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Abstract

This paper describes new heuristic reactive project scheduling proce-
dures that may be used to repair resource-constrained project baseline
schedules that suffer from multiple activity duration disruptions during
project execution. The objective is to minimize the deviations between
the baseline schedule and the schedule that is actually realized.

We discuss computational results obtained with priority-rule based
schedule generation schemes, a sampling approach and a weighted-earliness
tardiness heuristic on a set of randomly generated project instances.

Keywords: Project scheduling, uncertainty, stability, reactive scheduling

1 Introduction

During project execution, project activities may take longer or shorter than
initially expected, resources may become temporarily unavailable, new activities
may have to be included, the project may have to be interrupted for a certain
time, etc. Effectively dealing with these uncertainties is an important challenge
for any project manager. This paper focuses on processing time uncertainties.

In general, there are two approaches for dealing with uncertainty in a
scheduling environment (Davenport and Beck (2002), Herroelen and Leus
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(2005)): proactive and reactive scheduling. Proactive scheduling aims at the
construction of a protected initial schedule (baseline or predictive schedule) that
anticipates possible future disruptions by exploiting statistical knowledge of un-
certainties that have been detected and analyzed in the project planning phase.
However, despite the protection included in the initial schedule, disturbances
during project execution may cause deviations from the predictive schedule and
may even make it infeasible. Reactive scheduling procedures are then needed
to repair the schedule such that it reflects the objectives and constraints of the
evolved environment while minimizing the negative impact of the disruption.
This paper deals with the development of efficient and effective procedures that
can be used during project execution to repair the initial project schedule when
needed.

A recent research track deals with the stochastic resource-constrained project
scheduling problem (stochastic RCPSP), an extension of the well-known (deter-
ministic) RCPSP that involves the minimization of the expected makespan of a
project with stochastic activity durations (problem m, 1|cpm,dj |E(Cmax) in the
classification of Herroelen et al. (2000)). The stochastic RCPSP aims at making
a project schedule quality robust, i.e. insensitive to disruptions that affect the
obtained scores on the performance metrics used to evaluate the quality of the
schedule (typically the project duration or makespan). Most of the research
efforts on the stochastic RCPSP rely on so-called scheduling policies (Möhring
et al. (1984, 1985)). No use is made of a predictive schedule, but the scheduling
problem is viewed as a multi-stage decision process where scheduling decisions
have to be made at stochastic decision points that correspond to the completion
time of activities, exploiting only knowledge about the observed past and a priori
knowledge about the processing time distributions. More recently, Stork (2001)
has examined the performance of different classes of policies, while Ballest́ın
(2006) developed efficient metaheuristic solution procedures.

However, in a stochastic environment, ensuring the timely completion of a
project for a broad range of scenarios, i.e. quality robustness, is often not the
only issue. In many cases where certain preparations have been made once the
predictive schedule is established (ordering raw materials, acquiring necessary
tools or equipment, organizing the workforce, fixing delivery dates for both
subcontractors and customers, etc.), it is desirable that the activity starting
times that are actually realized during project execution differ little from the
planned activity starting times in the predictive schedule. Stability or solution
robustness refers to the insensitivity of planned activity start times to schedule
disruptions that may occur during project execution.

The benefits of generating stable predictive schedules have been demon-
strated by Van de Vonder et al. (2005a). However, solution robustness or sche-
dule stability should also be maintained when the predictive schedule breaks
and needs to be repaired. Reactive procedures should try to repair the predic-
tive schedule in such a way that the safety included in the original predictive
schedule is preserved.

The literature concerning robust reactive project scheduling is virtually void.
Yu & Qi (2004) describe an ILP model for the multi-mode RCPSP and re-
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port on computational results obtained by a hybrid mixed integer program-
ming/constraint propagation approach for minimizing the schedule deviation
caused by a single disruption induced by a known increase in the duration of a
single activity.

The objective of this paper is to develop effective and efficient robust reac-
tive project scheduling procedures when multiple activity duration disruptions
may occur during the execution of a resource-constrained project. Reactive
schedule generation schemes are the subject of Section 2. We briefly review
the working principles of existing serial, stochastic serial and parallel schedule
generation schemes and develop a new robust serial and a robust parallel sche-
dule generation scheme. We demonstrate that robust serial and parallel schedule
generation schemes do not suffer from the so-called Graham anomalies (Graham
1966) when the duration of a single activity is disrupted, while these anomalies
may occur when more than one activity is disturbed. The reactive scheduling
procedures are developed in Section 3. We describe various priority rules to
be combined with the schedule generation schemes described in Section 2 and
present a sampling procedure that combines the schemes with multiple priority
lists. We also describe a heuristic for the weighted earliness-tardiness problem
that may be used for reactive scheduling where the due dates of the activi-
ties are their planned completion times in the predictive schedule. The set-up
of the computational experiment for validating the various reactive scheduling
procedures is described in Section 4. The computational results are analyzed
in Section 5. Section 6 is reserved for overall conclusions and suggestions for
future research.

2 Robust reactive scheduling

While proactive scheduling efforts are made before the actual start of the
project, reactive project scheduling is a multi-stage decision process that takes
place during project execution. To construct a predictive project schedule S0,
best practice is to employ a priori statistical knowledge about the stochastic
project entities. Mostly, the expected or average duration E(dj ) of activity j
is used to decide upon its predictive starting time s0

j . The actual duration dj

of project activity j is only known with certainty at its completion. New in-
formation thus becomes gradually available during project execution, possibly
requiring a schedule revision. At every point t in time, the projected schedule
St predicts how the project scheduler expects the project to unfold given the
information available at that time. If an activity was projected to have finished
at time t, but it has not, the activity should remain active in the projected
schedule. In Van de Vonder et al. (2005b), we explicitly assumed that in that
case, the exact realized duration is known and the remainder of the disrupted
activity could readily be scheduled for its remaining duration dj −E(dj). This
assumption might be unrealistic and will not be made in this paper. The dis-
rupted activity will be continued for only one time period between t and t + 1
and will be reconsidered iteratively until it finishes.
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When the project finishes at stochastic time T , the projected schedule be-
comes the realized schedule ST , that provides complete information about the
actual realizations of the activity durations. The solution robustness of the
project is measured by the deviation ∆(S0, ST ) of this realized schedule ST from
the predictive schedule S0 that was generated before the start of the project.

