16,201 research outputs found

    Graph Isomorphism for unit square graphs

    Get PDF
    In the past decades for more and more graph classes the Graph Isomorphism Problem was shown to be solvable in polynomial time. An interesting family of graph classes arises from intersection graphs of geometric objects. In this work we show that the Graph Isomorphism Problem for unit square graphs, intersection graphs of axis-parallel unit squares in the plane, can be solved in polynomial time. Since the recognition problem for this class of graphs is NP-hard we can not rely on standard techniques for geometric graphs based on constructing a canonical realization. Instead, we develop new techniques which combine structural insights into the class of unit square graphs with understanding of the automorphism group of such graphs. For the latter we introduce a generalization of bounded degree graphs which is used to capture the main structure of unit square graphs. Using group theoretic algorithms we obtain sufficient information to solve the isomorphism problem for unit square graphs.Comment: 31 pages, 6 figure

    On the Complexity of Polytope Isomorphism Problems

    Full text link
    We show that the problem to decide whether two (convex) polytopes, given by their vertex-facet incidences, are combinatorially isomorphic is graph isomorphism complete, even for simple or simplicial polytopes. On the other hand, we give a polynomial time algorithm for the combinatorial polytope isomorphism problem in bounded dimensions. Furthermore, we derive that the problems to decide whether two polytopes, given either by vertex or by facet descriptions, are projectively or affinely isomorphic are graph isomorphism hard. The original version of the paper (June 2001, 11 pages) had the title ``On the Complexity of Isomorphism Problems Related to Polytopes''. The main difference between the current and the former version is a new polynomial time algorithm for polytope isomorphism in bounded dimension that does not rely on Luks polynomial time algorithm for checking two graphs of bounded valence for isomorphism. Furthermore, the treatment of geometric isomorphism problems was extended.Comment: 16 pages; to appear in: Graphs and Comb.; replaces our paper ``On the Complexity of Isomorphism Problems Related to Polytopes'' (June 2001

    Descriptive complexity of controllable graphs

    Full text link
    Let GG be a graph on nn vertices with adjacency matrix AA, and let 1\mathbf{1} be the all-ones vector. We call GG controllable if the set of vectors 1,A1,,An11\mathbf{1}, A\mathbf{1}, \dots, A^{n-1}\mathbf{1} spans the whole space Rn\mathbb{R}^n. We characterize the isomorphism problem of controllable graphs in terms of other combinatorial, geometric and logical problems. We also describe a polynomial time algorithm for graph isomorphism that works for almost all graphs.Comment: 14 page

    Hitting Subgraphs in Sparse Graphs and Geometric Intersection Graphs

    Full text link
    We investigate a fundamental vertex-deletion problem called (Induced) Subgraph Hitting: given a graph GG and a set F\mathcal{F} of forbidden graphs, the goal is to compute a minimum-sized set SS of vertices of GG such that GSG-S does not contain any graph in F\mathcal{F} as an (induced) subgraph. This is a generic problem that encompasses many well-known problems that were extensively studied on their own, particularly (but not only) from the perspectives of both approximation and parameterization. We focus on the design of efficient approximation schemes, i.e., with running time f(ε,F)nO(1)f(\varepsilon,\mathcal{F}) \cdot n^{O(1)}, which are also of significant interest to both communities. Technically, our main contribution is a linear-time approximation-preserving reduction from (Induced) Subgraph Hitting on any graph class G\mathcal{G} of bounded expansion to the same problem on bounded degree graphs within G\mathcal{G}. This yields a novel algorithmic technique to design (efficient) approximation schemes for the problem on very broad graph classes, well beyond the state-of-the-art. Specifically, applying this reduction, we derive approximation schemes with (almost) linear running time for the problem on any graph classes that have strongly sublinear separators and many important classes of geometric intersection graphs (such as fat-object graphs, pseudo-disk graphs, etc.). Our proofs introduce novel concepts and combinatorial observations that may be of independent interest (and, which we believe, will find other uses) for studies of approximation algorithms, parameterized complexity, sparse graph classes, and geometric intersection graphs. As a byproduct, we also obtain the first robust algorithm for kk-Subgraph Isomorphism on intersection graphs of fat objects and pseudo-disks, with running time f(k)nlogn+O(m)f(k) \cdot n \log n + O(m).Comment: 60 pages, abstract shortened to fulfill the length limi

    Solving the Canonical Representation and Star System Problems for Proper Circular-Arc Graphs in Log-Space

    Get PDF
    We present a logspace algorithm that constructs a canonical intersection model for a given proper circular-arc graph, where `canonical' means that models of isomorphic graphs are equal. This implies that the recognition and the isomorphism problems for this class of graphs are solvable in logspace. For a broader class of concave-round graphs, that still possess (not necessarily proper) circular-arc models, we show that those can also be constructed canonically in logspace. As a building block for these results, we show how to compute canonical models of circular-arc hypergraphs in logspace, which are also known as matrices with the circular-ones property. Finally, we consider the search version of the Star System Problem that consists in reconstructing a graph from its closed neighborhood hypergraph. We solve it in logspace for the classes of proper circular-arc, concave-round, and co-convex graphs.Comment: 19 pages, 3 figures, major revisio

    P?=NP as minimization of degree 4 polynomial, integration or Grassmann number problem, and new graph isomorphism problem approaches

    Full text link
    While the P vs NP problem is mainly approached form the point of view of discrete mathematics, this paper proposes reformulations into the field of abstract algebra, geometry, fourier analysis and of continuous global optimization - which advanced tools might bring new perspectives and approaches for this question. The first one is equivalence of satisfaction of 3-SAT problem with the question of reaching zero of a nonnegative degree 4 multivariate polynomial (sum of squares), what could be tested from the perspective of algebra by using discriminant. It could be also approached as a continuous global optimization problem inside [0,1]n[0,1]^n, for example in physical realizations like adiabatic quantum computers. However, the number of local minima usually grows exponentially. Reducing to degree 2 polynomial plus constraints of being in {0,1}n\{0,1\}^n, we get geometric formulations as the question if plane or sphere intersects with {0,1}n\{0,1\}^n. There will be also presented some non-standard perspectives for the Subset-Sum, like through convergence of a series, or zeroing of 02πicos(φki)dφ\int_0^{2\pi} \prod_i \cos(\varphi k_i) d\varphi fourier-type integral for some natural kik_i. The last discussed approach is using anti-commuting Grassmann numbers θi\theta_i, making (Adiag(θi))n(A \cdot \textrm{diag}(\theta_i))^n nonzero only if AA has a Hamilton cycle. Hence, the P\neNP assumption implies exponential growth of matrix representation of Grassmann numbers. There will be also discussed a looking promising algebraic/geometric approach to the graph isomorphism problem -- tested to successfully distinguish strongly regular graphs with up to 29 vertices.Comment: 19 pages, 8 figure
    corecore