
Proactive and reactive strategies fot resource-constrained
project scheduling with uncertain resource availabilities

O. Lambrechts, Erik Demeulemeester and Willy Herroelen

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Economics and Applied Economics

KBI 0606

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6304503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Proactive and Reactive Strategies for

Resource-Constrained Project Scheduling with

Uncertain Resource Availabilities

Olivier Lambrechts Erik Demeulemeester

Willy Herroelen

Department of Decision Sciences and Information Management

Research Center for Operations Management

Faculty of Economics and Applied Economics

Katholieke Universiteit Leuven (Belgium)

Abstract

Research concerning project planning under uncertainty has primarily

focused on the stochastic resource-constrained project scheduling prob-

lem (stochastic RCPSP), an extension of the basic RCPSP, in which the

assumption of deterministic activity durations is dropped. In this paper,

we introduce a new variant of the RCPSP for which the uncertainty is

modeled by means of resource availabilities that are subject to unforeseen

breakdowns. Our objective is to build a robust schedule that meets the

project due date and minimizes the schedule instability cost, defined as

the expected weighted sum of the absolute deviations between the planned

and actually realized activity starting times during project execution. We

describe how stochastic resource breakdowns can be modeled, which reac-

tion is recommended when a resource infeasibility occurs due to a break-

down and how one can protect the initial schedule from the adverse effects

of potential breakdowns.

1 Introduction

Most of the research in project scheduling deals with the generation of an initial

project schedule (baseline schedule) in a static and deterministic environment

1



with complete information. Traditional objective functions include minimiz-

ing the project makespan, leveling the resource usage over time, minimizing

the total cost of acquiring the necessary resources, maximizing the project net

present value and minimizing weighted earliness-tardiness penalty costs. For an

extensive overview we refer to Brucker et al. (1999), Herroelen et al. (1998) and

Demeulemeester & Herroelen (2002). In practice, however, these assumptions

will hardly, if ever, be satisfied. As Aytug et al. (2005) indicate, it is often

assumed that ’a system that works in a deterministic environment can be engi-

neered to work under at least certain stochastic conditions’. Whereas for some

problems this will indeed be the case (e.g. the WSPT rule minimizes the average

weighted flow time for the single machine problem in the deterministic case and

likewise the WSEPT rule minimizes the expected average weighted flow time in

the stochastic case in the class of nonpreemptive static list policies and nonpre-

emptive dynamic policies (Pinedo 1995)), for others it will not. Therefore, we

have to protect the initial baseline schedule from the adverse effects of possible

disruptions. This protection is necessary because often project activities are

subcontracted or executed by resources that are not exclusively reserved for the

current project. A change in the starting times of such activities could lead to

infeasibilities at the organizational level (in a multi-project context) or penalties

in the form of higher subcontracting costs. A possible measure for the deviation

between the initial schedule and the realized schedule is the weighted instability

cost. It can be defined as the expected weighted absolute deviation between the

planned and the actually realized activity starting times. The weight wi, allo-

cated to each activity i, reflects that activity’s importance of starting it at its

planned starting time in the initial schedule. More specifically, wi denotes the

marginal cost of deviating from the planned starting time of activity i during

project execution. This marginal cost can be seen as an extra cost for hav-

ing subcontractors start later than originally agreed or as an inventory cost for

storing raw materials between the delivery time and the time they are needed.

Minimizing instability then means that we are looking for the schedule that

is least likely to get severely disrupted, i.e. a robust schedule that satisfies the

precedence and resource constraints and does not exceed the due date set by the

project’s client. Meeting this due date during project execution is encouraged

by giving a higher instability weight to the activity that signals the end of the

project. Recent research (Leus (2003) and Van de Vonder et al. (2004)) considers

this objective function for the case of project scheduling with stochastic activity

durations. Other possible causes for uncertainty in project execution might be,

2



amongst others, inaccurate time estimates, bad weather conditions or unavail-

ability of resources. In this paper we study the last of these possible causes. In

machine scheduling, the problem of machines randomly breaking down has been

reasonably well studied for the single machine (Mehta & Uzsoy 1999) and the

job shop case (Mehta & Uzsoy 1998). However, except for Drezet (2005) we are

not aware of any existing research in project scheduling dealing with the sto-

chastic resource availability case. Drezet (2005) considers the problem of project

planning with human resource constraints such as competences, a limit on the

number of hours an employee works per day, vacation periods and unavailability

of employees. A mathematical model as well as several algorithms are presented

for building a robust schedule and for repairing a disrupted schedule.