Solution robust reactive scheduling needs to ensure that the decisions made
during project execution result in a small deviation ∆(S0, ST ). The objective
function used in this paper to evaluate this performance metric is to minimize
the weighted expected sum of the absolute deviations between the planned and
the realized activity start times, i.e. ∆(S0, ST ) =

∑
j wjE|sT

j − s0
j |, where s0

j

denotes the planned starting time of activity j in the predictive schedule S0,
sT

j is a random variable denoting the actual starting time of activity j in the
realized schedule ST , and the weights wj represent the disruption cost of activity
j per time unit, i.e. the non-negative cost per unit time overrun or underrun on
the start time of activity j. We assume that the project will be subject to a
predefined project due date δn and that the baseline starting time of the dummy
end activity s0

n is set equal to this δn. The cost of finishing the project before
δn is zero, while the unit cost of surpassing the due date equals wn.

It should be remarked that evaluating the objective function is very cumber-
some, the PERT problem being #P -complete (Hagstrom 1988). In this paper,
∆(S0, ST ) will be evaluated using simulation. Not only the evaluation of the
objective function, but also the scheduling problem itself is hard. For NP -
hardness proofs of several cases of the scheduling problem for stability subject
to a deadline and a discrete disturbance scenario, we refer to Leus & Herroelen
(2005).

2.1 Schedule generation schemes

Reactive scheduling commonly relies on the application of so-called scheduling
policies or scheduling strategies (Möhring et al. (1984, 1985)) under the objective
of minimizing the expected makespan. A scheduling policy can be defined as a
decision process that defines which set of activities are started at certain decision
points t.

The best-known class of scheduling policies is the class of priority policies
which order all activities according to a priority list λ and at every decision
point select the next activities to start based on this priority list.

Often this selection occurs by applying a parallel schedule generation scheme
(parallel SGS). The parallel SGS iterates over time and starts at each decision
time t as many unscheduled activities as possible in accordance with the prece-
dence and resource constraints. The priority list dictates the order in which
activities are considered.

In deterministic project scheduling, the serial SGS is the best-known alter-
native for the parallel SGS to decide which activities to start at what decision
time. In each iteration, the next unscheduled activity in the priority list is se-
lected and assigned the first possible starting time that satisfies the precedence
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and resource constraints. To apply the serial SGS in a stochastic multi-stage
decision process such as reactive scheduling, at any decision time a complete
schedule has to be generated by applying a deterministic serial SGS. The ob-
served past may not be altered and only activities that have an assigned earliest
possible starting time that equals the current decision time are actually started.
References to the serial SGS later in this paper, will always imply this reactive
serial SGS, unless stated differently.

The stochastic serial SGS (Ballest́ın 2006) used in an activity-based pri-
ority policy (Stork 2001) works as the deterministic serial SGS but adds the
side constraint that si ≤ sj for any activity i that precedes activity j in the
priority list. The stochastic serial SGS might very well result in a different
scheduling decision than the deterministic serial SGS. Consider for example the
partial schedule shown in Figure 1 for a project with a single renewable resource
type. The horizontal bands illustrate the flow of the individual resource units
throughout the project. Assume that at decision time 2, activity 3 (with ex-
pected duration E(d3) = 3 and per period resource requirement r3 = 2) and
activity 4 (E(d4) = 4 and r4 = 1) are eligible for scheduling. The stochastic
serial SGS with priority list λ = {1, 2, 3, 4} will not start activity 4 at time 2
because activity 3, a predecessor of 4 in the list λ, has not yet been scheduled.
The deterministic serial SGS, on the other hand, will first project activity 3 at
time 3 and will decide that this decision does not impede the start of activity 4
at decision time 2.

Figure 1: Partial schedule at time 2

Remember that we are primarily interested in robust reactive scheduling
procedures, while the previously introduced SGSs are all concerned with min-
imizing the expected project makespan. Hence, we propose two new SGSs,
namely the robust parallel SGS and the robust serial SGS.

The robust parallel SGS operates similarly to the parallel SGS with the
side constraint that an activity j is only eligible to be scheduled if the current
decision time t ≥ s0

j , the starting time of activity j in the predictive schedule.
This approach is commonly referred to as railway scheduling.

Like the basic serial SGS, the robust serial SGS considers activities in the
order dictated by a priority list, but instead of starting these activities as early
as possible, they will be scheduled at their feasible positions that are the closest
possible to their planned starting times in the baseline schedule. The deviation
ε = ∆(st

j − s0
j ) will thus be minimized. Contrary to railway scheduling, this

approach allows an activity j to be scheduled earlier than s0
j . Scheduling activity

j at s0
j −ε will even be given priority to scheduling j at s0

j +ε if a tie needs to be
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broken between both possibilities with equal ε. The non-retroactivity constraint
that will be discussed in Section 2.2.1 dictates that at decision point t, an eligible
activity should not be scheduled earlier than t. Whenever ε > s0

j − t, the robust
serial SGS acts like the serial SGS and searches for the earliest resource and
precedence feasible starting time for activity j.

2.2 Properties of schedule generation schemes

In this section we analyze the basic properties of the priority rule-based schedule
generation schemes introduced in the previous section. We investigate whether
they satisfy the so-called non-anticipativity and non-retroactivity constraints,
whether they generate non-delay or active schedules and whether they may
suffer from the so-called Graham anomalies (Graham 1966).

2.2.1 Non-anticipativity constraint and non-retroactivity constraint

The non-anticipativity constraint (Fernandez & Armacost 1995) specifies that
reactive scheduling decisions can only be made on the basis of the observed
information from the past and the a priori statistical knowledge of the future.
This means that we do not know how long the eligible activities will actually
take when we have to decide to schedule them.

As information becomes gradually available during project execution, a
scheduling decision made at time t may no longer be the best decision at
time t′ > t. For such cases, a constraint that is complementary to the non-
anticipativity constraint will be introduced, i.e. the non-retroactivity constraint.
This specifies that a reactive procedure may not overrule previous scheduling
decisions by scheduling activities in the past. Violations of this constraint may
result in infeasible realized schedules.

