5)

s.t.
n
∑

i=1

aitdirxit + urt −
∑

q∈Q

piqoqt ≥ Drt ∀r, 1 ≤ t ≤ T

(A.6)
n
∑

i=1

aitxi +
∑

r∈R

urt +
∑

q∈Q

oqt −
∑

r∈R

Drt = 0 1 ≤ t ≤ T (A.7)

n
∑

i=1

vijxi ≤ vmax
j 1 ≤ j ≤ V (A.8)

xi, urt, oqt ∈ N0 (A.9)

Here, ci is the cost of shift i, 1 ≤ i ≤ n and ait = 1 if shift i is active at time
t, 1 ≤ t ≤ T and ait = 0 if shift i is not active at time t. dir = 1 if shift i can
cover requirement r and piq = 1 if shift i has qualification q. Drt is the demand
for requirement r at time t. The decision variable xi determines the quantity of
each shift type i. Additionally, the decision variable urt and oqt determines the
understaffing of requirement r ∈ R at time t and the overstaffing of qualification
q ∈ Q at time t, respectively.

Each volume constraint vj is specified by the constraint limit vmax
j and the

incidence matrix V , where vij = 1 if shift type i is affected by rule j, and
vij = 0 otherwise.

The objective function (A.5) is a weighted sum of the total shift cost, total
understaffing, and total overstaffing using the weight factors φc, φu and φo,
respectively. Constraint (A.6) links shifts, understaffing and eligible overstaffing
to the demand at each time unit. Constraint (A.7) enforces that the total
amount of shifts, understaffing and overstaffing adds up, ensuring that a unit
of understaffing or overstaffing is only used once. Constraint (A.8) ensures that
the volume constraints are not violated. Finally, constraint (A.9) states that
the shift, understaffing, and overstaffing variables are positive integers.

The formulation (A.5)–(A.9) defines an explicit formulation of the SDP, where

76 Paper A

any possible shift is represented by a column. This is in a sense an expanded
model of the problem, since each shift is directly represented. This means that
each shift template s′ is represented a large number of times with different
starting times.

This kind of model is typically used in the related shift scheduling problem,
where it was originally proposed by Dantzig [4] as a set covering model. As the
number of shift templates grows rapidly with the flexibility of the shift design,
the model can become very large. For this reason, several implicit models have
been proposed to reduce the size of the model. Most often the size is reduced by
adding special forward and backward constraints to handle break placements,
thus reducing the number of shifts considerably. See e.g. [1], [2], [8], and [13].

In this paper we use a modeling similar to the explicit model (A.5)–(A.9). In-
stead of reducing the problem size by implicit modeling, we use shift templates
instead of shifts to obtain a lesser reduction in problem size. We then solve a
relaxed version of the problem.

A.4.1 Iterated Relaxations

The main idea of the algorithm is to perform a two-step relaxation of the H-
SDP to get a series of inner and outer subproblems. The outer subproblem
considers one requirement at a time. For each requirement, a number of inner
subproblems are solved, each producing a single non-overlapping sequence of
shifts. Each outer subproblem terminates when no shifts are returned from the
inner subproblem.

The outer subproblem splits the multi-requirement problem into a series of
single-requirement problems. That is, we split the H-SDP with demand ma-
trix D into separate subproblems SDPr with demand vector d = Dr∗. We
iteratively solve the subproblems SDPr, and for each restriction r we consider
only qualifications that can cover r.

The relaxed subproblem is then essentially a single-skill shift design problem,
although coverage is still evaluated across all subproblems. This means that any
understaffing or overstaffing in the solution of one subproblem will be carried to
the next. Also, the same qualification can occur in more than one subproblem, so
the volume constraints will become more restrictive during the iterations. Each
subproblem SDPr is then still somewhat heterogeneous, although less than the
original problem. The amount of information lost in the subdivision depends
on the interaction level of the problem instance. To minimize the effect of
previously considered subproblems, we consider the requirements in order of

A.5 Solving the 0-1 Shift Design Problem 77

restrictiveness, starting with the most restrictive requirement, r1.

The inner subproblem subdivides SDPr even further. Instead of considering
demand as an integer vector d ∈ N

T
0 , we consider a binary vector d′ ∈ {0, 1}T

that for each time t denotes if uncovered workload remains, i.e. if urt > 0.
Having reduced the dimension of the demand, we can analogously seek a “one-
dimensional” solution to the problem as well. The relaxation of SDPr is there-
fore to find a sequence of shifts σ ∈ S that covers d′ as well as possible without
violating any of the volume constraints vi. We denote the binary subproblem
0-1-SDPr. To avoid cases where 0-1-SDPr repeatedly returns valid but poor
shift sequences, we only return a sequence if it satisfies the termination criteria
maxu and maxo that limits the maximum understaffing and overstaffing allowed
for a sequence.

The conceptual idea of the algorithm is summarized as follows: For each re-
quirement ri, we solve the subproblem SDPr by iteratively creating sequences
of shifts as specified by the 1-dimensional inner subproblem 0-1-SDPr. The
conceptual algorithm is sketched in Algorithm 1.

Algorithm 1 Pseudocode of conceptual algorithm for solving the H-SDP

S∗ ← ∅
for r ← r1 to r|R| do
Qr ← {q | q → r}
dr ← Dr,∗

repeat
σ∗ = Solve 0-1 SDPr(Qr, dr)
S∗ ← σ

until σ∗ = ∅
end for
return

A.5 Solving the 0-1 Shift Design Problem

For the 0-1 shift design problem, a number of simplifications can be made which
allow the problem to be solved more efficiently than the full H-SDP. As both
the demand vector d′ and the sequence of created shifts σ is one-dimensional,
the volume constraints and coverage measures can be calculated efficiently. The
sequence can be considered both as set of shifts: σ = s1 ∪ s2 ∪ · · · ∪ sn; and as a
set of shift templates: σ = s′1(t1) ∪ s′2(t2)∪ · · · ∪ s′n(tn). We will mainly use the
latter representation in the following.

78 Paper A

When considering a non-overlapping sequence of shifts σ, at most one shift
can contribute to the demand at any time t. Therefore, we can consider σ as
a binary vector σ ∈ {0, 1}T , which is obtained by concatenating the binary
representations of the shift templates in σ.

When considering sequences of shifts for the 0-1-SDPr, a lot of the complexi-
ties of the original H-SDP is removed. To compensate for this, the objective
function is in some ways simpler, but require other terms to compensate for the
simplifications. The quadratic coverage terms of the original problem u2 and
o2 have been reduced to linear versions u(σ) and o(σ) since there is no effect of
squaring the coverage of a 0− 1 demand. Instead, we rely on the iterated solu-
tion method to distribute the coverage. To ensure that the least capable shift is
used whenever possible, we minimize the shift sequence’s overall interaction level
int(σ). This will prioritize the least capable shifts for the currently considered
requirement, and save the more capable shifts for less restrictive requirements
considered in later iterations, where they are most likely to be usable.

As a technical term, we also introduce the coverage of a sequence on a 1-
dimensional demand d′ as the number of time units where d′t = 1 and σt = 1.

For a shift sequence, the set of volume constraints can be combined into a
single binary matrix V ′ ∈ {true, false}T×|S′| that for each combination of shift
template s′ and start time st determines if the corresponding shift is legal. We
write V ′(σ) = true if V ′[st, s

′] = true for all shifts in σ. When computing a
sequence, V ′ is considered static, so it is possible to construct a sequence where
each individual shift is legal, but the entire sequence violates a volume constraint
(since several shifts contribute to the same constraint). There are several ways to
handle this, the simplest being to allow small violations to the value constraints.
Another simple method is to arbitrarily remove a shift from the sequence, if it
contributes to a violated volume constraint. After each sequence is created, V ′

is updated to reflect the new shifts.

The terms of φ and V ′ can be calculated efficiently by using simple operations.

u(σ) = ‖d′t ∧ ¬σ‖1 (A.10)

o(σ) = ‖¬d′t ∧ σ‖1 (A.11)

cov(σ) = ‖d′t ∧ σ‖1. (A.12)

c(σ) =
∑

s∈σ

c(s) (A.13)

int(σ) =
∑

s∈σ

intq(s) (A.14)

V ′(σ) =
∧

s∈σ

V ′(s) (A.15)

A.5 Solving the 0-1 Shift Design Problem 79

Here, ‖·‖1 denotes the Manhattan norm, which is the sum of the vector elements.
For the binary vectors used here, this corresponds to counting the number of ones
in the vector. This problem is also known as the population count or popcount
problem and can be solved efficiently by using e.g. the HAKMEM method [3].

We use a weighted sum of these measures as the objective function for the 0-1
SDP:

φ(σ) = −φcovcov(σ) + φuu(σ) + φoo(σ) + φcc(σ) + φintint(σ).

The relaxed subproblem 0-1-SDPr may be formally described as an IP model
by reducing the original model (A.5)–(A.9) in Section A.4. The relaxed model
is

z′∗ = min

n
∑

i=1

φ(xi) (A.16)

s.t.
n
∑

i=1

aitxi + ut − ot = d′t 1 ≤ t ≤ T (A.17)

n
∑

i=1

aitxi ≤ 1 1 ≤ t ≤ T (A.18)

n
∑

i=1

vijxi ≤ vmax
j − v′j 1 ≤ j ≤ V (A.19)

xi, urt, oqt ∈ {0, 1} (A.20)

With a slightly changed notation, φ(xi) is the objective φ(s) for the shift s iden-
tified by xi. The understaffing variables ut and overstaffing variables ot have
been simplified, since for a one-dimensional demand, there can only be a single
item of either understaffing or overstaffing. As in the H-SDP model (A.5)–(A.9),
ut and ot are connected to the shifts by constraint (A.17). Constraint (A.18) en-
sures that there is no overlap in the generated shift sequence. Constraint (A.19)
enforces the volume constraints, where v′j is the shift contribution to volume
constraint j obtained in previous iterations. In this way, the rules can be evalu-
ated globally, across the different subproblems. Finally, constraint (A.20) states
that the decision variables are binary.

A.5.1 The Dynamic Programming Recursion

We use dynamic programming to solve the 0-1-SDPr. The dynamic program-
ming table ν is two-dimensional and contains time as one dimension and the

80 Paper A

maximum number of time slots with uncovered demand as the other. A cell
ν[u, t] on the table indexes a sequence ending at t and has maximum under-
staffing u.

A partial sequence can be any sequence σt,e starting at time t and ending at
time e. We may combine partial shift sequences by concatenation to create new
partial sequences for which it holds

σt,e = σt,t′ ⊕ σt′,e (A.21)

φ(σt,e) = φ(σt,t′) + φ(σt′,e) (A.22)

Some notable cases of partial sequences are the full sequence σ = σ0,T and a
single shift template s′(t) = σt,ds′

.

Intuitively, the content of any cell ν[u, t] represents the best legal shift sequence
σ of shifts that ends at t and leaves no more than u time slots of workload
demand uncovered. To determine the best shift sequence for a table position,
we use a restricted version of the objective function φ(σ). Since the understaffing
u(σ) is explicitly considered in the dynamic programming table, φ′(σ) consists
of the remaining terms:

φ′(σ) = φ(σ) − u(σ) = −φcovcov(σ) + φoo(σ) + φcc(σ) + φintint(σ).

We use φ′(σ) as the dominance criterion of the dynamic programming recursion,
so sequence σ1 dominates σ2 if φ′(σ1) < φ′(σ2). For ease of notation, we use
ν[u, t] to denote both the cell at (u, t) and the partial sequence indexed by cell.

We solve the dynamic programming table using a recursion that gradually builds
sequences starting at cell ν[1, 1]. We set φ′(ν[1, 1]) = 0 and φ′(ν[1, 1]) = ∞ for
all other t and u. From each cell ν[u, t], the partial shift sequence ν[u, t] is
extended with all shift candidates to produce longer sequences. Thus from cell
ν[u, t] we create sequence σ′ = ν[u, t] ⊕ s′ and we set ν[u + us, t + ls] = σ′ if
σ′ ∈ V ′ and φ′(σ′) < φ′(ν[u + us, t+ ds]). If no valid sequence exists for some
understaffing/time pair (u, t) then φ(ν[u, t]) =∞. Every cell should satisfy the
invariant that the sequence indexed by the cell minimizes φ′ over all partial
sequences ending at t with understaffing less than u:

ν[u, t] = argmin
σ0,t

{φ′(σ) | u(σ) ≤ u ∩ σ ∈ V } , (A.23)

A.5 Solving the 0-1 Shift Design Problem 81

We may formally write the dynamic programming recursion as

ν[u, t] =

min
s′∈S′



















0 t = 0,

φ′(s′(t− ls′) + ν[u − u(s′(t− ls′)), t− ls′] V ′[s′, t] = true,

t ≥ ls′ ,

u ≥ u(s′(t− ls′))

(A.24)

From the recursion it can be seen directly that the invariant (A.23) will be
satisfied for all cells.

After running the recursion, each cell ν[u, T] contains a full non-dominated valid
shift sequence with understaffing u or less, if such a sequence exists. Each full
sequence can then be selected as the solution σ∗ to the 0-1-SDPr. The approach
we have chosen is to use the full objective function φ by taking

σ∗ = argmin
0≤u≤umax

{φ′(ν[u, T]) | o(ν[u, T]) ≤ omax }. (A.25)

If φ(σ∗) = ∞ or no sequence with o(σ) ≤ maxo can be found, we set σ∗ = ∅.
If this is the case, no shifts are created and the inner loop of the algorithm
terminates. No further shifts are created for the current requirement ri and the
algorithm moves on to requirement ri+1.

For the terms of φ′ that are calculated using bitwise operations, the terms can
also be calculated on partial sequences by adding a few extra bitwise shifts and
bitmasks. This allows the calculation of φ′ to be decomposed into separate
partial sequences, as in (A.22).

A.5.2 Algorithm Complexity

The algorithm for solving the H-SDP may be described in detailed pseudocode
in Algorithm 2. In the pseudo-code, 1d-Demand produces the binary vector d′

of one-dimensional demand. The function UpdateRules creates or updates the
matrix V ′ of allowed shift templates based on the volume constraints. Function
CalculateSequence uses dynamic programming to produce a sequence of shifts
σ∗, which are then added to the solution set S∗.

The complexity of the algorithm depends on the complexities of SDPr and 0-
1-SDPr. The inner problem 0-1-SDPr builds the dynamic programming table
ν and runs the recursion. The size of ν is T × ‖d′‖1 · umax , where umax ≤ 1

82 Paper A

Algorithm 2 Algorithm pseudo-code

S∗ ← ∅
umax ← maximum understaffing ratio
omax ← maximum overstaffing ratio
for r ← r1 to r|R| do
repeat

d′ ← 1d-Demand(r)
u′ ← umax · ‖d′‖1
o′ ← omax · ‖d′‖1
V ′ ← UpdateRules()
σ ← CalculateSequence(d′, V ′)
S∗ ← S∗ ∪ σ

until σ = ∅ or uσ > u′ or oσ > o′

end for
return S∗

and ‖d′‖1 ≤ T . For each cell in ν, the recursion loops over all shift templates
s′ ∈ S′. The evaluation of each shift template s′ is done by calculating φ(s′).

By using bitwise operations, φ(s′) can be calculated in time logb(|s′|), where
b is the number of bits in a cpu register word (usually 32 or 64). For a word
size of 32 bits, 5 words can represent a shift spanning 160 time units. With a
granularity g of 5 minutes, 5 words can then represent a shift longer than 13
hours. We assume that this is always sufficient for representing shifts, i.e. that
logb(|s′|) ≤ 5. We consider φ(s′) to be a constant time operation.

The time complexity of 0-1-SDPr is then

O(T 2 · |S′|).

The outer subproblem SDPr calls 0-1-SDPr until the termination criteria is met.
The number of calls depends on the termination criteria and on the amount of
demand. In the worst case, the sequence returned by each call will cover a single
unit of demand, so the number of iterations may equal the number of units of
demand for requirement r, ‖Dr∗‖1.

The total time complexity of solving SDPr is then

O(‖Dr∗‖1 · T 2 · |S′|)

As we solve SDPr once for each r ∈ R, the overall time complexity of the
algorithm is

O(‖D‖∗ · T 2 · |S′|) (A.26)

A.6 Performance Considerations 83

where ‖·‖∗ denotes the sum of all the elements in the matrix (corresponding to
the Manhattan norm of the vectorization of the matrix),

‖D‖∗ = ‖vec(D)‖1 =
∑

r∈R

T
∑

t=1

Drt.

The algorithm is polynomial in the factors |R| and T , since the demand matrix
D of size |R| × T is provided as input. The algorithm is pseudo-polynomial in
the term ‖D‖∗, as complexity depends directly on the values of the entries in
D, which are given as integers in the input.

Note that even in the optimal case where perfect coverage is achieved, the num-
ber of iterations will still equal the highest point of demand in Dr, maxt{Drt},
which is also pseudo-polynomial in the size of the input.

The number of shift candidates is given by (A.3) in Section A.3.1. By inserting
in (A.26), we get

O(|R| · ‖Dr‖∗ · T 2 · |Q| · Lmax · |B|).
From this we see that the number of shift templates is also pseudo-polynomial
in the size of the input, as the complexity depends directly on the maximum
shift length Lmax which is given as an integer value. Combined with the other
factors contributing to the number of shift templates, the complexity relating
to |S′| may increase rapidly.

A.6 Performance Considerations

The running time of the algorithm presented in the previous section is mainly
dominated by the time complexity of the dynamic programming recursion. In
this section we review several approaches to improving performance by reducing
the time of the recursion.

A.6.1 Bi-directional Recursion

The size of the dynamic programming table is determined by the maximum
understaffing maxu. Even with a restrictive choice of maxu, the table may
get large if there are many ones in the demand vector. However, the need
for understaffing increases as the time t increases, so if we were to generate a
sequence for only half of the planning period, the expected need for understaffing

84 Paper A

σ 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0

d′ 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0

u = 0

u = 1

u = 2

u = 3

u = 4

u = 5

u = 6

b

b

b

b

b

b

b b

b

b

b b

Figure A.2: Illustration of a path through the table for a shift sequence σ. The
shifts and associated binary vector are shown on top, above the binary demand
vector. The tables shows the space requirements for the forward recursion (cen-
ter + bottom) and the bi-directional approach (center only).

could be halved as well. This is the idea behind a bi-directional approach, where
partial sequences are simultaneously generated from the beginning and end of
the planning period and then merged into full sequences. The basic approach
and expected reduction in table size is illustrated in Figure A.2.

More formally, the bi-directional approach constructs partial sequences extend-
ing forward σ+ = σ0,t+ and backwards σ− = σt−,T . The partial sequences can
be combined into a full sequences if t− = t+, in which case the sequence score is
φ(σ) = φ(σ+)+φ(σ−). We compute the forward sequences in the interval [0;T+]
and the backward sequences in the interval [T−;T]. To be able to merge the
sequences, we must have T+ ≥ T−. The distance between T+ and T− must be
large enough to allow any full sequence to have at least one shift start/end point
within the interval. To achieve this, we set T+ = T

2 +
Lmax

2 and T− = T
2 − Lmax

2 ,
where Lmax is the maximum shift length.

The generation and merging of forward and backward sequences is illustrated
in Figure A.3.

When merging forward and backward sequences, all cells in the interval [T−;T+]
need to be considered. Since the dominance criterion φ′(σ) only considers a
single sequence, each cell in [T−;T+] can have a value for both the forward and
backward recursion. We denote these ν+[u, t] and ν−[u, t], respectively.

Selecting the best sequence σ∗ is similar to (A.25) for the single-directional

A.6 Performance Considerations 85

0 T− T+ T

b

b

b

b

b

b

b

b

b

b

Figure A.3: Merging forward and backward recursion paths. Paths can be
merged if they share ending column (dashed).

recursion:

σ∗ = argmin
0≤u≤maxu

T−≤t≤T+

{φ(ν+[u, t]) + φ(ν−[u, t]) | o(ν+[u, t]) + o(ν−[u, t]) ≤ omax }.

(A.27)
As for the single-directional recursion, the inner loop is terminated if φ(σ∗) =∞
or no sequence is found with o(σ∗) ≤ omax .

A.6.2 Limiting Table Size

In order to limit the running time of the recursion, we limit the state space in
several ways, some of which have already been described: The strict dominance
of the objectives ensures that the dynamic programming table have only two
dimensions, keeping the number of table cells relatively small.

Shift granularities and the volume constraints reduce the number of time slots
that can be a start time or end time for a shift. Since the construction of the
sequence is only concerned with the transitions between shifts, we remove cells
where start or end cannot occur. We denote the set of remaining active time
units T ∗. For instances with restrictive constraints on the placements of shifts
due to office hours or low shift granularity, T ∗ may be significantly smaller than
T . The coverage objectives are still calculated on the full demand, taking into
account that there may be an uneven distance between two adjacent time units

86 Paper A

in T ∗.

Another determining factor in the running time of the recursion is the number
of shift templates. The set of templates can be reduced by superimposing a
more restrictive granularity g∗ on the shift granularity gq. Since gq is related to
both the flexibility of shifts and breaks, the effect of using g∗ may be significant.
Substituting g∗ for gq also affects the size of T ∗.

Finally, the limit on understaffing umax limits the table size directly, so setting
a restrictive limit not only causes the algorithm to terminate sooner, but also
reduces the running time of each recursion.

A.7 Computational Results

In this section we review the computational aspects of the dynamic program-
ming algorithm on several instances from real life ground handling operations.
We investigate the effect of different combinations of parameters on a subset
of the instances, and present full results on all instances on the selected set of
parameters. The experiments are focused on balancing overstaffing and under-
staffing. As a result, we will use a simplified model for cost, and not consider
the effects of this parameter in detail.

We introduce the problem instances and their characteristics in Section A.7.1.
Parameter effects are presented in Section A.7.2 and finally, large scale results
are presented in Section A.7.3.

A.7.1 Problem Instances

The problem instances are taken from real-life instances modeling ground han-
dling operations. There are several different types that varies in the type of
operation, and in the size and complexity of the problem. The instance type re-
flects the ground handling tasks performed by the modeled operation. There are
several types with different characteristics, as presented in Table A.7.1 Another
key characteristic of a problem instance is the size, which can be measured
along the two axes of the workload demand curve. First, the number of distinct
data points T , and secondly the total workload demand, measured as the area
of the demand curves, ‖D‖∗. The final characteristic is the complexity of the
operation, which we measure as the interaction level between requirements and

A.7 Computational Results 87

Type Abbre-
viation

Description

Passenger Services pax Terminal work, such as check-in counter
staffing and boarding.

Ramp ramp Aircraft-centric tasks, e.g. pushback or
refueling.

Transportation trans Airport transportation tasks, such as
baggage delivery.

Cargo cargo Loading and handling of cargo.
Operations ops General operations handling.

Table A.1: Characterization of operation types

qualifications, int, as defined in (A.4). A list of problem instances and their
characteristics is provided in Table A.2.

A.7.2 Parameter Tuning Results

In this section we investigate the effects of different parameter values on the
solution quality. We group the parameters into several groups, which we ad-
dress separately in order to limit the overall complexity. To simplify the ex-
periments presented here, we use pre-determined weights for the scoring func-
tion φw = (φo, φcov, φu, φint, φc) = (100,−10, 1, 0.5, 0.1). These weights have
been selected to maintain a lexicographic ordering between the individual terms.
Overstaffing will always be weighted highest, followed by coverage, and so on.
Setting the weights to these values corresponds to a planner having high priority
on obtaining a good coverage and lowest priority on minimizing cost.

We review the performance of the algorithm with different sets of parameters
using two sample scenarios: pax.r.a and ramp.g.a. These scenarios have been
chosen because they represent each of the two major operation types, pax and
ramp and are not too similar in terms of interaction level and size.

Termination Criteria

We first address the termination criteria maxu and maxo. Table A.3 presents the
effects of running with different termination limits on pax.r.a and ramp.g.a.

Figure A.4 graphically shows the connection between relative understaffing
u/|D|, relative overstaffing o/|D| and the running time of the experiments.

88 Paper A

Scenario |R| |Q| int T ‖D‖∗
cargo.m.a 8 5 0.44 2016 15294
ops.e.a 3 5 0.5 8064 17887
pax.e.a 6 10 0.21 8064 59329
pax.g.a 1 2 0.5 1008 11981
pax.g.b 1 2 0.5 1008 14143
pax.m.a 10 9 0.52 2016 12796
pax.r.a 3 8 0.15 336 3721
pax.r.b 3 12 0.15 336 3721
ramp.e.a 9 15 0.08 1344 6677
ramp.e.b 7 10 0.58 8064 59383
ramp.e.c 7 10 0.58 8064 59383
ramp.g.a 1 2 0.5 1008 7275
ramp.g.b 1 2 0.5 1008 8710
ramp.m.a 13 9 0.19 2016 3448
ramp.r.a 1 4 0.25 336 1943
trans.o.a 6 12 0.5 1008 12925
trans.o.b 6 12 0.5 1008 19603

Table A.2: Characteristics of problem instances

As seen in the figure, the selected termination criteria each produce a non-
dominated solution, where u cannot be decreased without increasing o. As u/|D|
approaches 0, o/|D| becomes increasingly higher (and analogously for o/|D| and
u/|D|), which means that in many cases a balanced approach is preferable.

All non-dominated sets of parameters may be considered good, so choosing the
best combination depends on the priorities of the planner.

The actual levels of coverage obtained by setting different termination criteria
are illustrated again in Figure A.5. The figure shows the coverage as con-
tour on the workload for scenario ramp.g.a with the two termination crite-
ria (maxu,maxo) = (0.7, 0.4) and (maxu,maxo) = (0.8, 0.6). The result for
(maxu,maxo) = (0.8, 0.6) covers more of the demand, but with a higher degree
of overstaffing.

From the illustrations we identify (maxu,maxo) = (0.7, 0.4) as the most promis-
ing combination for obtaining a balance between understaffing and overstaffing,
while keeping the running time low. We choose these parameters for further
study, as we wish to emphasize this aspect of the algorithm.

A.7 Computational Results 89

Scenario umax omax Iters o u o/‖D‖∗ u/‖D‖∗ |S∗| Time (s)

pax.r.a 0.5 0.2 29 288 4074 0.01 0.18 398 10.25
pax.r.a 0.5 0.4 33 666 3150 0.03 0.14 438 10.48
pax.r.a 0.5 0.6 37 1272 2478 0.06 0.11 465 10.96
pax.r.a 0.7 0.2 38 384 3570 0.02 0.16 448 14.66
pax.r.a 0.7 0.4 57 2472 1596 0.11 0.07 502 17.78
pax.r.a 0.7 0.6 84 4020 504 0.18 0.02 595 20.35
pax.r.a 0.8 0.2 49 576 3294 0.03 0.15 477 18.18
pax.r.a 0.8 0.4 119 4176 456 0.19 0.02 618 28.09
pax.r.a 0.8 0.6 143 4770 210 0.21 0.01 682 29.78
pax.r.a 0.9 0.2 179 3708 846 0.17 0.04 589 43.92
pax.r.a 0.9 0.4 287 5166 114 0.23 0.01 722 55.89
pax.r.a 0.9 0.6 290 5214 78 0.23 0 725 54.61
ramp.g.a 0.5 0.2 16 1036 4450 0.07 0.31 151 2.35
ramp.g.a 0.5 0.4 20 1926 2904 0.13 0.2 185 2.65
ramp.g.a 0.5 0.6 24 3120 1686 0.21 0.12 218 3.03
ramp.g.a 0.7 0.2 28 1590 3360 0.11 0.23 176 4.71
ramp.g.a 0.7 0.4 39 3506 1436 0.24 0.1 230 5.64
ramp.g.a 0.7 0.6 44 4454 932 0.31 0.06 250 6.47
ramp.g.a 0.8 0.2 44 2260 2554 0.16 0.18 197 7.91
ramp.g.a 0.8 0.4 61 4292 1010 0.29 0.07 248 9.22
ramp.g.a 0.8 0.6 68 5178 648 0.36 0.04 267 9.77
ramp.g.a 0.9 0.2 96 3812 1454 0.26 0.1 251 14.38
ramp.g.a 0.9 0.4 151 6694 412 0.46 0.03 311 17.06
ramp.g.a 0.9 0.6 170 7718 296 0.53 0.02 330 17.9

Table A.3: Effects of altering termination parameters for the recursion. maxu
and maxo are the termination limits, o and u are the resulting units of over-
and understaffing and o/|D| and u/|D| presents the coverage ratio to the total
demand. |S∗| is the number of created shifts.

90 Paper A

pax.r.a

0.08 0.15 0.23 0.3

u%

0.08

0.15

0.23

0.3

o%

5,
2

5,
4

5,
6

7,
2

7,
4

7,
6

8,
2

8,
4

8,
6

9,
2

9,
4

9,
6

ramp.g.a

0.15 0.3 0.45 0.6

u%

0.15

0.3

0.45

0.6

o%

5,
2

5,
4

5,
6

7,
2

7,
4

7,
6

8,
2

8,
4

8,
6

9,
2

9,
4

9,
6

Figure A.4: Illustration of results for different termination criteria for scenarios
pax.r.a (left) and ramp.g.a (right). Each circle represents the results of a
run. The position indicates the resulting mix of relative understaffing and over-
staffing. The diameter of the circle represents the runtime. Used termination
criteria umax , omax (×10) is shown next to each run.

Figure A.5: Coverage for a sample day using termination criteria
(maxu,maxo) = (0.7, 0.4) (left) and (maxu,maxo) = (0.8, 0.6) (right) for sce-
nario ramp.g.a.

A.7 Computational Results 91

Scenario g∗ B-D Iters Cells |S′| o/‖D‖∗ u/‖D‖∗ |S∗| Time (s)
pax.r.a 60 N 57 50913.49 239.21 0.11 0.07 502 18.16
pax.r.a 60 Y 52 26357.06 242.46 0.07 0.11 481 10.58
pax.r.a 30 N 54 82778.50 1284.33 0.02 0.02 492 148.16
pax.r.a 30 Y 54 41149.57 1298.59 0.02 0.02 481 85.86
ramp.g.a 60 N 39 60447.15 31 0.24 0.1 230 5.83
ramp.g.a 60 Y 40 29840.85 31 0.24 0.11 232 4.46
ramp.g.a 30 N 37 124157.95 91 0.22 0.09 225 28.05
ramp.g.a 30 Y 39 61801.72 91 0.22 0.09 231 18.03

Table A.4: Effects of altering shift granularity and recursion direction for the
sample scenarios. B-D indicates whether the bi-directional recursion is used.
Cells and |S∗| is the average number of visited cells and shift templates per
iteration. o/|D| and u/|D| is the relative amount of over- and understaffing
compared to the total workload demand. |S∗| is the resulting number of shifts.

Performance Parameters

In this section, we review the effect of two parameters that directly influences
the size of the problem: The bi-directional recursion, and the granularity of
the used shift templates. The finer the granularity, the more different shift
templates are allowed. We run experiments with a modest setting of 60 minutes
and a more fine-grained setting of 30 minutes. Results of the experiments are
presented in Table A.4.

As seen, the bi-directional recursion is consistently faster than the single-direction
version, as the average number of cells visited per iteration can be roughly
halved. The time savings are in the range 25–50%, depending on the size of the
problem.

Increasing the granularity greatly increases the number of shift templates S′ and
consequently, the running time is also increased. As an example, consider the
single- and bi-directional run on pax.r.a. The exact same number of shifts was
created in both cases, but with significantly better results using the 30 minute
granularity. However, the running time was also increased significantly from 10
to 90 seconds.

We observe from the results that the bi-directional recursion provides a signif-
icant improvement in running times. We identify the bi-directional recursion
with 60 minute granularity as the most promising candidate for the declared
goal of quickly creating solutions of reasonable quality. If the focus instead was
on higher solution quality, the 30 minute granularity is clearly preferred.

92 Paper A

Scenario Iters |T ∗| |S′| o/‖D‖∗ u/‖D‖∗ z∗ |S∗| Time (s)
cargo.m.a 28 59 7.86 0.03 0.42 1690.32 90 1.17
ops.e.a 11 587 38 0.11 0.24 2806.56 208 27.95
pax.e.a 34 587 84 0.1 0.13 11011.25 791 178.82
pax.g.a 64 560 31 0.23 0.14 51827.83 399 33.15
pax.g.b 74 560 31 0.23 0.13 67266.31 469 38.48
pax.m.a 37 59 6.68 0.17 0.56 8513.59 88 1.87
pax.r.a 52 153 242.46 0.07 0.11 5666.14 481 10.2
pax.r.b 63 153 145.92 0.12 0.06 2414.79 521 5.98
ramp.e.a 35 504 66.46 0.07 0.48 3442.19 606 14.03
ramp.e.b 45 517.8 30.47 0.22 0.26 34674.76 767 85.52
ramp.e.c 45 227.33 16.64 0.2 0.22 43681.81 780 26.71
ramp.g.a 40 140 31 0.24 0.11 23628.24 232 4.32
ramp.g.b 47 140 31 0.23 0.1 31522.56 278 5.22
ramp.m.a 17 59 13.88 0.06 0.67 607.73 15 1.63
ramp.r.a 23 153 111 0.09 0.1 974.59 276 2.29
trans.o.a 110 147 22 0.29 0.2 50372.61 462 10.05
trans.o.b 111 224 22 0.26 0.19 57942.08 664 25.01

Table A.5: Results of running with the determined parameters on all scenarios.
Iters shows the number of iterations. |T ∗| and |S′| shows the average value of
T ∗ and the average number of shift templates for the iterations. o/‖D‖∗ and
u/‖D‖∗ shiws the relative staffing levels. z∗ shows the total objective function
value and |S∗| shows the number of created shifts.

A.7.3 Dynamic Programming Results

This section presents the results for the bi-directional dynamic programming
heuristic with 60 minute granularity. Results of running the heuristic on all
scenarios are presented in Table A.5. Table A.5 shows that 10 of the 17 instances
are solved within 15 seconds and 15 are solved within one minute, with the
final two instances solved in 94 and 191 seconds. Table A.5 also shows a large
differences in the size reductions possible for the instances. The largest scenario,
pax.e.a has an average of 587 active time units (out of 8064 total) and 84 shift
candidates. In comparison, the scenario ramp.e.c is of comparable size, but
was reduced much further to 227 active time units and 16 shift candidates.
This instance was solved in 26 seconds, which illustrates the effectiveness of the
size reductions.

A.8 Conclusions

We have presented an algorithm for the heterogeneous shift design problem
that emphasizes an even distribution of shifts throughout the planning period.

A.8 Conclusions 93

Furthermore, the algorithm is highly customizable in the amount of working
rules satisfied and the trade-off available between running time and solution
quality.

Experimental results are presented for a number of real-life problem instances
taken from a variety of airport ground handling operations. The experiments
show that the algorithm is able to generate good quality solutions for all prob-
lem instances quickly, and that the algorithm provides efficient parameters for
balancing understaffing and overstaffing.

94 Paper A

References

[1] I. Addou and F. Soumis. Bechtold-jacobs generalized model for shift
scheduling with extraordinary overlap. Annals of Operations Research,
155(1):177–205, 2007.

[2] S. E. Bechtold and L. W. Jacobs. Implicit modeling of flexible break assign-
ments in optimal shift scheduling. Management Science, 36(11):1339–1351,
1990.

[3] M. Beeler, R. W. Gosper, and R. Schroeppel. Hakmem. Memo 239, Artifi-
cial Intelligence Laboratory, Massachusetts Institute of Technology, Cam-
bridge, Mass., 1972. Item 169.

[4] G. B. Dantzig. A comment on edie’s ”traffic delays at toll booths”. Journal
of the Operations Research Society of America, 2(3):339–341, 1954.

[5] L. Di Gaspero, J. Gärtner, G. Kortsarz, N. Musliu, A. Schaerf, and
W. Slany. The minimum shift design problem. Annals of Operations Re-
search, 155(1):79–105, 2007.

[6] D. Dowling, M. Krishnamoorthy, H. Mackenzie, and D. Sier. Staff rostering
at a large international airport. Annals of Operations Research, 72(0):125–
147, 1997.

[7] A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and
rostering: A review of applications, methods and models. European Journal
of Operational Research, 153(1):3–27, 2004.

[8] J. Herbers. Models and Algorithms for Ground Staff Scheduling On Air-
ports. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen,
Faculty of Mathematics, Computer Science and Natural Sciences, 2005.

96

[9] N. Kohl, A. Larsen, J. Larsen, A. Ross, and S. Tiourine. Airline disrup-
tion management-perspectives, experiences and outlook. Journal of Air
Transport Management, 13(3):149–162, 2007.