2 Problem Statement

Aytug et al. (2005) stress the importance of taking potential disruptions into

account when building and executing production schedules. The authors dis-

tinguish between predictive and reactive scheduling. Predictive (proactive)

scheduling approaches try to accommodate uncertainties in advance whereas

reactive approaches react after the fact.

Purely reactive project scheduling forgoes the construction of a baseline

schedule and solely relies on the use of scheduling policies (Stork 2001) to de-

cide on-line which activities are to be started at random decision points t that

occur serially through time. These random decision points correspond with the

completion times of the activities and the decision to start a precedence and

resource feasible set of activities at time t can only be based on the information

that has become available up to that time (non-anticipativity assumption).

Contrary to scheduling policies, proactive scheduling is based on the con-

struction of a baseline schedule. This baseline schedule will guide schedule ex-

ecution by providing for each activity its planned periods of execution as well

as the resource units to be reserved during these execution periods. A baseline

schedule is indispensable to coordinate resource allocation between multiple

projects in a multi-project environment and to coordinate outsourced activities

with subcontractors. The arguments Aytug et al. (2005) use to underline the

importance of developing a production schedule in machine scheduling also ap-

ply to project scheduling. Some of the motivations they cite are: verifying the

feasibility of executing the given tasks within a certain timeframe, providing

3



visibility of future actions for internal and external parties, offering degrees of

freedom for reactive scheduling, evaluating performance and avoiding further

problems.

Proactive scheduling relies on a baseline schedule that is made robust. A

robust baseline schedule is a schedule that is not likely to get severely disrupted

during schedule execution due to the occurrence of unforeseen events such as

machine breakdowns.

The proactive baseline scheduling problem can now be formulated as follows:

minimize
∑

i∈N

wi|E(si)− si| (2.1)

subject to

si + di � sj ∀(i, j) ∈ A (2.2)
∑

i:i∈St

rik � ak ∀t,∀k (2.3)

sn � δn (2.4)

The objective of the problem is to minimize the weighted instability cost (2.1).

The decision variables si represent the planned starting times for each activity

i (i ∈ N with |N | = n). Together, they define the baseline schedule which

is represented by the vector S = (s1, s2, . . . , sn). Because of the stochastic

nature of the problem we cannot always stick to this baseline schedule. The real

starting times are consequently stochastic variables that are represented by the

stochastic vector S = (s1, s2, . . . , sn). We assume that a ’railroad-scheduling’

approach is used. This means that activities are never started before their

planned starting time (si � si), implying that the objective function can be

rewritten as
∑
i∈N wi(E(si) − si). These planned starting times will have to

respect certain constraints. The commonly used activity-on-node representation

represents the project by means of a digraph G = (N,A) where the set of nodes

N represents the activities and the set of directed arcs A the finish-start, zero-

lag precedence relations. When (i, j) ∈ A we say that activity i is an immediate

predecessor of activity j, implying that activity j may not start before activity

i has finished. Precedence feasibility is enforced by constraints (2.2) where di is

the deterministic duration of activity i. Constraints (2.3) enforce the renewable

resource constraints. They imply that there does not exist a time period t and a

4



resource type k for which the cumulative resource requirements of the activities

that are in progress during period t exceed the stochastic per-period availability

ak for the considered resource type. Here rik denotes the number of units of

renewable resource type k required per period by activity i and St is the set of

activities that are in progress at time period t. The last constraint (2.4) imposes

the due date restriction.

Using the classification scheme of Herroelen et al. (2000), our problem can

be classified as m, 1,va|cpm, δn|
∑

wi(E(si) − si). The first field specifies the

resource characteristics: (m, 1,va) refers to an arbitrary number of renewable

resource types, each with a stochastic availability ak that varies over time. The

second field indicates the use of finish-start, zero-lag precedence relationships

and a deterministic project due date. Finally, the last field shows the objective

function, here the expected weighted instability cost.

The deterministic resource-constrained project scheduling problem is known

to be strongly NP-hard. Allowing for stochastic resource availabilities compli-

cates the problem. Moreover, the analytic evaluation of the objective function

2.1 is very cumbersome, so that one usually relies on simulation. For NP-

hardness proofs of several cases of the scheduling problem for stability subject

to a deadline and discrete disturbance scenario, we refer to Leus & Herroelen

(2005).

Of course, it is still possible that the robust baseline schedule, despite the

built-in protection, breaks during project execution (Davenport & Beck 2002).

Therefore, we need a reactive policy that dictates how to revert to a feasible

schedule that deviates as little as possible from the original baseline. Proactive-

reactive project scheduling thus implies a combination of a proactive strategy for

generating a protected baseline schedule S with a reactive strategy to resolve

the schedule infeasibilities caused by the distortions that occur during schedule

execution.