Assume that we have a project consisting of three activities and a single
renewable resource type with constant availability a = 4. The activities have
expected durations E(d1) = 2, E(d2) = 2, and E(d3) = 3 and resource require-
ments r1 = 2, r2 = 3, and r3 = 2. Suppose that at time 0 we decided to schedule
them by applying a deterministic serial SGS on priority list {1, 2, 3} as shown
in Figure 2. When at time 2, new information becomes available that reveals
that activity 1 will take one extra time unit to complete, the schedule of Figure
3 would minimize the makespan, but violates the non-retroactivity constraint
because activity 3 can not be scheduled in the past.

Figure 2: Predictive schedule S0
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Figure 3: Impossible schedule at time 2

Clearly, all SGSs described in the previous section respect both the non-
anticipativity and the non-retroactivity constraint.

2.2.2 Non-delay and active schedules

A feasible schedule is called active if for all activities no local or global left shift
can be performed. A feasible schedule is called a non-delay schedule if for all
activities no local or global left shift can be performed even if activities can be
preempted at integer time points. A local left shift of an activity j in a schedule
is a left shift that can be obtained by successive one period left shifts of the
activity, i.e. all intermediate schedules in which the starting time of activity j
is successively decreased by one time unit have to be feasible. A left shift which
is not a local left shift is called a global left shift (Brucker & Knust 2006).

Kolisch (1996) has shown that for the RCPSP with constant resource ca-
pacities and regular measures of performance, any schedule generated by the
parallel SGS belongs to the set of non-delay schedules and this set possibly does
not contain any optimal solution. On the other hand, any schedule generated
by the serial SGS belongs to the larger class of active schedules and this class
always includes at least one optimal solution for regular performance measures.

The maximum stability objective function used in this paper, however, is a
non-regular performance measure. In our problem setting, an optimal solution
minimizes the expected difference between the predictive schedule and the re-
alized schedule (

∑
j wjE|sT

j − s0
j |). There is no guarantee that for non-regular

performance measures, there always exists an optimal non-delay schedule or an
optimal active schedule.

Both the robust parallel and robust serial SGS do not necessarily generate
non-delay or active schedules. As with their non-robust variants, the robust
serial SGS generates a larger class of schedules than the robust parallel SGS.
Still, there does not always exist a priority list λ that would result in the a
posteriori optimal realized schedule even if a static scheduling problem with
full information about the realized activity duration is solved. For the robust
parallel SGS, an activity will never be started before its baseline starting time,
while this might well be the case in the optimal solution. For the robust serial
SGS, an activity is scheduled as close as possible to its baseline starting time. An
activity is only scheduled before or after its baseline starting time if scheduling
it at its baseline starting time is infeasible.

In short, both robust reactive scheduling schemes try to aggressively repair
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the predictive schedule and do not intentionally provide any safety cushion
against future disruptions. Protecting a schedule against future disruptions
is left as the sole responsibility of the proactive scheduling routine.

Figure 4: Predictive schedule S0

Given their scheduling characteristics, the robust parallel and robust serial
SGS do not necessarily generate optimal reactive schedules. Consider a small
project consisting of three activities that can only be scheduled in series as
illustrated in the predictive schedule of Figure 4. If activity 1 finishes early at
time 2, both the robust serial and robust parallel SGS would decide to project
activities 2 and 3 at their baseline starting times. Assume that P (d2 = 1) = 0.5
and P (d2 = 3) = 0.5. This means that there is a 50% probability that starting
activity 2 at its predicted start time s2

2 = 4 induces a one period delay in the
start of activity 3 with a cost equal to w3. The total expected cost would then
be 0.5(0)+0.5(w3). However, if we did apply a robust SGS and decided to start
activity 2 at time 3, one period earlier than planned, there would have been
a 100% probability that we induce a cost w2, while activity 3 could start as
originally planned. If w3 > 2 × w2, such a proactive strategy would result in a
lower expected stability cost than the cost obtained by either the robust serial
or the robust parallel SGS.

2.2.3 Graham anomalies

Given the type of activity duration uncertainty dealt with in this paper,
the parallel and serial SGS may suffer from the so-called Graham anomalies
(Graham 1966) that were identified for parallel machine scheduling problems
under the minimum makespan objective. For example, Figures 2 and 3 illus-
trate the anomaly that an activity duration extension may result in a shorter
makespan if the serial SGS is used in the deterministic RCPSP setting with
priority list λ = {1, 2, 3}. A one-period duration extension of activity 1 leads to
a two-period reduction in makespan.

In this paper, we are concerned about anomalies that may be induced by
activity duration reductions or extensions under the schedule stability objec-
tive. Stated otherwise, we are interested to know whether it is possible that an
activity duration reduction deteriorates stability or that an activity duration
extension improves stability. In order to answer both questions, two cases must
be distinguished: (a) the activity disruption is a stand-alone disruption, and (b)
other activities are also disrupted (disruption scenario).

Stand-alone activity disruption As long as there is no activity disruption,
the projected schedule St is, by definition, identical to the predictive schedule
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S0 with a stability cost of ∆(S0, S0) = 0. Because the stability cost is always
non-negative, no activity duration extension can ever decrease the stability cost,
independently of the SGS used. This limits our search for stability anomalies
to an investigation of the impact of activity duration reductions on stability.

If we apply non-robust SGSs, almost any duration reduction may generate
the stability anomaly because a cost is also incurred if an activity starts earlier
than its predictive starting time and its successors may start earlier.

A robust parallel SGS applies railway scheduling. As a result, a stand-alone
activity duration reduction does not affect the time that an activity becomes
eligible which equals its starting time in the predictive schedule. Because the
predictive schedule was both precedence and resource feasible, each activity will
be scheduled at its baseline starting time, resulting in a schedule with zero
stability cost.

The robust serial SGS decides to plan each activity i at its feasible starting
time st

i with minimal deviation |st
i − s0

i | from its baseline starting time s0
i .

Because a stand-alone duration reduction never prevents an activity i to start
at s0

i , |st
i−s0

i | = 0 for each activity and the stability cost will thus again remain
zero.

Clearly, in the single activity disruption case, both the robust serial and the
robust parallel SGS do not suffer from stability anomalies induced by changes
in activity duration.

Disruption scenario It can readily be shown that an activity duration exten-
sion (reduction) can improve (deteriorate) stability if other disruptions already
occurred.