[10] H. C. Lau. On the complexity of manpower shift scheduling. Computers &
Operations Research, 23(1):93–102, 1996.

[11] A. J. Mason, D. M. Ryan, and D. M. Panton. Integrated simulation, heuris-
tic and optimisation approaches to staff scheduling. Operations Research,
46(2):161–175, 1998.

[12] N. Musliu, A. Schaerf, andW. Slany. Local search for shift design. European
Journal of Operational Research, 153(1):51–64, 2004.

[13] M. Rekik, J.-F. Cordeau, and F. Soumis. Implicit shift scheduling with mul-
tiple breaks and work stretch duration restrictions. Journal of Scheduling,
13(1):49–75, 2009.

[14] J. M. Tien and A. Kamiyama. On manpower scheduling algorithms. SIAM
Review, 24(3):275–287, 1982.

Paper B

A Rule-Based Local Search

Algorithm for General Shift

Design Problems in Airport

Ground Handling

Tommy Clausen

Submitted to European Journal of Operational Research

98 Paper B

A Rule-Based Local Search Algorithm for

General Shift Design Problems in Airport

Ground Handling

Tommy Clausen

We consider a generalized version of the shift design problem
where shifts are created to cover a multiskilled demand and fit the
parameters of the workforce. We present a collection of constraints
and objectives for the generalized shift design problem. A local
search solution framework with multiple neighborhoods and a loosely
coupled rule engine based on simulated annealing is presented. Com-
putational experiments on real-life data from various airport ground
handling organization show the performance and flexibility of the
proposed algorithm.

B.1 Introduction

The shift design problem (SDP) is an important problem arising in workforce
scheduling, which is concerned with assigning the workforce to cover a specified
demand. The goal of shift design is to create a set of shifts that cover the
demand as well as possible, while satisfying the large number of constraints
arising from labor regulations, the composition of the workforce and employee
preferences.

The shifts generated from a solution to the shift design problem form the input
for subsequent planning stages in workforce planning, such as rostering and crew
scheduling. A secondary application for shift design is to determine the size of
the workforce required to solve the demand.

It is common to divide workforce scheduling into stages, which are solved se-
quentially. Tien and Kamiyama [22] present a five stage model for workforce
scheduling problems: Temporal (i) and total (ii) manpower requirements; the
determination of recreation blocks (iii) and a recreation/work schedule (iv); and

B.1 Introduction 99

shift scheduling (v). In this setting, shift design may be applied in stage (i) and
(ii).

The majority of references for workforce scheduling focus mainly on rostering
or crew scheduling (stages (iii)-(iv)). It is common in these problems to assume
that the shifts to schedule are either fixed or part of a (limited) candidate set.
See e.g. the survey for workforce scheduling and rostering problems by Ernst et
al. [9].

In this paper, we consider the shift design problem for the specific venue of
airport ground handling, where the majority of the demand is linked to the
arrival and departures of flights. The uneven distribution of flights during the
day can cause large fluctuations in demand from one time unit to the next.
For applications in airports or other places with a highly variable demand, an
amount of idle time is unavoidable for workers during the working days. This
means that combinatorial algorithms are either very complex or will provide
poor bounds on the workforce size actually required. In these cases, a dedicated
shift design algorithm is more suited to determine a realistic workforce size or
distribution.

Compared to the well-studied workforce scheduling and rostering problems, the
shift design problem has by comparison only received limited attention in the
literature. Herbers [10] describes a shift design algorithm for operational plan-
ning, where demand is given as actual tasks. Musliu et al. [17] present a tabu
search algorithm for a general shift design problem. Di Gaspero et al. [6] present
a local search algorithm for a variant of the shift design problem, in which the
number of different shifts generated is minimized.

Some previous work present systems which consider the generation of shifts as
a sub-problem: Dowling at al. [8] present a staff scheduling system for airport
operations with flexibility in shift lengths and break placements in which the core
algorithm uses a simulated annealing algorithm that validates modified solutions
against an external rule engine. Chu [4] present a three step crew planning
system for airport baggage services which include duty (shift) generation, crew
scheduling and crew rostering. A goal programming-based heuristic is presented
for the duty generation problem with fixed length shift with a flexible break.
Brusco et al. [2] present a scheduling implementation for airport ground crew
in which a column generation based heuristic is used to generate shifts.

Airport ground handling work requires a high degree of coordination between
workers with different skills. Lau [14] notes that different aircraft types and
airlines may require different skills, possibly yielding a high number of work
types, see also Ho and Leung [11]. The ability to perform different skills may
be represented by a skill matrix, or hierarchically determined as described by

100 Paper B

Hung [12] such that more experienced workers can perform an increasing set of
skills.

Several papers (e.g. Bechtold and Brosco [1], Brusco et al. [2]) note the need
to plan workers with different contracts, such as fulltime and parttime workers
together. In some cases labor regulations require that a specified mix of different
contracts are present.

In this paper we present a local search framework for a the shift design problem
which can model a variety of real-life shift design problems arising in airport
ground handling. The framework is designed for rapid extension to easily include
new rules or neighborhoods, to solve new problems or increase performance for
the occurrence (or absence) of a specific combination of rules. The presented
framework is not intended to solve a specific shift planning problem, but to
model very diverse shift planning problems. This enables modern service com-
panies, which have many operations with different workforce characteristics and
labor conditions, to centralize and effectivize their planning processes. The need
for flexible, general workforce scheduling approaches is noted as a major future
challenge by Ernst et al. [9].

The presented algorithm was developed as part of the WorkBridge Prepare soft-
ware product for workforce planning and rostering. The system is targeted
service companies with emphasis on airport ground handling. As a component
of a general software tool, the developed algorithm is required to handle many
different types of operations. To illustrate the flexibility obtained by the algo-
rithm, we present good results for a set of real-life problems instances spanning
several companies, types of ground handling and countries of operation.

The remainder of the paper is structured as follows. Section B.2 presents the
shift design problem in detail and introduces notation and variables. Section B.3
present the components of the framework, including constraints and objectives.
A local search algorithm with multiple neighborhoods and loosely coupled rule
engine is presented in Section B.4. Computational results on real-life instances
are presented in Section B.5 and conclusions are presented in Section B.6.

B.2 Definitions and Terminology

The shift design problem covers a planning period, which is subdivided into T
smaller, equally sized time slots t = 0, . . . , T −1. It is common to use a planning
period of one week or one month.

B.2 Definitions and Terminology 101

Shifts are to be created for a multi-skilled environment, in which a workload
demand may require several skills at once, and a worker may be able to fulfill
several types of demand. To model capabilities for workers and demand, we
introduce the notion of shift qualifications q ∈ Q and demand requirements
r ∈ R. A requirement (which may include several skills) describes an ability to
perform a certain work and a qualification describes all capabilities of a worker
following a shift. By using qualifications, shifts are created anonymously, so
there is no direct link to the employee that will eventually follow the shift except
the implicit expectation that the employee will possess the required skills. In
this way, a large degree of flexibility in the workforce is maintained, while the
ability to distinguish different employees is preserved.

The workload demand is represented as a two-dimensional integer matrix D ∈
N

|R|×T
0 . Each entry Drt specifies the required number of active shifts with

suitable qualification to cover requirement r at time unit t. A simple indication
of the size of a problem instance is the total amount of demand to cover, which
we denote ‖D‖∗, the sum of all entries in D.

A shift (or duty) defines a continuous work period of a single worker, possibly
interrupted by meal or relief breaks. A shift s is defined by a qualification qs, a
start time ts, and a length ls. For ease of notation, we also use es = ts+ ls as the
end time of shift s. The qualification qs serves two purposes: First it determines
the expected capabilities of a worker following shift s. Second, it serves as an
index for the rules and regulations valid for the worker, so it is assumed that all
workers with qualification q work under the same conditions and constraints.

Additionally, a shift may have several meal and relief breaks during the shift,
during which demand is not covered. Breaks are usually flexible, allowing the
break to be placed within a time window. For shifts with several breaks, high
flexibility may have a high impact on both the ability to cover demand and the
complexity of the problem. Although the position of breaks is rarely determined
at this stage of planning, it is still necessary to consider breaks to get an accurate
estimation of the demand coverage.

A special kind of idle periods can arise where workers may be allotted time
for briefings, wardrobe changes, etc. We denote these preparation and de-
preparation times and are fixed to the start or end of the shifts. These types of
breaks are not uncommon in the airport or ground handling industry [2], [15].

102 Paper B

B.2.1 Workload Coverage

It is desirable to fit the shifts to the demand as good as possible, thereby mini-
mizing the amount of overstaffing (surplus of shifts) and understaffing (shortage
of shifts). It is often unavoidable to have either overstaffing or understaffing in
the final solution. When there is a high degree of variance in the workload, it
may even be desirable to find a “middle-ground” solution that have both over-
staffing and understaffing. In these cases the coverage should be “smoothened”
to distribute the overstaffing and understaffing across the planning period. A
smooth coverage will in many cases have a higher degree of robustness, as it lo-
cally minimizes both coverage problems and excess capacity. There are several
ways to model such a smoothing. Chu [4] minimizes the maximum overstaffing
occurring across all time slots. Dowling [8] minimizes the sum of the squared
deviance from the target. We choose an approach similar to Dowling, where
we square each overstaffing per time slot separately for each shift qualification.
Similarly, understaffing is squared for each requirement and time slot separately.

To determine the overstaffing and understaffing at each time slot, an assignment
problem needs to be solved that assigns (shifts with) qualifications to require-
ments. Although this is not a difficult problem, it must be solved many times
during the course of the algorithm so we solve it by using a greedy heuristic.
The heuristic assumes that both requirements and qualifications can be ordered
r1, . . . , rn and q1, . . . , qn such that it is always preferable to cover the lowest
numbered requirement using the lowest numbered qualification, whenever pos-
sible.

The heuristic works as follows: For each requirement starting with r1, we at-
tempt first to assign shifts with q1, then shifts with q2 and so on, until no
demand for r1 remains. The heuristic then continues for r2 to rn.

The coverage calculation clearly produces sub-optimal solutions in terms of the
total squared coverage, since it gathers overstaffing and understaffing in few
groups, rather than distributing them as evenly as possible. However, the heuris-
tic has the advantage that it will assign understaffing to the highest numbered
requirements (deemed the least important) and assign overstaffing to the high-
est numbered qualifications. In many cases, the considered workforce is fully
or partially hierarchical, such that higher numbered qualifications are more ca-
pable. In these cases, grouping overstaffing on the most capable parts of the
workforce provides a more robust coverage.

B.3 Modular Components 103

B.3 Modular Components

To maintain a high level of flexibility for the planner using the system, the
constraints and objectives are included as modular components. This means
that any constraint and objective can be included or excluded by the planner to
achieve the desired model of the workforce and applicable labor requirements.

A key concern when designing a local search heuristic for a generalized set of
work rules and objectives is how these items are modeled and evaluated. We
have chosen a software development-oriented approach to flexibility in which
each rule is represented by a separate modular entity which interfaces both
the algorithm and the planner’s application. In the planner’s application, the
rule provides an easily understandable graphical representation that allows the
planner to model the workforce with little or no previous training.

In the algorithm, all rules are known through general interfaces by the rule
engine, which asserts feasibility, and the objective function for calculating the
objective value.

The majority of relevant literature consider a set of rules that is defined a
priori and modeled directly in the MIP-model (for MIP-based approaches), or
implemented directly in the neighborhood (for local search approaches). See
Thompson [21], Brusco et al. [2] and Musliu et al. [17] for examples of this
approach.

More flexible approaches to generic rule handling integrate local search and
constraint programming, see e.g. Shaw [20] or the general framework of van
Hentenryck and Michel [23]. In a similar approach Quimper and Rousseau [19]
consider a large neighborhood search algorithm where constraints are described
in regular languages and evaluated using automata.

Recent approaches to adding generic rules in MIP models define a domain
specific language for defining the rules and then compiling the rule definition
into MIP constraints. This approach is used for airline rostering by Kohl and
Karisch [13] and nurse rostering by Dohn et al. [7].

The flexibility of the developed algorithm can be viewed as somewhere between
the fully flexibly language-based approaches and the fixed a-priori approaches.
Although new rules must be implemented in software, the modular framework
allows new rules to be deployed as needed, independently of the surrounding sys-
tem. The addition of new rules can be viewed as a task for a trained consultant
rather than a complete software upgrade.

104 Paper B

We present a subset of objectives in Section B.3.1 and rules in Section B.3.2
and Additional details and a general representation of rules and objectives are
presented in Section B.3.3.

B.3.1 Objectives

The shift design problem is a compromise between many different (and often
conflicting) goals. To model this, the objective function f(x) consists of a num-
ber of individual objective terms, combined in a weighted sum

f(x) =
∑

o∈O

αo · o(x)

where f(x) is to be minimized. Each objective o has an individual weight αo that
can be modified by a planner. We consider three main objectives and a number
of minor objectives. The three main objectives are overstaffing, understaffing
and cost, and are described in detail below.

Overstaffing and understaffing minimizes the surplus and shortage of shifts to
cover the demand. Both objectives determine the fit of shifts to the demand,
which we with a common term denote workload coverage. The coverage terms
are the most complex terms of the algorithm. They are described in detail in
Section B.2.1.

The cost objective minimizes the expenditure of working the shifts in the so-
lution. It may correspond directly to the salary of the workers or reflect more
abstract costs, such as the availability of agency workers, etc. Cost is defined
as a base cost with a flexible number of supplements that increase the cost of
shifts at specified time intervals, such as nights and weekends.

Setting different weights for the cost, overstaffing and understaffing objectives
provide flexibility in modeling a variety of coverage scenarios. For example, it is
common in shift scheduling models to require that all demand is covered. This
can be achieved by setting a high weight on understaffing, a lower weight on
cost and removing overstaffing.

Additionally, a large number of objectives may stem from preferences and penalty
terms for the violation of relaxed rules. These are described in detail in Sec-
tion B.3.2.

B.3 Modular Components 105

B.3.2 Rules

Rules are constraints a planner may add to the problem in order to specify
certain traits in the solution found by the algorithm. Rules are flexible and
can be modified by parameters. Some rules can be added a number of times
with different parameters and most rules can be left out of the algorithm if not
needed. This allows the algorithm to model a large variety of different shift
design problems.

The composition and placement of shifts may depend on a large number of
different rules, which may vary from operation to operation. A selection of rules
is presented below:

1. Valid shift start time granularity (e.g. half-hourly).

2. Shift length.

3. Preparation and de-preparation times.

4. Number and placement of breaks. Each break has a duration and associ-
ated break window that depends on the length of the shift.

5. Time intervals where no part of a shift can occur.

6. Time periods where shifts cannot start.

7. Time periods where shifts cannot end.

8. The allowed number of shifts.

9. Allowed number of working hours.

10. Allowed relative number of shifts (e.g. an allowed ratio of fulltimers and
part-timers).

11. Average shift length.

Rules 1-4 control the composition of a single shift. These rules are considered
basic and are not allowed to be violated or considered as soft constraints (al-
though it is possible to specify that shifts should contain no breaks). Rules 5-7
adds additional constraints to the placement of shifts, and can be evaluated for
each shift individually. The remaining rules require the state of all shifts covered
by the rule to be calculated.

Rules 1 and 3–7 are declarative, and specify a fixed set of values that variables
must (or cannot) take. The remaining rules are value-based and define the

106 Paper B

rmin rp rmax ν(x)

f(x)

Figure B.1: Schematic of a generic rule composition and objective function
terms, with preference term (solid line) and penalties for exceeding min or max
(dashed line).

limits of a value, which is calculated from the solution. A value-based rule in
the framework has two associated limits, a minimum allowed value rmin and a
maximum rmax . In addition, such a rule can have a preference rp that stipulates
a preferred value. Deviation from the preference is penalized linearly in the
objective function as an objective term.

Rules may be relaxed to allow violations to rmin or rmax . The violations are
penalized in the same way as the preference objectives, but as independent terms
with higher αo weights. This is illustrated in Figure B.1.

Some of the value-based rules are volume rules that specify the size or compo-
sition of (portions of the) solution as a whole. In the list of rule examples, rules
8–11 fit this description. The volume rules can be used to model the size and
composition of the workforce. Volume rules can also provide bounds for con-
straints that arise in the later stages of workforce scheduling by setting the rule
limits appropriately. See for instance Burns and Carter [3] for an application of
lower bounds for the “X of Y weekends off” rule. As a result, a large number of
volume rules can be in use, to realistically determine the shape of the solution
in details.

B.3.3 Rule Modeling

Formally speaking, a rule r ∈ R evaluates a value function ν(x) ∈ R on the
solution x and the rule is violated if ν(x) exceeds the specified rmin or rmax .
The preference term may be calculated from the value function by

o(x) = |ν(x) − rp|,
where rp is the preferred value of the rule. The penalty function is calculated
in a similar way:

o(x) = max {(ν(x) − rmin , 0}+max {(rmax − ν(x), 0} .

B.4 Algorithm 107

A consequence of the rule value function ν(x) is that it implicitly defines a
domain as well. If a rule is specified for a certain contract, only shifts for that
contract will contribute to ν(x). Similarly a rule for a specific weekday will
only use shifts on that day in its definition of ν(x). The domain of each rule is
implemented directly in ν(x), but may be controlled by parameters to the rule.
Standard parameters include contract and time interval. When considering time
periods, it is useful to consider time intervals that are recurring over a time
period, for instance a time period recurring daily or weekly. Such recurrences
can be modeled using three parameters, I = (is, ie, ip). A time period t is in I
if t ≥ (is mod ip) and t ≤ (ie mod ip).

Rules are specified for each qualification, allowing different rules for different
parts of the workforce. Otherwise, domains are not explicitly defined for r,
as this might restrict the definition or efficiency of the rules to only handle
certain types. Instead, each rule may use standard parameter implementations
or supply its own implementation.

B.4 Algorithm

In this section, we present the algorithm used to solve the shift design problem.
The algorithm is a simulated annealing-based local search algorithm, which uses
several neighborhoods.

When designing a local search heuristic, a number of concerns must be consid-
ered. The time complexity of the neighborhoods should be kept low, and the
algorithm should show satisfactory convergence.

These are often contradicting requirements that a good local search algorithm
will attempt to balance: Large complex neighborhoods will increase the running
time of each individual iteration, but there is time for few iterations during the
algorithm run. On the other hand, small simple neighborhoods will be less
time consuming, but the expected improvement in quality of a single iteration
is likely to be low.

For a real-life setting, where the algorithm is intended for a generalized set of
rules and objectives, other concerns must be considered as well. The system
should be able to support a large number of rules and objectives, and it should
be simple to add support for new rules and objectives as well. New items should
be simple to add both during the initial development and as an upgrade to a
system already in production.

108 Paper B

Finally, it is desirable to have an algorithm that is easy to implement and main-
tain. This not only reduces the cost of development, but also minimizes the cost
of knowledge transfer between operations researchers and software developers.

B.4.1 Algorithm Overview

The local search algorithm uses multiple neighborhoods Ni : x→ x′, that each
define a transformation of the current solution x solution to a new solution.

The algorithm starts with an initial solution x0 and iteratively applies one of
the neighborhoods to the current solution.

After each iteration, the modified solution x′ is evaluated using a rule engine
that evaluates all hard (i.e. non-relaxed) rules. If all hard rules are satisfied, we
use the simulated annealing acceptance criteria, in which the objective function
f(x′) is evaluated and accepted with probability

p = e
f(x′)−f(x)

T

where T is the temperature. If the modified solution is not feasible, or the
solution is not accepted, the modified solution is discarded. If accepted, x′

replaces x as the current solution for the next iteration. The temperature is
updated as T = T ·C after 0.05 ·D iterations. The temperature is updated 100
times, yielding 5 ·D iterations in total. The initial temperature is set to TR ·D.
The relative temperature TR and the cooling factor C are considered parameters,
and suitable values will be investigated in Section B.5.3. The remaining values
are either fixed or calculated from the size of each individual problem instance
‖D‖∗.

We use five neighborhoods that each modifies the solution using different “atomic”
transformations:

N1 Move (translate) Shift: Randomly select a shift and move the shift to
a new random start time.

N2 Change Shift Duration: Randomly select a shift and set a new random
duration for the shift. Any breaks made obsolete are removed. Any new
breaks are placed randomly.

N3 Move Break: Randomly select a break and give it a new random place-
ment.

B.4 Algorithm 109

N4 Create Shift: Randomly select a qualification, start time, duration, and
locations of all breaks.

N5 Remove Shift: Remove a randomly selected shift from the solution.

The neighborhoods chosen are all somewhat intuitive, as they each have a sin-
gle, unique purpose on their own dimension of the solution. Indeed, similar
neighborhoods ware used in the implementations by Dowling [8] (N1, N2, N3),
Musliu [17] (variants of N1, N2, N4), and DiGasparo [6] (variants of N2). The
two latter references also consider other neighborhood structures.

When using multiple neighborhoods, there are different ways to select which
neighborhood to use in each iteration. The simplest are to select one at random
each iteration or use a round robin scheme. We have chosen to use a variant of
the adaptive selection strategy of Pisinger and Røpke [18], because our neigh-
borhoods consider different aspects of the solution, and it seems likely that the
usefulness of each neighborhood will change during the iterations. Each neigh-
borhood Ni is assigned a weight wi between 0 and 1, such thay

∑n
i=1 wi = 1.

The selected neigborhood is selected using a roulette wheel principle with prob-
ability wi. In addition, each neighborhood collects a score πi that sums the
achievements of neighborhood Ni. The score is increased by a constant value
σA if the solution found by the neighborhood is accepted. If the solution has
the lowest objective value seen so far, the score is increased by the constant σB .

The iterations are grouped into equally sized segments, after which the neigh-
borhood weights are updated to reflect a combination of the previous weight
and the earned score. The new weight w′

i is set to

w′
i = (1− ρ)wi + ρ · πi

sel(Ni)

where sel(Ni) is the number of times Ni was selected in the segment. An
addtional scaling step ensures that

∑

w′
i = 1. At the beginning of each new

iteration, we set πi = 1.

B.4.2 Rules and Neighborhoods

The set of rules enforced by a neighborhood depends on the implementation
of the individual neighborhood. Thus, a neighborhood is not required to im-
plement all rules, which makes the implementation of neighborhoods simpler.
Rules that are either difficult to implement in a neighborhood or have little
chance of being violated by the neighborhood can be disregarded. This de-
creases the overall complexity of the neighborhood, and increases both running

110 Paper B

Application

Obj. Function

Rule Engine

N1

N2

N3

r1 r2 r3 r4

b b b b

b b b b

b b b b

b b b b

b b b

b b

Figure B.2: Schematic representation of the modular structure of rules and
neighborhoods.

time and implementation time. An example of the modular structure of rules
and neighborhoods is shown in Figure B.2.

Any rule added to a neighborhood will automatically increase the complexity of
the neighborhood. This will make the implemented neighborhood more difficult
to maintain in a running system, and it will increase the cost of adding additional
constraints even further.

As the neighborhood implementations are not required to satisfy all constraints,
there is no guarantee that a solution returned by a neighborhood will be feasible.
To minimize the amount of time spent in a neighborhood that risk being dis-
carded by the rule engine, the neighborhoods we have initially implemented are
small and selects random values rather than searching the entire neighborhood.

Another consequence of the framework is that it is easy to add additional neigh-
borhoods to cooperate with the existing neighborhoods or to replace them. This
may be neighborhoods that are able to satisfy a different set of rules or employs
more intelligent strategies for selecting new solutions. It may also be composite
neighborhoods that combine the actions of two or more “atomic” neighborhoods.

The loosely coupled rule engine means that rules are not explicitly known in
the algorithm. For highly constrained problems it may therefore be difficult to
ensure that all rules are satisfied throughout the algorithm. For this reason,
most rules are relaxed during the early iterations of the algorithm. When a

B.4 Algorithm 111

feasible solution is accepted where no relaxed rules are violated, all relaxed
rules are changed to hard rules. From this point, it is no longer possible to
violate a rule. This ensures that once a feasible region of the solution space has
been found, the algorithm will stay within that region.

B.4.3 Fast Rule Evaluations

To enable both rules and objectives to be evaluated quickly, the concept of delta
evaluations is used extensively. In delta evaluations, only the modified parts of
the solution are re-calculated, allowing the objectives and rules to calculate only
the change (or delta) in the value, rather than calculating the value from scratch
for the entire solution.

Objectives are in many ways like rules and are treated in the same way. As
with rules, they are based on a real-valued function ν(x), and may be described
generally as

o(x) = |ν(x) − op|
where op is the preferred value (or target) of the objective. For the objectives
that stem from the preference term rp of a volume-based rule, we can set op = rp.
For more “pure” objective terms, the target value op is often set to 0.

A special case is the coverage objectives, which are calculated by the heuristic
of Section B.2.1 rather than a simple value. This also makes the coverage terms
the most time consuming. Delta evaluations of the coverage objectives are
made from the following simple observations: Only the updated time slots need
to be recalculated, since the time slots are calculated independently. Changes
to the time slots can be calculated faster, by first checking if overstaffing exists
for the changed qualification or if understaffing exists for the most important
requirement that can be covered by the qualification. If either exists, these
can be updated by adding or subtracting the change. If not, the time slot is
calculated again.

B.4.4 Construction Heuristics

To obtain an initial solution we use four approaches. The simplest is to start
with an empty solution containing no shifts. We denote this approach C-E.

The second approach is a simple front-loading approach denoted C-FL. Starting
from t = 0, shifts are added until all workload at t is covered, or no more shifts

112 Paper B

starting at t can be added. The front-loading heuristic then considers t = 1 and
so on, until t = T . To keep the complexity of the front-loading heuristic low,
all shifts are created with their preferred duration, and breaks are placed in the
center of their time windows.

Finally, a dynamic programming heuristic is used to create an initial solution by
repeatedly creating sequences of shifts that cover the widest part of the work-
load. This approach may be considered opposite to C-FL in the sense that it
considers workload bottom up, rather than from left to right. The heuristic
is used with two different termination criteria, which we denote the restrictive
approach C-DP-R and the aggressive approach C-DP-A. The dynamic program-
ming heuristic is described in details in [5]. In the following we present a short
description for the sake of providing a self-contained presentation.

The dynamic programming heuristic computes a non-dominated sequence of
shifts for each amount of sequence understaffing (uncovered time units with
work) by using shifts from a candidate set S′. To maintain fast solution times,
a strict domination scheme scores shifts in the sequence by using a weighted sum
φ(s) of covered work time units, covered idle time units (sequence overstaffing),
cost and a measure of skill utilization. The dynamic programming table ν[u, t]
is filled using the recursion in equation (B.1). Recall that ls and es are the
length and end time of shift s, respectively.

ν[u, t] = min
s∈S′,
es=t,

∀r:ν(s)≤rmax











0 t = 0,

φ(s) + ν[u− u(s), t− ls] t ≥ ls, u ≥ u(s)

∞ otherwise

(B.1)

If none of the generated sequences are valid or the ratio of remaining workload
to sequence understaffing (overstaffing) is above a threshold parameter umax

(omax), the heuristic terminates. Otherwise, the shifts of the most promising
sequence are created, and the heuristic runs again on the incumbent shift set.

The restrictive approach C-DP-R uses the low values (umax , omax) = (0.7, 0.4)
for the termination parameters and the aggressive uses (umax , omax) = (0.8, 0.6).
The higher thresholds of the aggressive approach allow the dynamic program-
ming algorithm to generate more sequences but with a higher running time.
While the aggresive approach will likely produce more shifts, it is not clear
wheter it can do so more efficiently than using more time on the subsequent lo-
cal search iterations. Both dynamic programming approaches only allow shifts
to start every hour, to limit the search space considered in the dynamic pro-
gramming recursion.

B.5 Computational Results 113

B.5 Computational Results

In this section, we present and discuss computational results for the shift design
algorithm. We evaluate the algorithm on real-life data obtained from planning
problems in airport ground handling. The instances cover problems from dif-
ferent companies and types of operations, overall spanning a wide variety of
instances.

The algorithm should be able to produce good results within a reasonable
amount of time in most technical environments. To verify this, all experiments
presented in this section were performed on a standard desktop computer with
a 3.16Ghz CPU, 4GB of RAM and running Microsoft Windows Vista SP2. The
algorithm was implemented in C# .NET 3.5.

We present the data instances in detail in Section B.5.1. The performance of
each constructive heuristic is presented in Section B.5.2.

For the parameter tuning, we select two representative instances in order to
limit the number of experiments. Section B.5.3 present results of running the
algorithm with different parameters and constructive heuristics on the repre-
sentative instances. From the experiments, we determine the best combination
of parameters and constructive heuristic. Finally, we present the results of the
algorithm on all instances, using the selected parameters.

B.5.1 Data Instances

Data instances are taken from planning scenarios for real-life operations in air-
port ground handling. The instances are presented in Table B.1 and covers a
variety of different sizes, organizations and types of operation within the field.
The scenarios include applications of cargo, operations center manning, passen-
ger services, ramp work and transportation.

The instances are evaluated as received, without further modification. This
means that the objective function and rules are considered fixed as the best way
to achieve the underlying goal of the planning problem. We assume that where
possible, any steps taken to adjust the objective weights or the rule sets have
already been taken in order to optimize the performance and convergence of the
algorithm.

The instances cover the scenarios also considered in [5]. A more in-depth de-
scription is provided there.

114 Paper B

Scenario R O D T
cargo.m.a 205 31 8 5 15294 2016
ops.e.a 30 27 3 5 17887 8064
pax.e.a 59 51 6 10 59329 8064
pax.g.a 12 6 1 2 23962 8064
pax.g.b 12 6 1 2 28286 8064
pax.m.a 389 84 10 9 12796 2016
pax.r.a 72 58 3 8 22326 2016
pax.r.b 108 98 3 12 7442 672
ramp.e.a 222 300 9 15 13354 2688
ramp.e.b 66 55 7 10 59383 8064
ramp.g.a 12 6 1 2 14550 2016
ramp.g.b 12 6 1 2 17420 2016
ramp.m.a 369 56 13 9 3448 2016
ramp.r.a 36 34 1 4 3886 672
trans.o.a 96 74 6 12 25850 2016
trans.o.b 96 74 6 12 39206 2016

112 60 4 7 22776 3780

Table B.1: Overview of problem instances

B.5.2 Construction Heuristics

In this section, we evaluate the performance of the four constructive heuristics
presented in Section B.5.2. An overview of the solutions generated by the four
approaches is shown in Table B.2. From the table we see that C-FL is the
fastest of the active heuristics with a maximum running time of one second for
the largest instance. It also produces the best solution for three of the instance.
C-DP-R performs better than C-FL but at a significant increase in running
time. It produces the overall best solution on three of the instances with an
average running time of 10 seconds. The aggressive heuristic C-DP-A is best for
the remaining 10 scenarios, in some cases improving the objective by a factor
of 10 compared to C-FL. It is also the slowest heuristic with running times of
15 seconds on average.

B.5.3 Parameters

To determine the best set of parameters for the algorithm, we use two sample
instances, pax.r.a and ramp.g.a. The instances are chosen as representatives,
as they have different characteristics without deviating too much from the re-
maining instances.

B
.5

C
o
m
p
u
ta
tio

n
a
l
R
e
su
lts

1
1
5

C-E C-FL C-DP-R C-DP-A
Scenario f(x) f(x) Time f(x) Time f(x) Time
cargo.m.a 2.5331 · 1005 8.6383 · 1004 0.1 7.4102 · 1004 0.79 7.7455 · 1004 0.73
ops.e.a 7.7148 · 1005 5.8674 · 1005 0.13 5.0458 · 1005 11.14 4.4930 · 1005 18.59
pax.e.a 2.6046 · 1006 1.4369 · 1006 1.01 8.2089 · 1005 60.13 1.1079 · 1006 60.35
pax.g.a 2.5719 · 1010 6.5634 · 1009 0.08 1.8123 · 1009 15.17 6.2739 · 1008 26.15
pax.g.b 3.5196 · 1010 9.0306 · 1009 0.09 2.3304 · 1009 18.46 8.8673 · 1008 29.78
pax.m.a 4.1104 · 1005 2.8273 · 1005 0.11 2.8850 · 1005 1.08 2.3571 · 1005 1.48
pax.r.a 3.9872 · 1006 1.6040 · 1006 0.22 3.0652 · 1005 3.83 2.4564 · 1005 7.27
pax.r.b 6.8482 · 1004 3.0692 · 1003 0.22 5.2705 · 1003 2.11 4.1243 · 1003 3.51
ramp.e.a 7.2922 · 1014 7.2580 · 1014 0.43 7.2368 · 1014 5.69 7.2427 · 1014 6.76
ramp.e.b 2.1238 · 1006 8.4437 · 1005 0.55 6.2824 · 1005 32.98 2.9066 · 1005 59.2
ramp.g.a 4.7057 · 1009 4.4586 · 1008 0.05 1.9721 · 1008 1.61 9.6253 · 1007 2.66
ramp.g.b 6.6335 · 1009 6.2474 · 1008 0.07 2.5870 · 1008 1.86 1.0783 · 1008 3.14
ramp.m.a 1.4172 · 1005 9.7905 · 1004 0.07 1.1888 · 1005 1.01 9.6541 · 1004 1.09
ramp.r.a 4.1445 · 1004 1.5664 · 1003 0.05 3.4031 · 1003 0.78 1.9928 · 1003 1.41
trans.o.a 1.8656 · 1010 1.6646 · 1009 0.22 1.5314 · 1009 3.78 8.3388 · 1008 5.93
trans.o.b 2.6561 · 1010 6.7953 · 1008 0.36 1.8797 · 1009 8.39 7.6738 · 1008 14.93
Average 4.5584 · 1013 4.5364 · 1013 0.24 4.5231 · 1013 10.55 4.5267 · 1013 15.19

Table B.2: Objective values and running times for the construction heuristics on all scenarios

116 Paper B

We evaluate the performance of the algorithm using each of the four constructive
heuristics.

To reduce the number of tests, we limit the search to only two of the parameters,
the cooling C and the relative start temperature TR. The start temperature is
set by Ts = Tr ·

√
D. This is to scale the temperature to the dimensions of each

problem instance and to reflect the quadratic nature of the coverage objective
terms, which we assume to be dominant in all instances.

The remaining parameters are fixed at values that have been observed to provide
good results during initial testing. The algorithm runs 0.05 · D iterations at
each temperature step and 100 temperature steps in total. For the adaptive
neighborhood selection, the neighborhood scores are updated by σA = 1 for
a accepted solution and σB = 30 for obtaining the best solution so far. The
new neighborhood weights w′

i are calculated using reaction factor ρ = 0.3 and
segment size 100.

We test the performance of the algorithm on the scenarios using parameters C =
{0.93, 0.95, 0.97, 0.99} and TR = {0.25, 0.5, 0.75, 0.1} using all four constructive
heuristics.

The results for ramp.r.a using the different constructive heuristics are presented
in the appendix in Tables B.5, B.6, B.7, and B.8. The tables show the resulting
start temperature Ts and end temperature Te, objective value and running time,
as well as resulting overstaffing o, understaffing u, the number of shifts in the
resulting shift set S and the number of rules R+ that remains violated in the
final solution. The results are averages of 3 runs and are presented sorted by
objective value.

Generally, the cooling factor 0.99 performs poorly on pax.r.a for all construc-
tive heuristics. It seems that the resulting end temperature is too high to settle
into a suitable local minimum. In no cases was the algorithm able to satisfy
all rules. Best result is using C-E, where 6 relaxed rules remain. However, this
solution is worse than any other by orders of magnitude, showing that the best
solutions for pax.r.a are not found by satisfying all rules. Rather, it seems that
solutions with low values for o and u perform best from a practical perspective.
Most solution values are between 1 · 104 and 2 · 104, which improves the solu-
tions found by the constructive heuristics alone, as reported in Table B.2. Most
solution times are just above two minutes.

Results for applying the local search algorithm to each of the four constructive
heuristics on ramp.g.a are shown in the appendix Tables B.9, B.10, B.11, and
B.12. For this scenario, objective values are higher, most values lie between 2.6 ·
106 and 3.6 ·106. All solutions found have no relaxed rules and no understaffing.

B.5 Computational Results 117

The scenario is smaller, with solution times slightly above 30 seconds.

Table B.3 summarizes Tables B.5– B.12 by presenting the objective values of all
constructive heuristics for both scenarios. The bottom row shows the average
objective value found for each scenario. From this it is seen that the frontloading
heuristic C-FL clearly provides the basis for the best solution. This is some-
what surprising, as both C-DP-R and C-DP-A provides better initial solutions.
The dynamic programming heuristics provide dense packings of shifts to the
demand, which may constitute local minima to the subsequent local search al-
gorithm. Experiments show that the extra calculation time used by the dynamic
programming heuristics for obtaining better initial solutions is not worthwhile.