We introduce the example network in figure 1 to illustrate the various proac-

tive and reactive strategies we present in this paper. This graph represents a

project consisting of 10 activities. Above each activity node, we indicate its

planned duration, its resource requirement of a single renewable resource type

with a per period availability of 8 units and its instability weight. Note that ac-

tivities 1 and 10 are dummy activities with a duration and a resource usage of 0.

Activity 1 indicates the start of the project whereas activity 10 signals the end.

The instability weight for activity 10 is much larger than the other instability

weights in order to reflect the fact that in practice meeting the project due date

5



Figure 1: Example project network

is often deemed more important than meeting planned activity starting times.

In this example we assume a project due date of 18. The baseline starting time

of the dummy start activity is then set to the release date of the project (time

period 0) whereas the dummy end activity is assumed to end at the project due

date. Note that for ease of notation and illustration only one resource type is

considered, but the examples as well as the algorithms presented in this paper

are easily extensible to and will be tested for the multi-resource case.

In this paper we propose an approach for proactive scheduling in which three

consecutive choices need to be made. Each choice consists of two options, giving

us a total of 23 different strategies. First of all, we can either use the optimal

solution for the RCPSP as a starting schedule or alternatively use a schedule in

which activities that have a high impact on instability are scheduled as early as

possible so that the probability that they get disrupted is lower. Secondly, one

can decide to allow for resource slack or instead use the deterministic, maximum

availabilities. Allowing for resource slack means that one plans the project

considering a resource availability that is lower than the real availability so that

a certain margin exists for absorbing resource breakdowns. Finally, it is either

possible to protect individual activity starting times by inserting a time buffer

of one or more time units in front of them or alternatively not to explicitly buffer

activities at all.

The paper is structured as follows: in section 3, each of the proactive strate-

6



gies will be treated in more detail. The reactive policies are then presented

in section 4, where we introduce two list scheduling policies and a tabu search

procedure. Section 5 reports on extensive computational results obtained by

testing the proactive-reactive procedures on a set of randomly generated test

instances. Finally, section 6 presents our overall conclusions.

3 Proactive Strategies

3.1 Optimal solution for the RCPSP

The problem under study is an extension of the RCPSP. Since the objective of

the deterministic RCPSP is to minimize the project makespan, the associated

schedule will usually be very dense. This means that activities are scheduled

compactly with as little resource and time slack as possible. In such a schedule

even a minor disruption in the resource availabilities during a scheduling period

will have a major impact on the starting times of all activities that are scheduled

in subsequent periods. Therefore, it can be expected that such a schedule will

perform very badly for the weighted instability cost objective. The optimal

solution for the RCPSP associated with the project instance of figure 1 is given

in figure 2. As expected, little free slack exists in this schedule. Free slack has

been proposed by Al-Fawzan & Haouari (2005) as a metric for measuring the

robustness of a schedule. It is defined as the amount of time an activity can be

delayed beyond its planned starting time without forcing any other activities to

be postponed. In our example the total free slack is equal to 6.

Figure 2: Minimal Makespan Schedule

7



3.2 Largest cumulative instability weight first

One way to improve schedule robustness is to schedule the activities in de-

creasing order of their cumulative instability weight. We define the cumulative

instability weight, CIWi, of activity i as CIWi = wi +
∑

j:j∈S∗i

wj , with S∗i the

set of direct and indirect successors of activity i. Because disruptions propagate

throughout the schedule, activities for which a change in starting time would

have a high impact on instability are now less likely to get severely disrupted

than activities with a lower impact since the former are scheduled earlier in

time and are thus less prone to disruptions. The schedule is constructed in two

phases. In the first phase a precedence feasible priority list is constructed with

the activities in non-increasing order of their CIWi (tie-breaker is lowest activity

number). In the second phase, this priority list is transformed into a precedence

and resource feasible schedule using the serial schedule generation scheme that

was first introduced by Kelley (1963). The serial schedule generation scheme

sequentially adds activities to the schedule until a feasible complete schedule is

obtained. In each step, the next activity in the priority list is selected and for

that activity the first precedence and resource feasible starting time is chosen.

If we apply this heuristic to our example network, we obtain the vector of cu-

mulative instability weights: CIW = (102, 73, 54, 58, 57, 47, 39, 44, 43, 38). This

vector corresponds to a priority list L = (1, 2, 4, 5, 3, 6, 8, 9, 7, 10) that yields the

schedule depicted in figure 3 when decoded using the serial schedule generation

scheme. As expected, this schedule has a higher total free slack (13 compared

to only 6 for the minimal makespan schedule).