Figure 5: Predictive schedule S0

Let us illustrate this anomaly on a 4-activity project with a single renewable
resource type with availability a = 2 and resource requirements r1 = 1, r2 = 1,
r3 = 2, r4 = 1. Assume there are no precedence constraints and the expected
activity durations are E(d1) = 2, E(d2) = 1, E(d3) = 2, and E(d4) = 1. Figure
5 shows a baseline schedule with minimum makespan.

Assume that the reactive scheduling schemes use the priority list λ =
{1, 2, 3, 4}. If at time 1, activity 2 has not yet finished, the robust SGSs would
both result in the projected schedule S1 of Figure 6, in which only activity 4
does not start at its baseline starting time. The stability cost of this schedule is
thus 3× w4. An extension of activity 1, would result in the projected schedule
S2 of Figure 7 at time 2 with a stability cost of w3 + w4. It is not difficult to
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Figure 6: Projected schedule S1 at time 1

Figure 7: Projected schedule S2 at time 2

find values for the weights such that this cost will be smaller than the cost of
S1 so that the second activity duration extension would improve stability.

2.2.4 Dispatching

The parallel and robust parallel SGS operate as a dispatching or on-line schedul-
ing rule, making scheduling decisions dynamically over time. At each decision
point, a dispatching rule decides which activities to start without having to
decide when the not yet started activities will be projected.

The serial SGS is not commonly used in stochastic scheduling because it
does not behave as a dispatching rule. It requires at each decision point t
the calculation of a complete projected schedule St, including best guesses for
projected starting times of all the activities that have not yet been started. Full
rescheduling at each decision point obviously entails increased computational
time. The same reasoning holds for the robust serial SGS. The stochastic serial
SGS is based on the serial SGS, but has the advantage that it can be used as
a dispatching rule because of its extra constraint that si ≤ sj for any activity i
that precedes activity j in the priority list.

For a solution robust reactive procedure that tries to minimize the devia-
tion between the projected schedule St constructed at current time t and the
predictive schedule S0, having knowledge of the complete projected schedule is
essential. Later in this paper, the parallel SGSs will be extended so that they
allow for a complete projected schedule to be generated at each decision point.

3 Reactive scheduling procedures

In this section we will describe the four reactive procedures used in the compu-
tational experiment of Section 4.
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3.1 Priority lists scheduling

The schedule generation schemes described in Section 2.1 were based on a prece-
dence feasible1 priority list to decide which activities to schedule at each decision
time. The following static priority rules for generating the priority list will be
tested in the computational experiment described in Section 4:

• EBST = earliest baseline activity starting time

• LST = latest starting time

• LW = largest activity weight

• LAN = lowest activity number

• RND = random

The EBST rule orders the activities in non-decreasing order of their starting
times in the predictive schedule S0. The LST priority rule (Alvarez-Valdez
& Tamarit 1989), that orders the activities in non-decreasing order of their
latest starting time, is included because it ranks among the best priority rules
for the deterministic RCPSP. Ties can be broken by ordering the activities in
decreasing order of their weights wj (EBST1 and LST1) or increasing order of
their activity numbers (EBST2). The LW rule gives priority to activities with
a large disruption cost wj (smallest activity number as tie-breaker). The LAN
rule orders the activities in increasing order of their activity number. The RND
rule generates the priority list fully randomly.

Dynamic priority lists depend on the current projected schedule and should
thus be updated at each decision time t. The information about the past is
known and might influence decisions about the future. We consider two dynamic
priority lists:

• EPST = earliest projected starting times

• MC = minimal cost

The EPST rule orders activities at time t by increasing starting times st−1
i

of the projected schedule St−1 generated at the previous decision time. The MC
rule orders the activities by increasing wi(s0

i − t). This value will be negative
when s0

i < t and positive when s0
i ≥ t. For activities with s0

i < t, priority is
given to activities that induce a high stability cost wi|s0

i − t| if started at time
t, because delaying their start to a later starting time would even be worse. On
the other hand, among the activities with s0

i ≥ t, we prefer to schedule activities
with low stability cost first.

1A priority list λ is precedence feasible if ∀(i, j) ∈ A: i precedes j in λ
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3.2 Fixed resource allocation

As has been proposed by Leus (2003), it is possible to react on schedule dis-
ruptions by simply maintaining the resource allocation decisions made on the
predictive schedule. For the resource and precedence feasible baseline schedule,
a resource flow network can be generated that decides how the resource units
are passed on among the activities. A number of resource allocation procedures
have been derived in the literature (Leus & Herroelen (2004), Policella et al.
(2004) and ongoing research by Deblaere et al. In this paper, we rely on the
simple procedure developed by Artigues et al. (2003) that generates a feasible
resource flow by extending a parallel schedule generation scheme. Preserving
these resource flows when disruptions occur, boils down to right-shifting the
affected activities such that the newly generated projected schedule remains
feasible.

3.3 Sampling approach

This section describes two reactive scheduling sampling schemes that rely on
different priority lists in combination with different schedule generation schemes:
basic sampling and time-window sampling. Sampling means in this context that
at any decision time several feasible solutions are generated and evaluated and
that the best candidate solution is selected.

3.3.1 Basic sampling

The basic sampling approach tries to make a suitable scheduling decision at any
decision time t as follows:

for t = 0, ...., T do
Step 1: Check for new scheduling information.
Step 2: If no new information then St = St−1 and goto period

t + 1
else goto step 3

Step 3: For list l : 1...Ldo
Construct St

λl,RP and calculate ∆(S0, St
λl,RP )

Construct St
λl,RS and calculate ∆(S0, St

λl,RS)
Construct St

λl,P
and calculate ∆(S0, St

λl,P
)

Construct St
λl,S

and calculate ∆(S0, St
λl,S

)
Store the projected schedule St that minimizes ∆(S0, St)

Step 4: Start all activities i with st
i = t.

Step 1 checks for new information becoming available at time t. If at time
t, no activity finishes and no activity was projected to finish, then no new
information is available compared to the previous decision point t − 1. The
previous projected schedule St−1 remains valid (Step 2).