The rightmost column of Table B.3 shows a weighted objective ratio of all ob-
jective values for each parameter pair. The weighted ratio is calculated as
w =

∑n
i=1(xi/x̄i)/n, where x̄i is the average value of the corresponding column,

as seen in the bottom row. The weighted ratio averages the performance for
each scenario / heuristic as compared to that combination’s average. A ratio
of w = 1 indicates that a parameter combination is consistently average, while
lower values are better. The ratio is preferred to a regular average to mini-
mize the dominance of results for ramp.g.a, which have higher objective values.
From this ratio it is seen that (Tr, C) = (1, 0.97) performs best with an average
ratio of 0.86.

B.5.4 Final Experiments

In this section, we report results of solving all the real-life instances. The al-
gorithm uses the parameters determined in the end of Section B.5.3. Results
are generated using the constructive heuristic C-FL, that was found to perform
best.

Average results over three runs for all instances are presented in Table B.4. The
objective value and percentagewise improvement over the initial objective value
is reported, along with running times and the number of iterations. The levels of
overstaffing and understaffing are also reported, as well as the number of shifts
in the solution and the number of relased rules remaining.

The improvement in objective value is observed to increase for all scenarios.
For 7 of the 16 scenarios, the improvement is more than 99%, which indicate
that the final solution is better by several orders of magnitude. Only three
scenarios have reported improvements of less than 10%, with the single scenario
pax.r.b obtaining only 0.02% no improvement over the initial solution. For
all other scenarios, the improvement of the local search algorithm is significant.

1
1
8

P
a
p
e
r
B

pax.r.a ramp.g.a

TR C C-E C-FL C-DP-R C-DP-A C-E C-FL C-DP-R C-DP-A w
0.25 0.93 1.86 · 104 1.48 · 104 1.72 · 104 1.90 · 104 3.03 · 106 2.72 · 106 3.20 · 106 3.41 · 106 0.89
0.25 0.95 1.85 · 104 1.51 · 104 1.74 · 104 1.91 · 104 3.03 · 106 2.66 · 106 3.31 · 106 3.45 · 106 0.90
0.25 0.97 1.77 · 104 1.49 · 104 1.67 · 104 1.95 · 104 3.00 · 106 2.68 · 106 3.19 · 106 3.66 · 106 0.90
0.25 0.99 1.90 · 104 1.60 · 104 1.80 · 104 1.99 · 104 3.05 · 106 2.71 · 106 3.13 · 106 3.50 · 106 0.91
0.50 0.93 1.88 · 104 1.43 · 104 1.68 · 104 1.79 · 104 3.05 · 106 2.66 · 106 3.24 · 106 3.47 · 106 0.88
0.50 0.95 1.68 · 104 1.51 · 104 1.61 · 104 1.89 · 104 3.09 · 106 2.73 · 106 3.30 · 106 3.57 · 106 0.90
0.50 0.97 1.77 · 104 1.45 · 104 1.68 · 104 1.82 · 104 2.99 · 106 2.77 · 106 3.31 · 106 3.56 · 106 0.89
0.50 0.99 2.01 · 104 1.83 · 104 1.92 · 104 2.06 · 104 3.01 · 106 2.70 · 106 3.37 · 106 3.60 · 106 0.96
0.75 0.93 1.72 · 104 1.43 · 104 1.67 · 104 1.79 · 104 2.97 · 106 2.80 · 106 3.27 · 106 3.48 · 106 0.88
0.75 0.95 1.67 · 104 1.43 · 104 1.59 · 104 1.77 · 104 3.10 · 106 2.70 · 106 3.21 · 106 3.57 · 106 0.88
0.75 0.97 1.23 · 106 1.46 · 104 1.62 · 104 1.60 · 104 3.11 · 106 2.71 · 106 3.27 · 106 3.45 · 106 2.48
0.75 0.99 2.21 · 104 2.11 · 104 2.22 · 104 2.28 · 104 3.02 · 106 2.74 · 106 3.22 · 106 3.56 · 106 1.01
1.00 0.93 1.66 · 104 1.43 · 104 1.60 · 104 1.68 · 104 3.06 · 106 2.74 · 106 3.24 · 106 3.48 · 106 0.87
1.00 0.95 1.66 · 104 1.50 · 104 1.54 · 104 1.70 · 104 3.14 · 106 2.80 · 106 3.31 · 106 3.58 · 106 0.88
1.00 0.97 1.65 · 104 1.44 · 104 1.58 · 104 1.59 · 104 3.05 · 106 2.77 · 106 3.28 · 106 3.43 · 106 0.86
1.00 0.99 2.53 · 104 2.39 · 104 2.46 · 104 2.53 · 104 3.07 · 106 2.69 · 106 3.18 · 106 3.48 · 106 1.07
0.63 0.96 9.40 · 104 1.59 · 104 1.76 · 104 1.89 · 104 3.05 · 106 2.72 · 106 3.25 · 106 3.52 · 106 1.01

Table B.3: Overview of objective values for combinations of parameters on sample instances pax.r.a and ramp.g.a using
four construction heuristics. Rightmost column and bottom row show average values.

B.5 Computational Results 119

Scenario f(x∗) Imp. Time (s) Iters o u S R+

cargo.m.a 7.5521 · 1004 12.57% 114.8 76400 1295 6269 107 1
ops.e.a 2.9254 · 1005 50.14% 61.17 89400 50244 2850 749 4
pax.e.a 9.9756 · 1005 30.58% 401.74 296600 107397 8090 1888 14
pax.g.a 9.6546 · 1006 99.85% 53.83 119800 13615 0 505 0
pax.g.b 1.1818 · 1007 99.87% 63.98 141400 15607 0 592 0
pax.m.a 1.8771 · 1005 33.61% 108.85 63900 10955 5807 186 18
pax.r.a 1.4152 · 1004 99.12% 121.1 111600 506 72 387 8
pax.r.b 3.0686 · 1003 0.02% 30.01 37200 3444 133 478 0
ramp.e.a 6.6766 · 1014 8.01% 94.5 66700 5218 4309 616 12
ramp.e.b 6.0009 · 1005 28.93% 461.25 296900 60407 10881 1386 11
ramp.g.a 2.7486 · 1006 99.38% 29.34 72700 8356 0 326 0
ramp.g.b 3.4089 · 1006 99.45% 35.53 87100 9201 0 376 0
ramp.m.a 2.5813 · 1004 73.63% 39.21 17200 9808 682 132 1
ramp.r.a 1.5130 · 1003 3.41% 9.02 19400 2267 66 273 0
trans.o.a 1.2433 · 1007 99.25% 130.95 129200 27324 0 745 12
trans.o.b 1.3231 · 1007 98.05% 193.5 196000 35766 0 1041 12

4.1729 · 1013 58.49 121.8 113843 22588 2447 611 5

Table B.4: Solution statistics for all instances.

Although the local search algorithm can increase the initial solution significantly,
it still benefits from a construction heuristic. This is evidenced by Table B.3,
where the empty heuristic C-E performs worse than the chosen heuristic C-FL
on 31 of the 32 presented cases.

The majority of the scenarios are solved in two minutes or less. The only
scenarios that significantly exceed two minutes are trans.o.b (3.2 minutes),
pax.e.a (6 minutes), and ramp.e.b (7 minutes). The number of iterations
used varies according to problem size, but does not directly influence running
time. The average number of iterations per second is between 440 and 2500,
with the 8 fastest scenarios being over 1000 iterations per second.

The number of violated rulesR+ remaining in the solutions varies. Six scenarios
are consistently solved with no violated rules. Two additional scenarios are
solved with only a single violated rule. On average, 5 violated rules remain,
which is less than 5% of the 112 rules in the scenarios on average. It should
also be noted that for some scenarios, the objective function may prefer better
coverage over satisfying relaxed rules. This appears to be the case for ramp.r.a,
as seen in Table B.5.

120 Paper B

B.6 Conclusions and Future Work

In this paper we have presented a local search algorithm for the shift design
problem. The algorithm uses a loosely coupled rule engine to provide a large
degree of flexibility in modeling and solving shift design problems arising in
different organizations or operations.

A modular design of the metaheuristic allows for easy expansions to cover new
rules or objectives, either by updating the existing neighborhoods, or by adding
new competitive neighborhoods covering new rules.

Experiments have been performed on real-life instances covering a wide variety
of scenarios occurring in airport ground handling, using four different construc-
tion heuristics followed by the local search algorithm. The most time-consuming
heuristics provided the best results, but in the majority of cases the subsequent
local search algorithm was able to improve the result significantly. Interest-
ingly, the best suited constructive heuristic did not perform best on its own,
but rather created solutions which were not located in a deep local minimum.
This provided the algorithm better conditions for improving the initial solution
further. In addition, the experiments show that the presented algorithm pre-
sented is capable of successfully solving such problems and handling a varied set
of constraints occurring in this area, within short running times. The algorithm
is shown to generate good results on a set of instances with large variations in
size, and the number of objectives and rules.

The neighborhoods presented in this paper cover atomic transitions that are
natural to shift design problems. It will be interesting to expand the knowledge
of the framework through new and more complex neighborhood transitions and
selection strategies.

The adaptive neighborhood scoring method used to select neighborhoods eval-
uates all neighborhoods using the same criteria, and thus implicitly assumes
that all neighborhoods can have the same impact on the solution. Using the
framework it is difficult to accommodate both neighborhoods which modify
the solution slightly but have a high chance of acceptance and neighborhoods
which modify the solution more extensively, but have a lower chance of ac-
ceptance. The definition of Adaptive Large Neighborhood Search by Pisinger
and Røpke [18] (which inspired our implementation) explicitly defines all neigh-
borhoods to have the same size. Thompson [21] integrated a “finetune” step
as a final part of the neighborhood operation, thus explicitly separating large
and small updates to the solution. Mladenovic and Hansen [16] propose Vari-
able Neighborhood Search which explicitly defines a transition between a set
of growing neighborhoods. Both approaches have the disadvantage that the

B.7 Additional Tables 121

neighborhood operations must be determined a priori, which conflicts with the
flexibility of an arbitrary number of neighborhoods considered here. A method
for scoring neighborhoods of arbitrary size would be interesting for further study.

The need for solving generic problems with a varying set of constraints exists
in many areas of planning and workforce scheduling. In particular, it will be
interesting to apply the framework proposed in this paper to instances of other
organizations and areas, and to other planning problems arising in workforce
planning and scheduling.

B.7 Additional Tables

122 Paper B

Scenario TR C Ts Te f(x∗) Time (s) o u S R+

pax.r.a 1.00 0.97 149.42 7.11 1.6550 · 1004 119.62 559 85 403 9
pax.r.a 1.00 0.93 149.42 0.11 1.6582 · 1004 123.13 590 64 398 10
pax.r.a 1.00 0.95 149.42 0.88 1.6595 · 1004 122.26 565 77 398 10
pax.r.a 0.75 0.95 112.06 0.66 1.6656 · 1004 121.97 579 59 403 10
pax.r.a 0.50 0.95 74.71 0.44 1.6769 · 1004 123.4 594 64 403 10
pax.r.a 0.75 0.93 112.06 0.08 1.7227 · 1004 121.19 628 66 402 10
pax.r.a 0.50 0.97 74.71 3.55 1.7668 · 1004 120.59 667 63 402 10
pax.r.a 0.25 0.97 37.35 1.78 1.7740 · 1004 121.95 698 70 399 10
pax.r.a 0.25 0.95 37.35 0.22 1.8523 · 1004 122.99 702 82 398 10
pax.r.a 0.25 0.93 37.35 0.03 1.8624 · 1004 123.39 684 82 400 10
pax.r.a 0.50 0.93 74.71 0.05 1.8801 · 1004 123.07 729 73 401 10
pax.r.a 0.25 0.99 37.35 13.67 1.9036 · 1004 121.26 724 110 401 10
pax.r.a 0.50 0.99 74.71 27.35 2.0076 · 1004 117.72 744 186 402 10
pax.r.a 0.75 0.99 112.06 41.02 2.2087 · 1004 118.78 858 228 403 9
pax.r.a 1.00 0.99 149.42 54.69 2.5258 · 1004 119.57 942 272 400 9
pax.r.a 0.75 0.97 112.06 5.33 1.2252 · 1006 99.41 402 7078 272 6

Table B.5: Average results over 3 runs with different parameters for pax.r.a

with constructive heuristic C-E.

Scenario TR C Ts Te f(x∗) Time (s) o u S R+

pax.r.a 0.75 0.93 112.06 0.08 1.4276 · 1004 123.36 552 48 392 8
pax.r.a 0.50 0.93 74.71 0.05 1.4329 · 1004 120.85 557 53 390 8
pax.r.a 0.75 0.95 112.06 0.66 1.4338 · 1004 119.28 550 58 390 8
pax.r.a 1.00 0.93 149.42 0.11 1.4345 · 1004 120.78 581 45 391 10
pax.r.a 1.00 0.97 149.42 7.11 1.4376 · 1004 118.93 550 60 391 9
pax.r.a 0.50 0.97 74.71 3.55 1.4488 · 1004 117.89 590 60 385 9
pax.r.a 0.75 0.97 112.06 5.33 1.4624 · 1004 117.88 557 63 388 9
pax.r.a 0.25 0.93 37.35 0.03 1.4756 · 1004 121.21 632 46 389 9
pax.r.a 0.25 0.97 37.35 1.78 1.4897 · 1004 119.19 621 47 392 9
pax.r.a 1.00 0.95 149.42 0.88 1.4957 · 1004 120.03 619 47 390 9
pax.r.a 0.50 0.95 74.71 0.44 1.5063 · 1004 119.14 652 46 389 9
pax.r.a 0.25 0.95 37.35 0.22 1.5090 · 1004 120.94 605 65 386 8
pax.r.a 0.25 0.99 37.35 13.67 1.5988 · 1004 118.94 649 97 388 9
pax.r.a 0.50 0.99 74.71 27.35 1.8347 · 1004 117.02 718 182 385 9
pax.r.a 0.75 0.99 112.06 41.02 2.1135 · 1004 119.08 881 193 392 9
pax.r.a 1.00 0.99 149.42 54.69 2.3891 · 1004 120.35 1045 247 390 9

Table B.6: Average results over 3 runs with different parameters for pax.r.a

with constructive heuristic C-FL.

B.7 Additional Tables 123

Scenario TR C Ts Te f(x∗) Time (s) o u S R+

pax.r.a 1.00 0.95 149.42 0.88 1.5426 · 1004 126 566 64 393 9
pax.r.a 1.00 0.97 149.42 7.11 1.5838 · 1004 124.55 579 83 390 9
pax.r.a 0.75 0.95 112.06 0.66 1.5935 · 1004 122.49 597 63 404 11
pax.r.a 1.00 0.93 149.42 0.11 1.5990 · 1004 124.01 634 58 397 10
pax.r.a 0.50 0.95 74.71 0.44 1.6062 · 1004 122.58 631 57 417 12
pax.r.a 0.75 0.97 112.06 5.33 1.6154 · 1004 123.75 622 78 394 10
pax.r.a 0.75 0.93 112.06 0.08 1.6674 · 1004 122.9 658 64 408 10
pax.r.a 0.25 0.97 37.35 1.78 1.6685 · 1004 121.01 634 80 420 12
pax.r.a 0.50 0.93 74.71 0.05 1.6806 · 1004 123.52 617 73 424 11
pax.r.a 0.50 0.97 74.71 3.55 1.6822 · 1004 122.32 651 77 402 11
pax.r.a 0.25 0.93 37.35 0.03 1.7227 · 1004 121.65 658 74 433 13
pax.r.a 0.25 0.95 37.35 0.22 1.7365 · 1004 120.1 668 66 428 12
pax.r.a 0.25 0.99 37.35 13.67 1.7998 · 1004 119.25 707 117 421 12
pax.r.a 0.50 0.99 74.71 27.35 1.9189 · 1004 121.56 744 182 396 9
pax.r.a 0.75 0.99 112.06 41.02 2.2211 · 1004 123.89 919 223 392 9
pax.r.a 1.00 0.99 149.42 54.69 2.4586 · 1004 126.74 1030 254 393 8

Table B.7: Average results over 3 runs with different parameters for pax.r.a

with constructive heuristic C-DP-R.

Scenario TR C Ts Te f(x∗) Time (s) o u S R+

pax.r.a 1.00 0.97 149.42 7.11 1.5924 · 1004 131.82 576 74 401 9
pax.r.a 0.75 0.97 112.06 5.33 1.6007 · 1004 131.04 597 59 408 9
pax.r.a 1.00 0.93 149.42 0.11 1.6811 · 1004 131.81 646 60 413 9
pax.r.a 1.00 0.95 149.42 0.88 1.7035 · 1004 133.65 641 67 398 9
pax.r.a 0.75 0.95 112.06 0.66 1.7692 · 1004 129.54 641 67 427 10
pax.r.a 0.50 0.93 74.71 0.05 1.7852 · 1004 128.03 676 58 451 12
pax.r.a 0.75 0.93 112.06 0.08 1.7922 · 1004 131.57 691 61 423 10
pax.r.a 0.50 0.97 74.71 3.55 1.8225 · 1004 128.59 697 79 425 10
pax.r.a 0.50 0.95 74.71 0.44 1.8920 · 1004 127.9 745 63 448 12
pax.r.a 0.25 0.93 37.35 0.03 1.9014 · 1004 125.65 689 75 469 12
pax.r.a 0.25 0.95 37.35 0.22 1.9149 · 1004 127.12 659 87 471 14
pax.r.a 0.25 0.97 37.35 1.78 1.9536 · 1004 125.15 698 70 466 12
pax.r.a 0.25 0.99 37.35 13.67 1.9851 · 1004 125.7 740 116 447 12
pax.r.a 0.50 0.99 74.71 27.35 2.0647 · 1004 129.37 803 205 404 9
pax.r.a 0.75 0.99 112.06 41.02 2.2795 · 1004 133.1 971 217 392 8
pax.r.a 1.00 0.99 149.42 54.69 2.5315 · 1004 133.18 995 271 399 9

Table B.8: Average results over 3 runs with different parameters for pax.r.a

with constructive heuristic C-DP-A.

124 Paper B

Scenario TR C Ts Te f(x∗) Time (s) o u S R+

ramp.g.a 0.75 0.93 90.47 0.06 2.9663 · 1006 30.45 8544 0 317 0
ramp.g.a 0.50 0.97 60.31 2.87 2.9929 · 1006 30.72 8427 0 320 0
ramp.g.a 0.25 0.97 30.16 1.43 2.9983 · 1006 30.47 8530 0 318 0
ramp.g.a 0.50 0.99 60.31 22.08 3.0120 · 1006 30.53 8510 0 318 0
ramp.g.a 0.75 0.99 90.47 33.11 3.0223 · 1006 30.4 8552 0 319 0
ramp.g.a 0.25 0.95 30.16 0.18 3.0312 · 1006 30.62 8537 0 320 0
ramp.g.a 0.25 0.93 30.16 0.02 3.0334 · 1006 30.67 8610 0 320 0
ramp.g.a 1.00 0.97 120.62 5.74 3.0473 · 1006 30.48 8597 0 321 0
ramp.g.a 0.50 0.93 60.31 0.04 3.0521 · 1006 30.49 8506 0 321 0
ramp.g.a 0.25 0.99 30.16 11.04 3.0548 · 1006 30.62 8516 0 319 0
ramp.g.a 1.00 0.93 120.62 0.09 3.0647 · 1006 30.54 8497 0 323 0
ramp.g.a 1.00 0.99 120.62 44.15 3.0716 · 1006 30.22 8627 0 321 0
ramp.g.a 0.50 0.95 60.31 0.36 3.0854 · 1006 30.39 8592 0 322 0
ramp.g.a 0.75 0.95 90.47 0.54 3.0971 · 1006 30.71 8536 0 320 0
ramp.g.a 0.75 0.97 90.47 4.30 3.1076 · 1006 30.63 8741 0 323 0
ramp.g.a 1.00 0.95 120.62 0.71 3.1425 · 1006 30.77 8613 0 322 0

Table B.9: Average results over 3 runs with different parameters for ramp.g.a
with constructive heuristic C-E.

Scenario TR C Ts Te f(x∗) Time (s) o u S R+

ramp.g.a 0.50 0.93 60.31 0.04 2.6586 · 1006 28.92 8362 0 325 0
ramp.g.a 0.25 0.95 30.16 0.18 2.6628 · 1006 29.01 8231 0 318 0
ramp.g.a 0.25 0.97 30.16 1.43 2.6825 · 1006 28.9 8366 0 322 0
ramp.g.a 1.00 0.99 120.62 44.15 2.6876 · 1006 28.97 8287 0 320 0
ramp.g.a 0.50 0.99 60.31 22.08 2.6951 · 1006 28.68 8394 0 322 0
ramp.g.a 0.75 0.95 90.47 0.54 2.6985 · 1006 28.98 8317 0 320 0
ramp.g.a 0.75 0.97 90.47 4.30 2.7115 · 1006 28.88 8440 0 325 0
ramp.g.a 0.25 0.99 30.16 11.04 2.7144 · 1006 28.8 8254 0 322 0
ramp.g.a 0.25 0.93 30.16 0.02 2.7211 · 1006 28.96 8378 0 324 0
ramp.g.a 0.50 0.95 60.31 0.36 2.7299 · 1006 28.71 8373 0 326 0
ramp.g.a 0.75 0.99 90.47 33.11 2.7366 · 1006 28.61 8415 0 323 0
ramp.g.a 1.00 0.93 120.62 0.09 2.7383 · 1006 28.88 8314 0 325 0
ramp.g.a 1.00 0.97 120.62 5.74 2.7665 · 1006 28.64 8417 0 327 0
ramp.g.a 0.50 0.97 60.31 2.87 2.7702 · 1006 28.87 8375 0 323 0
ramp.g.a 0.75 0.93 90.47 0.06 2.7952 · 1006 28.76 8409 0 324 0
ramp.g.a 1.00 0.95 120.62 0.71 2.8018 · 1006 28.47 8404 0 325 0

Table B.10: Average results over 3 runs with different parameters for ramp.g.a
with constructive heuristic C-FL.

B.7 Additional Tables 125

Scenario TR C Ts Te f(x∗) Time (s) o u S R+

ramp.g.a 0.25 0.99 30.16 11.04 3.1298 · 1006 34.62 7652 0 321 0
ramp.g.a 1.00 0.99 120.62 44.15 3.1812 · 1006 34.43 7729 0 323 0
ramp.g.a 0.25 0.97 30.16 1.43 3.1878 · 1006 34.56 7694 0 326 0
ramp.g.a 0.25 0.93 30.16 0.02 3.2020 · 1006 34.71 7695 0 326 0
ramp.g.a 0.75 0.95 90.47 0.54 3.2149 · 1006 34.35 7781 0 325 0
ramp.g.a 0.75 0.99 90.47 33.11 3.2196 · 1006 34.68 7702 0 323 0
ramp.g.a 0.50 0.93 60.31 0.04 3.2368 · 1006 34.56 7769 0 325 0
ramp.g.a 1.00 0.93 120.62 0.09 3.2436 · 1006 34.4 7726 0 325 0
ramp.g.a 0.75 0.93 90.47 0.06 3.2659 · 1006 34.58 7738 0 323 0
ramp.g.a 0.75 0.97 90.47 4.30 3.2729 · 1006 34.56 7822 0 327 0
ramp.g.a 1.00 0.97 120.62 5.74 3.2766 · 1006 34.59 7897 0 325 0
ramp.g.a 0.50 0.95 60.31 0.36 3.2966 · 1006 34.53 7878 0 327 0
ramp.g.a 0.50 0.97 60.31 2.87 3.3124 · 1006 34.53 7862 0 325 0
ramp.g.a 0.25 0.95 30.16 0.18 3.3124 · 1006 34.8 7864 0 326 0
ramp.g.a 1.00 0.95 120.62 0.71 3.3136 · 1006 34.52 7818 0 325 0
ramp.g.a 0.50 0.99 60.31 22.08 3.3724 · 1006 34.37 7933 0 328 0

Table B.11: Average results over 3 runs with different parameters for ramp.g.a
with constructive heuristic C-DP-R.

Scenario TR C Ts Te f(x∗) Time (s) o u S R+

ramp.g.a 0.25 0.93 30.16 0.02 3.4137 · 1006 36.25 7879 0 334 0
ramp.g.a 1.00 0.97 120.62 5.74 3.4253 · 1006 36.22 7924 0 331 0
ramp.g.a 0.25 0.95 30.16 0.18 3.4493 · 1006 36.05 7924 0 332 0
ramp.g.a 0.75 0.97 90.47 4.30 3.4510 · 1006 35.92 7966 0 334 0
ramp.g.a 0.50 0.93 60.31 0.04 3.4657 · 1006 36.17 7912 0 334 0
ramp.g.a 0.75 0.93 90.47 0.06 3.4750 · 1006 36.15 7971 0 336 0
ramp.g.a 1.00 0.93 120.62 0.09 3.4779 · 1006 36.14 7961 0 334 0
ramp.g.a 1.00 0.99 120.62 44.15 3.4847 · 1006 36.06 7922 0 333 0
ramp.g.a 0.25 0.99 30.16 11.04 3.4951 · 1006 36.26 7997 0 334 0
ramp.g.a 0.75 0.99 90.47 33.11 3.5579 · 1006 35.78 8088 0 338 0
ramp.g.a 0.50 0.97 60.31 2.87 3.5644 · 1006 36.13 8132 0 337 0
ramp.g.a 0.50 0.95 60.31 0.36 3.5695 · 1006 35.83 8090 0 336 0
ramp.g.a 0.75 0.95 90.47 0.54 3.5706 · 1006 35.97 8051 0 337 0
ramp.g.a 1.00 0.95 120.62 0.71 3.5823 · 1006 36.02 8076 0 334 0
ramp.g.a 0.50 0.99 60.31 22.08 3.6030 · 1006 36.06 8152 0 336 0
ramp.g.a 0.25 0.97 30.16 1.43 3.6551 · 1006 36.26 8181 0 336 0

Table B.12: Average results over 3 runs with different parameters for ramp.g.a
with constructive heuristic C-DP-A.

126 Paper B

References

[1] S. E. Bechtold and M. J. Brusco. A microcomputer-based heuristic for
tour scheduling of a mixed workforce. Computers and Operations Research,
21(9):1001–1009, 1994.

[2] M. J. Brusco, L. W. Jacobs, R. J. Bongiorno, D. V. Lyons, and B. Tang.
Improving personnel scheduling at airline stations. Operations Research,
43(5):741–751 and 172029, 1995.

[3] R. Burns and M. Carter. Work force size and single shift schedules with
variable demands. Management Science, pages 599–607, 1985.

[4] S. C. Chu. Generating, scheduling and rostering of shift crew-duties: Ap-
plications at the hong kong international airport. European Journal of
Operational Research, 177(3):1764–1778, 2007.

[5] T. Clausen. A dynamic programming-based heuristic for the shift design
problem in airport ground handling. Technical Report 7.2010, Technical
University of Denmark, Department of Management Engineering, Opera-
tions Research, Produktionstorvet, DK-2800 Kgs. Lyngby, 2010.

[6] L. Di Gaspero, J. Gärtner, G. Kortsarz, N. Musliu, A. Schaerf, and
W. Slany. The minimum shift design problem. Annals of Operations Re-
search, 155(1):79–105, 2007.

[7] A. Dohn, A. Mason, and D. Ryan. A generic approach to nurse rostering.
Technical Report 5.2010, Technical University of Denmark, Department of
Management Engineering, Operations Research, Produktionstorvet, DK-
2800 Kgs. Lyngby, 2010.

128 REFERENCES

[8] D. Dowling, M. Krishnamoorthy, H. Mackenzie, and D. Sier. Staff rostering
at a large international airport. Annals of Operations Research, 72(0):125–
147, 1997.

[9] A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and
rostering: A review of applications, methods and models. European Journal
of Operational Research, 153(1):3–27, 2004.

[10] J. Herbers. Models and Algorithms for Ground Staff Scheduling On Air-
ports. Dissertation, Rheinisch-Westfälische Technische Hochschule Aachen,
Faculty of Mathematics, Computer Science and Natural Sciences, 2005.

[11] S. Ho and J. Leung. Solving a manpower scheduling problem for airline
catering using metaheuristics. European Journal of Operational Research,
202(3):903–921, 2010.

[12] R. Hung. Single-shift off-day scheduling of a hierarchical workforce with
variable demands. European Journal of Operational Research, 78(1):49–57,
1994.

[13] N. Kohl and S. E. Karish. Airline crew rostering: Problem types, modeling,
and optimization. Annals of Operations Research, 127:223–257, 2004.

[14] H. C. Lau. On the complexity of manpower shift scheduling. Computers &
Operations Research, 23(1):93–102, 1996.

[15] A. J. Mason, D. M. Ryan, and D. M. Panton. Integrated simulation, heuris-
tic and optimisation approaches to staff scheduling. Operations Research,
46(2):161–175, 1998.

[16] N. Mladenovic and P. Hansen. Variable neighborhood search. Computers
& Operations Research, 24(11):1097–1100, 1997.

[17] N. Musliu, A. Schaerf, andW. Slany. Local search for shift design. European
Journal of Operational Research, 153(1):51–64, 2004.

[18] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems.
Computers & Operations Research, 34(8):2403–2435, 2007.

[19] C. Quimper and L. Rousseau. A large neighbourhood search approach
to the multi-activity shift scheduling problem. Journal of Heuristics,
16(3):373–392, 2010.

[20] P. Shaw. Using constraint programming and local search methods to
solve vehicle routing problems. Principles and Practice of Constraint
Programming-CP98, pages 417–431, 1998.

129

[21] G. Thompson. A simulated-annealing heuristic for shift scheduling using
non-continuously available employees. Computers & Operations Research,
23(3):275–288, 1996.

[22] J. M. Tien and A. Kamiyama. On manpower scheduling algorithms. SIAM
Review, 24(3):275–287, 1982.

[23] P. Van Hentenryck and L. Michel. Constraint-based local search. The MIT
Press, 2009.

130

Paper C

Dynamic Routing of Short

Transfer Baggage

Tommy Clausen and David Pisinger

Submitted to Transportation Research Part E

132 Paper C

Dynamic Routing of Short Transfer Baggage

Tommy Clausen and David Pisinger

We consider a variant of the Vehicle Routing Problem that arises
in airports when transporting baggage for passengers with connect-
ing flights. Each bag can be delivered in two locations with dis-
junctive time windows. The task is to define multiple trips for the
vehicles in order to deliver bags that arrive continuously during the
day. We present an IP model of the problem and describe the prob-
lem as a case study from a real life setting. We present a weighted
greedy algorithm for dispatching vehicles that works in an dynamic
context, meaning that it only considers bags available at the time of
dispatch. Computational results are presented for real-life passenger
data with stochastic bag arrival times and travel times. The results
indicate that the algorithm is able to dispatch the baggage consid-
erably better than the manual delivery plans reported in the case
study, and due to its fast running times, the algorithm is suitable
for dynamic dispatching. Investigations on the impact of uncertainty
and fleet size make it possible to support a trade-off between fleet
size and expected service level.

C.1 Introduction

We consider the problem of transporting baggage for passengers with connecting
flights in an airport. Connecting flight passengers are passengers that arrive in
the airport on an inbound flight and depart on an outbound flight within a
brief period of time. The ’transfer baggage’ carried by these passengers is not
directed to the arrival halls like regular baggage. Instead, it must be transported
separately, in order to intercept the baggage for the departing flight.

The process of picking up and and delivering connecting baggage may vary
from airport to airport. The process is ruled by the airport’s infrastructure
and regulations, as well as the subsidiary contracts negotiated by the baggage
handling companies. In this paper we consider a setup as follows: The company
handling the connecting baggage has a number of baggage sorting and dispatch

C.1 Introduction 133

terminals into which baggage are brought by the baggage handlers servicing
the inbound flights. The company is then responsible for transporting the bags
to either the outbound flight or to the baggage handling stations used for the
other bags corresponding to the flight. Delivering to the handling stations is
only possible if the bags are delivered before the regular bags are taken from
the station to the aircraft. See Figure C.1 for an illustration.

To transport the bags, the handling company operates a fleet of homogeneous
vehicles, that are dispatched repeatedly throughout the day. Each trip starts at
the baggage dispatch facility, visits a number of flights and/or baggage handling
stations, and returns to the dispatch facility. When a vehicle returns from a trip,
it is either assigned to a new route immediately, or instructed to wait if no bags
are currently available.

The problem is to plan the routes for the vehicles such that each bag is either
delivered directly to the flight, or to the baggage station, respecting the time
windows of each. The objective is to minimize the number of bags which do not
catch the flight.

We present an IP-model of the static problem where all bags and departures
are known in advance. We then consider the dynamic problem and present a
weighted greedy algorithm which only considers bags available at the time of
dispatch. Computational results are presented for real-life passenger data with
stochastic bag arrival times and travel times. Based on the generated scenarios,
it seems that the presented algorithm is able to achieve the same level of ser-
vice or better with less than half the current fleet size even when considering a
substantial level of uncertainty. Studying a large number of strategies for dis-
patching the bags, experimental results indicate that for the considered problem,
risk willingness pays off, also when there is a large degree of uncertainty.

C.1.1 Related Work

The Short transfer baggage routing problem (STBRP) may be treated as an
offline or an online problem depending on the settings. In the offline version, it
is assumed that all input data are known in advance. In the online (or dynamic)
version of the problem the input is fed to the algorithm as it becomes available,
so the algorithm does not have the entire input available from the start. Hence,
the online algorithm is forced to make decisions that may later turn out not to
be optimal in an overall sense.

The offline problem may be considered as a variant of the Vehicle Routing
Problem (VRP). Moreover, each delivery is governed by strict time windows, as

134 Paper C

A

B

Figure C.1: Illustration of the considered problem. Bags are brought from the
arriving airplanes to the baggage dispatch facility (A). From the dispatch facility
(A) the bags can either be brought directly to the airplane (dotted line) or to the
handling station (B), from where they are later brought to the airplane (dotted
line).

all bags for a flight is required to be present a certain amount of time before
take-off. A separate time window exists for the deliveries to the regular baggage
handling stations. This problem is normally referred to as the Vehicle Routing
Problem with Time Windows (VRPTW).

The VRP problem and its variants have been studied extensively over the years,
see e.g. the comprehensive book by Toth and Vigo [21]. Most exact algorithms
for VRP and VRPTW are based on column generation and branch-cut-price,
see the surveyed by [3] and [13]. Recently the BCP framework was extended to
include valid inequalities for the master problem, more specifically by applying
the subset-row (SR) inequalities to the Set Partitioning master problem in [11]
and later by applying Chvátal-Gomory Rank-1 (CG1) inequalities in [15]. Using
an approach where columns with potentially negative reduced cost are enumer-
ated (after good upper and lower bounds are found), [2] improved the lower
bound by adding strengthened capacity inequalities and clique inequalities.

Apart from the capacity of the vehicles and the time windows at the nodes,
the STBRP problem has a number of additional constraints. This includes the
possibility of delivering a bag to one of two locations each having a different
time window, the planning of multiple trips for each vehicle, and the possi-
bility of splitting bags to the same flight. Some of the constraints have been
studied before in the literature, but to the best of our knowledge not treated
simultaneously.

The possibility of making a delivery to one of a number of locations, is normally
referred to as the Generalized Vehicle Routing Problem (GVRP). This problem

C.1 Introduction 135

has been studied by only a few references, including Ghiana and Improta [10].

The property of using a vehicle for repeated trips is referred to as the Vehicle
Routing Problem with multiple trips (VRPM), which has been addressed in e.g.
[5, 17].

The property of dispatching vehicles from more than one facility is usually
referred to as the Multi Depot VRP (MDVRP), as presented in [14]. Tabu
search heuristics for the MDVRP have been proposed by Renaud et al. [18] and
Cordeau et al. [6].

The dispatcher may chose not to deliver all bags to a flight with the same
vehicles. This may be a necessity if the number of bags for the flight exceeds
the vehicle capacity. This is referred to as the Split Delivery VRP (SDVRP).

A unified framework for a large class of Vehicle Routing Problems with vari-
ous extra constraints was presented in [20, 16] together with an adaptive large
neighborhood search heuristic [19] for solving the problems.

C.1.2 Dynamic Problem

In an airport, it is often more relevant to consider the online or dynamic version
of the problem, since we do not know the arrival times of airplanes for certain.
The bags will hence arrive continuously as the inbound flights land and the bags
marked for transfers are delivered to the dispatch facilities.

