67 research outputs found

    The use of buffers in project management: the trade-off between stability and makespan.

    Get PDF
    During execution, projects may be subject to considerable uncertainty, which may lead to numerous schedule disruptions. Recent research efforts have focused on the generation of robust project baseline schedules that are protected against possible disruptions that may occur during schedule execution. The fundamental research issue we address in this paper is the potential trade-off between the quality robustness (measured in terms of project duration) and solution robustness (stability, measured in terms of the deviation between the planned and realised start times of the projected schedule). We provide an extensive analysis of the results of a simulation experiment set up to investigate whether it is beneficial to concentrate safety time in project and feeding buffers, or whether it is preferable to insert time buffers that are scattered in a clever way throughout the baseline project schedule in order to maximize schedule stability.Management; Project management; Project scheduling; Quality; Quality robustness; Robustness; Schedule stability; Scheduling; Simulation; Stability; Time; Uncertainty;

    A hierarchical approach to multi-project planning under uncertainty

    Get PDF
    We survey several viewpoints on the management of the planning complexity of multi-project organisations under uncertainty. A positioning framework is proposed to distinguish between different types of project-driven organisations, which is meant to aid project management in the choice between the various existing planning approaches. We discuss the current state of the art of hierarchical planning approaches both for traditional manufacturing and for project environments. We introduce a generic hierarchical project planning and control framework that serves to position planning methods for multi-project planning under uncertainty. We discuss multiple techniques for dealing with the uncertainty inherent to the different hierarchical stages in a multi-project organisation. In the last part of this paper we discuss two cases from practice and we relate these practical cases to the positioning framework that is put forward in the paper

    Proactive resource allocation heuristics for robust project scheduling.

    Get PDF
    The well-known deterministic resource-constrained project scheduling problem (RCPSP) involves the determination of a predictive schedule (baseline schedule or pre-schedule) of the project activities that satisfies the finish-start precedence relations and the renewable resource constraints under the objective of minimizing the project duration. This pre-schedule serves as a baseline for the execution of the project. During execution, however, the project can be subject to several types of disruptions that may disturb the baseline schedule. Management must then rely on a reactive scheduling procedure for revising or reoptimizing the pre-schedule. The objective of our research is to develop procedures for allocating resources to the activities of a given baseline schedule in order to maximize its stability. We propose two integer programming based heuristics and report on computational results obtained on a set of benchmark problems.

    The trade-off between stability and makespan in resource-constrained project scheduling.

    Get PDF
    During the last decade a lot of research efforts in the project scheduling literature have concentrated on resource-constrained project scheduling under uncertainty. Most of this research focuses on protecting the project due date against disruptions during execution. Few efforts have been made to protect the starting times of intermediate activities. In this paper, we develop a heuristic algorithm for minimizing a stability cost function (weighted sum of deviations between planned and realized activity starting times). The algorithm basically proposes a clever way to add intermediate buffers to a minimal duration resource-constrained project schedule. We provide an extensive simulation experiment to investigate the trade-off between quality robustness (measured in terms of project duration) and solution robustness(stability). We address the issue whether to concentrate safety time in so-called project and feeding buffers in order to protect the planned project completion time or to scatter safety time throughout the baseline schedule in order to enhance stability.Stability; Project scheduling; Scheduling; Research; Uncertainty; Time; Heuristic; Simulation; Quality; Quality robustness; Robustness; Order; Scatter;

    Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities.

    Get PDF
    Research concerning project planning under uncertainty has primarily focused on the stochastic resource-constrained project scheduling problem (stochastic RCPSP), an extension of the basic CPSP, in which the assumption of deterministic activity durations is dropped. In this paper, we introduce a new variant of the RCPSP for which the uncertainty is modeled by means of resource availabilities that are subject to unforeseen breakdowns. Our objective is to build a robust schedule that meets the project due date and minimizes the schedule instability cost, defined as the expected weighted sum of the absolute deviations between the planned and actually realized activity starting times during project execution. We describe how stochastic resource breakdowns can be modeled, which reaction is recommended when are source infeasibility occurs due to a breakdown and how one can protect the initial schedule from the adverse effects of potential breakdowns.

    The trade-off between stability and makespan in resource-constrained project scheduling.

    Get PDF
    During the last decade, considerable research efforts in the project scheduling literature have concentrated on resource-constrained project scheduling under uncertainty. Most of this research focuses on protecting the project due date against disruptions during execution. Few efforts have been made to protect the starting times of intermediate activities. In this paper, we develop a heuristic algorithm for minimizing a stability cost function (weighted sum of deviations between planned and realized activity starting times). The algorithm basically proposes a clever way to scatter time buffers throughout the baseline schedule. We provide an extensive simulation experiment to investigate the trade-off between quality robustness (measured in terms of project duration) and solution robustness (stability). We address the issue whether to concentrate safety time in so-called project and feeding buffers in order to protect the planned project completion time or to scatter safety time throughout the baseline schedule in order to enhance stability.Project management; Scheduling/sequencing; Simulation methods;

    Heuristic procedures for reactive project scheduling.

    Get PDF
    This paper describes new heuristic reactive project scheduling procedures that may be used to repair resource-constrained roject baseline schedules that suer from multiple activity duration disruptions during project execution.The objective is to minimize the deviations between the baseline schedule and the schedule that is actually realized.We discuss computational results obtained with priority-rule based schedule generation schemes, a sampling approach and a weighted-earliness tardiness heuristic on a set of randomly generated project instances.Project scheduling; Scheduling; Reactive scheduling; Research; Uncertainty; Stability;
    corecore