Instead of using one priority list in combination with one SGS, Step 3 uses
multiple lists λl ∈ {λ1, ..., λL} at time t in combination with several SGSs. For
each of these lists λl, a complete projected schedule is constructed using the
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robust parallel SGS (St
λl,RP ), the robust serial SGS (St

λl,RS), the parallel SGS
(St

λl,P
) and the serial SGS (St

λl,S
). Doing so, a total of 4×L candidate projected

schedules are generated, with L identifying the number of lists. Among them,
the projected schedule St that accounts for the smallest deviation ∆(S0, St)
from the predictive schedule is stored. The procedure continues in Step 4 by
starting the activities i that have projected starting times st

i = t in St. Remark
that in order to compare the stability costs of all candidate solutions, a com-
plete projected schedule must always be made at any decision time by using
the statistical knowledge of future activities. This means that the dispatching
advantage of the parallel SGSs can not be exploited.

3.3.2 Time-window sampling

The main problem that might occur in the standard sampling approach is that
the decision whether a candidate projected schedule is selected or not might
depend on activities that are projected much later in the project at time t′.
However, these projected activities are still subject to major uncertainties (non-
anticipativity constraint) and should not predominate the current decision pro-
cess. There is no reason to assume that the current reactive policy will also be
applied at time t′.

Time-window sampling (TW Sampling) tries to cope with this problem by
making use of a time window (TW). The difference with the basic sampling
approach lies in the generation of the candidate projected schedules St

λ,. at time
t (Step 3). Instead of generating a complete projected schedule by applying
the current SGS on the current list λ, TW Sampling only applies this policy
to decide which activities to project within a certain time window [t, t + Θ].
Activities that are not planned to start within this time window, are projected
by following the priority list λ1 = EBST1. The generation scheme to transform
this priority list into a projected schedule is the robust variant of the SGS applied
within the time window. Note that deciding which activities to project within
[t, t+Θ] already requires a complete schedule if we apply a non-dispatching SGS
such as the serial SGS. For on-line scheduling procedures, such as the parallel
SGS, a complete projected schedule is only required once. The dispatching
advantage of the parallel SGSs that was absent in the basic sampling procedure
can be exploited in TW Sampling.

The results of basic and TW sampling depend on the number of priority lists
L used and the actually selected priority lists λl. For TW Sampling the time
window size Θ will be an important parameter. The impact of these settings
will be examined in Section 5.

3.4 A heuristic WET procedure

The reactive scheduling problem at each decision point can be viewed as
a Resource-Constrained Project Scheduling Problem with Weighted Earliness-
Tardiness Costs (problem m, 1|cpm|early/tardy in the notation of Herroelen et
al. (2000)). Due dates are set equal to the activity completion times s0

j +E(dj)
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in the predictive schedule. The earliness and tardiness costs will be symmetrical
and used as the weights wj in the stability objective function, except for the
earliness cost of the dummy end activity which will be set equal to zero.

Some efficient exact procedures for solving problem m, 1|cpm|early/tardy
have been proposed in the scheduling literature (Schwindt (2000), Vanhoucke
et al. (2001), Kéri & Kis (2005)). However, Van de Vonder et al. (2005b) showed
that calling an exact weighted earliness-tardiness procedure at any schedule
breakage point is already computationally infeasible for small network sizes.

Recently, Ballest́ın & Trautmann (2006) developed a population-based it-
erated local search algorithm for the weighted earliness-tardiness resource-
constrained project scheduling problem with minimum and maximum time lags
(problem m, 1|gpr|early/tardy). Although faster than exact procedures, this
procedure still remains computationally demanding for our problem. We now
introduce an adapted version of this procedure which is based on the metaheuris-
tic Iterated Local Search (Lourenço et al. 2002). It is a version of the algorithm
described in Ballest́ın & Trautmann (2006), customized to the special charac-
teristics of the problem. Some of the original features have been omitted to
reduce the computational requirements of the algorithm.

The algorithm runs as follows:
WET Procedure

1. Initialize Elite Set.
2. While without imp < max without imp do

a. Select a schedule S from Elite Set.
b. S ’ = Perturbation2(S ).
c. S” = Local Search(S ’).
d. If ∆(S′′, S0) < ∆(S+, S0) then {without imp = 0, S+ = S′′}.
e. Else without imp = without imp+1.
f. If ∆(S′′, S0) < ∆(S−, S0) then S” replaces S− in Elite Set.

3. Return the best solution obtained: St = S+.
S+ and S− are the best and worst solution of Elite Set respectively.
Step 2 is repeated iteratively until the number of iterations without improve-

ment (without imp) equals a predefined number (max without imp). Define
card as the cardinality of the Elite Set. At any time, the card best solutions
are stored. We initialize the Elite Set in Step 1 as follows:

Initialize Elite Set(card, nitial, nitial2)
1. S = St

λEBST1,RS . S2 = St
λEP ST ,RS .

2. S ’ = Local Searches(S ). S2’ = Local Searches(S2).
3. Temporary Set = {S ’,S2’}. Elite Set ={ }.
4. For i = 0, i < nitial2− 2 do

a. If i is even then λ = Perturbation1(λEBST1).
b. Else λ = Perturbation1(λEPST ).
c. Construct Si = St

λ,RS and calculate ∆(S0, Si).
5. Temporary Set = Best nitial solutions from the nitial2 initial solu-

tions.
For i = 0, i < nitial do

a. Restore Si from Temporary Set
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b. S ’ = Local Search(Si).
c. Elite Set = Elite Set ∪ {S ’}.

6. Elite Set = Best card solutions from the nitial initially generated
solutions.

In Perturbation1, nunsche/10 activities are chosen one after the other and
reintroduced in the activity list elsewhere, where nunsche is the number of un-
scheduled activities. The movements are made so that the outcome is an activity
list. Perturbation2 delays the position of some advanced activities and advances
the position of some delayed activities in the activity list. It is described in more
detail under the name of Perturbation4 in Ballest́ın & Trautmann (2006). Lo-
cal Search includes three of the Local Searches used in that paper. The second
one sorts the early activities in decreasing order of their finish times in the so-
lution S and schedules each activity as closely as possible to its due date. Then
it proceeds analogously with the delayed activities, sorting them in increasing
order of their starting times in S. Before applying this local search, we em-
ploy LocalSearch 1, which allows more freedom in the movement of activities.
Each early (delayed) activity is scheduled as late (early) as possible, but the
movement is stopped right before the objective function deteriorates. For each
delayed activity that can be left shifted due to precedence relationships, the last
local search calculates the set of activities B that restrain this movement and
that can be moved. The function considers each activity j ∈ B and unschedules
it. Then it calculates whether it is better to schedule first i and then j, each
of them as close as possible to its real due date. After working with all the
activities of B, the method performs the best of these movements if it produces
an improvement in the objective function.