Most dynamic VRP problems studied in the literature assume that it is possible
to modify a route on the fly when a new request enters the system. This is only
possible if there is a method of detecting the present location of a vehicle and
communicating a new route to the vehicle, e.g. by GPS and radio. We do not
have this option here, so we only assign new routes to vehicles when they return
to the facility. Moreover, when planning a new route for a vehicle, we only
consider bags available at that time. We make no assumptions on the arrival
times or destinations of bags arriving after that time.

Berbeglia [4] consider the dynamic pickup and delivery problem. Ankerl and
Hammerle [1] presented an ant colony optimization algorithms for the dynamic
pickup and delivery problem. Kozlak [12] consider a multi-agent approach for
the online dynamic pickup and delivery problem. Gendreau et al. [9] consider
a Dynamic Vehicle Dispatching Problem with Pick-ups and Deliveries.

For a theoretical discussion of online algorithms see Fiat and Woegninger [8].

136 Paper C

C.1.3 Overview

The remaining paper is structured as follows: Section C.2 presents an IP-model
of the static problem, assuming that all data are known in advance. Section C.3
describes the problem as a case study from a real-life baggage handling company
and introduced uncertainty and the dynamic version of the problem. A weighted
greedy algorithm for the dymamic problem is presented in Section C.4 and
computational results are presented in Section C.5. Finally, conclusions and
further work are discussed in Section C.6.

C.2 Formal Problem Description

The problem consists of N bags that must be delivered by K identical vehicles
each having capacity Q. Each vehicle is allowed to return to the depot to pick
up additional bags. For modeling purposes, a vehicle is allowed a maximum of R
routes although R should be high enough to be unrestrictive. Each bag may be
delivered in one of two locations (flight or handling station), each with its own
time window. We model the problem as a graph problem where the flight and
station of each bag are represented by separate nodes. For bag i, we represent
the flight as node i and the handling station as node N+i. Each route begins at
the starting depot (node 0) and ends at the ending depot (node 2N +1). Thus,
there are 2N + 2 nodes in the graph. We assume that all nodes are reachable
from all other nodes, so the graph is complete. We allow a vehicle to have an
empty route by simply driving directly from the start depot to the end depot.

The time windows of node i is given as [ai, bi]. The dropoff time needed at node
i is given by si. The travel time between two nodes i and j in the graph is given
by tij . The travel time between bags for the same location is set to 0. The
arrival time of bag i is given by ui.

The binary decision variable xijkr indicates if vehicle k drives from i to j on its
r’th route. The binary variable zi is set to one if bag i is not delivered. Finally,
the continuous variable Sikr is the time stamp when vehicle k arrives at node i
on route r.

The resulting problem is defined on the graphG = (V,E), where V = {0, . . . , 2n+
1} is the set of nodes, and E is the set of edges. Let N = {1, . . . , n} be the set
of bags, K = {1, . . . ,K} be the set of vehicles, and R = {1, . . . , R} the set of
routes.

C.2 Formal Problem Description 137

min
∑

i∈N

zi (C.1)

s.t.
∑

j∈V

∑

k∈K

∑

r∈R

xijkr +
∑

j∈V

∑

k∈K

∑

r∈R

xn+i,j,k,r + zi = 1 ∀i ∈ N

(C.2)
∑

j∈V

x0jkr = 1 ∀k ∈ K, r ∈ R

(C.3)
∑

i∈V

xi,2n+1,k,r = 1 ∀k ∈ K, r ∈ R

(C.4)
∑

(i,j)∈E
j 6=2N+1

xijkr ≤ Q ∀k ∈ K, r ∈ R

(C.5)
∑

j∈V

xijkr −
∑

j∈V

xjikr = 0 ∀i ∈ V, k ∈ K, r ∈ R

(C.6)

xijkr = 1⇒ Sikr + si + tij ≤ Sjkr ∀(i, j) ∈ E, k ∈ K, r ∈ R
(C.7)

ai ≤ Sikr ≤ bi ∀i ∈ V, k ∈ K, r ∈ R
(C.8)

S2n+1,k,r ≤ S0,k,r+1 ∀k ∈ K, r ∈ R
(C.9)

∑

j∈V

xjikr = 1⇒ S0,k,r ≥ ui ∀i ∈ V, k ∈ K, r ∈ R

(C.10)

xijkr ∈ {0, 1} ∀(i, j) ∈ E, k ∈ K, r ∈ R
(C.11)

zi ∈ {0, 1} ∀i ∈ N
(C.12)

Sikr ≥ 0 ∀i ∈ V, k ∈ K, r ∈ R
(C.13)

The objective (C.1) minimizes the number of undelivered bags. Constraint (C.2)
sets zi = 1 if bag i is not delivered to its flight or station on time. Constraints
(C.3) and (C.4) ensure that each route leaves the depot once and returns to it
once.

138 Paper C

Constraint (C.5) ensures that the capacity of each vehicle is satisfied on all
routes. Constraint (C.6) is a flow conservation constraint. Constraint (C.7)
ensures that if edge (i, j) is used by vehicle k on route r, then the time stamp
of node j is greater than the departure time at node i plus the travel time and
dropoff time. The next constraint (C.8) maintains the time windows. Constraint
(C.9) states for all vehicles and routes that route r+1 may not be started before
route r has ended. Constraint (C.10) ensures that route r for vehicle k does not
start before all the route’s bags has arrived. If the vehicles are not identical, we
can replace the righthand side in (C.5) with Qk for vehicle k.

The problem is obviouslyNP-hard since it contains the Hamilton cycle problem
(defined on the flights) as special case when all time windows for the flights are
open, time windows for the stations are closed, and only one vehicle is available
for only one route.

Figure C.2 shows an example delivery with two dispatched routes.

1 2 3 4

5 6

N + 7 N + 8 N + 9

0

Figure C.2: Example delivery of 9 bags using two routes from the dispatch facil-
ity (diamond) to flights (round) and handling stations (square). Node numbers
are shown in the node. Different nodes may correspond to the same physical
location, as shown by the dashed box around nodes N + 8 and N + 9

To get more variance in the objective function, one may add a second objective
to the problem to minimize the overall travel time

min
∑

(i,j)∈E

∑

k∈K

∑

r∈R

tijxijkr

This also stimulates that bags are brought to the handling stations, as the travel
times to the stations are shorter than to the flights.

It is also natural to consider a weighted sum of the two objectives, since late
deliveries of bags impose a cost which can be added to the travel costs.

C.3 Real-life case study 139

C.3 Real-life case study

We consider the STBRP as a case study from a major European airport. Avail-
able data contains transfer bag data for one week of operations for each of the
airport’s two dispatch facilities.

The two dispatch facilities run independently and are placed in opposite areas of
the airport. The northern facility, N covers arriving transfers from the northern
part of the airport and the south facility S covers the southern part.

The facilities handle bags for short transfers, where the time between arrival
and departure is relatively short. In particular, the baggage handling process
for normal passengers, such as check-in, is in progress. This means that the
transfer bags can be injected into the normal process. A bag can be injected
into the normal process by delivering it to its handling station, if delivery to the
aircraft has not yet begun. This normally happens 25 minutes before departure,
which defines the end of the handling station’s time window. As the process is
operational for all bags, the start of the station time window is set such that
a bag can never arrive early. The time window of the flight opens when the
station closes and closes 5 minutes before departure, at which time the aircraft
bay doors are closed. Unless a bag is too late (and thus undelivered), there is
always at least one open time window open for the bag.

A period of time is required from the flight’s arrival until it is available in the
dispatch hall. This time includes de-loading at the aircraft, transportation to
one of the central facilities and sorting and security screening if needed. Bags
available for immediate dispatch are sent to the dispacth hall. Other transfer
bags are either delivered to other airport facilities (such as storage areas), or set
aside during the sorting step.

Each bag has a pickup area within the hall and a dedicated handling station.
These locations are predetemined by the airport management to handle conges-
tion issues within the airport.

The dispatch hall has a central driveway with 19 pickup areas on either side.
To minimize traffic across the driveway, there are some movement restrictions
within the hall. Vehicles must visit the pickup areas in forward order from
entry to exit and can never drive backwards. Each vehicle has a turn radius
that excludes the pickup area directly opposite the current area, as well as two
areas on either side of the opposite area. Furthermore, a vehicle may only cross
the driveway a maximum of two times to avoid congestion.

Some bags arrive very close to the scheduled departure time of the destination

140 Paper C

flight. Such bags may be difficult or even impossible to deliver in time. How
such bags are handled often depends on other circumstances: The destination
flight may be delayed to wait for the bags (and passengers), or the passengers
may be re-booked for a later departure. We denote such bags rush bags and
assume that they are handled by a special, separate process that we do not
consider. This might be a manual process within the dispatch hall, or a process
handled by the airline itself. A bag is marked rush if it cannot be delivered to
the flight in time.

The case company runs a fleet of identical vehicles with a capacity of 20 bags. A
separate fleet is used for each dispatch facility. Facility N handles approximately
4000 short transfer bags every day and S handles approximately 7000. The
handling of outbound bags is distributed over 7 baggage handling stations that
each serve departing flights in a region of the airport. Handling stations handle
all outgoing bags for both transfers and originating passengers and provides
the simplest way to integrate transfer bags into the normal baggage handling
process.

In addition to the available data, the case company has provided dispatch logs
from the days of operation, detailing the delivery status of each bag, and its
pickup time in the dispatch hall. The logs indicate that the company operates
roughly 40 vehicles at dispatch hall N and 45 vehicles at S. On average, the
company had 229 undelivered bags and 128 rush bags for N. For S, the company
had 241 undelivered bags and 128 rush bags. For N, 50% of the delivered bags
were delivered directly to the flight, and 62% of the delivered bags were delivered
directly to the flight for S.

C.3.1 Problem Instances

To get a more realistic picture of the baggage dispatch operation, we consider
the bag delivery times and the vehicle travel times as stochastic variables. We
generate a series of scenarios with travel times generated from random distribu-
tions based on the original values.

For the vehicle travel times, we assume that each travel time t′ij follows a normal
distribution with mean value tij and standard deviation 0.1·tij . This means that
the uncertainty in the travel times increases with the expected travel time. This
models a moderate level of uncertainty in vehicle operations that have neither
very short or very long travel times. Excessive delays, such as taxiway crossings,
would require a probability distribution with greater variance, for example the
log-normal distribution used for arrival times described in the following.

C.3 Real-life case study 141

For the bag arrival times, we assume that the average delivery time from the
landed aircraft to the dispatch hall is 30 minutes, and that the delivery time
follows a log-normal distribution. We use several distributions with mean value
30 minutes and different shape factors. Each shape factor is the base of a set of
scenarios that describes an increasing amount of uncertainty in aircraft arrival
times and bag delivery.

We create a series of randomly generated scenarios, where the random values are
generated using the selected distributions. Each generated scenario set contains
20 randomly generated problem instances for each day of operation, giving 140
in total per set. We generate 4 sets per dispatch facility with increasing levels of
uncertainty in bag arrival times, as modeled by using shape factors 0, 0.1, 0.2,
and 0.3. All scenarios use normally distributed travel times as described above.

We name the scenario sets N.x and S.x for scenarios with normally distributed
travel times generated with shape factor 0.1 · x. Thus, N.1 will be generated
using a scale factor of 0.1. Note that scale factor 0 imply that all bag delivery
times take on the mean value, i.e. that there is no uncertainty. The increasing
levels of uncertainty in bag arrival can model various degrees of flight delays,
such as minor delays, airspace congestion or weather conditions.

Table C.1 provides an overview of the generated problem instances.

Scen. |B| BR Bs tf ts BI

N.0 3764.43 31.86 3060.00 5.10 3.25 36.63
N.1 3754.17 42.11 3074.41 5.09 3.24 37.14
N.2 3708.13 88.16 3062.90 5.02 3.20 37.21
N.3 3651.64 144.65 3043.44 4.95 3.16 37.37
S.0 6735.43 199.14 5496.15 6.51 3.22 33.90
S.1 6750.91 183.66 5499.50 6.54 3.23 34.42
S.2 6672.75 261.82 5475.19 6.48 3.19 34.52
S.3 6566.06 368.51 5442.50 6.38 3.14 34.72

Table C.1: Scenario data for generated scenarios. All values are averages of the
20 scenarios in each set. |B| is the number of bags to schedule and BR is the
number of rush bags. Bs are the bags that can be delivered to the bag’s handling
station. tf and ts are the average travel times to flights and handling stations,
respectively. BI is the average time a bag can wait at the facility before it must
be picked up.

142 Paper C

C.4 Vehicle Dispatching

The infrastructure of the airport and dispatch facilities provide a series of restric-
tions on the possibilities for introducing computer-based support for scheduling
and dispatching vehicles. The available information on arriving bags are lim-
ited to an information feed delivered by the airport. This feed reflects the last
known position of each expected bag and is updated at certain points during
the bag’s journey. As the feed may be updated infrequently and irregularly, it
can be difficult to track a bag on its way towards the dispatch hall. To avoid
dispatching vehicles on erroneous assumptions, it is decided to only consider
bags available for pickup in the hall at the time of dispatch.

Each vehicle operates with a level of uncertainty in the delivery times, which
may be caused by several factors, for instance congestion at airport driveways
or delivery points. Currently, the vehicles are not equipped with GPS or other
means of electronic communication. There is therefore no easy way of establish-
ing a vehicles expected return.

Due to these considerations, the presented algorithm is based on the following
assumptions. All vehicles are scheduled individually and only for one trip at
a time. The scheduling is done when a vehicle enters the dispatch hall, either
when starting operation or when returning from a previous trip. Upon entering,
a route is generated for the driver, which specifies a set of bags the driver should
pick up in the hall and deliver throughout the airport. The route details the
pickup location for each bag within the hall, and the delivery destinations for
each bag.

The route is generated while the vehicle waits at the entry to the dispatch hall,
so the computation times must be very fast. As there are many active vehicles
that may return simultaneously, long calculations times would cause congestion
to occur within the hall.

The dynamic aspect of the problem means that only a limited amount of the
data can be considered when making decisions. The role of the algorithm is
therefore to determine what constitutes a “good” individual route. There can
be many ways to quantify a good route, of which most are conflicting. Examples
include:

• Flights with an imminent departure time should be handled first. This
reduces the risk of leaving a bag until it can no longer be delivered.

• The route should deliver as many bags as possible. This leaves fewer bags
to handle for the vehicles arriving later and reduces the risk of creating

C.4 Vehicle Dispatching 143

an unsurmountable amount of bags.

• Routes should be as short as possible. Shorter routes increase the number
of routes which can be managed with the given amount of vehicles. This
is especially important for delivering bags with a tight time window.

C.4.1 The Algorithm

To satisfy the above requirements, we present a parameterized greedy algorithm
with linear penalty functions. The algorithm is run each time a vehicle enters
the dispatch hall, and calculates a set of bags for the next route. The algorithm
considers all bags B ⊆ N present in the dispatch hall at the time of calculation.
We define the subgraph G[B] = (V [B], E[B]) ⊆ G as the induced subgraph
containing only nodes and edges belonging to the depot or the bags in B. To each
edge incident with the depot, we assign a cost that reflects the attractiveness
of delivering the bag associated with that node. Edges with low cost describe
the bags that are most attractive to deliver. To compute the cost of using edge
(i, j) we use the function σij(Sikr), where Sikr is the time where service at node
i is completed. At the beginning of the algorithm, S0kr is the time the vehicle
enters the dispatch hall.

We compute the cost of all edges incident to the depot as

c(e0j) = σ0j(S0kr).

The edge with lowest cost (and thereby the associated bag) is selected as the
beginning of the route, which we denote r1.

For subsequent bags, the edges eij incident to the last delivery point i is penal-
ized again using a more complex penalty function:

c(eij) =











σij(Sikr), j ≤ 2n, aj ≤ Sikr + tij ≤ bj

σT · σ0r1(S0kr), j = 2n+ 1

∞ hall restrictions or time window violated

(C.14)

The node with minimum cost edge j′ = argminj c(eij) is selected as the next
stop on the route. Sj′kr is then updated to reflect the new availability time of
the vehicle Sj′kr = Sikr + tij′ + sj′ .

The edges incident to j′ are then penalized again using equation (C.14).

When the cheapest edge is the edge that returns to the depot, the route ends.
The cost of the return edge is fixed for all non-depot nodes as a factor σT

144 Paper C

times the cost of the first edge. We denote σT the termination parameter, as it
determines the maximum cost of any bag to add to the route. The termination
is set relative to the first bag to ensure a rush-like behavior. If the first bag has
a very low cost, it is likely a near-critical bag. The route should then be less
likely to include other bags that must be picked up or delivered. If, on the other
hand, the initial bag has a high penalty, is is not likely to be critical, and the
driver will have more slack to include other stops on the route.

The cost of an edge eij is∞ if the bag cannot be picked up (due to hall movement
restrictions), or if the node j is visited outsides its time window (i.e. Sikr+tij <
aj or Sikr + tij > bj). During the generation of a route, the set of nodes that
can be reached using edges with finite cost can change. As the vehicle’s time
increases, the windows of some nodes will close as the respective station or
flight closes. The flight node is only available after the time window at the
corresponding station is closed. This means that some nodes may also become
available as Sjkr is increased. The link between the time windows at the station
and the flight means that a destination is always available for the delivery an
available bag. For this reason, the normal VRPTW practice of allowing early
vehicles to wait at the customer is not applied here.

What we solve is essentially the dynamic prize-collecting TSP on a restricted
graph. Feillet et al. [7] give an excellent overview of exact and heuristic algo-
rithms for the TSP with profits. The problem may be seen as a bicriteria TSP
with two opposite objectives: maximize profit and minimize travel distance.
Most researchers address the problem in single-objective version where the two
objectives are weighted and aggregated. In this paper we use a weighted sum
of three objectives, which use dynamic, time-dependent, edge costs. The edge
cost function σ is described in detail in the following section.

C.4.2 Penalty Function

The edge cost c(eij) of traveling from i to j, as defined by (C.14), is calculated
in part by the time-dependent penalty function σij(Sikr). Visiting node j is
equivalent to delivering bag (j mod N) to either its flight (if j ≤ N) or its
handling station (if j > N). The cost of adding this bag is calculated as a
weighted sum of three terms, that each take different aspects of the delivery or
the route into account. The cost function σij(Sikr) is defined as

σij(Sikr) = αL ·σL(i, j)+αR ·σR(Sikr+tij−S0kr)+αD ·σD(Sikr+tij−bj mod N).
(C.15)

The cost function (C.15) is a weighted sum of three terms with real-valued
weights αL (location), αR (route length) and αD (departure) that are parame-

C.4 Vehicle Dispatching 145

ters to the algorithm. Each term is an individual penalty function that evaluates
a specific part of the route that would result in adding the bag. As the func-
tions consider different aspects of the route, they also take different parts of the
existing route as parameters.

Each measure introduces a level of robustness to the selection, as they in different
ways penalize bags that are not critical or may be better delivered as part of
another route.

The location penalty function σL(i, j) penalizes a change in location, depending
on the location type. It is defined as a discrete value for each type of location:
Delivery at flight for i ≤ N and delivery at handling station for i > N . The
discrete values of σL(i, j) are defined as

σL(i, j) =



















1 i ≤ N, j ≤ N

10 i > N, j ≤ N

0 i ≤ N, j > N

1 i > N, j > N

(C.16)

No penalty is incurred for changing from a flight to a handling station, which
encourages additional bags to be brought along with a delivery to a flight, as
long as the subsequent bags are more robust deliveries to a handling station.
Added bags for a flight after visiting a station incurs a penalty of 10, making
it practically illegal. No penalty is incurred if the location is not changed, i.e.
several bags are brought to the same location.

The two remaining penalty terms in equation (C.15) are calculated using piece-
wise linear penalty functions of their parameter value x. By using this approach,
we can modify the behavior of the penalty to fit desired properties of the route.

The route length penalty function σR(x) = σR(Sikr + tij − S0kr) penalizes the
total expected route length in minutes. When considering this function iso-
lated, routes are preferred to be short. Short routes minimizes uncertainty and
maximizes the flow of vehicles at the dispatch hall.

The departure penalty function σD(x) = σR(Sikr + tij − bj mod N) penalizes the
difference between the expected delivery of the bag, and the flights departure,
modeled by the end of the time window of the bag’s flight node j mod N . This
function defines the cost of the bag in terms of the flight’s departure.

We consider different penalty functions for each of the two terms. The con-
sidered functions are depicted in Figure C.3. Functions A and B are general
functions that are considered for both terms. Function A has a constant value

146 Paper C

of 0.5 and B increases linearly from 0 to 1. Function C is considered only for
route length penalty σR and has a small increasing penalty for routes up to 30
minutes in length. The penalty then increases steeply for routes longer than
30 minutes. This function puts more emphasis on shorter routes than B, which
should increase the frequency of vehicles returning to the dispatch center.

Functions D and E are considered only for departure penalty σD. The penalty
for both functions is highest in the interval from 25 to 35 minutes, where the
penalty is 1. The effect of this peak is to avoid deliveries very close to the
closing time of the handling station, which closes at 25 minutes before departure.
Arriving close to the station’s closing has a high risk of being late, and hence
being redirected directly to the flight.

The function D decreases from the peak towards a penalty of 0.4 at 0 and 50
minutes, giving a penalty function that is roughly symmetric around the peak.
Function E combines aspects from B and D by having a penalty that increases
from 0 at 0 minutes like B, but the same peak as D. Functions D and E penalizes
deliveries that risk redirection from the station to the flight.

C.4.3 Simulation

The algorithm is intended to support dispatching during a day of operation,
so the expected arrival times and travel times are not known in advance. To
simulate this, the dispatching of a vehicle is done in two phases. First, the
algorithm needs to select the bags to include in the route. In this phase, expected
travel times are used. This means that the feasibility checks and bag cost penalty
are calculated using the expected (mean) travel times. When a route is finished,
the second phase determines the actual completion time of the route. The route
is traversed using the actual (randomly generated) travel times. If the vehicle
arrives too late at a flight, the bag is considered undelivered. If the vehicle
arrives too late at a handling station, the vehicle is redirected to the target
flight. The flight location is inserted as an extra delivery point, before any
subsequent deliveries. Redirects extend the duration of the route, and increase
the risk of subsequent redirects or undelivered bags. In case of severe delays, it
is possible for a bag to be both redirected and refused.

C.4 Vehicle Dispatching 147

σR / σD

50

.5

1

A

50

1

B

σR

30 50

1

C

σD

25 35 50

.4

.6

1

D

25 35 50

.4

.6

1

E

Figure C.3: Bag penalty profile for σR (A,B,C) and σD (A,B,D,E). Each profile
shows the value for the base value of the penalty function, total route length
(σR) or remaining time after delivery (σD).

148 Paper C

C.5 Computational Results

We present the results of experiments run on the generated instances presented
in Table C.1 of Section C.3.1. The algorithm was implemented using C# .NET.
The instances were generated using probability distributions implemented in the
Troschuetz.Random software library [22]. All instances were solved in less than
one second, which makes the algorithm applicable in the dynamic dispatching
scenario.

We structure the experiments as follows. In Section C.5.1, we consider the
parameters and penalty functions on a fixed number of vehicles. In Section C.5.2
we investigate the robustness of the algorithm on various fleet sizes.

C.5.1 Weight Parameters

We evaluate different combinations of weights αL, αR, αD and different termi-
nation threshold values σT = {0, 1, 2, 3, 4}. Values for (αL, αR, αD) are chosen
as sample coordinates of the unit simplex, such that αL + αR + αD = 1.

For the tuning we use a sample fleet size of 25 vehicles on all days for the
instances in set S.1. Not all bags can be delivered with this fleet size, so the
tuning also illustrates the performance of different parameters under a degree
of pressure.

To also consider the effect on the parameters when using different penalty func-
tions, we present results the full combination of parameters for three sample
functions (σD, σR) = {(B,C), (D,C), (E,C)}. See Figure C.3 and Section C.4.2
for a definition of the penalty functions.

The effect of the three penalty function combinations is presented in three sepa-
rate tables. Table C.2 presents the results for (σD, σR) = (B,C). Combinations
(σD, σR) = (D,C) and (σD, σR) = (E,C) are presented in tables C.3 and C.4,
respectively.

Each table show the average number of undelivered bags for each combination of
weights and termination threshold. The rightmost column reports the average
across all termination penalizes for each parameter combination and the last
row shows the average for each termination threshold.

The three tables show similar results. Looking at the average number of unde-
livered bags per parameter combination, the same combinations score well in all

C.5 Computational Results 149

σT

αL αR αD 0 1 2 3 4

0.00 0.00 1.00 580.19 342.38 236.57 256.51 264.87 336.10
0.00 0.20 0.80 580.19 580.19 107.74 117.58 117.54 300.65
0.00 0.40 0.60 580.19 580.19 100.25 103.94 104.38 293.79
0.00 0.50 0.50 580.19 580.19 94.62 96.11 96.66 289.55
0.00 0.60 0.40 580.19 580.19 89.07 93.35 91.53 286.86
0.00 0.80 0.20 580.19 580.19 108.72 75.65 74.49 283.85
0.00 1.00 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.10 0.10 0.80 580.19 580.19 111.79 117.03 120.60 301.96
0.10 0.40 0.50 580.19 580.19 99.86 99.21 102.05 292.30
0.10 0.50 0.40 580.19 580.19 93.24 96.11 92.11 288.37
0.10 0.80 0.10 580.19 580.19 265.02 76.88 62.36 312.93
0.20 0.00 0.80 580.19 342.38 236.57 256.51 264.87 336.10
0.20 0.20 0.60 580.19 580.19 108.51 109.14 115.59 298.72
0.20 0.40 0.40 580.19 580.19 94.69 96.51 97.41 289.80
0.20 0.60 0.20 580.19 580.19 106.49 80.91 85.41 286.64
0.20 0.80 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.25 0.25 0.50 580.19 580.19 101.80 109.55 106.64 295.67
0.25 0.50 0.25 580.19 580.19 93.93 87.38 89.76 286.29
0.33 0.33 0.33 580.19 580.19 94.56 96.55 96.53 289.60
0.40 0.00 0.60 580.19 342.38 236.57 254.15 264.87 335.63
0.40 0.10 0.50 580.19 580.19 111.84 116.34 118.69 301.45
0.40 0.20 0.40 580.19 580.19 102.14 109.51 106.54 295.71
0.40 0.40 0.20 580.19 580.19 92.89 87.81 89.58 286.13
0.40 0.50 0.10 580.19 580.19 149.13 72.71 69.56 290.36
0.40 0.60 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.50 0.00 0.50 580.19 342.38 236.57 256.51 264.87 336.10
0.50 0.10 0.40 580.19 580.19 107.74 117.58 117.54 300.65
0.50 0.25 0.25 580.19 580.19 94.62 96.11 96.66 289.55
0.50 0.40 0.10 580.19 580.19 108.72 75.65 74.49 283.85
0.50 0.50 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.60 0.00 0.40 580.19 342.38 236.57 256.51 264.87 336.10
0.60 0.20 0.20 580.19 580.19 94.69 96.51 97.41 289.80
0.60 0.40 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.80 0.00 0.20 580.19 342.38 236.57 256.51 264.87 336.10
0.80 0.10 0.10 580.19 580.19 94.69 96.51 97.41 289.80
0.80 0.20 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
1.00 0.00 0.00 1327.16 1327.16 1327.16 1327.16 1327.16 1327.16

745.34 706.78 384.28 379.29 380.60 519.26

Table C.2: Average number of undelivered bags for parameter and termination
weight combinations, using penalty functions (σD, σR) = (B,C). Best perfor-
mance is highlighted in bold. The rightmost column and bottom row show
average values.

150 Paper C

σT

αL αR αD 0 1 2 3 4

0.00 0.00 1.00 2026.12 2125.12 1532.59 1518.64 1518.63 1744.22
0.00 0.20 0.80 2026.12 2026.12 726.56 707.19 707.41 1238.68
0.00 0.40 0.60 2026.12 2026.12 685.11 658.47 655.14 1210.19
0.00 0.50 0.50 2026.12 2026.12 652.06 627.92 633.23 1193.09
0.00 0.60 0.40 2026.12 2026.12 590.56 588.77 587.05 1163.72
0.00 0.80 0.20 2026.12 2026.12 409.11 381.82 404.25 1049.48
0.00 1.00 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.10 0.10 0.80 2026.12 2026.12 738.79 721.57 721.57 1246.83
0.10 0.40 0.50 2026.12 2026.12 668.05 654.68 652.80 1205.55
0.10 0.50 0.40 2026.12 2026.12 622.46 608.26 608.91 1178.38
0.10 0.80 0.10 2026.12 2026.12 418.12 294.16 285.89 1010.08
0.20 0.00 0.80 2026.12 2125.12 1532.59 1518.64 1518.63 1744.22
0.20 0.20 0.60 2026.12 2026.12 712.37 700.24 699.84 1232.94
0.20 0.40 0.40 2026.12 2026.12 652.14 627.92 633.23 1193.11
0.20 0.60 0.20 2026.12 2026.12 462.26 448.14 453.86 1083.30
0.20 0.80 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.25 0.25 0.50 2026.12 2026.12 692.64 682.65 682.41 1221.99
0.25 0.50 0.25 2026.12 2026.12 553.21 539.55 541.12 1137.23
0.33 0.33 0.33 2026.12 2026.12 651.98 627.94 633.23 1193.08
0.40 0.00 0.60 2026.12 2125.12 1532.59 1518.64 1518.63 1744.22
0.40 0.10 0.50 2026.12 2026.12 727.74 712.68 712.72 1241.08
0.40 0.20 0.40 2026.12 2026.12 691.74 683.13 682.89 1222.00
0.40 0.40 0.20 2026.12 2026.12 553.21 539.43 541.15 1137.21
0.40 0.50 0.10 2026.12 2026.12 383.44 353.48 362.44 1030.32
0.40 0.60 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.50 0.00 0.50 2026.12 2125.12 1532.59 1518.64 1518.63 1744.22
0.50 0.10 0.40 2026.12 2026.12 726.56 707.19 707.41 1238.68
0.50 0.25 0.25 2026.12 2026.12 652.06 627.92 633.23 1193.09
0.50 0.40 0.10 2026.12 2026.12 409.11 381.82 404.25 1049.48
0.50 0.50 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.60 0.00 0.40 2026.12 2125.12 1532.59 1518.64 1518.63 1744.22
0.60 0.20 0.20 2026.12 2026.12 652.14 627.92 633.23 1193.11
0.60 0.40 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.80 0.00 0.20 2026.12 2125.12 1532.59 1518.64 1518.63 1744.22
0.80 0.10 0.10 2026.12 2026.12 652.14 627.92 633.23 1193.11
0.80 0.20 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
1.00 0.00 0.00 1327.16 1327.16 1327.16 1327.16 1327.16 1327.16

1917.73 1933.78 920.31 903.10 905.25 1316.03

Table C.3: Average number of undelivered bags for parameter and termination
weight combinations, using penalty functions (σD, σE) = (D,C). Best perfor-
mance is highlighted in bold. The rightmost column and bottom row show
average values.

C.5 Computational Results 151

σT

αL αR αD 0 1 2 3 4

0.00 0.00 1.00 639.34 705.84 784.21 764.31 759.95 730.73
0.00 0.20 0.80 639.34 639.34 277.32 273.66 272.81 420.49
0.00 0.40 0.60 639.34 639.34 245.88 246.94 247.88 403.87
0.00 0.50 0.50 639.34 639.34 234.80 220.29 221.89 391.13
0.00 0.60 0.40 639.34 639.34 209.59 196.79 200.50 377.11
0.00 0.80 0.20 639.34 639.34 158.90 141.62 142.45 344.33
0.00 1.00 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.10 0.10 0.80 639.34 639.34 292.03 280.04 280.90 426.33
0.10 0.40 0.50 639.34 639.34 233.87 235.39 235.18 396.62
0.10 0.50 0.40 639.34 639.34 218.99 210.11 213.61 384.28
0.10 0.80 0.10 639.34 639.34 184.41 120.78 112.49 339.27
0.20 0.00 0.80 639.34 705.84 784.21 764.31 759.95 730.73
0.20 0.20 0.60 639.34 639.34 276.84 263.54 263.84 416.58
0.20 0.40 0.40 639.34 639.34 234.45 220.16 221.91 391.04
0.20 0.60 0.20 639.34 639.34 165.20 162.22 159.27 353.07
0.20 0.80 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.25 0.25 0.50 639.34 639.34 263.44 249.92 252.69 408.95
0.25 0.50 0.25 639.34 639.34 195.76 187.01 179.09 368.11
0.33 0.33 0.33 685.24 685.24 232.91 236.59 235.50 415.09
0.40 0.00 0.60 639.34 705.84 784.21 764.31 759.95 730.73
0.40 0.10 0.50 639.34 639.34 283.51 276.26 275.75 422.84
0.40 0.20 0.40 639.34 639.34 263.98 249.94 252.69 409.06
0.40 0.40 0.20 639.34 639.34 196.14 187.64 179.62 368.41
0.40 0.50 0.10 639.34 639.34 152.31 132.46 125.86 337.86
0.40 0.60 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.50 0.00 0.50 639.34 705.84 784.21 764.31 759.95 730.73
0.50 0.10 0.40 639.34 639.34 277.32 273.66 272.81 420.49
0.50 0.25 0.25 639.34 639.34 234.80 220.29 221.89 391.13
0.50 0.40 0.10 639.34 639.34 158.90 141.62 142.45 344.33
0.50 0.50 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.60 0.00 0.40 639.34 705.84 784.21 764.31 759.95 730.73
0.60 0.20 0.20 639.34 639.34 234.45 220.16 221.91 391.04
0.60 0.40 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
0.80 0.00 0.20 639.34 705.84 784.21 764.31 759.95 730.73
0.80 0.10 0.10 639.34 639.34 234.45 220.16 221.91 391.04
0.80 0.20 0.00 1474.17 1474.17 1474.17 1474.17 1474.17 1474.17
1.00 0.00 0.00 1327.16 1327.16 1327.16 1327.16 1327.16 1327.16

794.54 805.33 549.67 538.52 537.48 645.11

Table C.4: Average number of undelivered bags for parameter and termination
weight combinations, using penalty functions (σD, σR) = (E,C). Best perfor-
mance is highlighted in bold. The rightmost column and bottom row show
average values.

152 Paper C

three tables. The combinations (αL, αR, αD) = (0.0, 0.8, 0.2) and (αL, αR, αD) =
(0.4, 0.5, 0.1) are among the three best in all tables. The combination α =
(αL, αR, αD) = (0.1, 0.8, 0.1) has the best average in Table C.3 (σD = D) and
Table C.4 (σD = E). In Table C.2 that summarizes σD = B, the average
number for this combination is not among the best, but the best individual
value across all tables in found in this table for this combination, with 62.36
undelivered bags on average.

It is interesting that while the best combinations favor the departure term αD to
be low, the combinations with αD = 0 consistently produces results significantly
worse than all others. Combinations with αR = 0 are also consistently poor.
This is perhaps less surprising, since αR is high in the best combinations. The
weight parameter that seems to be least significant is αL. Several combinations
with αL = 0 produce decent results, with α = (αL, αR, αD) = (0.0, 0.8, 0.2)
being in the top three on average values. This is also not surprising, as the
location change function is to some extent supported by the other functions as
well: Keeping routes short and prioritizing critical bags will also minimize the
number of visited locations and form flight first routes.

Considering the termination parameter σT , the values σT = 3 and σT = 4
have the best performances. In all three tables, the average distance between
undelivered bags for σT = 3 and σT = 4 are small, less than 3. This also shows
a good level of consistency across the tables.

The global average for each table shows 519 undelivered bags on average for
αD = B versus 1316 for αD = D and 645 for αD = E. From this we conclude
that αD = B is the best choice for αD.

In all three tables, the best individual performance is found using α = (αL, αR, αD) =
(0.1, 0.8, 0.1) and σT = 4. These values are also shown in bold in the tables.

We use these parameters to evaluate all the σD and σR penalty functions, as
presented in Section C.4.2, σR = {A,B,C}, and σD = {A,B,D,E}. The results
of running each penalty function combination on S.1 are presented in Table C.5.

As seen from the table, the results of using σR = C is in all cases better than
any results with σR = A or σR = B. For each group of results with the same
σR function, the best results are for σD = B. The observations are emphasized
by the best overall result, which is found for the combination (σD, σR) = (B,C)
with 62 undelivered bags on average.

A direct connection is seen between the number of delivered bags, the route
length and the number of bags per route. The top five results are the only
combinations with average loads above 4 and average route lengths above 10

C.5 Computational Results 153

σD σR D Ds Df Us Uf |R| Rlen Rload

A A 5276.74 3746.48 1530.26 0.00 1474.17 2041.67 8.52 3.30
B A 6177.06 2466.70 3710.36 0.00 573.85 1775.08 9.78 3.80
D A 4724.79 3258.44 1466.34 0.00 2026.12 2092.46 8.23 3.22
E A 6111.57 3078.50 3033.07 0.00 639.34 1999.48 8.45 3.37
A B 6242.80 4980.04 1262.76 0.00 508.11 1739.46 9.01 3.88
B B 6382.81 3329.38 3053.44 0.00 368.09 1493.36 10.75 4.52
D B 5121.41 3627.72 1493.69 0.00 1629.50 1981.01 8.46 3.40
E B 6202.25 3438.75 2763.50 0.00 548.66 1909.26 8.66 3.53
A C 6574.13 4888.99 1684.96 0.17 176.78 1216.73 12.10 5.54
B C 6688.54 3945.13 2743.06 0.35 62.36 1086.56 14.01 6.21
D C 6465.02 4380.49 2084.37 0.16 285.89 1160.41 12.81 5.81
E C 6638.42 4320.98 2317.26 0.18 112.49 1143.71 12.94 5.90

Table C.5: Results of simulations on S.1 using different combinations of penalty
function profiles for σD and σR. D, Ds and Df are the number of delivered bags
in total, to the handling stations and to the flights, respectively. Us and Uf are
undelivered bags at stations (redirections) and at flights. |R|, Rlen and Rload is
the average number of routes, and the average length (in minutes) and vehicle
load per route.

minutes. The best result has the highest average load and route duration.

The four best results are the only results with a significant number of redirec-
tions. This could indicate that they deliver bags to the handling stations near
the end of the station time windows and thus risking redirections. It seems
that higher risk willingness yields better results, as the result improve with the
number of redirections.

In some cases, minimizing the number of redirections may be preferable. This
may be to emphasize a risk aversion strategy, or to reduce unnecessary traffic in
congested handling stations. We have chosen to consider the objective of deliv-
ered bags only, since we do not have realistic data to model other requirements.
Also, the number of redirections is low in all cases, with a maximum of 0.35 on
average. However, the results clearly show the algorithm’s ability to introduce
more risk aversion. The combination (σD, σR) = (E,C) has 112 undelivered
bags on average with 0.18 redirections, about half of the maximum.

154 Paper C

C.5.2 Fleet Size and Uncertainty

In this section we consider the effect of varying the fleet size on all N.x and
S.x scenarios. We use the parameters determined in the previous section:
(αL, αR, αD) = (0.1, 0.8, 0.1), σT = 4, and penalty functions (σD, σR) = (B,C).

Each scenario is evaluated with varying fleet sizes from 20 to 45. Figure C.4
shows the average number of undelivered bags as a function of the fleet size
for scenarios S.0, S.1, S.2, and S.3. For S.0 the number of undelivered bags
reaches a minimum for all fleet sizes larger than 26. For the remaining scenarios,
the number of undelivered bags decrease towards this minimum for all fleet sizes,
all reaching values close to the minimum at 45 vehicles.

The most difficult instances to solve are S.1, which have the largest number of
undelivered bags for almost all fleet sizes. For S.2 and S.3, there are fewer bags
to deliver since more are marked rush bags. This is also seen in Table C.1.

Another view on the solutions to the S.x scenarios is provided in Figure C.5.
The figure shows the number of instances with 0 undelivered bags for scenarios
S.0, S.1, S.2, and S.3.

As seen from the figure, the number of completely solved instances stabilizes at
around 45% at 28 vehicles for S.0. For the other S.x-scenarios, less than 10%
are completely solved for 45 vehicles.

Figure C.6 shows undelivered bags for the N.x scenarios as function of the fleet
size. These scenarios are smaller than the S.x scenarios, and the overall number
of undelivered bags are similarly smaller. The N.0 instances reaches a minimum
at 25 vehicles and the other scenarios also have few undelivered bags. At 36
and more vehicles, the number of undelivered bags is reduced very little.

Figure C.7 displays the number of instances with no undelivered bags for scenar-
ios N.0, N.1, N.2, and N.3. About 60% of the N.0 can be completely dispatched
when using 28 or more vehicles. For the other scenarios, the number of com-
pletely dispatched scenarios increases with the fleet size. About 20% – 25% of
these instances are completely dispatched, with the N.1 being the most difficult.

For all scenarios, a connection is seen between the number of vehicles and the
number of undelivered bags. Compared to the delivery numbers of the customer
case, we see a clear improvement when using the same number of vehicles. Both
N and S had more than 200 undelivered bags on average. In tables C.4 and C.6
we see that all scenarios can be solved better for all presented fleet sizes. Based
on the generated scenarios, the same level of service or better can be achieved

C.5 Computational Results 155

25 30 35 40 45

17.5

35

52.5

70

87.5

105

122.5

140

157.5

175

b
b b

b

b

b

b

b

b

b

b
b

b
b

b
b

b
b

b
b

b b
b b

b b b b b

b

b

b

b

b

b

b
b

b
b

b
b

b
b

b
b b

b b
b b b b b b b

b

b

b

b

b

b

b

b
b

b b
b b

b b
b b b b b b b b b b b

S.0
S.1
S.2
S.3

Figure C.4: Average undelivered bags per fleet size for dispatch facility S with
various levels of uncertainty. The x-axis depicts fleet size and the y-axis is the
number of undelivered bags.

156 Paper C

25 30 35 40 45

0.05

0.09

0.14

0.18

0.23

0.27

0.32

0.36

0.41

0.45

b

b b

b

b
b

b
b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b
b

b b

b
b b

b

b b
b b b b

b

b b b b b b b b b b b b b b b b b b b
b

b

b b b
b b

S.0
S.1
S.2
S.3

Figure C.5: Percentage of instances (y-axis) with no undelivered bags for S.x-
scenarios for various fleet sizes (x-axis).

25 30 35 40 45

2

4

6

8

10

12

14

16

b b

b
b

b
b

b
b

b b

b b b
b

b b b
b

b b b b b b b b b b

b

b
b

b
b

b
b b b

b b b b
b b b b b b b b b b b b b

b

b

b

b b

b
b b

b
b b b b b b b b b b b b b b b b b

N.0
N.1
N.2
N.3

Figure C.6: Average undelivered bags per fleet size for dispatch facility N with
various levels of uncertainty. The x-axis depicts fleet size and the y-axis is the
number of undelivered bags.

C.6 Conclusion and Future Work 157

25 30 35 40 45

0.07

0.13

0.2

0.26

0.33

0.39

0.46

0.52

0.59

0.65

b b
b b

b
b b

b
b

b
b b

b b

b b

b b
b

b

b

b
b

b b

b

b
b

b
b

b b
b

b
b b

b
b b b b b

b

b
b

b

b
b

b

b

b
b b

b
b

b

b b
b

b
b b

b
b

b
b

b
b b b

b
b

b
b

b b b b
b

b
b

b b b
b

N.0
N.1
N.2
N.3

Figure C.7: Percentage of instances with no undelivered bags for N.x scenarios
for various fleet sizes.

with less than half the current fleet size even when considering a substantial
level of uncertainty.

Although it is clearly preferable to deliver all bags, it may be acceptable to
leave a portion of the bags undelivered. This might be the case, if the service
contract, as common, specifies a certain level of expected service. In this case,
the company can use simulations like the one presented here to adjust the fleet
size according to the contractual needs, thus saving money on expenditures.
Furthermore, the simulations can determine the expected fleet size needed for
achieving different service levels. This may be useful in contract negotiations.

C.6 Conclusion and Future Work

In this paper we have presented the Short Transfer Baggage Routing Problem
from a real-life application in a major European airport. A fast parameterized
greedy algorithm has been presented and evaluated on airport data. Several
time-dependent penalty functions have been presented and evaluated. Experi-
mental results show that a trade-off can be made between a maximum delivery

158 Paper C

of bags and a risk aversion policy that reduces redirections and route extensions.

The algorithm has been evaluated further to show that the results are robust
with regards to stochastic bag arrivals and vehicle transport times. The algo-
rithm was also shown to function well under a shortage of vehicles, showing that
vehicle breakdowns or reduced manning can be handled, or that savings can be
made in fleet size at a cost of fewer delivered bags.

It is interesting to observe, that among several dispatching strategies it seems
that risk willingness pays off, also when there is a large degree of uncertainty.
This is due to the structure of the considered problem, where it seems to be
attractive to schedule bags for the handling station even when the time limit is
very tight. If a bag arrives later than the time window, the vehicle will have to
bring the bag directly to the airplane. But if the vehicle does not try to deliver
the bag at the handling station it has to go to the airplane anyway. So there is
only a short driving distance to lose.

An IT system for automated dispatching has been introduced at the case com-
pany on the basis of the work presented in this paper. The system currently
provides decision support for baggage dispatching throughout the airport con-
sidered.

Several extensions to the STBRP can be considered. The handling of rush bags
is currently considered to be a special, parallel process, i.e. they are not handled
by our approach. It would be interesting to consider an integrated approach that
includes decision support for rush bags.

Currently, bags and vehicles are not considered for dispatching until they have
arrived in the hall. This provides an easy way to run bag scheduling and manual
processes in parallel. On the other hand it would be interesting to investigate the
effect of using automated scheduling on a larger part of the problem, for instance
by considering short term forecasting of bag arrivals, or by also considering more
than one vehicle at a time. Integrating forecasting and multiple vehicles would
present new and interesing models for the STBRP.

C.7 Acknowledgments

The authors wish to acknowledge the project team at WorkBridge for good
discussions and key insights. In particular, the idea of using piecewise linear
penalty functions is due to the WorkBridge project team.

References

[1] M. Anker and A. Hämmerle. Applying ant colony optimisation to dynamic
pickup and delivery. In R. Moreno-Diaz and F. Pichler, editors, Computer
Aided Systems Theory - EUROCAST 2009, volume 5717 of Lecture Notes
in Computer Science, pages 721–728. Springer, 2009.

[2] R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for
the vehicle routing problem based on the set partitioning formulation with
additional cuts. Mathematical Programming, 115(2):351–385, 2008.

[3] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations Research, 46:316–329, 1998.

[4] G. Berbegliaa, J.-F. Cordeau, and G. Laporte. Dynamic pickup and deliv-
ery problems. European Journal of Operational Research, 202:8–15, 2010.

[5] J. Brandao and A. Mercer. The multi-trip vehicle routing problem. Journal
of the Operational Research Society, 49:799–805, 1998.

[6] J.-F. Cordeau, M. Gendreau, and G. Laporte. A tabu search heuristic for
periodic and multi-depot vehicle routing problems. Networks, 30:105–119,
1997.

[7] D. Feillet, P. Dejax, and M. Gendreau. Traveling salesman problems with
profits. Transportation Science, 39:188–205, 2005.

[8] A. Fiat and G. Woeginger. Online Algorithms, volume 1442 of Lecture
Notes in Computer Science. Springer, 1998.

160 REFERENCES

[9] M. Gendreau, F. Guertin, J.-Y. Potvin, and R. Seguin. Neighborhood
search heuristics for a dynamic vehicle dispatching problem with pick-ups
and deliveries. Technical Report 98-10, 1998.

[10] G. Ghiana and G. Improta. An efficient transformation of the generalized
vehicle routing problem. European Journal of Operations Research, 122:11–
17, 2000.

[11] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row
inequalities applied to the vehicle routing problem with time windows. Op-
erations Research, 56(2):497–511, 2008.

[12] J. Kozlak, J.-C. Créput, V. Hilaire, and A. Koukam. Multi-agent approach
to dynamic pick-up and delivery problem with uncertain knowledge about
future transport demands. Fundamenta Informaticae, 71:27–36, 2006.

[13] M. E. Lubbecke and J. Desrosiers. Selected topics in column generation.
Operations Research, 53(6):1007–1023, 2005.

[14] G. Nagy and S. Saldi. Heuristic algorithms for single and multiple depot
vehicle routing problems with pickups and deliveries. European Journal of
Operational Research, 162:126–141, 2005.

[15] B. Petersen, D. Pisinger, and S. Spoorendonk. Chvátal-Gomory rank-1
cuts used in a Dantzig-Wolfe decomposition of the vehicle routing problem
with time windows. In B. Golden, R. Raghavan, and E. Wasil, editors,
The Vehicle Routing Problem: Latest Advances and New Challenges, pages
397–420. Springer, 2008.

[16] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems.
Computers & Operations Research, 34(8):2403–2435, 2007.

[17] C. Prins. Efficient heuristics for the heterogeous fleet multitrip vrp with
application to a large-scale real case. Journal of Mathematical Modelling
and Algorithms, 1:135–150, 2002.

[18] J. Renaud, G. Laporte, and F. Boctor. A tabu search heuristic for the
multi-depot vehicle routing problem. Computers and Operations Research,
23:229–235, 1996.

[19] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Technical Report
04-13, DIKU, University of Copenhagen, 2004.

[20] S. Ropke and D. Pisinger. A unified heuristic for a large class of vehicle rout-
ing problems with backhauls. European Journal of Operational Research,
171:750–775, 2006.

161

[21] P. Toth and D. Vigo. An overview of vehicle routing problems. In P. Toth
and D. Vigo, editors, The Vehicle Routing Problem, volume 9 of SIAM
Monographs on Discrete Mathematics and Applications, chapter 1, pages
1–26. SIAM, Philadelphia, 2002.

[22] S. Troschuetz. The troschuetz.random package.
.net random number generators and distributions.
http://www.codeproject.com/KB/recipes/Random.aspx, 2006.

162

Paper D

Route Planning for Airport

Personnel Transporting

Passengers with Reduced

Mobility

Line Blander Reinhardt, Tommy Clausen and David Pisinger.

Submitted to Transportation Research Part B

164 Paper D

Route Planning for Airport Personnel

Transporting Passengers with Reduced Mobility

Line Blander Reinhardt, Tommy Clausen, and David Pisinger

Major airports have an average throughput of more than 100,000
passengers per day, some of which will need special assistance. The
largest airports have a daily average throughput of more than 500
passengers with reduced mobility. A significant number of people
and busses are assigned to provide transportation for the passengers
with reduced mobility. It is often necessary for a passenger with
reduced mobility to use several different modes of transport during
their journey through the airport. Synchronization occurs at the
locations where transport modes are changed as to not leave pas-
sengers unattended. A description of the problem together with a
mathematical model is presented. The objective is to maximize the
quality of service by scheduling as many of the passengers as possi-
ble, while ensuring a smooth transport with short waiting times. A
simulated annealing based heuristic for solving the problem is pre-
sented. The algorithm makes use of an abstract representation of
a candidate solution which in each step is transformed to an actual
schedule by use of a greedy heuristic. Local search is performed
on the abstract representation using advanced neighborhoods which
modify large parts of the candidate solution. Computational results
are reported showing that the algorithm is able to find good solutions
within a couple of minutes, making the algorithm applicable for dy-
namic scheduling. Moreover high-quality solutions can be obtained
by running the algorithm for 15 minutes.

D.1 Introduction

At the 31st biggest airport London Gatwick there was a throughput of 32 million
passengers in 2009 according to [2]. London Gatwick reports [1] that around
900 passengers with reduced mobility arrived each day.

D.1 Introduction 165

Such passengers may be passengers returning from vacation with an injury,
elderly or weak passengers, blind and deaf passengers, and passengers with
other disabilities. In the remaining of this paper we will refer to passengers
needing assistance as passengers with reduced mobility (PRM). The support
provided for the PRMs may be dedicated transport through the airport, and
assistance at boarding. When assisting PRMs through an airport the PRM is
picked up at the arriving location, e.g. check-in or gate of arrival, and delivered
at the destination location, e.g. arrival hall or gate of departure. It is a service
requirement that the PRM is not left alone during the journey from start to
end. It may also be possible to assist more than one PRM at a time depending
on whether the PRM is in a wheelchair or how well they are able to walk and
orient themselves.

In the case studied the objective is to optimize quality of service given the
personnel available. Optimizing quality of service is in our case, given a fixed
set of personnel and transport objects, to minimize the number of PRMs not
delivered and to minimize the total unnecessary travel time used on the journeys.
We view the problem of assisting PRMs as a dial-a-ride problem (DARP), which
is a generalization of the pickup and delivery problem (PDP). For more details
on the dial-a-ride problem (DARP) definition see Cordeau and Laporte [5].

The dial-a-ride Problem (DARP) is NP-hard by reduction from the Hamiltonian
cycle problem (Baugh et al. [3]). Normally, the DARP is defined with time
windows at either pickup or delivery, but not both, see [5] and [12]. Even though
Cordeau and Laporte in [5] argue that having time windows at both ends may
be too restricting for the planning, Jaw et al. [12] show that given a pickup
time window and a limit on the passenger travel time an implicit time window
is imposed on the delivery. Jaw et al. [12] found that explicit definition of
the delivery time window improved their algorithm. In the considered problem
there can be explicit time windows at both pick up and delivery.

Airports often have several terminals and the transport between the terminals
is at the studied airport done in special buses solely for PRMs. Such buses
will have a specific location for picking up PRMs at each terminal. Moreover,
for aircrafts not located at a gate, the PRM will be transported in a special
bus between the gate and the aircraft. Therefore, the pickup and delivery of a
PRM is represented as a number of pickup and delivery segments. The airport
and airlines require that the PRMs are not left alone at any point during their
journey through the airport, and the PRMs are required to be in their assigned
flight seat at a fixed pre-specified time before departure. However, the PRM
may be left alone for a while before boarding at the departing terminal in a
supervised area.

Between each pick up and delivery of a PRM the transport object delivering

166 Paper D

the PRM must meet the transport object picking up the PRM. This vehicle
synchronization is called a temporal dependency, therefore the problem is a
dial-a-ride problem with temporal dependencies (DARPTD). The concept of
synchronization in routing was used by Ioachim et al. [11] for the fleet assign-
ment problem and later expanded to the more general temporal dependencies
by Dohn el al. [9]. In pickup and delivery problems the similar problem of cross
docking has been considered, which has a transfer of goods between vehicles at
the synchronized points. The pickup and delivery with cross docking is used in
supply chain and planning city logistics systems [4], [7]. Pickup and delivery
with cross docking was studied by Wen et al. [15]. In the cross docking prob-
lems the cross docking is optional for the vehicles. This is not the case in the
problem of assisting PRMs at an airport, as the cross-docking points for each
PRM are known and fixed. The synchronization constraints and the objective
separates the routing of transport objects transporting PRMs in airports from
the rich pickup and delivery problem described in [13].

In this paper we have constructed a local search heuristic for the specific prob-
lem based on simulated annealing. The algorithm makes use of an abstract
representation, which is transformed to an actual schedule by use of a greedy
heuristic. Local search is performed on the abstract representation using large
neighborhoods. In each iteration the resulting candidate solution is evaluated,
and accepted according to the standard criteria in simulated annealing. Com-
putational results are reported showing that the algorithm is able to construct
high-quality solutions in 15 minutes.

This paper is organized as follows. Section D.2 contains a detailed problem
description to ensure a thorough understanding of the operational process. In
Section D.3 a mathematical model of the problem is presented. Section D.4
presents the solution methods used. Section D.5 contains the specifications
of the data instances received. In Section D.6 the tuning of the parameters
for simulated annealing us described. Section D.7 contains the results of the
solution method applied to the real-life instances received. In Section D.8 there
is a discussion on the results and future work.

D.2 Problem Description

We will term the considered problem the Airport passenger with reduced mobility
transport problem (APRMTP). The APRMTP has been defined in cooperation
with a service company providing the assistance for PRMs at a major transit
airport. The company does not deliver service in the entire airport but in the
majority of the airport. The company has 120 employees assisting between 300

D.2 Problem Description 167

and 500 PRMs through the airport each day. The employees have a prespecified
working area such as a specific terminal, driving between terminals bus stop
locations or driving between aircrafts and gates. A worker assigned to one area
may not move into another area. Therefore, the journey of the PRM is split
up into a pickup and delivery for each of these areas. We call the pick up and
delivery in a specific area for a segment and the ordered set of segments of a given
PRM for a journey. On average there are three segments per PRM, given the
300 to 500 PRMs each shift we get a total of between 900 and 1500 pick up and
delivery segments. This also includes assistance when boarding, which we have
represented as a pickup and delivery request with special conditions. We will
in the remainder of this paper refer to the boarding assistance as embarkment.
The employee assigned to an embarkment cannot go to another location between
pickup and delivery of the embarkment segment. However, an employee may
assist as many PRMs embarking on to the same flight as their capacity allows.

It should be noted that all of the pickup and delivery locations for every segment
of the journey are predetermined.

As mentioned in the previous section, the PRM may not be left alone except at
special supervised areas located in the departing terminal. This means that the
employee delivering the PRM to a bus must wait with the PRM for the bus to
arrive at the bus stop before being able to initiate the next task. The bus also
has to wait for the employee to come and pick up the delivered PRM before
continuing the route.

The company wants to make sure that they deliver the best service possible
with the given number of employees and the current employees working area
assignments. The PRMs are split into two categories: Those who are prebooked
and those who are immediate. The prebooked PRMs ordered the service when
purchasing the ticket or at least days in advance. Immediate PRMs requests the
service at check-in, and therefore may only be known half an hour in advance for
PRMs arriving on flights or at check-in for passengers checking in at the airport.
It is not always possible for the company to assist all PRMs and in such cases the
prebooked PRMs have higher priority. The company also wishes to minimize
unnecessary time the PRM spends on the journey segments. Unnecessary time
could be time spent waiting to be picked up by the employee working in the area
of the succeeding segment or extra travel time caused by picking up or delivering
other PRMs before being delivered. Note, that the time spent at the supervised
area of the departing terminal is not included in the service evaluation. The
unnecessary time spent on the segments we call excess time. The problem is then
to route the employees on foot or in their assigned vehicle so that the service
quality is maximized. Clearly, when minimizing the overall traveling time there
is a risk of having a few PRMs with very large traveling times. Therefore, it
is important to limit the traveling times of the different segments so that the

168 Paper D

journey never becomes very unsatisfactory.

Many additional constraints concerning the pick-up and delivery times, assis-
tance at embarkment and transport to and from aircrafts not located at a gate,
are imposed by the airport and airlines. Such constraints are

• an arriving PRM must be picked up exactly upon arrival

• a terminal transfer takes place on bus between the bus stop locations of
the terminals

• the PRM may not be left unsupervised

• the PRM must not use more than 30 minutes of excess time on each
segment

• embarkment takes 20 minutes and can not start earlier than 60 minutes
before departure.

• the PRM must be seated in the plane exactly 20 minutes before departure.

The last two items mean that embarkment can not start later than 40 minutes
before departure and even earlier when plane is parked away from gate.

Note, that the person assisting the PRM through embarkment will not be able
to leave the PRM until 20 minutes before departure if the aircraft is located at
gate or before the PRM is picked up by special vehicle if the aircraft is located
away from gate. In the latter case the special vehicle cannot leave the PRM
before 20 minutes before departure.

The different transportation forms such as vehicles and assistance on foot have
different capacities. Moreover the PRMs are assigned a volume depending
on their disability. For example it is very hard for one person to push two
wheelchairs however, two hearing or sight impaired persons can be assisted by
the same employee.

D.2.1 Example of a journey of an PRM

The most complex example of a journey is the case where a PRM makes a
transit from an arriving aircraft not located at the gate to an departing aircraft
in another terminal not located at the gate. In such a case the segments of the
journey are as follows (see also Figure D.1)

D.3 Mathematical formulation 169

1. The PRM is picked up by a vehicle at the arriving aircraft on the exact
time of arrival (it is a requirement that the PRMs are picked up exactly
upon arrival) and delivered at gate.

2. The PRM is picked up at the gate by an employee. The bus delivering the
PRM in segment 1 cannot leave before the PRM is picked up. The PRM
is delivered at the bus stop for the special inter terminal busses.

3. The PRM is picked up by a special inter terminal bus at the bus stop and
delivered to the bus stop at the terminal of the departing flight. Again
the employee of segment 2 cannot leave before the bus arrives for pickup.

4. The PRM is picked up by an employee and delivered to the gate of depart-
ing flight. Again the bus in segment 3 cannot leave before the employee
arrives.

5. The PRM is assisted by an employee through embarkment at gate. This
task takes 20 minutes. For the time between segments 4 and 5 the PRM
can be left at a special supervised lounge.

6. The PRM is picked up at the gate by a vehicle and delivered to the plane
exactly 20 minutes before the departure time of the flight. Again the
employee of segment 5 cannot leave before the vehicle arrives for pickup.

We say that such a journey has six segments. All transit journeys are formulated
as an ordered subset of these segments. Non-transit PRMs are either picked up
or delivered to a public area in the same terminal as respectively the arriving
or departing flight.

The algorithm is used in a dynamic setting, where immediate PRMs arrive
continuously and disruptions in the daily plan such as flight delays frequently
occurs. Therefore, the company desires to receive a solution to the problem
within a couple of minutes. We do not consider robustness and break times.
However, robustness can be obtained by introducing buffer time in the time to
get from one location to another and by altering the set of employees available
and breaks maybe included by splitting the shift of an employee into several
shifts.

D.3 Mathematical formulation

When describing the model it is important to bear in mind that the journey
of each PRM is a set of pick up and deliveries called segments. This means

170 Paper D

rsTerminal 1 rsTerminal 2b
b

b b b b rsb b

rs
b b

1

b2

rs
b b

3 b

4

5

rs
b b

6

rs Embarkment

Figure D.1: Illustration of a journey with six segments: (1) The PRM is picked
up by a vehicle at the arriving aircraft and brought to the gate, (2) The PRM
is brought to the inter terminal bus. (3) The PRM is transported by a inter
terminal bus from Terminal 1 to Terminal 2, (4) The PRM is brought to the
gate of departing flight, (5) The PRM is assisted through embarkment at gate,
(6) The PRM is delivered to the aircraft.

that a PRM is picked up and delivered if all the segments of the journey are
handled. Therefore, we must for each PRMmake sure that all their segments are
assigned before we consider them delivered. As common in dial-a-ride problems
with a heterogeneous fleet each segment is represented by a pickup vertex and
a delivery vertex specific to that segment. There is a location inside each area
where the employees start and end their shift.

D.3.1 Graph representation

There is as mentioned earlier a vertex for each origin and destination of a jour-
ney segment. The location of all the vertices in a journey are pre determined.
Since we already know which transport group is assigned to each vertex we can
generate a disjoint graph for each transport group. Each graph has its own
depot where the transport objects starts and end their work. These graphs are
only ”virtually” connected by the connection between segments of a journey.
For each terminal we have a directed graph connecting the vertices that must
be serviced by foot personnel working in the given terminal. The busses trans-
porting PRMs between terminals have a directed graph of their pick up and
delivery vertices. The vehicles transporting PRMs from gates to airplanes have

D.3 Mathematical formulation 171

a directed graph connecting their pickup and delivery vertices. Connections
between pick up and delivery vertices, which are infeasible due to their time
windows, are removed from the graph.

D.3.2 Mathematical model

Given the following sets:

K The set of transport objects. Contains all vehicles and persons on foot

R The set of segments. Contains all the segments of all the journeys

Rp The set of segments. Contains all the segments for PRM p

B The set of prebooked PRMs

C The set of all PRMs

F The set of departing flights

V The set of pick up and delivery points/vertices

V ∗ The set of pickup and delivery vertices and depots/bases

Vf The set of embarkment vertices for flight f ∈ F

P The set of pickup vertices

D The set of delivery vertices

E The set of edges connecting the elements in V ∗
λp The set of vertex pairs (i, j) where i is the delivery vertex of the segment

right before the segment with pickup vertex at j on a journey for PRM p

δ The set of vertex pairs that must be synchronized for handover

Each segment has a start od and a destination td and the set V is all of the
different od and td vertices. Each work area has a starting point v0 and an end
point ve representing the location, where the transport objects start and end
the day, by two vertices.

172 Paper D

We define the following parameters:

Mb The penalty for not transporting a prebooked PRM

Mn The penalty for not transporting an immediate PRM

todtd The minimum time needed to deliver segment d ∈ R

tkij The minimum time it takes to go from i to j on transport k

l′j The change in load at vertex j ∈ V

H The maximum excess time allowed to be used on a segment. Here H = 30

Ck The capacity of transport object k ∈ K

M A big constant being at least as large as the shift length

Ms A big constant larger than the largest number of segments in a PRM

Ml A big constant at least as large as the biggest capacity

plus the largest volume possible for a PRM

ai The release time at vertex i ∈ V ∗
bi The due time at vertex i ∈ V ∗

We use the following variables:

ski the time when transport object k leaves vertex i

φp An indicator variable indicating if a PRM p ∈ C has a segment

not assigned. φp is 0 if all segments of p are assigned and 1 otherwise

xk
ij An indicator variable indicating if the edge (i, j) is used by object k.

xijk is 1 if the edge is used by k and 0 otherwise

lki the load on transport object k when leaving vertex i

As objective we have chosen an linear weighted combination of assigning as
many PRMs as possible and minimizing the total excess time the PRMs spend
on their journey:

min
∑

d∈R









∑

k∈K

stdk − skod



− todtd



+
∑

p∈B

(1−φp)∗Mb +
∑

p∈C\B

(1−φp)∗Mn (D.1)

D.3 Mathematical formulation 173

s.t.

(P and D)
∑

i∈V

xk
iod

−
∑

i∈V

xk
itd

= 0 j ∈ R, k ∈ K (D.2)

(balance)
∑

j∈V

xk
ij −

∑

j∈V

xk
ji = 0 i ∈ V, k ∈ K (D.3)

(start)
∑

j∈V

xk
v0j

= 1 k ∈ K (D.4)

(end point)
∑

j∈V

xk
jve

= 1 k ∈ K (D.5)

(P → D) sktd − skod ≥ 0 k ∈ K, d ∈ R (D.6)

(Complete) Msφp +
∑

d∈Rp

(1− xk
odj

) ≥ 0 k ∈ K p ∈ C (D.7)

(Timelimit) sktd − skod − tkodtd ≤ H k ∈ K, d ∈ R (D.8)

(Connect) ski + tkij +M(xk
ij − 1) ≤ skj k ∈ K, (ij) ∈ E (D.9)

(Handover)
∑

k∈K

ski =
∑

k∈K

skj (i, j) ∈ δ (D.10)

(Journey)
∑

k∈K

ski ≤
∑

k∈K

skj (ij) ∈ λp (D.11)

(Release) ai ≤ ski + ai(1 −
∑

j∈V ∗

xk
ij) i ∈ V ∗, k ∈ K (D.12)

(Due) bi ≥ ski + bi(1 −
∑

j∈V ∗

xk
ji) i ∈ V ∗, k ∈ K (D.13)

(Load) lki + l′j −Ml(x
k
ij − 1) ≤ lkj (ij) ∈ E, k ∈ K (D.14)

(Capacity) lki ≤ Ck i ∈ V, k ∈ K (D.15)

(Emb)
∑

k∈K

xk
ij = 0 j ∈ V \ Vf , i ∈ P ∩ Vf , f ∈ F (D.16)

(Emb load)
∑

j∈V \Vf

(Ckx
k
ij − lkj) ≥ 0 k ∈ K, i ∈ D ∪ Vf , f ∈ F (D.17)

(Variables) xk
ij ∈ {0, 1} k ∈ K, (ij) ∈ E (D.18)

φp ∈ {0, 1} p ∈ C (D.19)

ski ∈ R
+

0
i ∈ V ∪ {pk}, k ∈ K (D.20)

lki ∈ Z
+

0
i ∈ V, k ∈ K (D.21)

The objective function (D.1) sums all the excess time used on the segments
and adds a penalty if a PRM is not delivered. The penalty depends on whether
PRM p is prebooked (p ∈ B) or immediate (p ∈ C \ B). Constraints (D.2)
ensure that for each segment any PRM picked up is also delivered. Constraints
(D.3) ensure that transport objects leaves all pickup or delivery vertices they
enter. Constraints (D.4) ensure that all transport objects leaves their base. Con-
straints (D.5) ensure that all transport objects return to their base. Constraints
(D.6) ensure that on each segment a PRM is picked up before it is delivered.

174 Paper D

Constraints (D.7) ensure that any PRM with at least one segment not assigned
generates exactly one penalty in the objective. Constraints (D.8) ensure that
the excess time used on segment d does not exceed H . Constraints (D.9) ensure
that if an edge (i, j) is used the time vertex j is visited is greater than the time
vertex i is visited plus the travel time on edge (i, j). Constraints (D.10) ensure
that delivering transport object meets pickup transport object for at delivery
pickup handover vertex pair in δ. Constraints (D.11) ensure that the segments
of the journey are completed in the right order. Constraints (D.12) and (D.13)
ensure that the segments are started and ended within their given time window.
Constraints (D.14) ensure that the load is updated when a PRM is picked up
or delivered. Note that since load is increased for any a pickup vertex in V then
constraints (D.14) together with constraints (D.9) ensure a connected route.
This is true under the general assumption that the transport from pickup to the
delivery point is always greater than zero. Constraints (D.15) ensure that the
capacity is not exceeded. Constraints (D.16) and (D.17) enforce the embark-
ment conditions of only starting embarkment tasks on the same flight before
completing a embarkment segment. Constraints (D.16) only allow edges going
from a pickup vertex of an embarkment segment to vertices of embarkment on
the same flight. Constraints (D.17) ensure that when using and edge between
an embarkment vertex and any vertex not belonging to an embarkment request
for the same flight the load must be zero.

D.4 Solution method

The solution method we present is a greedy insertion heuristic combined with
simulated annealing.

In the survey by Cordeau and Laporte [5] from 2007 a list of some of the methods
used for the dial-a-ride problem with multiple vehicles is provided. In this list
the only exact methods are a branch and cut method optimizing on vehicle
travel cost by Cordeau [6] and an improvement on this method by Ropke et
al. [14]. The exact method has been tested on a maximum 96 requests and 8
vehicles, which was solved in 71 minutes.

The dial-a-ride problems are usually solved by heuristics as the problems are
often real-life problems. Real life problems generally contains some additional
constraints, which can be complicating and the objective varies. Moreover in
real-life there can be constraints or desires not defined in the problem, which
arises after the problem definition. Due to this an optimal solution might actu-
ally not be the best solution for the users.

D.4 Solution method 175

Since the problem covered here is a dial-a-ride problem with complicating syn-
chronization and embarkment constraints it is natural to consider heuristic solu-
tion methods. Moreover since the requirement is to solve instances with between
900 and 1500 requests within 2 minutes a heuristic method seems to be the only
option.

Jaw et al. [12] in 1986 reports finding a good solution to their dial-a-ride prob-
lem on an instance with 2617 requests and 28 vehicles using an insertion sort
method. Given the machines available in 1986 the solution is found quickly
and the method would on the machines available today satisfy the solution time
requirement. Other heuristic methods that are able to solve dial-a-ride prob-
lems with a large number of requests are Diana and Dessouky [8] using regret
insertion solving problems with a 1000 requests and Xiang et al. [16] using a
local search heuristic solving problems with 2000 requests.

The synchronization constraints present in the airport PRM transport problem
(APRMTP) do add some complexity to the generation of feasible solutions and
the calculation of the objective value. When a segment is inserted in a route it
may have influence on not only the travel times of the later segments in the route,
but also the other segments of the PRM and the segments of their routes and
so forth. This means that every time a segment end and start time is changed
it may generate a cascade of changes on related segments. Therefore, when
checking for feasibility one may, in worst case, have to evaluate the feasibility
of all the segments in the problem . The same is true when calculating the
objective as the insertion of a segment may influence the travel time on all
remaining segments in all the routes. However, together with a constraint on
the maximum excess time allowed on each segment it may also constrain the
problem significantly. An example of this is that the synchronization constraint
reduces the number of possible feasible solutions.

We have constructed an insertion heuristic for the initial solution, which is
described in the next section and later used in a simulated annealing scheme to
improve solutions. The greedy insertion heuristic will given an ordered list lead
to a deterministic solution found with a search for best insertion spot while the
simulated annealing broadens the search by randomly selecting a neighborhood
from a large neighborhood space and accepting solutions with a worse objective
value. This method is similar to GRASP [10] as there at each iteration is a
greedy construction. However, to avoid the in this case hard task of evaluating
candidates we have a fixed order. The routes in the constructed solution are in
the APRMTP very interdependent and therefore it would be very difficult for
a local search to find better solutions using neighborhoods on the constructed
solution. Instead of performing a local search on the constructed solution as
done in GRASP we perform the local search on the fixed candidate lists given
for the previous solution. Because of this reverse execution of the GRASP

176 Paper D

rsrs

rs
rs

T
im

e
A bus driving between terminals

An employee in a terminalrs A PRM

(a) Before insertion

rs rsrs
rs
rs

rs rs

rs

(b) After insertion of gray PRM

Figure D.2: A section of the routes when inserting the gray PRM. The part of
the graph inside the dashed circle is moved to a later time because of propagated
delays caused by the insertion of the gray PRM. The patterned PRMs are the
next PRMs to be handled by the employee or bus.

structure the algorithm presented could be described as a reversed GRASP.