4 Experimental set-up

All algorithms have been coded in Microsoft Visual C++ 6.0 and have been
tested on the 600 120-activity instances of the well-known PSPLIB 120 data set
(Kolisch & Sprecher 1997).

Two types of predictive schedules S0 are used as input for the reactive pro-
cedures. The first type is generated using the combined crossover algorithm for
the RCPSP developed by Debels & Vanhoucke (Debels & Vanhoucke 2006) 2

with 50,000 schedule generations as stop condition. This algorithm has been
shown to be among the best performing metaheuristic RCPSP procedures for
both small and larger data sets. The obtained schedule has a makespan of Cmax

and can be regarded as quality robust for a stochastic environment. The second
type of predictive schedule is derived from the first by applying the proactive
STC heuristic (Van de Vonder et al. 2005a) for inserting time buffers. In both
predictive schedules, the project due date δn will be set equal to b1.3× Cmaxc,
which was found to be adequate for most project schedules in a recent study by
Van de Vonder et al. (2006).

2 An executable program can be found at www.projectmanagement.ugent.be/downloads/RCPSP
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Realized activity durations dj are drawn from a beta-distribution with pa-
rameters 2 and 5, with mean equal to the expected activity duration E(dj) and
with a variance depending on the degree of uncertainty included in dj . We ran-
domly determine for every activity whether it has high, low or medium duration
variability. For more details on the generated test instances, we refer to Van de
Vonder et al. (2005a).

The stability cost
∑
j∈N

wjE|s0
j − sT

j | is evaluated by drawing the wj for each

activity j ∈ {1, 2 . . . n− 1} from a discrete triangular distribution with P (wj =
q) = (21 − 2q)% for q ∈ {1, 2....10}. This distribution results in a higher
probability for low weights and in an average weight wavg = 3.85. The weight
wn of the dummy end activity denotes the marginal cost of violating the project
due date and will be fixed at b10× wavgc = 38. For an extensive evaluation of
the impact of the activity weight of the dummy end activity, we refer to Van de
Vonder et al. (2005b) and Van de Vonder et al. (2006).

Extensive simulation has been used to evaluate all procedures on stability
and computational efficiency. For every network instance the average stability
cost over 100 execution runs has been computed.

5 Computational results

All computational results have been obtained on a Pentium IV 2.4 GHz personal
computer. In this section, results of the reactive procedures will be discussed
for the two predictive schedules described in the previous section. Section 5.1
discusses results when the metaheuristic RCPSP solution is used as a quality
robust predictive schedule, while Section 5.2 examines the impact of the solution
robust predictive STC-schedule on stability.

5.1 Quality robust predictive schedule

Table 1: Average stability cost on PSPLIB 120

λ RP RS P S Avg.
EBST1 2457.69 2481.89 3782.89 2520.68 2810.79
EBST2 2493.39 2516.89 3810.77 2543.05 2841.02
LAN 2889.71 5302.13 5833.49 6903.29 5232.15
LST1 3578.85 6691.31 7858.82 9557.33 6921.58
LW 3332.21 7338.43 7707.27 10312.68 7172.65
RND 3345.38 7256.90 7553.44 9985.12 7035.21
EPST 2560.37 2910.73 3862.35 3064.84 3099.57
MC 2959.78 2856.34 6457.86 3128.49 3850.62
Avg. 2952,17 4669,33 5858,36 6001,93
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In this section, the predictive schedule is generated by the combined
crossover algorithm of Debels & Vanhoucke (2006). Table 1 shows us the av-
erage stability costs over 100 iterations for the 600 instances of the PSPLIB
120 set. We remark that the priority list should be ordered by increasing start-
ing times (EBST1, EBST2 or EPST) to obtain good results. EBST1 slightly
outperforms EBST2 as the best priority list. Despite the extra computational
time spent by dynamical lists to constantly update the priority list based on the
new information acquired in the current projected schedule, they do not obtain
better results. After all, we try to minimize the deviation between ST and the
predictive schedule S0, not the projected schedules. Applying the robust par-
allel SGS on the list λEBST1 obtains the best overall results. The robust serial
SGS obtains very similar results on λEBST1, but the results of this SGS are
more sensitive to the priority list that is applied. For example, λLW increases
the average stability cost with 36% compared to λEBST1 when we apply the
robust parallel SGS, while this increase is as high as 196% for the robust serial
SGS.

Table 2: Computational times on PSPLIB 120 (in s.)

RP RS P S
Static 0.04 0.52 0.04 0.72
Dynamic 3.37 0.96 3.76 1.18

Table 2 shows us the computational requirements of the priority list policies.
Static priority lists combined with a parallel SGS are computationally the most
efficient procedures among the priority policies. They take on average only 0.04s
per PSPLIB 120 instance (for 100 execution scenarios). Due to the absence of
the dispatching property discussed in 2.2.4, serial SGSs consume substantially
more time, i.e. 0.62s on average per network (average of 0.52 and 0.72 in Table
2). Dynamic priority lists require extra computational time to recalculate the
priority list at every decision time. Applying a serial SGS on a dynamic list
almost doubles the computational time needed to 1.07s. For the parallel SGS the
impact of dynamic lists on computational efficiency is even far more pronounced
because the dispatching property can no longer be exploited and the parallel
SGS needs then to search the priority list at every decision time, while the serial
SGSs only do this once. The parallel SGSs require on average 3.56s to solve the
PSPLIB instances. Robust SGS are on average slightly faster than their non-
robust counterparts. We obtain the very uncommon, but promising conclusion
that the best priority policy, applying the robust parallel SGS on λEBST1, is
also among the fastest.