Figure D.2 shows how PRM segments are moved when inserting a PRM segment
into the route represented by the solid line.

D.4.1 Insertion heuristic

To quickly find a feasible solution we have created a greedy insertion heuristic
(GIH). The heuristic takes two lists of PRMs one containing the prebooked
PRMs and one containing the immediate PRMs. The insertion heuristic inserts
first the PRMs in the prebooked list then the PRMs in the immediate list by
going through the list in sequential order. The reason for this is that it is very
important for the service provider to serve the prebooked PRMs.

We have sorted the lists by earliest pickup time of the PRM, starting at the
earliest. For each PRM the segments are inserted in the order they appear in
the journey and the next PRM is not inserted before all segments of the previous
PRM are inserted.

For each segment only the set of transport objects working in the graph con-
taining the given segment are investigated for an insertion place. The segment

D.4 Solution method 177

is inserted in the place and transport object where it creates the least increase
in the total excess time. We only allow an insertion to push the time of the
other segments forward. Therefore, when checking for feasibility we only need
to go through the segments with larger delivery times.

Usually when minimizing the route cost as in pickup and delivery problems it
is possible to calculate the new objective by the difference in the time intro-
duced by the insertion and removal however, in our case we did not do this
as we found it too complicating when minimizing excess time and number of
undelivered PRMs especially when there are propagating delays induced by the
synchronization constraints.

GIH(P1, P2)

1: for each p PRM first in list P1 then the list P2 do
2: for each segment s in p do
3: for each employee e serving s do
4: for each vertex v1,v2 in e in the possible time interval for s do
5: if load and time feasible insert sstart before v1 and send before v2

then
6: calculate total excess time for all inserted segments;
7: end if
8: end for
9: Select s1 and s2 where the least excess time is generated;

10: end for
11: if insertion was not possible then
12: Delete already inserted segments of p;
13: Register p as not inserted;
14: else
15: insert s in the e where the least excess time is generated;
16: end if
17: end for
18: end for

In the pseudo code of GIH the lines 1 and 2 contributes to the complexity
of GIH with the total number of requests |R|, which we here call n. The
combinations that occur in line 3 and 4 can be n2. Checking for feasibility in
line 5 is done by a depth first search which at most goes through 2n vertices
updating their times and the edge load. The calculation of total excess time of
all inserted segments in line 6 is done by adding up excess time of all inserted
segments, which is at most n. Therefore, the asymptotic running time of the
greedy insertion sort is O(n4).

178 Paper D

However, in the test cases provided by the company the time windows are quite
tight and not all employees are available in the area of a given segment therefore
there are often only a few locations where feasibility is actually checked and
excess time calculated.

D.4.2 Simulated annealing

A Simulated annealing algorithm using the two lists of PRMs as an abstract
representation was implemented. The initial solution is the greedy insertion
heuristic on the two lists of PRMs, sorted by earliest possible start time. At
each iteration in the simulated annealing algorithm a number of moves takes
place to obtain a candidate solution x from the current solution x′.

The moves are made in the two PRM lists, which are then converted to a solution
by the insertion heuristic. The moves are as follows:

• moving a not assigned PRM a random number of places forward in their
respective lists

• to swap the place of two PRMs randomly selected within the same list.

Note, that the prebooked PRMs and immediate PRMs will always remain in
their respective lists. The lists are when the moves are completed converted by
the greedy insertion heuristic into a schedule.

Let the objective function be defined as f(x) for a solution x. If f(x) ≤ f(x′)
then x is accepted. Otherwise we accept the solution with probability:

expf(x
′)−f(x)/T (D.22)

Details on the selected values for the temperature T will be covered in Sec-
tion D.6 on tunings, The temperature is decreased by a selected factor at each
iteration. This decreasing factor is also called the cooling rate. The large neigh-
borhood described and the acceptance probability allow the algorithm to escape
local minima.

D.5 Data Instance and other parameter values

We were from the service company given a list of almost 5000 PRM request with
information about the type and the position of the origin and destination. A

D.5 Data Instance and other parameter values 179

travel time between the locations for the different transport forms was generated
from this information. We have received 12 test cases from the company covering
dates September 20 to October 1, 2009. These data sets contain between 374
and 555 PRMs each day. Some of the PRMs in the data set were removed before
running the tests due to corrupted data for the PRM or that too little time was
available for the PRMs journey so that a solution transporting the PRM can not
exist. This resulted in sets of between 353 and 495 PRMs. The data sets each
had a set of employees for the given day and their assigned terminal or vehicle.
The number of employees assigned on a day was around 120. The employees
were assigned to 6 different terminals and 2 different bus types. For each bus
type there is a type specific area of operation.

The capacities of the employees has been settled with the ground handling
company as:

• Employee assisting inside terminal has capacity 4

• Bus between terminals has capacity 24

• Bus between gate and aircraft has capacity 18

For each PRM there is given a start time, an end time, a start location, an end
location and a PRM type. There where six different types of PRMs in the data
sets for each of the types we have assigned a volume as follows:

WCHC Cannot walk or stand. Needs wheel chair. Volume 3

WCHS Cannot walk up or down stairs. Volume 2

WCHR Cannot walk long distances. Volume 2

BLND Passenger is blind. Volume 2

DEAF Passenger is deaf. Volume 2

ASS Passenger cannot orient them selves. Volume 2

From the PRM data and the rules given by the company for the journey we
generated the segments for each PRM given the arrival and departure location
of the PRM. For each shift between 900 and 1500 segments where generated.

180 Paper D

D.6 Tuning

Since our insertion algorithm has a complexity of O(n4), and the time allowed to
solve the overall problem is limited to a few minutes, the number of iterations,
which can be investigated in simulated annealing given the size of the problem
instances is limited to a few hundreds. Hence, frequently the problem cases
contain more PRMs than iterations performed in simulated annealing. There-
fore, we consider the possibility for making several moves at each iteration. The
moves are relocations in the list and thus doing more moves does not influence
the running time significantly. However, the neighborhood becomes much larger
and the previous solutions may be ruined by a large number of moves.

We first test the combination of different number of moves with different cooling
rates given an fixed initial temperature. From the tuning tests a good combi-
nation of cooling rate and number of moves is selected and used in the test of
the different possibilities for the initial temperature. The tuning is done of a
solution time of 2 minutes as this is the requirement for the solution time given
by the users.

The initial temperature is adjusted so that the probability of selecting a solution,
which is exactly t percent greater than the initial solution is 50%. For finding the
best combination of the cooling rate and the number of moves, we have fixed the
initial temperature so that a solution 5% worse than the initial solution must
initially be accepted with 50% probability. This means that given an initial
solution x and the temperature parameter of t then the initial temperature T
is calculated as follows:

T = −tx/ log(0.5) (D.23)

We made the choice of including the initial objective value in the generation of
the initial temperature so that the variance in the size of the different problems
does not influence the acceptance rate.

The three test cases used for tuning were randomly selected from the data sets
received. Note that the maximum excess time on a segment H = 30 for all tests
runs as this generally matches the requirement of the airports.

Case prms deleted time init NAP init NAI init sol

20090920 353 21 120 0 4 3566
20091001 474 45 120 1 1 4401
20090926 374 27 120 0 0 1782

Table D.1: The test cases used for tuning, with the results from the greedy insertion

heuristic.

In Table D.1 we report the characteristics of each data instance and the values

D.6 Tuning 181

of the initial solution constructed with the greedy insertion heuristic on the lists,
where the PRMs are sorted by earliest arrival time. The name of the test case
is given in column one. In column two the number of PRMs in the test case is
provided and in column three the number of PRMs that was deleted from the
initial data set due to corrupted data. This means that column two and column
three gives the number of PRMs in the initial data set. In column four the time
in seconds allowed for simulated annealing is given. In all of the tuning cases we
have used a solution time limit of 2 minutes. Column five reports the number
of unassigned prebooked PRMs (NAP) in the initial solution and column six
reports the number of unassigned immediate PRMs (NAI). In column seven the
value of the initial solution is reported.

testcase coolrate moves average sol av ite stdD av NAP av NAI best sol gap

20090920

0.5 4 2655.2 326.5 179 0 2.3 2491 25.5%
0.8 4 2732.2 325.9 187 0 2.5 2457 23.4%
0.9 4 2720.2 326.7 242 0 2.4 2426 23.7%

0.95 4 2753.5 324.5 201 0 2.5 2511 22.8%
0.99 4 2912.2 322.1 239 0 2.5 2605 18.3%
0.5 12 2495.8 315.8 57 0 2.0 2396 30.0%
0.8 12 2496.3 316.7 58 0 2.0 2396 30.0%
0.9 12 2510.4 315.5 34 0 2.0 2461 29.6%

0.95 12 2500.0 310.1 55 0 2.0 2431 29.9%
0.99 12 2609.3 306.3 52 0 2.0 2541 26.8%
0.5 20 2521.5 306.1 79 0 2.0 2351 29.3%
0.8 20 2505.6 309.9 47 0 2.0 2418 29.7%
0.9 20 2515.2 308.8 33 0 2.0 2450 29.5%

0.95 20 2495.0 301.2 53 0 2.0 2437 30.0%
0.99 20 2564.3 298.7 46 0 2.0 2464 28.1%

20091001

0.5 4 2691.7 125.3 198 0 0.4 2461 38.8%
0.8 4 2796.7 125.4 130 0 0.8 2521 36.5%
0.9 4 2794.8 123.2 120 0 0.5 2543 36.5%

0.95 4 2737.5 120.0 187 0 0.2 2319 37.8%
0.99 4 3149.8 117.7 205 0 0.7 2869 28.4%
0.5 12 2838.9 120.8 111 0 0.3 2736 35.5%
0.8 12 2742.0 115.1 161 0 0.1 2510 37.7%
0.9 12 2723.3 114.4 190 0 0.3 2472 38.1%

0.95 12 2749.2 107.7 126 0 0.3 2598 37.5%
0.99 12 2893.6 104.1 130 0 0.2 2677 34.3%
0.5 20 2891.6 113.2 131 0 0.1 2789 34.3%
0.8 20 2834.0 110.4 141 0 0.2 2635 35.6%
0.9 20 2820.9 106.1 184 0 0.3 2459 35.9%

0.95 20 2831.5 103.3 136 0 0.4 2644 35.7%
0.99 20 3048.1 100.0 129 0 0.6 2842 28.1%

20090926

0.5 4 1442.6 255.1 40 0 0 1378 19.0%
0.8 4 1427.9 256.5 50 0 0 1368 19.9%
0.9 4 1428.5 254.8 41 0 0 1352 19.8%

0.95 4 1480.8 254.8 48 0 0 1395 16.9%
0.99 4 1563.0 250.1 80 0 0 1437 12.3%
0.5 12 1482.0 248.0 50 0 0 1425 16.8%
0.8 12 1484.3 245.1 42 0 0 1420 16.7%
0.9 12 1431.5 245.2 52 0 0 1322 19.7%

0.95 12 1491.7 241.6 70 0 0 1380 16.3%
0.99 12 1508.8 236.1 78 0 0 1399 15.3%
0.5 20 1508.4 243.0 50 0 0 1400 15.4%
0.8 20 1496.7 240.2 57 0 0 1424 16.0%
0.9 20 1490.5 237.1 73 0 0 1370 16.4%

0.95 20 1471.1 234.5 55 0 0 1347 17.4%
0.99 20 1520.9 228.9 55 0 0 1422 14.7%

Table D.2: Tuning cooling rate and number of moves

In Table D.2 we have fixed the temperature parameter t = 0.05. The tuning is
done for each of the test instances described in Table D.1. For each test case
and each combination of cooling rate and number of moves given in respectively
column two and three the algorithm is run ten times and the average solution
of the ten runs is reported in column four. The average number of iterations
completed within the two minutes each run lasted is reported in column five.

182 Paper D

The standard deviation of the solutions is reported in column six. The average
number of unassigned prebooked PRMs and immediate PRMs is reported in
respectively column seven and eight. In column nine the best solution of the
ten runs is given. The gap reported in column ten is the percent wise gap be-
tween the initial solution and the average solution found by simulated annealing
calculated as:

gap =
initsolution− averagesolution

initsolution
· 100

Note that by using the average solution reported in column three the gap rep-
resents the expected improvement for a single 2 minute run of the simulated
annealing algorithm.

Analyzing the results in Table D.2 using ranking of the gap for each of the three
data sets and comparing their ranks we have chosen the value 0.9 for the cooling
rate and 12 moves at each iteration. The selected values for cooling rate and
number of moves are used in the tuning test on values for the initial temperature
shown in Table D.3.

Case temperature av best sol av it stdD av NAP av NAI best sol gap

20090920

1% 2490.3 317.0 53 0 2.0 2379 30.2%
5% 2510.4 315.5 34 0 2.0 2461 29.6%

10% 2585.3 313.4 146 0 2.2 2454 27.5%
15% 2542.9 312.6 36 0 2.0 2462 28.7%

20091001

1% 2812.2 107.0 175 0 0.4 2470 36.1%
5% 2723.3 114.4 190 0 0.3 2472 38.1%

10% 2717.9 109.2 130 0 0.2 2538 38.2%
15% 2774.5 108.8 234 0 0.3 2428 37.0%

20090926

1% 1470.3 248.3 64 0 0 1387 17.5%
5% 1431.5 245.2 52 0 0 1322 19.7%

10% 1473.8 241.2 54 0 0 1370 17.3%
15% 1486.4 242.0 44 0 0 1384 16.6%

Table D.3: Tuning initial temperature

The columns in Table D.3 are structured the same way as Table D.2, except
that the columns reporting cooling rate and moves in Table D.2 are replaced
by a single temperature column in Table D.3. The results in Table D.3 show
that the best initial solution is obtained bychoosing the point where a solution
will be accepted with 50% probability as 5% under the initial value. These val-
ues will be used for the tests in Section D.7. The values found in this section
for the simulated annealing determines the intensification and diversification of
the heuristic. The high number of moves at each iteration and the acceptance
probability ensures diversification while the cooling rate generates an intensifi-
cation. The start temperature determines the start diversification generated by
the acceptance probability.

D.7 Test Results 183

D.7 Test Results

We have received 12 test cases from the service company covering dates Septem-
ber 20 to October 1, 2009. Unfortunately, the company does not have records
on how the PRMs actually where schedule for those test cases, as the system
mainly takes care of registering the PRMs arriving, what segments needs to be
completed and which employees are available for completing them. Hence, we
cannot directly compare our schedules with the historic data.

It should be noted that in the data sets a little more than half of the PRMs are
prebooked. Three of the twelve data sets has been used for tuning, however, we
still include them in this test section. The test are run on a computer with a
64 bit Intel Xeon 2.67 GHz CPU.

All the simulated annealing tests reported in this section has been run with:

• Temperature: we use the factor t = 0.05 to adjust the temperature T
according to (D.23).

• Cooling rate: 0.9

• Moves at each iteration: 12

Note that temperature is calculated given an initial solution x and the temper-
ature parameter of t as described in equation (D.23).

In Table D.4 we report the results of running the greedy insertion heuristic on
the data set where the PRMs are sorted by earliest arrival time for all 12 data
sets. For each data set the excess time allowed on a segment is again H = 30
minutes corresponding to airport requirements.

In column one the name of the data set is described by the date of the shift. We
report how many PRMs in the given data set we had to remove due to corrupted
data for the PRM or that too little time was given for the PRMs journey so that
a solution transporting the PRM can not exists. Note that the number of PRMs
reported in column two is the number of PRMS after the removal of the deleted
PRMs reported in column three from the initial set. The number of prebooked
passengers not assigned (NAP) and not assigned immediate passengers (NAI)
in the initial solution is reported in respectively column four and five. Finally
the initial solution retrieved from the greedy insertion heuristic on the PRM
lists sorted by earliest arrival time is reported in column six.

184 Paper D

Case prms prms deleted NAP NAI sol

20090920 353 21 0 4 3566
20090921 391 35 7 5 11430
20090922 428 23 0 5 5162
20090923 361 42 0 0 2001
20090924 432 33 0 3 4062
20090925 438 46 0 2 3500
20090926 374 27 0 0 1782
20090927 397 32 0 2 3095
20090928 378 23 0 0 2208
20090929 419 37 0 1 3259
20090930 495 60 7 9 13443
20091001 474 45 1 1 4401

Table D.4: The results of the insertion heuristic run on the different data sets. Note,

that this is also the initial solution used by the simulated annealing heuristic.

From Table D.4 it can be seen that for 9 of the 12 instances there is no prebooked
PRM rejected. The number of rejected immediate PRMs is also quite low
compared to the total number of PRMs when solving the problem using just
the greedy insertion heuristic.

The results in Table D.4 are used for evaluating the test results of the simulated
annealing algorithm presented in Table D.5.

Case # runs time (s) av sol av it stdD av NAP av NAI best sol gap

20090920 10 120 2504.6 279.5 61 0 2.0 2423 29.8%
20090920 10 300 2426.9 767.6 52 0 2.0 2361 31.9%
20090920 3 3600 2223.3 7812.3 20 0 2.0 2197 37.7%

20090921 10 120 9026.0 209.0 369 5.6 3.6 8227 21.0%
20090921 10 300 8658.3 499.4 430 5.6 3.0 8112 24.2%
20090921 3 3600 7713.7 4063.3 663 5.3 2.3 7205 31.5%

20090922 10 120 3233.5 131.1 315 0 1.3 2922 37.4%
20090922 10 300 2838.9 317.8 85 0 1.0 2736 45.0%
20090922 3 3600 2508.0 2348.3 74 0 1.0 2425 51.4%

20090923 10 120 1659.4 244.0 50 0 0 1589 17.1 %
20090923 10 300 1550.1 592.1 45 0 0 1464 22.5%
20090923 3 3600 1419.0 4420.7 34 0 0 1375 29.3%

20090924 10 120 2822.5 141.5 142 0 1.1 2670 30.6%
20090924 10 300 2578.8 309.7 85 0 1.0 2415 36.5%
20090924 3 3600 2197.3 2716.7 24 0 1.0 2163 45.9%

20090925 10 120 2051.8 150.4 60 0 0 1935 41.4%
20090925 10 300 1974.0 367.2 38 0 0 1910 43.6%
20090925 3 3600 1749.3 4252.3 13 0 0 1732 50.0%

20090926 10 120 1481.0 246.0 39 0 0 1422 16.9%
20090926 10 300 1351.9 597.3 53 0 0 1303 21.1%
20090926 3 3600 1139.0 5854.3 28 0 0 1103 36.1%

20090927 10 120 1899.4 212.7 34 0 0 1852 38.6%
20090927 10 300 1770.9 516.7 70 0 0 1672 42.8%
20090927 3 3600 1512.3 5927.3 29 0 0 1477 51.1%

20090928 10 120 1623.8 224.2 49 0 0 1533 26.5%
20090928 10 300 1512.9 544.8 46 0 0 1445 31.5%
20090928 3 3600 1329.3 5586.3 36 0 0 1281 39.8%

20090929 10 120 2221.3 123.8 85 0 0 2043 31.8%
20090929 10 300 2102.3 302.1 48 0 0 2003 35.5%
20090929 3 3600 1855.7 2826.0 47 0 0 1800 43.1%

20090930 10 120 7351.9 103.4 1478 2.8 5.0 4051 45.3%
20090930 10 300 5142.8 250.1 1264 1.3 3.3 3992 61.7%
20090930 3 3600 3524.3 2141.0 338 1.0 0.7 3247 73.9 %

20091001 10 120 2777.1 112.1 168 0 0.3 2554 36.9%
20091001 10 300 2470.0 270.0 162 0 0.1 2230 43.9%
20091001 3 3600 2062.3 1925.3 17 0 0 2038 53.1%

Table D.5: The results of simulated annealing running for two minutes, five minutes

and one hour.

In Table D.5 we have for each data set tested the simulated annealing for 120
seconds (2 minutes), 300 seconds (5 minutes) and 3600 seconds (1 hour) as given

D.7 Test Results 185

in column three. For the tests allowed 120 second and 300 seconds each test
is repeated ten times. However, for the tests running 3600 seconds each test is
only repeated three times as given in column two.

The temperature, cooling rate and number of moves are set to the selected
values and the excess time allowed on each segment is set to H = 30 (minutes).

In column four the average of the solution for the runs is reported. The average
number of iterations of the runs and the standard deviation of the solutions is
reported in column five and six. In column seven and eight respectively the av-
erage number of unassigned prebooked PRMs and unassigned immediate PRMs
are reported. The best solutions of all the runs is reported in column nine and
the gap between the average solution and the initial solution from Table D.4 is
reported in column ten. The gap is in Table D.5 calculated as described in Sec-
tion D.6. The results in Table D.5 show that after running simulated annealing
for two minutes the initial greedy heuristic solution is significantly improved.
Note, that more solution time improves the solution quality in all cases and in
some cases this improvement is significant. However, the improvements achieved
from the initial solution in the first five minutes is in all cases greater than the
improvements achieved in the following fifty five minutes. The improvement
achieved in the first two minutes from the initial solution is greater in all cases
except one (20090926) than the improvement achieved in the following fifty
eight minutes. This indicates that the algorithm is good at finding improve-
ments early in the algorithm and therefore works well with the requirement of
solutions within a couple of minutes.

1500

1600

1700

1800

0 20 40 60 80 100 120

Time (seconds)

Objective value

Figure D.3: The solution values over time for test case 20090926

186 Paper D

8000

10000

12000

14000

0 20 40 60 80 100 120

Time (seconds)

Objective value

Figure D.4: The solution values over time for test case 20090930

Since the simulated annealing algorithm is tuned for runs of 2 minutes it is
obvious that the acceptance of worse solutions will occur in the first 2 minutes.
To show the improvement of solution value for the required solution time we
have in graphs D.3 and D.4 shown the runs for only the first 2 minutes.

1000

1200

1400

1600

1800

0 400 800 1200 1600 2000 2400 2800 3200 3600

Time (seconds)

Objective value

Figure D.5: The solution values over time for test case 20090926

The graphs in Figure D.5 and D.6 show the development in solution values
for a single 1 hour run of respectively test instance 20090926 and 20090930.
For the test instance 20090926, Figure D.5 show that after running simulated

D.8 Conclusion 187

2000

4000

6000

8000

10000

12000

14000

0 400 800 1200 1600 2000 2400 2800 3200 3600

Time (seconds)

Objective value

Figure D.6: The solution values over time for test case 20090930

annealing for 15 minutes the improvements to the solutions become seldom and
insignificant, for the test instance 20090930 this is reduced to 10 minutes. This
means that the significant reductions occurs early in the simulated annealing
and very good quality solutions can be found after 10–15 minutes. In our case
the solution time required is quite limited however, if significant solution times
where permitted making a random restart of the algorithm with a new ordering
of the lists may allow for searches in other areas of the search space. However,
since the neighborhood used is very large it is easier for the algorithm to escape
local minima.

D.8 Conclusion

We have presented a model for the airport PRM transport problem (APRMTP)
and developed a heuristic with promising results even when the running time
is two minutes as required by the service company. Moreover the number of
rejected PRMs is very low also in the initial greedy insertion heuristic solutions.

188 Paper D

Although the problem has been defined incorporation with a specific handling
company, we believe that the developed model is sufficiently general to cover
most airports in the world.

The program developed seems to work very well with the short solution time
constraint as the big improvements are obtained within the first few minutes.

From the tests and the solution graphs it is clear that increasing the solution
time a little could in some cases give significant improvements. In stead of
increasing the solution time such improvements could also be achieved by in-
creasing computational power or if possible algorithmic improvements such as
parallelization of the program.

The next step in the academic sense would be to test different strategies on the
problem presented and compare the solutions quality and to reduce computation
time for the greedy insertion heuristic. In the application sense the next step
would be to in cooperate this method at the users and to see if the use of our
plan can improve their daily service.

We have assumed that the personnel and the location of the personnel is fixed,
but the short solution times used by the developed algorithm makes it possible
to use local search to test whether relocation of some personnel may lead to a
higher service level. Since the number of passengers arriving at the airport is
increasing the algorithm can be used to find when an increase in personnel is
needed to deliver acceptable service to the increasing volumes of PRMs arriving.

Acknowledgments

The authors wish to thank Torben Barth and Berit Løfstedt for valuable com-
ments. The authors also wish to thank Jacob Colding for presenting and clari-
fying the problem to us.

References

[1] Gatwick managing directors report, 2009.

[2] The worlds top 50 airports. Air Transport World, 47:51, 2010.

[3] J. W. Baugh, G. K. R. Kakivaya, and J. R. Stone. Intractability of the dial-
a-ride problem and a multiobjective solution using simulated annealing.
Engineering Optimization, 30:91–123, 1998.

[4] P. Chen, Y. Guo, A. Lim, and B. Rodrigues. Multiple crossdocks with
inventory and time windows. Computers & Operations Research, 33:43–63,
2006.

[5] J.-F. Cordeau. A branch-and-cut algorithm for the deal-a-ride problem.
Operations Research, 54:573–586, 2006.

[6] J.-F. Cordeau and G. Laporte. The dial-a-ride problem: models and algo-
rithms. Annals of Operations Research, 153:29–46, 2007.

[7] T. G. Crainic, N. Ricciardi, and G. Storchi. Models for evaluating and
planning city logistics systems. Transportation Science, 43:432–454, 2009.

[8] M. Diana and M. M. Dessouky. A new regret insertion heuristic for solving
large-scale dial-a-ride problems with time windows. Transportation Re-
search Part B, 38:539–557, 2004.

[9] A. Dohn, M. S. Rasmussen, and J. Larsen. The vehicle routing problem
with time windows and temporal dependencies. Technical report, DTU
Management, The Technical University of Denmark, 2009.

[10] T. Feo and M. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109–133, 1995.

190

[11] I. Ioachim, J. Desrosiers, F. Soumis, and N. Belanger. Fleet assignment
and routing with schedule synchronization constraints. European Journal
of Operational Research, 119:75–90, 1999.

[12] J. Jaw, A. Odoni, N. Psaraftis, and H. M. Nigel. A heuristic algorithm for
the multi-vehicle advance request deal-a-ride problem with time windows.
Transportation Research part B, 20:243–257, 1986.

[13] D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems.
Computers & Operations Research, 34:2403–2435, 2007.

[14] S. Ropke, J.-F. Cordeau, and G. Laporte. Models and branch-
andalgorithms for pickup and delivery problems with time windows. Net-
works, 49:258–272, 2007.

[15] M. Wen, J. Larsen, J.-F. Cordeau, and G. Laporte. Vehicle routing with
cross-docking. Journal of the Operational Research Society, 60:1708–1718,
2009.

[16] Z. Xiang, C. Chu, and H. Chen. A fast heuristic for solving a large-scale
dial-a-ride problem under complex constraints. European Journal of Oper-
ational Research, 174:1117–1139, 2006.

Paper E

The Offline Group Seat

Reservation Problem

Tommy Clausen, Allan Nordlunde Hjorth, Morten Nielsen and David Pisinger

Published in European Journal of Operational Research, Volume 207, Issue 3,
pp 1244-1253, 2010.

192 Paper E

The Offline Group Seat Reservation Problem

Tommy Clausen, Allan Nordlunde Hjorth, Morten Nielsen and David Pisinger

In this paper we address the problem of assigning seats in a train
for a group of people traveling together. We consider two variants
of the problem. One is a special case of two-dimensional knapsack
where we consider the train as having fixed size and the objective is
to maximize the utilization of the seats in the train. The second is a
special case of two-dimensional bin packing where all requests must
be accommodated while trying to minimize the number of passenger
cars needed. For both variants of the problem we present a number
of bounds and develop exact algorithms. Computational results are
presented for various instances based on realistic data, and from the
packing literature adapted to the problems addressed.

E.1 Introduction

We are considering the off-line group seat reservation problem (GSRP). In this
problem it is the objective to maximize the use of the seats in a train subject
to a number of constraints: A train consists of a number of seats which are
numbered consecutively. A seat reservation brings a person from a station a
to a station b without changing seat. A group of people, all having the same
station of origin and destination, may wish to sit together, i.e. being assigned
to seats with consecutive numbers. In the off-line version we assume that all
data are given in advance.

The GSRP can be interpreted geometrically in the following way. A (group)
reservation can be represented by a rectangle having width equal to the number
of seats reserved and height equal to the distance traveled. For the train, the
entire route corresponds to the height and the availability of seats is represented
by the width. This corresponds to a two-dimensional orthogonal packing prob-
lem where no rotation is allowed and where the position of each reservation is
fixed in height.

The example in Figure E.1 illustrates the geometric interpretation of the GSRP.

E.1 Introduction 193

A train with three seats travels four stations from y1 to y4. The five given
reservations and the corresponding packing is illustrated in the figure. We shall
in the following use the terms reservation and rectangle interchangedly.

reservation no. seats from to
1 1 y1 y3
2 2 y1 y2
3 1 y2 y3
4 1 y2 y4
5 2 y3 y4

1

2

3

4

5

y1

y2

y3

y4

Figure E.1: The geometric interpretation of a group seat reservation problem
instance. The train travels from station y1 to station y4. Five reservations are
given in the table to the left and a packing of the train is shown to the right.

The GSRP has numerous applications. In its direct formulation it reflects trans-
portation of children going to a school camp. All requests are known in advance,
and school classes may not be split for safety reasons. A similar problem ap-
pears when considering reservation of hotel rooms, where people wish to have
adjacent rooms. A storehouse may have a number of shelves of fixed length.
We know in advance which item will arrive at given date and how long time
it will stay in the store house. Each item has a given length, and the sum of
the item lengths at each shelf may not exceed the overall shelf capacity. In the
well-studied berth scheduling problem [15, 24] a number of vessels are planned
to arrive to a quay. The arrival and departure time of each vessel is known
as well as the length of the vessel. In the classical berth scheduling problem
it is allowed to postpone the arrival of the vessels in order to accommodate all
vessels. In our model, each vessel has an associated profit, and we are allowed to
reject some vessels (which will choose a different quay for loading/unloading).

Finally, the GSRP appears when visualizing solutions to the finite capacity pro-
duction planning problem [31]. In this problem a production plan is constructed
subject to some limited resource. A solution to the problem describes when each
job starts and finishes, and how much of the resource it makes use of. A graph-
ical presentation of a solution should depict each task as a rectangle, where the
x-dimension is the time, and the y-dimension is the capacity consumption. Only
a fixed height is available, corresponding to the capacity in the GSRP.

In the on-line version of the GSRP, reservation requests arrive one by one,
and should be assigned a group of seats immediately. Boyar and Medvedev [9]
considered the single-customer version of the on-line problem, and showed that
if all tickets have the same price, first-fit and best-fit are better than worst-fit
in the relative worst-order ratio. This also holds for the case where the price of

194 Paper E

the ticket is proportional to the distance traveled. Moreover, they showed that
the off-line version of the single-customer GSRP where all tickets have the same
price, is equivalent to a maximum k-colorable subgraph problem for interval
graphs, which can be solved in polynomial time, as shown by Yannakakis and
Gavril [34]. Helliesen [23] presented a new algorithm, scan-fit, for the on-line
single-customer seat reservation problem, that was shown to perform better than
first-fit and best-fit in the competitive ratio, both theoretically and empirically.
Helliesen also considered the on-line version of the GSRP. In his version it is the
objective to utilize the seats as effectively as possible while trying to minimize
the distance between the people in a group. The developed algorithms also take
into account how seats are arranged in the train by adding distance tables.

In this paper we describe two variants of the GSRP inspired by two-dimensional
packing. Definitions and terminology follow in Section E.2. The first variant,
the group seat reservation knapsack problem, is considered in Section E.3, upper
bounds are derived in Section E.3.1 and an exact algorithm is presented in
Section E.3.2. In addition, a method for testing if a subset of reservations
can be feasibly packed within the train is presented in Section E.3.3. The
second variant, the group seat reservation bin packing problem is described in
Section E.4. Lower bounds for this problem are described in Section E.4.1 and
an exact algorithm is presented in Section E.4.2. Finally, computational results
for both variants are presented in Section E.5.

E.2 Definitions and Terminology

Using the terminology from bin packing we may assume that the train stops at
H stations, and contains W seats. Let N = {1, · · · , n} be the set of requests,
each request j asking for a number wj of seats, traveling hj stations from station
yj to station yj + hj. Without loss of generality we may assume that wj ≤W .

Although H in principle may be large, we may reduce the problem to only
consider the active stations, i.e.

Y := {yj | j ∈ N} ∪ {yj + hj | j ∈ N}

and let Ny be the set of requests using a seat at station y ∈ Y

Ny := {j ∈ N | yj ≤ y < yj + hj}.

We associate with each station y ∈ Y a “height” Hy to represent the distance
from station y to the next active station in Y .

E.2 Definitions and Terminology 195

By considering the train as a single row of seats, we formulate the group seat
reservation knapsack problem (GSR-KP) as the problem of choosing the set of
requests that maximizes the utilization of the train. We measure the utilization
of the train as the number of seats times the distance traveled for all chosen
reservations. This problem is a special case of the two-dimensional knapsack
problem (2DKP), in which a number of rectangles have to be placed inside a
larger sheet. Each rectangle has an associated profit and the objective is to
place the rectangles on the sheet so as to maximize the overall profit. For the
GSR-KP the profit is the area of the rectangles. In the original 2D KP, the
so-called guillotine constraint may be valid. It says that the layout can be
recursively separated into the individual rectangles by cuts going between two
opposite edges of the current block, parallel to the other edges. This constraint
makes sense for technological cutting process and will not be considered here,
see Figure E.1.

The problem may be formulated as the following integer-programming model.
Let δi = 1 if request i is selected. Let xi be the first seat (left coordinate) of
request i. Let E = {(i, j)} be the set of rectangle pairs which in some way share
a station (y-coordinate). Finally, let ℓij = 1 iff request i is located left of j.

max
∑

j∈N

wjhjδj (E.1)

s.t.
∑

j∈Ny

wjδj ≤W, y ∈ Y (E.2)

δi + δj − ℓij − ℓji ≤ 1 (i, j) ∈ E (E.3)

xi − xj +Wℓij ≤W − wi (i, j) ∈ E (E.4)

0 ≤ xj ≤W − wj j ∈ N (E.5)

ℓij ∈ {0, 1} (i, j) ∈ E (E.6)

δj ∈ {0, 1} j ∈ N (E.7)

xj ≥ 0 j ∈ N (E.8)

Here (E.2) says that we may not exceed the capacity W of the train at any sta-
tion. Constraint (E.3) says that if both requests i and j are selected, then one of
them should be to the left of the other i.e. (δi = 1 ∧ δj = 1)⇒ (ℓij = 1 ∨ ℓji = 1).
Constraint (E.4) says that if request i is located to the left of request j then this
should be reflected in the coordinates, i.e. ℓij = 1 ⇒ xi + wi ≤ xj . Constraint
(E.5) says that all requests should be placed inside the train. Constraints (E.6)
and (E.7) say that the ℓij and δj variables should be binary and (E.8) say that
the reservation coordinate variables xj should be non-negative.

The problem is NP-hard, which can easily be shown by reduction of the subset
sum problem to a group seat reservation knapsack problem with no intermediate
stations.

196 Paper E

Trains usually consist of several passenger cars, rather than a single passen-
ger compartment. This poses additional restrictions on the placement of the
reservations in the train. Not only must reservations be assigned consecutive
seats, they must also be assigned seats in the same car to be adjacent. This
defines another problem, namely the group seat reservation bin packing prob-
lem (GSR-BPP) as the problem of assigning reservations to cars such that all
requests are fulfilled and the number of cars used are minimized. The GSR-BPP
is a special case of the two-dimensional bin packing problem (2DBPP), in which
a number of rectangles must be assigned to identical bins, such that no bin is
overfilled and the number of bins used is minimized. Regarded as a special case
of 2DBPP, the train cars correspond to bins and the reservations correspond to
the rectangles that must be assigned to bins. Additionally, the rectangles have
fixed y-coordinates in the GSR-BPP.