The results and computational requirements for fixed resource allocation
and the stochastic serial scheduling scheme are given in Table 4. Fixing the
resource flows by the algorithm of Artigues et al. (2003) scores substantially
worse on stability than the better results of priority list scheduling. On the
PSPLIB 120 data set, we obtain an average stability cost of 4869.88 in less than
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Table 3: Benchmark results∑
j∈N

wjE|s0
j − sT

j | Time (s)

Fixed resource allocation 4869.88 0.0060
Stochastic serial SGS on λEBST1 4222.77 0.0097

0.01s. Delays are propagated throughout the project because of the pre-decided
resource flows. Even imposing the railway scheduling property does not improve
stability cost because it entails even more delay. Applying the stochastic serial
generation scheme on λEBST1 also delivers unsatisfying results with an average
stability cost of 4222.77.

Table 4: Advanced heuristics∑
j∈N

wjE|s0
j − sT

j | Time (s)

Sampling 2217.97 23.0
TW Sampling 2172.74 32.5
ILS 2073.53 79.5

Next we will investigate the results obtained by the more advanced heuristics
described in this paper, being Sampling, TWsampling and ILS. An overview
can be found in Table 4.

The performance of the sampling procedure highly depends on the lists λl

that we include. We experimentally decided to include the six static priority lists
of Table 1 and their precedence feasible backward lists (BW). A backward list is
a precedence feasible priority list with reverse priorities for the activities. The
backward list of the EBST rule is thus the Latest Baseline Starting Time rule,
etc. These backward lists might seem illogical as robust reactive procedures but
will prove their use in the sampling procedure. The logic behind their inclusion
is that when a priority list does not result in a schedule with low deviation
from S0, its inverse list might do so. The backward list of λEBST2 has been
removed from consideration because it hardly improved any results due to its
resemblance with EBST1 BW .

The number of included list L thus equals 11, resulting in 4 × L = 44
candidate projected schedules at any decision time. The average stability cost
on PSPLIB 120 is 2217.97, which is a 9.8% decrease compared to the best
priority list policy of Table 1. The sampling procedure runs on average in
23s. The average makespan is 161.4. At on average 76.9 decision times during
execution, new information is available and rescheduling required. Table 5 shows
the frequencies that any policy generates a candidate projected schedule with
minimum stability cost. In 52 % of all decision times, (λEBST1, RS) generates a
candidate projected schedule that is not dominated by any of the other policies.
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In most cases several policies will result in projected schedules that are either
identical or have equal stability cost. The ordering of the policies is important
because a policy will only be selected if its projected schedule has a lower sta-
bility cost than all previously considered schedules. We start by considering all
projected schedules generated by the robust parallel SGS, ordered by increasing
numbers as indicated in Table 5. Afterwards the robust serial, parallel and serial
SGS will be considered respectively. Table 6 shows the percentages that each
policy is actually selected as best for rescheduling by the sampling procedure.

Table 5: Frequencies that policies generate best candidate

λ RP RS P S
1. EBST1 37.05% 52.01% 18.88% 35.03%
2. EBST2 33.05% 46.22% 18.14% 31.95%
3. LAN 25.70% 20.58% 15.88% 15.24%
4. LST 22.87% 19.58% 15.28% 14.64%
5. LW 24.17% 19.92% 15.61% 14.86%
6. RND 23.33% 19.48% 15.31% 14.63%
7. EBST1 BW 23.01% 19.45% 15.29% 14.61%
8. LAN BW 23.34% 19.54% 15.42% 14.67%
9. LW BW 22.91% 19.42% 15.28% 14.61%
10. RND BW 23.98% 19.88% 15.53% 14.87%
11. LST BW 23.26% 19.45% 15.37% 14.58%

The best simple priority policy (λEBST1, RP ) is considered first and selected
in 37.05% of all cases. In 62.95% of all decisions, at least one other policy yielded
better results. Aggregated over all SGSs, the EBST1 priority rule was best
in 64.03% of all decisions made. More importantly, however, is that also the
overall less performing policies, such as the non-robust ones and the ones that
follow backward priority lists were selected. In 6.62% of the procedure calls, a
non-robust SGS is preferred. The seemingly illogical backward lists outperform
all the logical forward lists in almost 9% of the cases. Excluding them would
deteriorate results substantially.

TWsampling yields better results than basic sampling, but requires an extra
parameter setting. There is no single time window size that performs well for all
project instances. Θ = 5 can on average be considered as a good time window
size. It results in an average stability cost of 2172.74, which is a 2% decrease
in stability cost compared to basic sampling. Because the serial SGSs require
the construction of two complete schedules at any decision time, i.e. one to
decide which activities to start in [t, t + Θ] and one to complete the projected
schedule, TWsampling requires more computational time (32.5s) than basic
sampling. The selection frequencies of TWSampling differ slightly from these
of Sampling that were shown in Table 6. Most remarkable is an increase in
selections of EBST1 (71.80%) to the detriment of EBST2 (4.39%). EBST2
is only selected if it is better and thus by definition different from EBST1.
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Table 6: Selection frequency of all policies by Sampling

λ RP RS P S Total
1. EBST1 37.05% 23.16% 1.11% 2.72% 64.03%
2. EBST2 4.94% 5.81% 0.40% 1.33% 12.48%
3. LAN 4.99% 1.02% 0.21% 0.06% 6.28%
4. LST 2.06% 0.45% 0.09% 0.01% 2.61%
5. LW 2.79% 0.54% 0.13% 0.03% 3.49%
6. RND 1.99% 0.32% 0.09% 0.01% 2.42%
7. EBST1 BW 1.56% 0.33% 0.09% 0.02% 1.99%
8. LAN BW 1.35% 0.23% 0.08% 0.02% 1.68%
9. LW BW 1.35% 0.25% 0.07% 0.01% 1.67%
10. RND BW 2.05% 0.37% 0.09% 0.02% 2.52%
11. LST BW 0.65% 0.12% 0.04% 0.01% 0.82%
Total 60.78% 32.61% 2.39% 4.23%

In TWSampling, both rules will often result in the same projected schedule.
Backward lists are selected in 7.18% of the decision times, which is a substantial
decrease that is equally spread over all backward lists.