More formally, we define the GSR-BPP as follows. Let W determine the number
of seats in a car, and let all other variables from formulation (E.1)–(E.7) have
the same interpretation in the GSR-BPP as in the GSR-KP. Furthermore, let
mi identify the car that request i is in, and let pij = 1 if request i is placed in
a car closer to the front of the train than request j (i.e. if mi < mj). Finally v
denotes the number of cars used and n is the number of requests. The problem
may then be formulated as:

min v (E.9)

s.t. ℓij + ℓji + pij + pji ≥ 1 (i, j) ∈ E, i < j (E.10)

xi − xj +Wℓij ≤W − wi (i, j) ∈ E (E.11)

mi −mj + npij ≤ n− 1 (i, j) ∈ E (E.12)

0 ≤ xj ≤W − wj j ∈ N (E.13)

0 ≤ mj ≤ v j ∈ N (E.14)

ℓij , pij ∈ {0, 1} (i, j) ∈ E (E.15)

mj ∈ N j ∈ N (E.16)

xj ≥ 0 j ∈ N (E.17)

Constraint (E.10) states that either requests i and j may not overlap, or they
must be in different cars. Constraint (E.11) enforces that x-coordinates must
reflect the values of the ℓ variables, i.e. ℓij = 1⇒ xi + wi < xj . Similarly, con-
straint (E.12) enforces that if request i is placed in front of request j (car-wise),
it must have a lower car number, i.e. pij = 1 ⇒ mi < mj. Constraint (E.13)
states that a request must be placed entirely inside a car, and constraint (E.14)
bounds the number of cars used.

The formulation (E.9)–(E.16) is NP-hard, which can be realized by reducing
from one-dimensional bin packing to the special case where all requests travel
the entire train route.

E.2 Definitions and Terminology 197

To the authors’ knowledge, no previous literature exist on the off-line GSR-KP
or GSR-BPP. However, much related work has been done on the two-dimensional
knapsack problem and the two-dimensional bin packing problem.

A number of algorithms have been presented for the 2DKP. Hadjiconstantinou
and Christofides [22] studied various IP formulations, but were only able to solve
instances of moderate size. Fekete and Schepers [20] presented a two-phase al-
gorithm which first selects a subset of rectangles with large profits, and then
tests feasibility through an enumerative algorithm based on isomorphic packing
classes. Caprara and Monaci [10] presented an (13 − ǫ)-approximation algorithm
for the 2DKP and developed four exact algorithms based on various enumeration
schemes. Belov [5] consider a bounded 2DKP in which the placement of the rect-
angles should follow a two-stage guillotine packing pattern. Pisinger and Sigurd
[32] used constraint programming to solve the general and guillotine-restricted
version of the 2DKP. The algorithm follows a two-phase approach as in Fekete
and Schepers [20] by first choosing a subset of rectangles to pack in the sheet
(by solving a one-dimensional knapsack problem), and then testing whether the
rectangles actually fit into the sheet. If the rectangles do not fit into the sheet a
new constraint is added to the one-dimensional knapsack problem. Baldacci and
Boschetti [3] and Clautiaux et al. [14] followed the same two-phase approach
but used a different technique for testing feasibility of the orthogonal packing
problem. Baldacci and Boschetti [3] presented a cutting-plane approach using a
number of knapsack, dominance and incompatibility constraints. Clautiaux et
al. [14] modeled the problem as a scheduling problem making it possible to use
powerful constraint-based scheduling propagation techniques.

Berkey and Wang [6] presented an extensive computational review of heuristics
for finding upper bounds for two-dimensional bin packing problems (2DBPP).
The heuristics considered were mostly similar to well-known on-line algorithms
like best-fit or next-fit. For a thorough presentation of on-line packing algo-
rithms we refer to Csirik and Woeginger [16].

A number of lower bounds for the 2DBPP exist, mostly based on adaptations of
bounds for one-dimensional bin packing (see e.g. Martello and Vigo [27]). More
recent bounds include Fekete and Schepers [18] and Boschetti and Mingozzi [7],
[8]. The latter also present a heuristic based upper bound. Clautiaux et al. [13],
give a survey of dual feasible functions which are used for finding lower bounds
to various cutting and packing problems.

Martello and Vigo [27] present an exact algorithm for the 2DBPP. The algorithm
consists of an outer branch-decision tree in which rectangles are assigned to bins.
At every node a heuristic is used to find a feasible solution for the assignment.
If none is found an inner branch-decision tree is created to test the feasibility
of the assignment. An additional heuristic is used to close bins if no unassigned

198 Paper E

rectangles can fit into the bin. A similar approach was used by Martello, Pisinger
and Vigo [28] to solve the three-dimensional bin packing problem.

Finally, Lodi, Martello and Vigo [26] provide a detailed survey of bounds, exact
algorithms and heuristics for the 2DBPP.

E.3 The Group Seat Reservation Knapsack Prob-

lem

As mentioned in the introduction we consider the group seat reservation knap-
sack problem where the train is considered as having all seats in a single row.
In this section we present a number of upper bounds that we use to develop an
exact algorithm for the problem.

E.3.1 Upper Bounds

A first upper bound may be obtained by LP-relaxing the integer program-
ming model for GSR-KP defined by (E.1)–(E.8). The optimal solution to this
model gives us the upper bound U1. Notice that for any LP-optimal solution
to (E.1)–(E.8) we may get an equivalent LP-solution by setting xi := 0 and
ℓij := (W −wi)/W for any i and j. In this way constraints (E.4) and (E.5) are
always satisfied when (E.2) are trivially satisfied. Moreover (E.3) is satisfied,
since with the above definition of ℓij it reads

δi +
wi

W
+ δj +

wj

W
≤ 3

Using Lemma 1 from Appendix A gives the stated. What remains is the problem

max
∑

j∈N

wjhjδj

s.t.
∑

j∈Ny

wjδj ≤W, y ∈ Y (E.18)

0 ≤ δj ≤ 1 j ∈ N

E.3 The Group Seat Reservation Knapsack Problem 199

Now, suppose we introduce a variable δkj for each single seat, such that wjδj =
∑wj

k=1 δ
k
j . This yields the formulation

max
∑

j∈N

wj
∑

k=1

hjδ
k
j

s.t.
∑

j∈Ny

wj
∑

k=1

δkj ≤W, y ∈ Y (E.19)

0 ≤ δkj ≤ 1 j ∈ N, k = {1, · · · , wj},

which is equivalent to (E.18).

Let A be the constraint matrix of (E.19). In each column of A the ones will
appear consecutively, since the reservations are connected. This is known as
the “consecutive ones” property which implies that A is totally unimodular.
Consequently, an optimal solution to (E.19) exists in which δkj ∈ {0, 1}. This
means that (E.19), and thereby (E.18), is equivalent to splitting the reservations
into single-seat reservations.

Denote by G the intersection graph of the columns of A, i.e. G contains a vertex
for each column in A and an edge between two vertices if there exists a row in A
that contains ones in both the corresponding columns. Equivalently, G contains
a vertex for each single-seat reservation, and two vertices in G are connected by
an edge if the corresponding reservations share a station. By considering the
reservations as intervals on the time axis, we note that G is an interval graph
(and is thereby perfect).

If we assign the reservation travel distances as weights to the vertices of G, we
may formulate (E.19) as a weighted W -independent set problem. The weighted
W -independent set problem considers a graph with a non-negative weight asso-
ciated with each vertex. The problem is then to find W independent sets such
that the weight sum of all vertices in the independent sets is maximized. The
problem is NP-hard in general, but can be solved polynomially if the graph is
an interval graph (see e.g. [30]). This graph interpretation of the single-seat
reservation problem is also noted in [9], although they noted it for the also
equivalent W -colorable subgraph problem.

For the weighted W -independent set problem on interval graphs, Pal and Bhat-
tacharjee [30] present an O(Wm

√
log c+ γ) time algorithm, where m is the

number of vertices in the interval graph, c is the weight of the longest path in
the graph and γ is the total size of all maximal cliques in the graph. Using this
algorithm to solve (E.18), we can rewrite the running time using the notation
of the GSR-KP. The number of independent sets is then the number of seats in

200 Paper E

the train W . The number of vertices m is the total number of seats in all reser-
vations, i.e. m =

∑n
j=1 wj . The weight of the longest path c is bounded above

by the total travel length of all reservations, i.e. c ≤ ∑n
j=1 hj . The number of

cliques in an interval graph is at most the number of vertices (see e.g. [21]), so

γ is bounded by m2 =
(

∑n
j=1 wj

)2

. Thus, the complexity is

O






W ·

n
∑

j=1

wj ·

√

√

√

√log

n
∑

j=1

hj +





n
∑

j=1

wj





2





. (E.20)

By noting that
∑n

j=1 wj ≤ N ·W and
∑n

j=1 hj ≤ N ·H expression (E.20) can
be reduced to

O
(

NW 2
√

log(NH) + (NW)2
)

which is clearly pseudo-polynomial in terms of the GSR-KP.

We have described two methods for calculating the single-seat relaxation. We
shall denote by U1 the bound calculated by solving the LP-relaxation of (E.1) –
(E.7) and denote by U2 the bound calculated by the weighted W -colorable sub-
graph problem as described above. Although the bounds are identical, the time
complexities of calculating them are different and no dominance exists between
the time bounds.

A third upper bound is obtained by relaxing the problem to the case where the
passengers may need to change seats at every station.

max
∑

j∈N

wjhjδj

s.t.
∑

j∈Ny

wjδj ≤W y ∈ Y (E.21)

δj ∈ {0, 1} j ∈ N

The above problem is a multidimensional knapsack problem with |Y | knapsack
constraints, which is strongly NP-hard to solve [25]. Let us denote the optimal
value of (E.21) by U3. Clearly, U1 and U2 are the LP-relaxation of U3, and hence
are dominated by U3.

A fourth upper bound may be found as follows: For every station (y-coordinate),
we calculate how well the train may be filled at this station, by solving the
following subset sum problem:

Fy = max







∑

j∈Ny

wjδj

∣

∣

∣

∣

∣

∣

∑

j∈Ny

wjδj ≤W, δj ∈ {0, 1}







.

E.3 The Group Seat Reservation Knapsack Problem 201

We may now calculate an upper bound as

U4 =
∑

y∈Y

FyHy.

where Hy is the ”height” of station y as defined in the beginning of Section E.2.
Calculating U4 is weakly NP-hard as it contains |Y | subset sum problems.

A similar subset sum problem is used by Clautiaux et al. [14] to prune the search
tree by using subset sum problems to determine feasibility.

Bound Dominance

The bound U4 is calculated by splitting the reservations into smaller reservations
each traveling only one station. In the interpretation of allowing seat changes,
this corresponds to allowing seat changes to “outside the train”, i.e. passengers
are allowed to leave the train and join it again at a later station. This is clearly
less restricted than U3 in which seat changes must be to other seats within the
train. Thus, U3 dominates U4.
That U3 dominates U1 and U2 is seen by comparing formulations (E.18) and
(E.21). Clearly, U1 and U2 are the LP-relaxation of U3.
The bounds U1 and U4 split reservations in different ways: U1 splits into single-
seat reservations and U4 splits into single-station reservations. Thus, U1 and U4
do not dominate each other. But since the problem is already restricted with
regard to stations, we may expect U1 to be the tighter of the two bounds in
general.

Theorem 1 The bound U1 does not dominate U4 and U4 does not dominate U1.

Proof. Consider a train with height H and width W and two reservations r1
and r2 which both have height H (i.e. they travel from the first to the last sta-
tion) and require ⌊W/2⌋+ 1 seats. Clearly, both r1 and r2 cannot be assigned
seats in the train. By splitting the reservations into single-seat reservations,
the entire train can be filled, so U1 = H ·W . If the reservations are split into
single-station reservations, each station can still only accommodate r1 or r2.
Thus, U4 = H · (⌊W/2⌋+ 1).
Conversely, consider the reservations s1 and s2 that both request W seats. Let
s1 travel from station 1 to station ⌊H/2⌋+1 and s2 from station ⌊H/2⌋ to station
H . Splitting s1 and s2 into single-seat reservations will not change that station
⌊H/2⌋ can accommodate only W seats. The W largest single-seat reservations
will originate from s1, so U1 = W · (⌊H/2⌋+1). If the reservations are split into
single-station reservations, only station ⌊H/2⌋ will be overfilled. This, and all

202 Paper E

other stations can be filled completely, so U4 = W ·H . �

As U3 dominates all the other bounds and is itself NP-hard, it may be that
U3 is simply a more simple formulation of the GSR-KP. This is not the case
as is shown by the following example with 7 seats, reservations a–g, and x as
illustrated below. The packing of a-g represents an optimal solution. The bound
U3 will split x into single-station reservations which may be placed next to c.
Thus, OPT < U3 for this instance.

a

b

c

d

e

f

g

x

E.3.2 Exact Algorithm

In Section E.3.1 we have used different ideas to develop upper bounds for the
GSR-KP. For all the bounds it is possible that the calculated value is optimal
for the GSR-KP, but it is more likely to be larger than optimum. Since we
wish to develop an exact algorithm for solving the GSR-KP we use branch and
bound.

In each node of the branching tree we choose a rectangle j and divide the solution
space into two subtrees. In one subtree we demand that the chosen rectangle
is in the packing and in the other subtree, we exclude the rectangle from the
packing. In the integer programming model (E.1)–(E.7) this corresponds to
branching on the δ variables fixing δj to 1 respectively 0. We thereby get two
new subproblems. The first subproblem is equivalent to saying that the width
of the train in reduced by wj on all stations covered by the rectangle. The
second subproblem corresponds to removing the chosen rectangle from the set
of rectangles that should be packed.

We start by fixing the largest rectangles. This way we will very early in the
branching tree get to a point where there is no more room for extra rectangles
and we can prune large parts of the branching tree.

When we fix a rectangle we check each station separately to see if there is enough

E.3 The Group Seat Reservation Knapsack Problem 203

room for the rectangle, but this does not ensure that there exist a legal packing
of the fixed rectangles. Therefore at some point we need to test for feasibility
i.e. find out if there exist a legal packing of the chosen rectangles. One can
consider different schemes for testing feasibility. One possibility is to test for
feasibility at each node, but since we need to find a packing to ensure that it is
legal, this scheme requires solving an NP-complete problem at each node, thus
we choose to only test for feasibility when all rectangles have been fixed. How
the actual testing of feasibility is done, is described in Sections E.3.3–E.3.5.

Since it is very important that we quickly find some feasible solutions in order to
prune parts of the branching tree we use a depth first strategy in our branching.

E.3.3 Testing Feasibility

When testing the feasibility of a packing, we are given a set of reservations and
we then wish to determine if the reservations can be placed in a way to make
them fit into the train. Placing the reservations within the train corresponds to
assigning values to the binary ℓ-variables of equations (E.3) and (E.10) for the
GSR-KP and GSR-BPP, respectively. Recall that ℓij = 1 means that reservation
i is positioned to the left of j.
The test for feasibility consists of two parts. An algorithm that determines the
feasibility of a single packing (i.e. assignment of the ℓ-variables) is described in
section E.3.4 and an enumeration scheme for applying this algorithm to every
assignment of ℓij variables is described in section E.3.5.

E.3.4 Feasibility of a Packing

We shall first consider the feasibility of a packing where the relative positions of
the rectangles are known, i.e. the left-right ordering of overlapping rectangles is
predetermined. To test the feasibility of the packing, we will use a graph rep-
resentation by Fekete and Schepers [19], and validation techniques by Pisinger
and Sigurd [32]. The reason for choosing the framework by Fekete and Schep-
ers [19] is that the additional constraints imposed by our problem give rise to
some nice graph theoretical properties in the representation. However, instead
of using interval graphs, whose complements are orientable, as in [19], we work
already on directed graphs.

By exploiting that the rectangles are fixed in the y-dimension, we may represent
a packing by using a graph as follows: Let G = (V,E) be a directed graph with a
vertex for each reservation and the edge (i, j) ∈ E iff ℓij = 1. For ease of notation

204 Paper E

we shall not distinguish between a vertex and its corresponding rectangle. The
following properties are necessary and sufficient for determining if the packing
represented by G is feasible. Without loss of generality we will assume that all
rectangles are placed as far to the left as possible.

P1 G is acyclic.

P2 For every path p = 〈v1, . . . , vn〉 in G,
∑

i∈p wi ≤W .

Example 1 Consider the instance given by N = {(2, 3, 0), (3, 2, 0), (4, 1, 3), (1, 4, 0)},
where i = (wi, hi, yi), i ∈ N and H = 6, W = 6. Below are shown three different
graph representations and their corresponding packing (if legal).

1
2

3

4

3 4

1 2

1
2

3

4

3 4

1 2

3 4

1 2

The leftmost graph represents a feasible packing with 1 to the left of 2 and 4 to
the left of all other rectangles. The middle graph contains the path p = 〈1, 4, 3〉
with

∑

i∈p wi = 7, so this is infeasible by P2. The rightmost graph contains a
cycle and does not represent a legal packing by P1.

That the properties P1 and P2 are necessary follows from the middle and right
graph of Example 1. That the properties are also sufficient can be seen by the
following theorem, which is a special case of Theorem 1 [19]. A direct proof can
be found in Appendix A.

Theorem 2 The properties P1 and P2 are sufficient for describing a feasible
packing

The following algorithm determines if a graph satisfies the properties P1 and
P2 by computing the xj values for all reservations j ∈ N . By the assumption
of leftmost placement we must set

xj =

{

max{xi + wi | (i, j) ∈ E}, ∃i ∈ N : (i, j) ∈ E
0 otherwise

(E.22)

E.4 The Group Seat Reservation Bin Packing Problem 205

These values are easily calculated by a longest-path algorithm [1] which starts
by topologically sorting G (and hence checking for cycles) and then running a
label correcting algorithm. The time complexity is Θ(V + E). If for some j we
have xj + wj > W , the packing is infeasible by P2.

E.3.5 Feasibility Enumeration Scheme

In the previous section we described how to test feasibility of a packing, given
the individual placements of the reservations. To decide if a feasible packing
exists for a set of reservations, all such placements must be considered. By the
assumption of left-most placement (E.22) we consider the xj variables to be
uniquely determined by the corresponding ℓij assignments. Since each place-
ment is represented by a specific orientation of all edges in the graph, there exist
an exponential number of placements. We consider all placements by using a
branch-decision tree to enumerate the edge orientations in the graph. At each
node in the tree we add an edge to the graph and branch on the orientation
of the edge. If the graph at some node describes an infeasible packing, that
subtree is eliminated since adding more edges to the graph will not make the
packing feasible. If a feasible packing is found at a leaf node, the algorithm
returns true. If no more nodes exists, the algorithm returns false.

E.4 The Group Seat Reservation Bin Packing

Problem

So far, the train has been considered as having a single line of seats. However,
most trains will consist of several cars or compartments, and it would seem
unreasonable to split a group of passengers traveling together into different cars,
even if their seat numbers are consecutive. Thus we now consider the group seat
reservation bin packing problem. For this problem we will, as for the GSR-KP,
develop an exact algorithm, but first we present some lower bounds we can use
in the algorithm.

E.4.1 Lower Bounds

A first lower bound L1 may be found by solving the LP-relaxation of (E.9)–(E.16).
It is easy to show (see [12] for details) that L1 = 0 will hold for any instance.

206 Paper E

This means that L1 will always say that the reservations can be packing using
minimum one car.

A second lower bound L2 may be found as follows: For every station (y-
coordinate), we calculate a lower bound on the number of cars at this station.
Let the binary variable xij = 1 iff request j is assigned to car i and let B denote
the set of cars. Moreover let δi = 1 iff car i is used.

min ξ2y =

n
∑

i=1

δi (E.23)

s.t.
∑

j∈Ny

wjxij ≤Wδi i ∈ B (E.24)

∑

i∈B

xij = 1 j ∈ Ny (E.25)

δi ∈ {0, 1} i ∈ B (E.26)

xij ∈ {0, 1} i ∈ B, j ∈ Ny (E.27)

We may now calculate the lower bound as

L2 = max
y∈Y

ξ2y

The model (E.23)–(E.27) is recognized as an ordinary bin packing problem
(BPP) which is NP-hard to solve. Hence, to find a polynomial bound for
the GSR-BPP we may use any lower bound from the literature of BPP. For
each y ∈ Y let ξ3y be such a lower bound chosen as maximum of the bounds
presented by Martello and Toth [29], Dell’Amico and Martello [17].

ξ3y =

∣

∣

∣

∣

{

j ∈ Ny : wj >
W

2

}∣

∣

∣

∣

+ max
1≤p≤W

2

{⌈
∑

j∈Ns(p)
wj − (|Nℓ(p)|W −

∑

j∈Nℓ(p)
wj)

W

⌉

,

⌈

|Ns(p)| −
∑

j∈Nℓ(p)
⌊W−wj

p ⌋
⌊Wp ⌋

⌉}

(E.28)

where

Nℓ(p) = {j ∈ Ny : W − p ≥ wj >
W
2 } (E.29)

Ns(p) = {j ∈ Ny : W
2 ≥ wj ≥ p} (E.30)

This leads to the third lower bound

L3 = max
y∈Y

ξ3y

E.4 The Group Seat Reservation Bin Packing Problem 207

which according to [17] can be calculated in O(Ny) time for each y ∈ Y leading
to an overall time complexity of O(N2).

Finally, we expand L2 to consider two stations y, y′ ∈ Y at the same time. This
results in a new measure ξ4y,y′ which extends (E.23)–(E.27). Let xij = 1 iff
request j ∈ Ny is assigned to car i at station y and x′

ij = 1 iff request j ∈ Ny′

is assigned to car i at station y′. As before let δi = 1 iff car i is used and let B
denote the set of cars.

min ξ4y,y′ =
∑n

i=1 δi (E.31)

s.t.
∑

j∈Ny
wjxij ≤Wδi i ∈ B (E.32)

∑

j∈Ny′
wjx

′
ij ≤Wδi i ∈ B (E.33)

xij = x′
ij j ∈ Ny ∩Ny′ (E.34)

∑

i∈B xij = 1 j ∈ Ny (E.35)

δi ∈ {0, 1} i ∈ B (E.36)

xij , x
′
ij ∈ {0, 1} i ∈ B, j ∈ Ny (E.37)

Here constraint (E.32) and (E.33) are the ordinary bin packing constraints for
each of the stations y, y′ while (E.34) demands that a request is assigned to the
same car at both stations. Constraint (E.35) enforces that each request j ∈ Ny

must be assigned a car.

We may now calculate the lower bound as

L4 = max
y,y′∈Y

ξ4y,y′

Calculating ξ4 is NP-hard, which is seen by reduction from bin packing to the
special case y = y′. Therefore calculating L4 is also NP-hard.

E.4.2 Exact Algorithm

For solving the group seat reservation bin packing problem, we construct a two-
phase branching algorithm as proposed by Martello and Vigo [27].

The first phase is an outer branch-decision tree that assigns rectangles to bins,
considering rectangles ordered by decreasing size. At each node the next unas-
signed rectangle is assigned to each of the open bins and to one new bin. A bin
is open if at least one rectangle has been assigned to it. If the number of open
bins exceeds the upper bound we may backtrack. Initially the upper bound is
set as the number of rectangles, and is updated when a better feasible solution

208 Paper E

is found. The tree is traversed in a depth first manner, that always choses the
lowest numbered bin first. This delays the opening of new bins, and thus post-
pones the parts of the solution space using a large number of bins to a point
where they may hopefully be pruned.

The second phase is run at each node of the outer tree to test the feasibility of the
assigned rectangles. We use the branch-decision tree described in Section E.3.3
to test the feasibility.

Closing Bins

In addition to the two-phase branching scheme we attempt at each node to
close one or more bins. If it can be determined that for some bin i, none of the
unassigned rectangles fit into the bin, we mark the bin as closed. In the subtree
rooted at that node, rectangles are not assigned to the closed bin.

In order to avoid creating a feasibility branch-decision tree for each unassigned
rectangle in combination with each node, the following method is employed
instead. For each station (y-coordinate) of the bin, the width of all rectangles
that cover that station is added. If the sum exceeds the width of the bin, the
packing is infeasible. Since the method is heuristic in nature, it may occur that
a bin is kept open even though no feasible packing may be obtained from adding
any of the remaining unassigned rectangles. This method is identical to the test
performed when fixing a rectangle in the branch and bound tree for the GSR-KP
(see Section E.3.2).

E.5 Computational Results

We have implemented bounds and exact algorithms for the GSR-KP and the
GSR-BPP as described in Sections E.3 and E.4. The algorithms and bounds
have been implemented in C and C++ using LEDA 4.5 [2]. All tests have been
performed on an Intel Pentium 4 with 2 GB of memory running at 3GHz. For all
tests we have limited the time consumption to 30 minutes. Tests not completed
within this time limit are terminated with no result.

We start this section by looking at the upper bounds for the GSR-KP followed
by the exact algorithm for the GSR-KP. Then we look at lower bounds for
GSR-BPP and the performance of the exact algorithm for this problem. All
computational times in the tables are in seconds.

E.5 Computational Results 209

E.5.1 Upper bounds for GSR-KP

Since we have no knowledge of any prior work on this problem new test instances
for testing the algorithms have been created. We have created two types of
instances. One type was inspired by existing instances taken from the literature
of 2D packing. The other type was inspired by real-life problems. All instances
can be downloaded from the last authors home page 1.

The packing instances were created by modifying the 2D knapsack packing
instances also considered by Caprara and Monaci [10]. A detailed description
of the CGCUT instances can be found in [11]. The GCUT instances are described
in [4] and the OKP instances are described in [20]. Finally the WANG instances are
described in [33].

We needed to add a starting station for all the reservations, while making sure
that the ending stations did not exceed the final station. The CGCUT, OKP and
WANG instances allowed several reservations of the same type. These reservations
were split up into individual reservations and assigned separate starting stations.
The starting stations are generated randomly and we therefore generate five new
instances from each of the original instances to make sure we get some variation.

The real-life instances were created by considering the normal usage pattern of
regional train services in Denmark. Most train routes cover a mix of major cities
and less populated areas. Typically, the utilization of the train is high at the
city stations and decreasingly lower further from the city. At peak hours, the
train will not be able to accomodate all reservations around the city stations,
but is unlikely to be filled outside the city areas. The generated instances reflect
this by having the requests grouped near a city in the middle of the route, and
almost none near the route endpoints. A series of instances with a varying
number of requests and group sizes were generated.

To evaluate the quality of U1 we used CPLEX 9.1 to solve the problem as
a linear programming problem. U3 is a multiple knapsack problem with no
further constraints and can relatively easily be solved as an integer programming
problem. Thus this bound is also solved using CPLEX. We have implemented
the upper bounds U2 and U4 described in Section E.3.1.

Table E.1 gives a summary of the overall quality of the bounds on the instances
derived from packing. More detailed results can be found in [12]. U3 is clearly
the tightest of the considered bounds, as it finds the optimal solution for all
of the instances. The two bounds U1 and U2 solve the same relaxation by two

1http://www.diku.dk/hjemmesider/ansatte/pisinger/seatres instances.zip

210 Paper E

different approaches, hence the bound values are the same. However, U1 is
generally faster to calculate than U2.

Bound U1 U2 U3 U4
Time Average 0.13 0.83 0.05 0.00

Std. dev. 0.11 1.81 0.04 0.01
Gap Average 10.92 10.92 0.00 19.23

Std. dev. 7.72 7.72 0.00 8.32

Table E.1: Overall comparison of the four bounds for GSR-KP. Average time (in
seconds) and average gap in percent to the optimal solution and the standard
deviations for the the four upper bounds.

As U3 is the tightest bound considered and the corresponding solution times
are reasonable we will choose this bound as one of the bounds for the exact
algorithm. It is also obvious that U4 is significantly faster to calculate so we
choose this upper bound as the bound in a second version of the exact algorithm.

Due to the very high running times of U2 on the large instances we shall not
consider it further, but use U1 for comparisons with the remaining bounds.

E.5.2 Results from the GSR-KP

The results from the exact algorithm for the GSR-KP are summarized in Ta-
bles E.2 and E.3. The algorithm is run twice for each instance, using the bounds
U3 and U4. The results are compared to those of the CPLEX IP-solver. The
running time has been limited to 30 minutes for each run.

For the packing instances, all algorithms could solve the instances within the
time limit. Overall, the CPLEX solver performs slightly better than the algo-
rithm using U3. However, the algorithm using U3 shows only a slight increase
in computational time as the number of requests increase, whereas the CPLEX
solver appears to be less stable in this regard.

The algorithm using U4 also shows good computational times for the smaller
instances, but degrades significantly for the larger instances. This is because
U4 is not very tight, so the solution space becomes too large, even though the
bound is faster to compute.

The instances inspired by real-life problems are more difficult to solve, and
seem to confirm the tendencies seen for the packing instances. Indeed, only the
algorithm using U3 could solve all instances within the 30 minute time limit.

E.5 Computational Results 211

Instance Stations Seats N CPLEX U3 U4
CGCUT01 15 10 16 0.02(5) 0.01(5) 0(5)
CGCUT02 40 70 23 0.79(5) 0.14(5) 0.49(5)
CGCUT03 40 70 62 1.99(5) 2.09(5) 4.35(5)
GCUT01 250 250 10 0(5) 0.02(5) 0.01(5)
GCUT02 250 250 20 0.04(5) 0.13(5) 0.15(5)
GCUT03 250 250 30 0.08(5) 0.41(5) 0.59(5)
GCUT04 250 250 50 0.41(5) 1.73(5) 4.74(5)
GCUT05 500 500 10 0.02(5) 0.05(5) 0.05(5)
GCUT06 500 500 20 0.04(5) 0.28(5) 0.39(5)
GCUT07 500 500 30 0.06(5) 0.64(5) 0.79(5)
GCUT08 500 500 50 0.4(5) 3.06(5) 10.89(5)
GCUT09 1000 1000 10 0.02(5) 0.05(5) 0.08(5)
GCUT10 1000 1000 20 0.06(5) 0.3(5) 0.7(5)
GCUT11 1000 1000 30 0.2(5) 1.81(5) 3.49(5)
GCUT12 1000 1000 50 0.33(5) 4.69(5) 13.63(5)
GCUT13 3000 3000 32 1.09(5) 2.9(5) 74.31(5)
OKP01 100 100 50 6.11(5) 1.16(5) 4.27(5)
OKP02 100 100 30 0.31(5) 0.22(5) 0.21(5)
OKP03 100 100 30 0.17(5) 0.25(5) 0.24(5)
OKP04 100 100 61 5.62(5) 1.9(5) 6.7(5)
OKP05 100 100 97 9.42(5) 6.59(5) 623.79(5)
WANG20 70 40 42 0.07(5) 0.4(5) 0.3(5)
Average 484.77 485.91 35.14 1.24(110) 1.31(110) 34.1(110)

Table E.2: Comparison between the CPLEX IP-solver and the exact algorithm
for the GSR-KP for the packing-inspired instances. Reported is the instance
name, the train size, and number of reservations N , as well as average time
usage (and number of instances solved within 30 mins in parentheses) for each
algorithm. The best result is shown in bold face.

Interestingly, the algorithm using U4 was also able to solve more instances than
CPLEX.

E.5.3 Lower bounds for the GSR-BPP

The test instances used in the GSR-BPP is a further modification of the in-
stances used in the GSR-KP. The maximum number of available seats in the
train is ignored, and instead we introduce W , the number of seats in a train car.
The train car sizes chosen are 10, 20 and 40. To make the new instances valid
we adjust the number of seats asked for by a request. To ensure 0 < wj ≤ W

212 Paper E

Instance Stations Seats N CPLEX U3 U4
G20N10_30 100 100 20 0.05(5) 0.02(5) 0.04(5)
G20N20_20 100 100 20 0.35(5) 0.04(5) 0.14(5)
G20N30_10 100 100 20 47.09(5) 0.31(5) 1.77(5)
G20U20_20 100 100 20 1.41(5) 0.01(5) 0.01(5)
G30N10_30 100 100 30 0.27(5) 0.08(5) 0.32(5)
G30N20_20 100 100 30 8.77(5) 0.42(5) 3.06(5)
G30N30_10 100 100 30 11.98(4) 17.95(5) 97.1(5)
G30U20_20 100 100 30 12.28(5) 0.46(5) 5.56(5)
G40N10_30 100 100 40 0.61(5) 0.21(5) 2.16(5)
G40N20_20 100 100 40 15.36(5) 0.94(5) 29.45(5)
G40N30_10 100 100 40 - 23.77(5) 770.97(5)
G40U20_20 100 100 40 15.34(4) 10.33(5) 77.06(5)
G50N10_30 100 100 50 2.9(5) 0.85(5) 19.89(5)
G50N20_20 100 100 50 104.48(5) 1.98(5) 64.81(5)
G50N30_10 100 100 50 1114.53(2) 16.77(5) -
G50U20_20 100 100 50 318.15(2) 12.67(5) 722.35(1)
Average 100 100 35 110.24(67) 5.43(80) 119.65(71)

Table E.3: Comparison between the CPLEX IP-solver and the exact algorithm
for the GSR-KP for the real-life-inspired instances. Reported is the instance
name, the train size, and number of reservations N , as well as average time
usage (and number of instances solved within 30 mins in parentheses) for each
algorithm. A dash indicates that no instances were solved. The best result is
shown in bold face.

we set

wj =

{

W if wj mod W = 0,

wj mod W otherwise.

To avoid reservations for 0 seats, we set wj = W when wj mod W = 0. We saw
in section E.4.1 that L1 = 0 for all instances, so this was not implemented. L2 is
an ordinary bin packing problem and hence it will be NP-hard to compute this
bound. L3 is a lower bound of L2 which is polynomially solvable. It is quickly
computed and is generally expected to produce very tight lower bounds (see
e.g. [29]). L4 is similar to L2 with some additional constraints and hence still
NP-hard to solve. This led us to suspect that L4 would be somewhat slower
than L2 but possibly give tighter bounds.

In a branch and bound algorithm the time required to calculate a bound is very
important. L3 is expected to be considerably faster than the other two and is
at the same time believed to give quite good bounds. Consequently only L3 was
chosen as the lower bound for the exact algorithm.

E.5 Computational Results 213

Using L3 we are able to solve the bound in only a few milliseconds. Moreover,
in the cases where we have an optimal solution, L3 matched the upper bound
in every packing instance except one (GCUT10_1 - bin size 40), indicating that
L3 is very tight for the considered instances.

E.5.4 Results from the GSR-BPP

Since we had no previous results to compare to, we used the CPLEX IP-solver as
a reference solution. CPLEX had some difficulties solving the test instances. In
fact the CPLEX IP-solver was only able to solve between 18 and 20 (depending
on bin size) of the 110 packing instances in less than 30 minutes. For the real-
life instances this tendency is even more apparent, since only 8 or 9 of the 80
instances were solved by CPLEX.

The exact algorithm was also unable to solve all of the instances, but performed
significantly better than the CPLEX IP-solver as can be seen in Tables E.4
and E.5. For the packing instances, the exact algorithm solved between 51 and
58 of the 110 instances to optimality within the 30 minute time limit. For the 80
real-life instances, between 42 and 48 were solved. Moreover, for the instances
where both algorithms solved the problem to optimality, the presented exact
algorithm was considerably faster than CPLEX.

The complexity of the problem depends in large parts on the number of requests.
The CPLEX IP-solver is able to solve all instances with 10 requests and most
of the instances with 16 requests but none of the instances with more requests.
The presented exact algorithm solves most of the instances with up to about 30
requests and a few with more than 30 requests.

It is interesting to notice that most of the considered instances are either solved
very fast or not at all (given the imposed time limit). Considering that L3 was
able to find the correct solution to almost every instance which was solved to
optimality and in very little time, we expect that it is reasonably easy to find
a good solution, but quite difficult to prove optimality. In many cases both
the CPLEX IP-solver and the exact algorithm probably have found an optimal
solution, but are unable to prove optimality within the given time frame.