The trade-off between performance and computational requirement of the
Iterated Local Search (ILS) procedure also depends highly on the parameter
settings. We experimentally set card = 3, nitial = 10 and nitial2 = 50. The
obtained average stability cost is 2073.53 in 79.5s per network. This is a 15.6%
improvement compared to the best priority list policy and a 6.5% improvement
compared to Sampling. Rescheduling is invoked on average 76.9 times. Remark
that traditional WET procedures would be computationally infeasible. A WET
procedure that solves the RCPSP-WET in 1s on average on a 120-activities
network, will without any doubt be considered as computationally efficient.
However, in our simulation experiment this procedure has to be called on average
76.9 times for 100 execution scenarios, which would take us more than two
hours per network! For project managers that rely on simulation methods to
evaluate the predictive schedule of their project, computationally demanding
metaheuristic or exact WET procedures are obviously not suitable as reactive
scheduling policies.

ILS generally needs some time to substantially improve results compared
to the priority list policies. At first, all priority lists in the Elite Set will be
situated in the neighborhoods of EBST1 and EPST1. Sampling directly com-
pares totally different solutions and will improve stability even if the number
of lists L is very small. On the other hand, local search algorithms continue
improving if more time is allocated, while adding more lists to sampling does
not necessarily result in an improvement. It is challenging to add priority lists
that are supplementary to the current L lists.
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5.2 Solution robust predictive schedule

The results in the previous section were primarily meant to show the quality
of different reactive procedures, but as we stated before, their lack of proac-
tivity might lead to less robust schedules. Starting from a proactive predictive
schedule is highly recommended. In this section we will apply the reactive pro-
cedures on a solution robust predictive schedule that is obtained by applying
the STC heuristic (Van de Vonder et al. 2005a) on the RCPSP solution obtained
by the combined crossover algorithm of Debels & Vanhoucke (2006). Table 7
summarizes results for the priority list policies. Rescheduling without looking at
robustness is illogical because the included proactivity would directly disappear.
Consequently, we do not test non-robust SGSs.

Table 7: Average expected stability cost for proactive schedules

λ RP RS
EBST1 155.35 153.05
EBST2 162.94 161.05
LAN 179.14 743.21
LST1 202.39 1031.43
LW 187.81 1182.61
RND 189.19 1178.26
EPST 159.58 164.58
MC 160.13 155.27

EBST1 is again the best priority list, but this time the robust serial SGS
slightly outperforms the robust parallel SGS. However, serial SGSs remain far
more sensitive to the used priority lists. The computational time required to
apply the robust parallel SGS on a static priority list is still 0.04s per network
instance, while the robust serial SGS is considerable faster (0.24s) on an STC
schedule than on a quality robust schedule (0.52s).

Table 8: Advanced heuristics on proactive schedules∑
j∈N

wjE|s0
j − sT

j | Time (s)

Sampling 148.56 12.2
TW Sampling 148.37 10.8
ILS 148.89 15.1

Also the sampling approach is adapted for use on proactive predictive sched-
ules. Again, only robust SGSs will be considered. This results in 22 instead of
44 candidate projected schedules at every decision time. Considering Table 8,
the sampling procedure now yields an average stability cost of 148.56 in on aver-
age 12.2s. This is a 4.37% improvement compared to our benchmark (λEBST1,

21



RP) policy. TWSampling with Θ = 5 slightly improves this result to 148.37.
Surprisingly at first sight, TWSampling runs in less computational time (10.8s)
than basic sampling on proactive schedules. The robust serial SGS still needs
the generation of two complete schedules at any decision time, but as we stated
above, it runs substantially faster on proactive schedules, making the robust
parallel SGS the bottleneck. This SGS requires more computational time when
a bad priority list is used. Because TWSampling always switches to EBST1
at t + Θ, it becomes computationally more efficient than basic sampling.

The Iterated Local Search procedure is also considerably faster on a proactive
schedule because it stops whenever there have been max without imp iterations
without improvement and improvement will now be much harder to achieve. It
runs on 15.1s and obtains an average stability cost of 148.89. In contrast to
what we saw in Section 5.1, this is not better than Sampling or TWSampling.

6 Conclusions and further research

Reactive project scheduling in a stochastic environment is a multi-stage deci-
sion process. In this paper we examined several reactive procedures to repair
a project schedule whenever activities are disrupted during execution. The ob-
jective is to minimize the deviation between the predictive schedule S0 and the
realized schedule ST .

Two new robust scheduling generation schemes are proposed, i.e. the robust
parallel and the robust serial SGS. In a stochastic project environment, these
robust SGS generate feasible projected schedules with low stability cost from a
priority list. We have given an in-dept analysis of the advantages and drawbacks
of robust and traditional SGSs.

An extensive computational experiment revealed that a priority list that or-
ders activities in non-decreasing order of activity starting times in the predictive
schedule scores best among several examined lists. Both robust parallel and ro-
bust serial SGSs result in qualitative projected schedules when applied on such
priority lists.

However, applying a single priority list will at some decision times result in
bad decision taking. There is no reason to assume that the same priority list
should be used at every decision point. Dynamic priority lists constantly update
lists by including new information, but they obtain disappointing results.

A better approach to make appropriate decisions at every decision time is
to select the best out of several candidate projected schedules. Sampling and
TWSampling use several priority lists and SGSs to generate these candidates.
In doing so, they obtain a significant improvement compared to single priority
lists on both quality robust and solution robust predictive schedules. Sampling
performs best when policies are included that generate schedules that differ
substantially from the overall good policies.

The Iterated Local Search somewhat uses the inverse logic than Sampling.
Instead of considering a set of completely different solutions, ILS tries to escape
from an initial solution by applying local searches. The performance of ILS is
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highly dependent on the parameter settings. Sampling will in general result
faster in better solutions, while ILS will have difficulties to escape from the
initial solutions, but will ultimately obtain better results. When starting from
a proactive baseline schedule, Sampling and ILS obtain very similar results.

In our framework, we assume that protecting a schedule against future dis-
ruptions is the sole responsibility of the proactive scheduling routine. In the
planning phase, we construct a proactive predictive schedule that will antici-
pate most future disruptions. When this plan becomes infeasible during project
execution, we try to repair this predictive schedule in the best possible way.
None of these procedures has a proactive nature. Opportunities to include ex-
tra safety are not exploited. Developing reactive procedures that anticipate
future disruptions is an interesting future research direction.

A second future research topic might be to apply a sampling approach on
stochastic scheduling, i.e. to minimize the expected makespan. This would
require to select at every decision time the candidate projected schedule with
minimum makespan, rather than the one with minimum deviation from the
predictive schedule. Other priority lists should be incorporated to do so.
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