2
1
4

P
a
p
e
r
E

Bin size 10 Bin size 20 Bin size 40
Instance Stations N CPLEX B&B CPLEX B&B CPLEX B&B

CGCUT01 15 16 0.19(3) 0(5) 0.31(5) 0.04(5) 0.06(5) 0(5)
CGCUT02 40 23 - 148.52(2) - 0.29(5) - 1.21(4)
CGCUT03 40 62 - - - - - -
GCUT01 250 10 0.4(5) 0(5) 0.13(5) 0(5) 0.48(5) 0(5)
GCUT02 250 20 - 11.37(5) - 1.01(5) - 1.04(5)
GCUT03 250 30 - 781.71(2) - 923.31(1) - 482.18(1)
GCUT04 250 50 - - - - - -
GCUT05 500 10 2.34(5) 0(5) 1.36(5) 0(5) 1.97(5) 0(5)
GCUT06 500 20 - 0.14(5) - 0.33(5) - 9.95(3)
GCUT07 500 30 - 8.08(2) - 20.96(2) - 1003.49(1)
GCUT08 500 50 - - - - - -
GCUT09 1000 10 1.63(5) 0(5) 1.15(5) 0(5) 3.06(5) 0(5)
GCUT10 1000 20 - 0.32(5) - 21.97(5) - 58.28(5)
GCUT11 1000 30 - 644.54(2) - - - 976.63(4)
GCUT12 1000 50 - - - - - 228.71(1)
GCUT13 3000 32 - 81.88(2) - 75.02(4) - 0.98(3)
OKP01 100 50 - - - - - -
OKP02 100 30 - 33.15(2) - 75.6(4) - 60.03(2)
OKP03 100 30 - 310.31(4) - - - 4.79(5)
OKP04 100 61 - 0.69(1) - - - 0.4(2)
OKP05 100 97 - - - - - -
WANG20 70 42 - - - - - 4.33(2)

Average 484.77 35.14 1.14(18) 134.71(52) 0.74(20) 93.21(51) 1.39(20) 166.59(58)

Table E.4: Comparison between CPLEX IP-solver and the proposed branch-and-bound algorithm on the packing-inspired
GSR-BPP instances. We report the instance name, the number of stations on the train route, the reservation count N ,
the average run time in seconds (and the number of instances solved within 30 minutes in parentheses) for each bin size.
A dash indicates that no instances were solved. The best result for each bin size is shown in bold face.

E
.5

C
o
m
p
u
ta
tio

n
a
l
R
e
su
lts

2
1
5

Bin size 10 Bin size 20 Bin size 40
Instance Stations N CPLEX B&B CPLEX B&B CPLEX B&B

G20N10_30 100 20 256.74(3) 5.37(4) 0.36(1) 73.23(5) 223.95(2) 1.35(5)
G20N20_20 100 20 - 179.44(4) - 119.81(5) - 576.58(5)
G20N30_10 100 20 - 1.56(5) - 11.12(5) - 0.16(5)
G20U20_20 100 20 485.27(5) 33.76(5) 232.59(5) 0(5) 14.24(5) 0.55(5)
G30N10_30 100 30 - 3.26(5) - 0.03(3) - 4.06(3)
G30N20_20 100 30 - 263.17(3) - 6.78(4) - 252.99(1)
G30N30_10 100 30 - 2.16(2) - 74.22(2) - 110.77(3)
G30U20_20 100 30 1721.43(1) 25.03(5) 45.29(1) 0.09(5) 1399.65(1) 0.03(2)
G40N10_30 100 40 - 0.06(1) - 0.06(2) - 0.56(3)
G40N20_20 100 40 - 14.08(1) - 740.75(2) - 16.22(1)
G40N30_10 100 40 - - - 90.12(1) - 0.63(2)
G40U20_20 100 40 - 116.75(3) 365.68(1) 2.54(2) - 9.96(3)
G50N10_30 100 50 - 0.15(2) - 0.13(2) - 0.33(2)
G50N20_20 100 50 - 12.28(1) - - - -
G50N30_10 100 50 - 276.88(1) - - - -
G50U20_20 100 50 - 13.45(2) - 5.18(5) - 13.73(2)

Average 100 35 821.15(9) 63.16(44) 160.98(8) 80.29(48) 545.95(8) 70.57(42)

Table E.5: Comparison between CPLEX IP-solver and the proposed branch-and-bound algorithm on the real-life-inspired
GSR-BPP instances. We report the instance name, the number of stations on the train route, the reservation count N ,
the average run time in seconds (and the number of instances solved within 30 minutes in parentheses) for each bin size.
A dash indicates that no instances were solved. The best result for each bin size is shown in bold face.

216 Paper E

E.6 Further Work

The GSR-KP considers the profit of each reservation to be the product of the
number of seats occupied and the distance traveled. A more general approach
would be to represent the profit of a reservation as a separate parameter, as
is the case in two-dimensional knapsack problems. In this way, route segments
can be priced individually, which more realistically models the pricing presently
done by many railway companies. However, the upper bounds presented cannot
be used without modification.

For the GSR-BPP, no upper bounds have been considered. As the feasibility
computations are much more efficient for the GSR-BPP than for ordinary two-
dimensional packing problems, it is not known what effect an upper bound
would have on the efficiency of the exact algorithm presented.

For the sub-problem of determining the feasibility of a packing, the implemented
solution is based on graph structure properties and the solution of longest path
problems. It is not known if improvements can be made by considering more
recent bounds on packing feasibility problems in the literature, e.g. those of
Clautiaux el al [13].

E.7 Conclusion

This is, to the best of our knowledge, the first paper to study the exact solution
of the off-line GSRP. Two variants have been considered: the GSR-KP which
is a special case of the 2DKP and the GSR-BPP which is a special case of the
2DBPP. For each problem, a number of bounds have been proposed and exact
algorithms to solve the problems have been implemented. Additionally, nec-
essary and sufficient conditions for feasible GSRP solutions based on a graph
representation of the reservations have been described. An enumerative algo-
rithm using these conditions has been implemented and is used in the exact
algorithms of both the GSR-KP and the GSP-BPP.

For the GSR-KP we have proposed four upper bounds, which have been com-
pared theoretically and computationally. Of these, the tightest bound and the
fastest bound have been used in an exact algorithm. For comparison, the in-
stances were also solved using the CPLEX IP-solver.

Of the implemented algorithms, the algorithm using the fastest bound showed
the poorest performance, and was the fastest algorithm on very few instances.

E.7 Conclusion 217

The algorithm using the tightest bound solved all instances within reasonable
time, and was significantly faster than the CPLEX IP-solver on some of the hard-
est instances. For many of the medium-sized instances, however, the CPLEX
IP-solver showed the best performance.

For the GSR-BPP four lower bounds were considered. Of these, L3 was expected
to perform well, and it was implemented with promising results. The GSR-BPP
was more complex to solve than the GSR-KP. Both the CPLEX IP-solver and
the exact algorithm implemented had difficulties solving some of the instances.
Neither was able to solve all of the instances within a 30 minute time limit, but
the exact algorithm solved several instances which the CPLEX IP-solver was
unable to solve. For the instances solvable by the CPLEX IP-solver, the exact
algorithm was the fastest in all cases. Thus for this version of the GSRP the
presented algorithm is clearly the best choice, when an exact solution is desired.

Appendix A

Lemma 1

a+ b+ c+ d ≤ 3 when ab+ cd ≤ 1 and 0 ≤ a, b, c, d ≤ 1

Proof. This is easily checked with a quadratic solver.

Proof of Theorem 2

We will show that every graph G that satisfies properties P1 and P2 corresponds
to an arrangement of rectangles that comprises a feasible packing, i.e. the
rectangles satisfies the following:

(1) None of the rectangles overlap

(2) All rectangles are placed within the box representing the train

To show (1) consider two nodes i, j ∈ V . Since G is acyclic (by P1), exactly one
of the three following cases occur:

i) There is a path p from i to j in G.
Assume wlog. that p has length k and p = 〈v0, v1, . . . , vk〉 with v0 = i and

218 Paper E

vk = j. For each edge (vm, vm+1) ∈ E we can place vm and vm+1 so that
xm + wm ≤ xm+1. By transitivity this will ensure xi + wi ≤ xj , yielding
a packing where i and j does not overlap.

ii) There is a path from j to i in G.
This case is analogous to i) and yields xj + wj ≤ xi.

iii) There is no path between i and j in G.
i and j are positioned at different heights in the box, i.e. yi + hi ≤ yj or
yj + hj ≤ yi. Since the y-coordinates are fixed there is no way for i and j
to overlap.

Since a packing without overlap exists for each of the three cases and i and j
were chosen arbitrarily, (1) is proven.
To show (2) consider a rectangle j ∈ N and assume for the sake of contradiction
that xj+wj > W . Since wj ≤W , xj > 0. By assumption (E.22), j is positioned
as far left as possible, so there must exist a rectangle i ∈ N with xi + wi = xj

and (i, j) ∈ E, i.e. rectangle i blocks j from being pushed further to the left.
Similarly, another such rectangle will exist for i unless xi = 0. This leads to
a sequence of rectangles {m0,m1, . . . ,mk} where j = m0 and i = m1. Each
rectangle in the sequence will touch its immediate successor and predecessor in
the sequence.
By considering the sequence in reverse order (such that the rectangles will be
ordered left to right), we get a path in G. Since the rectangles touch each

other, xms
=

∑k
t=s+1 wt. Rectangle j is the last rectangle on the path, so

xj = m0 =
∑k

t=1 wt. But xj +wj =
∑

v∈p wv ≤W by property P2, which leads
to the desired contradiction. Since j was chosen arbitrarily, this proves (2). �

References

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows. Prentice Hall, New
Jersey, 1993.

[2] Algorithmic Solutions Software GmbH, Germany. The LEDA User Manual,
leda 4.5 edition.

[3] R. Baldacci and M. Boschetti. A cutting-plane approach for the two-
dimensional orthogonal non-guillotine cutting problem. European Journal
of Operational Research, 183:1136–1149, 2007.

[4] J. Beasley. Algorithms for unconstrained two-dimensional guillotine cut-
ting. Journal of the Operational Research Society, 36:297–306, 1985.

[5] G. Belov. Problems, Models and Algorithms in One- and Two-Dimensional
Cutting. PhD thesis, Technischen Universität Dresden, 2003.

[6] J. Berkey and P. Wang. Two dimensional finite bin packing algorithms. J.
Oper. Res. Soc., 38:423–429, 1987.

[7] M. A. Boschetti and A. Mingozzi. Two-dimensional finite bin packing prob-
lem. part i: New lower bounds for the oriented case. 4OR: Quarterly
Journal of the Belgian, French and Italian Operations Research Societies,
1:27–42, 2003.

[8] M. A. Boschetti and A. Mingozzi. Two-dimensional finite bin packing prob-
lem. part ii: New lower and upper bounds. 4OR: Quarterly Journal of the
Belgian, French and Italian Operations Research Societies, 1:135–147, 2003.

[9] J. Boyar and P. Medvedev. The relative worst order ratio applied to seat
reservation. In T. Hagerup and J. Katajainen, editors, Proceedings of SWAT

220 REFERENCES

2004, volume 3111 of Lecture Notes in Computer Science, Heidelberg, 2004.
Springer.

[10] A. Caprara and M. Monaci. On the two-dimensional knapsack problem.
Operations Research Letters, 32:5–14, 2004.

[11] N. Christofides and C. Whitlock. An algorithm for two-dimensional cutting
problems. Operations Research, 25:30–44, 1977.

[12] T. Clausen, A. Hjorth, M. Nielsen, and D. Pisinger. The off-line group seat
reservation problem. Technical report, DIKU, University of Copenhagen,
2007.

[13] F. Clautiaux, C. Alves, and J. V. de Carvalho. A survey of dual feasible
and superadditive functions. Annals of Operations Research, 2008. doi:
10.1007/s10479-008-0453-8.

[14] F. Clautiaux, A. Jouglet, J. Carlier, and A. Moukrim. A new constraint
programming approach for the orthogonal packing problem. Computers
and Operations Research, 35:944–959, 2008.

[15] J. F. Cordeau, M. Gaudioso, G. Laporte, P. Legato, and L. Moccia. Solv-
ing berth scheduling and yard management problems at the gioia tauro
maritime terminal, 2003.

[16] J. Csirik and G. Woeginger. On-line packing and covering problems. In
A. Fiat and G. Woeginger, editors, Online algorithms, volume 1442 of Lec-
ture Notes in Computer Science, pages 147–177. Springer, Heidelberg, 1998.

[17] M. Dell’Amico and S. Martello. Optimal scheduling of tasks on identical
parallel processors. ORSA Journal on Computing, 7:191–200, 1995.

[18] S. Fekete and J. Schepers. New classes of fast lower bounds for bin packing
problems. Mathematical Programming, 91:11–31, 2001.

[19] S. Fekete and J. Schepers. A combinatorial characterization of higher-
dimensional packing. Mathematics of Operations Research, 29:353–368,
2004.

[20] S. Fekete, J. Schepers, and J. van der Veen. An exact algorithm for higher-
dimensional orthogonal packing. Operations Research, 55:569–587, 2007.

[21] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, 1980.

[22] E. Hadjiconstantinou and N. Christofides. An exact algorithm for gen-
eral, orthogonal, two-dimensional knapsack problems. European Journal of
Operational Research, 83:39–56, 1995.

221

[23] A. Helliesen. The seat reservation problem - an empirical study. Master’s
thesis, Technical University of Denmark, October 2003.

[24] A. Imai, J.-T. Zhang, E. Nishimura, and S. Papadimitriou. The berth
allocation problem with service time and delay time objectives. Maritime
Economics & Logistics, 9:269–290, 2007.

[25] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,
Heidelberg, 2004.

[26] A. Lodi, S. Martello, and D. Vigo. Recent advances on two-dimensional
bin packing problems. Discrete Applied Mathematics, 123:379–396, 2002.

[27] S. Martello and D.Vigo. Exact solution of the two-dimensional finite bin
packing problem. Manage. Sci., 44:388–399, 1998.

[28] S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing
problem. Operations Research, 48:256–267, 2000.

[29] S. Martello and P. Toth. Lower bounds and reduction procedures for the
bin packing problem. Discrete Applied Mathematics, 28:59–70, 1990.

[30] M. Pal and G. P. Bhattacharjee. A sequential algorithm for finding a
maximum weight k-independent set on interval graphs. Intern. J. Computer
Math., 60:205–214, 1996.

[31] P. Pandey, P. Yenradee, and S. Archariyapruek. A finite capacity material
requirements planning system,. Production Planning and Control, 11:113–
121, 2000.

[32] D. Pisinger and M. Sigurd. Using decomposition techniques and constraint
programming for solving the two-dimensional bin packing problem. IN-
FORMS Journal on Computing, 19:36–51, 2007.

[33] P. Y. Wang. Two algorithms for constrained two-dimensional cutting stock
problems. Operations Research, 31:573–586, 1983.

[34] M. Yannakakis and F. Gavril. The maximum k-colorable subgraph problem
for chordal graphs. Information Processing Letters, 24:133–137, 1987.

222

Bibliography

[1] A. Abdelghany, K. Abdelghany, and R. Narasimhan. Scheduling baggage-
handling facilities in congested airports. Journal of Air Transport Man-
agement, 12(2):76–81, 2006.

[2] I. Addou and F. Soumis. Bechtold-Jacobs generalized model for shift
scheduling with extraordinary overlap. Annals of Operations Research,
155(1):177–205, 2007.

[3] H. Alfares. Aircraft maintenance workforce scheduling: a case study.
Journal of Quality in Maintenance Engineering, 5(2):78–88, 1999.

[4] H. Alfares. Survey, categorization, and comparison of recent tour schedul-
ing literature. Annals of Operations Research, 127(1):145–175, 2004.

[5] H. Alfares and J. Bailey. Integrated project task and manpower schedul-
ing. IIE transactions, 29(9):711–717, 1997.

[6] N. Ashford, H. Stanton, and C. Moore. Airport operations. McGraw-Hill
Professional, 1998.

[7] J. Atkin, E. Burke, J. Greenwood, and D. Reeson. A Metaheuristic Ap-
proach to Aircraft Departure Scheduling at London Heathrow Airport.
Computer-aided Systems in Public Transport, pages 235–252, 2008.

[8] C. Azmat and M. Widmer. A case study of single shift planning and
scheduling under annualized hours: A simple three-step approach. Euro-
pean Journal of Operational Research, 153(1):148–175, 2004.

[9] BAA. Economic benefits of aviation. Issue Brief, 2004.

224 BIBLIOGRAPHY

[10] O. Babić and D. Teodorović. Aircraft stand assignment to minimize walk-
ing. Journal of Transportation Engineering, 110:55, 1984.

[11] J. Bailey. Integrated days off and shift personnel scheduling. Computers
& Industrial Engineering, 9(4):395–404, 1985.

[12] K. Baker. Workforce allocation in cyclical scheduling problems: A survey.
Operational Research Quarterly, 27(1):155–167, 1976.

[13] J. Beasley, J. Sonander, and P. Havelock. Scheduling aircraft landings at
London Heathrow using a population heuristic. Journal of the Operational
Research Society, 52(5):483–493, 2001.

[14] S. Bechtold and M. Brusco. A microcomputer-based heuristic for tour
scheduling of a mixed workforce. Computers & Operations Research,
21(9):1001–1009, 1994.

[15] A. Beer, J. Gärtner, N. Musliu, W. Schafhauser, and W. Slany. Scheduling
Breaks in Shift Plans for Call Centers. In The 7th International Conference
on the Practice and Theory of Automated Timetabling, 2008.

[16] A. Billionnet. Integer programming to schedule a hierarchical work-
force with variable demands. European Journal of Operational Research,
114(1):105–114, 1999.

[17] Y. Borenstein, N. Shah, E. Tsang, R. Dorne, A. Alsheddy, and
C. Voudouris. On the partitioning of dynamic workforce scheduling prob-
lems. Journal of Scheduling, pages 1–15, 2009.

[18] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch. Resource-
constrained project scheduling: Notation, classification, models, and
methods. European Journal of Operational Research, 112(1):3–41, 1999.

[19] M. Brusco and L. Jacobs. A simulated annealing approach to the solution
of flexible labour scheduling problems. Journal of the Operational Research
Society, 44(12):1191–1200, 1993.

[20] M. Brusco and L. Jacobs. Personnel tour scheduling when starting-time
restrictions are present. Management Science, 44(4):534–547, 1998.

[21] M. Brusco and L. Jacobs. Optimal models for meal-break and start-
time flexibility in continuous tour scheduling. Management Science, pages
1630–1641, 2000.

[22] M. Brusco and L. Jacobs. Starting-time decisions in labor tour scheduling:
An experimental analysis and case study. European Journal of Operational
Research, 131(3):459–475, 2001.

BIBLIOGRAPHY 225

[23] M. Brusco, L. Jacobs, R. Bongiorno, D. Lyons, and B. Tang. Improving
personnel scheduling at airline stations. Operations Research, 43(5):741–
751, 1995.

[24] M. Brusco and T. Johns. Improving the dispersion of surplus labor
in personnel scheduling solutions. Computers & Industrial Engineering,
28(4):745–754, 1995.

[25] E. Burke, P. De Causmaecker, G. Berghe, and H. Van Landeghem. The
state of the art of nurse rostering. Journal of scheduling, 7(6):441–499,
2004.

[26] A. Caprara, M. Fischetti, P. Toth, D. Vigo, and P. Guida. Algorithms for
railway crew management. Mathematical Programming, 79(1):125–141,
1997.

[27] A. R. Center. Study on the impact of directive 96/67/ec on ground han-
dling services 1996-2007, 2009.

[28] I. Chao, B. Golden, and E. Wasil. The team orienteering problem. Euro-
pean Journal of Operational Research, 88(3), 1996.

[29] Z. Chen and H. Xu. Dynamic column generation for dynamic vehicle
routing with time windows. Transportation Science, 40(1):74–88, 2006.

[30] Y. Cheng. Solving push-out conflicts in apron taxiways of airports
by a network-based simulation. Computers & Industrial Engineering,
34(2):351–369, 1998.

[31] K. Chew. Cyclic schedule for apron services. Journal of the Operational
Research Society, 42(12):1061–1069, 1991.

[32] S. Chu. Generating, scheduling and rostering of shift crew-duties: Ap-
plications at the Hong Kong International Airport. European Journal of
Operational Research, 177(3):1764–1778, 2007.

[33] S. Chu and C. Lin. A Manpower Allocation Model of Job Specialization.
Journal of the Operational Research Society, 44(10):98–989, 1993.

[34] H. Chun. Scheduling as a multi-dimensional placement problem. Engi-
neering Applications of Artificial Intelligence, 9(3):261–273, 1996.

[35] J. Clausen, A. Larsen, J. Larsen, and N. Rezanova. Disruption manage-
ment in the airline industry–Concepts, models and methods. Computers
& Operations Research, 37(5):809–821, 2010.

[36] J. Cordeau and G. Laporte. The dial-a-ride problem (DARP): Variants,
modeling issues and algorithms. 4OR: A Quarterly Journal of Operations
Research, 1(2):89–101, 2003.

226 BIBLIOGRAPHY

[37] M. Côté, B. Gendron, C. Quimper, and L. Rousseau. Formal languages for
integer programming modeling of shift scheduling problems. Constraints,
pages 1–23, 2007.

[38] P. Cowling, N. Colledge, K. Dahal, and S. Remde. The trade off between
diversity and quality for multi-objective workforce scheduling. Evolution-
ary Computation in Combinatorial Optimization, pages 13–24, 2006.

[39] G. B. Dantzig. A comment on edie’s ”traffic delays at toll booths”. Journal
of the Operations Research Society of America, 2(3):339–341, 1954.

[40] L. Di Gaspero, J. Gärtner, G. Kortsarz, N. Musliu, A. Schaerf, and
W. Slany. The minimum shift design problem. Annals of Operations
Research, 155(1):79–105, 2007.

[41] L. Di Gaspero, J. Gärtner, N. Musliu, A. Schaerf, W. Schafhauser, and
W. Slany. A Hybrid LS-CP Solver for the Shifts and Breaks Design Prob-
lem. In The 7th International Workshop on Hybrid Metaheuristics (HM
2010). Lecture Notes in Computer Science. To appear, Vienna, Austria,
2010.

[42] G. Diepen, J. M. V. D. Akker, and J. A. Hoogeveen. Integrated gate and
bus assignment at amsterdam airport schiphol. Technical Report UU-CS-
2008-041, Department of Information and Computing Sciences, Utrecht
University, Utrecht, The Netherlands, 2008.

[43] G. Diepen, J. v. d. Akker, and J. H. e. J. Smeltink. Using column gener-
ation for gate planning at amsterdam airport schiphol. Technical Report
UU-CS-2007-018, Department of Information and Computing Sciences,
Utrecht University, 2007.

[44] A. Dohn, E. Kolind, and J. Clausen. The manpower allocation prob-
lem with time windows and job-teaming constraints: A branch-and-price
approach. Computers & Operations Research, 36(4):1145–1157, 2009.

[45] U. Dorndorf. Staff and Resource Scheduling at Airports. Operations Re-
search Proceedings 2006, pages 3–7, 2007.

[46] D. Dowling, M. Krishnamoorthy, H. Mackenzie, and D. Sier. Staff ros-
tering at a large international airport. Annals of Operations Research,
72(0):125–147, 1997.

[47] C. Duin and E. Der Sluis. On the complexity of adjacent resource schedul-
ing. Journal of Scheduling, 9(1):49–62, 2006.

[48] A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling
and rostering: A review of applications, methods and models. European
journal of operational research, 153(1):3–27, 2004.

BIBLIOGRAPHY 227

[49] European Commission. The eu ensures access to air transport for persons
with reduced mobility. Press Release IP/07/1173, 2007.

[50] G. Felici and C. Gentile. A polyhedral approach for the staff rostering
problem. Management Science, 50(3):381–393, 2004.

[51] B. Fleischmann, S. Gnutzmann, and E. Sandvoß. Dynamic vehicle routing
based on online traffic information. Transportation science, 38(4):420–433,
2004.

[52] G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno. Real-time vehicle
routing: Solution concepts, algorithms and parallel computing strategies.
European Journal of Operational Research, 151(1):1–11, 2003.

[53] A. Goel, V. Gruhn, and T. Richter. Mobile Workforce Scheduling Problem
with Multitask-Processes. In Business Process Management Workshops,
pages 81–91. Springer, 2010.

[54] B. Golden, S. Raghavan, and E. Wasil. The vehicle routing problem: latest
advances and new challenges. Springer, 2008.

[55] J. Goto, M. Lewis, and M. Puterman. Coffee, tea, or...?: A markov deci-
sion process model for airline meal provisioning. Transportation Science,
38(1):107–118, 2004.

[56] A. Haghani and M. Chen. Optimizing gate assignments at airport termi-
nals. Transportation Research Part A: Policy and Practice, 32(6):437–454,
1998.

[57] J. Herbers. Models and Algorithms for Ground Staff Scheduling On
Airports. Dissertation, Rheinisch-Westfälische Technische Hochschule
Aachen, Faculty of Mathematics, Computer Science and Natural Sciences,
2005.

[58] J. Herbers. Representing Labor Demands in Airport Ground Staff
Scheduling. Operations Research Proceedings 2005, pages 15–20, 2006.

[59] S. Ho and J. Leung. Solving a manpower scheduling problem for airline
catering using metaheuristics. European Journal of Operational Research,
202(3):903–921, 2010.

[60] K. Hoffman and M. Padberg. Solving airline crew scheduling problems by
branch-and-cut. Management Science, 39(6):657–682, 1993.

[61] R. Hung. Single-shift off-day scheduling of a hierarchical workforce with
variable demands. European Journal of Operational Research, 78(1):49–
57, 1994.

228 BIBLIOGRAPHY

[62] IATA. Financial forecast, Jun 2010.

[63] O. Jabali, T. Van Woensel, A. de Kok, C. Lecluyse, and H. Peremans.
Time-dependent vehicle routing subject to time delay perturbations. IIE
Transactions, 41(12):1049–1066, 2009.

[64] L. Jacobs and M. Brusco. Overlapping start-time bands in implicit tour
scheduling. Management Science, pages 1247–1259, 1996.

[65] E. Keith. Operator scheduling. IIE Transactions, 11(1):37–41, 1979.

[66] N. Kohl and S. Karisch. Airline crew rostering: problem types, modeling,
and optimization. Annals of Operations Research, 127(1):223–257, 2004.

[67] N. Kohl, A. Larsen, J. Larsen, A. Ross, and S. Tiourine. Airline disrup-
tion management–Perspectives, experiences and outlook. Journal of Air
Transport Management, 13(3):149–162, 2007.

[68] R. Kolisch and S. Hartmann. Experimental investigation of heuristics for
resource-constrained project scheduling: An update. European Journal of
Operational Research, 174(1):23–37, 2006.

[69] A. Larsen, O. Madsen, and M. Solomon. The a priori dynamic traveling
salesman problem with time windows. Transportation Science, 38(4):459–
472, 2004.

[70] A. Larsen, O. Madsen, and M. Solomon. Recent developments in dynamic
vehicle routing systems. The Vehicle Routing Problem: Latest Advances
and New Challenges, pages 199–218, 2008.

[71] H. C. Lau. On the complexity of manpower shift scheduling. Computers
& Operations Research, 23(1):93–102, 1996.

[72] Y. Li, A. Lim, and B. Rodrigues. Manpower allocation with time windows
and job-teaming constraints. Naval Research Logistics, 52(4):302–311,
2005.

[73] A. Lim, B. Rodrigues, and L. Song. Manpower allocation with time win-
dows. Journal of the Operational Research Society, 55(11):1178–1186,
2004.

[74] C. K. Y. Lin, K. F. Lai, and S. L. Hung. Development of a workforce man-
agement system for a customer hotline service. Computers & Operations
Research, 27(10):987–1004, 2000.

[75] J. Loucks and F. Jacobs. Tour scheduling and task assignment of a hetero-
geneous work force: a heuristic approach. Decision Sciences, 22(4):719–
738, 1991.

BIBLIOGRAPHY 229

[76] R. Lusby, A. Hansen, T. Range, and J. Larsen. An Integrated Approach
to the Ground Crew Rostering Problem with Work Patterns. Technical
report, DTU Management Kgs. Lyngby, 2010.

[77] A. Mason, D. Ryan, and D. Panton. Integrated simulation, heuristic and
optimisation approaches to staff scheduling. Operations Research, pages
161–175, 1998.

[78] L. McGinnis, W. Culver, and R. Deane. One-and two-phase heuristics
for workforce scheduling. Computers & Industrial Engineering, 2(1):7–15,
1978.

[79] M. Mederer, G. Klempert, and T. Arzt. De-peaking Lufthansa Hub Oper-
ations at Frankfurt Airport. In M. Rabe, editor, Advances in Simulation
for Production and Logistics Applications. Fraunhofer IRB Verlag, 2008.

[80] N. Musliu, J. Gärtner, and W. Slany. Efficient generation of rotating
workforce schedules. Discrete Applied Mathematics, 118(1-2):85–98, 2002.

[81] N. Musliu, A. Schaerf, and W. Slany. Local search for shift design. Euro-
pean Journal of Operational Research, 153(1):51–64, 2004.

[82] R. Nissen and K. Haase. Duty-period-based network model for crew
rescheduling in European airlines. Journal of Scheduling, 9(3):255–278,
2006.

[83] W. Powell, M. Towns, and A. Marar. On the value of optimal myopic
solutions for dynamic routing and scheduling problems in the presence of
user noncompliance. Transportation Science, 34(1):67–85, 2000.

[84] H. Psaraftis. Dynamic vehicle routing: Status and prospects. Annals of
Operations Research, 61(1):143–164, 1995.

[85] C. Quimper and L. Rousseau. A large neighbourhood search approach
to the multi-activity shift scheduling problem. Journal of Heuristics,
16(3):373–392, 2010.

[86] A. Regan, H. Mahmassani, and P. Jaillet. Improving efficiency of commer-
cial vehicle operations using real-time information: potential uses and as-
signment strategies. Transportation Research Record, 1493:188–198, 1995.

[87] M. Rekik, J. Cordeau, and F. Soumis. Implicit shift scheduling with mul-
tiple breaks and work stretch duration restrictions. Journal of Scheduling,
13(1):49–75, 2010.

[88] S. Schindler and T. Semmel. Station staffing at pan american world air-
ways. Interfaces, 23(3):91–98, 1993.

230 BIBLIOGRAPHY

[89] J. Schönberger. Adaptive demand peak management in online transport
process planning. OR Spectrum, 32(3):831–859, 2010.

[90] M. Sørensen and J. Clausen. Decentralized ground staff scheduling. Tech-
nical report, Informatics and Mathematical Modelling, Technical Univer-
sity of Denmark, Kongens Lyngby, Denmark, 2002.

[91] H. Stern and M. Hersh. Scheduling aircraft cleaning crews. Transportation
Science, 14(3):277, 1980.

[92] R. Stolletz. Operational workforce planning for check-in counters at air-
ports. Transportation Research Part E: Logistics and Transportation Re-
view, 2009.

[93] G. Thompson. Shift scheduling in services when employees have lim-
ited availability: an LP approach. Journal of Operations Management,
9(3):352–370, 1990.

[94] G. Thompson. Labor scheduling using NPV estimates of the marginal
benefit of additional labor capacity. Journal of Operations Management,
13(1):67–86, 1995.

[95] G. Thompson. A simulated-annealing heuristic for shift scheduling using
non-continuously available employees. Computers & Operations Research,
23(3):275–288, 1996.

[96] G. Thompson and J. Goodale. Variable employee productivity in work-
force scheduling. European Journal of Operational Research, 170(2):376–
390, 2006.

[97] J. Tien and A. Kamiyama. On manpower scheduling algorithms. Siam
Review, 24(3):275–287, 1982.

[98] P. Toth and D. Vigo. The vehicle routing problem. Society for Industrial
Mathematics, 2002.

[99] UK Civil Aviation Authority. Summary of activity at uk airports 2009,
2010.

[100] P. Vance, C. Barnhart, E. Johnson, and G. Nemhauser. Airline crew
scheduling: A new formulation and decomposition algorithm. Operations
Research, 45(2):188–200, 1997.

[101] G. Vanderstraeten and M. Bergeron. Automatic assignment of aircraft
to gates at a terminal. Computers & industrial engineering, 14(1):15–25,
1988.

BIBLIOGRAPHY 231

[102] M. Wen, J. Larsen, and J. Clausen. An exact algorithm for aircraft landing
problem. Technical Report IMM-Technical Report-2005-12, Informatics
and Mathematical Modelling, Technical University of Denmark, 2005.

[103] M. Widl and N. Musliu. An Improved Memetic Algorithm for Break
Scheduling. In Proceedings of the 7th International Workshop on Hybrid
Metaheuristics (HM 2010). Lecture Notes in Computer Science, 2010.

[104] A. Wren and J. Rousseau. Bus driver scheduling-an overview. In
J. R. Daduna, I. Branco, and J. M. P. Paixao, editors, Computer-Aided
Transit Scheduling: Proceedings of the Sixth International Workshop on
Computer-Aided Scheduling of Public Transport, volume 430 of Lecture
Notes in Economics and Mathematical Systems, pages 173–187, 1993.

[105] G. Yu, M. Arguello, G. Song, S. McCowan, and A. White. A new era for
crew recovery at Continental Airlines. Interfaces, 33(1):5, 2003.

[106] G. Yu and X. Qi. Disruption management: framework, models and appli-
cations. World Scientific Pub Co Inc, 2004.

ISBN 978-87-90855-95-6

DTU Management Engineering

Department of Management Engineering

Technical University of Denmark

Produktionstorvet

Building 424

DK-2800 Kongens Lyngby

Denmark

Tel.	+45 45 25 48 00

Fax	+45 45 93 34 35

www.man.dtu.dk

Modern airports are centers of transportation that service a large number of aircraft and passengers
every day. When an aircraft lands, a significant number of tasks must be performed by different
groups of ground crew before the aircraft departs, such as fueling, baggage handling and cleaning.
These tasks are collectively known as ground handling and are the major source of activity with
airports.

The thesis contains an introductory part which provide an overview of the ground handling environ-
ment and reviews a series of optimization problems from the specific perspective of airport ground
handling. Problems considered range from generalized approaches to workforce planning, to detailed
scheduling problems arising in the highly dynamic environment of airports.

	Tommy Clausen, Afhandling PV, MAN.pdf
	Summary
	Resumé
	Preface
	Acknowledgments
	I Airport Ground Handling
	1 Introduction
	1.1 Motivation
	1.2 Optimization in Real-Life Applications
	1.3 Thesis Overview

	2 Introduction to Airport Ground Handling
	2.1 Airport Planning Problems
	2.2 Ground Handling

	3 The Planning Horizon
	3.1 The Planning Timeline
	3.2 Planning and Levels of Detail
	3.3 A Ground Handling Planning Model

	4 Demand Modeling
	4.1 Aggregated Demand
	4.2 Demand Estimation
	4.3 Distributing Staffing
	4.4 Heterogeneous Demand

	5 Workforce Planning
	5.1 An overview of Manpower Planning
	5.2 Shifts
	5.3 Workforce Scheduling and Rostering

	6 Task Scheduling
	6.1 Modeling
	6.2 Operational Optimization
	6.3 Real-Time Optimization

	7 Overview of Papers
	7.1 Paper A: A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport Ground Handling
	7.2 Paper B: A Rule-Based Local Search Algorithm for General Shift Design Problems in Airport Ground Handling
	7.3 Paper C: Dynamic Routing of Short Transfer Baggage
	7.4 Paper D: Route Planning for Airport Personnel Transporting Passengers with Reduced Mobility
	7.5 Paper E: The Offline Group Seat Reservation Problem

	8 Conclusions
	8.1 Contributions
	8.2 Directions of Future Research

	II Scientific Papers
	A A Dynamic Programming-Based Heuristic for the Shift Design Problem in Airport Ground Handling
	A.1 Introduction
	A.2 The Heterogeneous Shift Design Problem
	A.3 Basic Notation
	A.4 Algorithm Overview
	A.5 Solving the 0-1 Shift Design Problem
	A.6 Performance Considerations
	A.7 Computational Results
	A.8 Conclusions

	B A Rule-Based Local Search Algorithm for General Shift Design Problems in Airport Ground Handling
	B.1 Introduction
	B.2 Definitions and Terminology
	B.3 Modular Components
	B.4 Algorithm
	B.5 Computational Results
	B.6 Conclusions and Future Work
	B.7 Additional Tables

	C Dynamic Routing of Short Transfer Baggage
	C.1 Introduction
	C.2 Formal Problem Description
	C.3 Real-life case study
	C.4 Vehicle Dispatching
	C.5 Computational Results
	C.6 Conclusion and Future Work
	C.7 Acknowledgments

	D Route Planning for Airport Personnel Transporting Passengers with Reduced Mobility
	D.1 Introduction
	D.2 Problem Description
	D.3 Mathematical formulation
	D.4 Solution method
	D.5 Data Instance and other parameter values
	D.6 Tuning
	D.7 Test Results
	D.8 Conclusion

	E The Offline Group Seat Reservation Problem
	E.1 Introduction
	E.2 Definitions and Terminology
	E.3 The Group Seat Reservation Knapsack Problem
	E.4 The Group Seat Reservation Bin Packing Problem
	E.5 Computational Results
	E.6 Further Work
	E.7 Conclusion