Figure 3: Largest CIW first schedule

8



3.3 Protection by means of resource slack

Baseline schedules can be protected against disruptions by including resource

slack. This means that the project is planned using a resource availability

(a∗k) that is less than the maximum availability (ak). In this case, a break-

down of one or more resource units will not always lead to a disruption of

the schedule. This principle is inspired by the well-known result from factory

physics that the lead time strongly increases in a non-linear fashion with in-

creasing resource utilization and that therefore excess capacity is important

(Hopp & Spearman 2001). The required size of the resource buffer will depend

on the probability distribution of the resource availabilities. This probabil-

ity distribution can be determined for the steady state if we assume that the

time between two subsequent failures and the time until a broken resource unit

is repaired are both exponentially distributed. This assumption can be moti-

vated as follows: resources, whether they are humans, complex machinery or

tools, can fail for a wide variety of reasons. We can therefore consider each

resource unit to be composed of different components, each associated with

a possible failure cause, with different times to failure. Let N(t) be the total

amount of breakdowns up to time t, split up by cause and component as follows:

N(t) = N1(t)+N2(t)+ ...+Nm(t). If m is large enough and the times between

counts for each breakdown cause are independent and identically distributed

stochastic variables, then the resulting counting process N(t) will follow a Pois-

son distribution (Hopp & Spearman 2001). Because a Poisson counting process

corresponds to an exponential distribution of interarrival times (Girault 1959),

the times between failures will be exponentially distributed. Unfortunately, this

reasoning cannot be so easily applied to the times between repairs. However, it

is analytically interesting but also practically acceptable to assume that these

times are also exponentially distributed. In practice, it can be expected that

there is high probability that repairs have a reasonably low duration but the

possibility always exists that this duration strongly increases due to unexpected

events such as extra complications, unavailability of spare parts, etc. There-

fore, using the exponential distribution for modeling interrepair times seems a

reasonable approximation.

The number of renewable resource units of type k actually available per

period is a random variable ak. That means that each of the ak resource units

originally allocated to the project is subject to breakdowns characterized by a

known mean time to failure (MTTFk) and a mean time to repair (MTTRk).

9



We can model the breakdowns as a birth-death process where the state jk at

any time is the number of inactive resource units of type k. A birth corresponds

to a unit breaking down (jk = jk + 1) and a death to a unit having just been

repaired (jk = jk − 1). Let Pijk(t) be the probability that j resource units

of type k are inactive at time t given that i units were active at the starting

period 0. In order to simplify the analysis of the breakdown process it would

be easier if the probabilities we have to consider are independent of the starting

conditions. This means that we will assume that the steady state has been

reached, implying that the probabilities have converged to their steady state

values or lim
t→∞

Pijk(t) = πjk. In order to simplify the notation we will omit the

subscript k in the following paragraphs. An extension of the formulas to the

multi-resource case is straightforward.

In order to calculate steady state probabilities, we need to know the birth and

death rates in state j. We know that each resource unit breaks down at a rate λ

with λ = 1
MTTF

and that in state j, only (a− j) out of the originally allocated

a resource units are active. Therefore, the total rate at which breakdowns occur

in state j is λj = (a − j)λ. Similarly, resource units are repaired at a rate µ

with µ = 1
MTTR

and in state j, j units are inactive and can thus be repaired.

The death rate in state j is then µj = jµ.

The steady state probabilities πj for any birth-death process can be obtained

by solving the system of flow balance equations (in the steady state the expected

number of transfers into a state per time unit must equal the expected number

of transfers out of that state per time unit). Consider the state j with j � 1 in

figure 4.

Figure 4: State Transition Diagram

If we write down the flow balance equation per state, we get the following

10



system of equations:

(j = 0) λ0π0 = µ1π1

(j = 1) (λ1 + µ1)π1 = λ0π0 + µ2π2
...

j (λj + µj)πj = λj−1πj−1 + µj+1πj+1

By expressing all the πj ’s in terms of π0 we get:

π1 = λ0π0
µ1

π2 = λ0λ1π0
µ1µ2

...

πj =
λ0λ1 . . . λj−1π0
µ1µ2 . . . µj

=
λja(a− 1) . . . (a− j + 1)π0

µjj!

= λja!π0
µjj!(a− j)!

=

(
a

j

)
λjπ0

µj

Because at any time we must be in some state, the sum of steady state

probabilities
a∑

j=0
πj = 1. Substituting the result for πj in the previous equation

yields:

π0 +
a∑

j=1

λja!π0
µjj!(a−j)! = 1

π0 = 1

1 +
a∑

j=1

λja!

µjj!(a− j)!

Now, unless
a∑

j=1

λja!
µjj!(a−j)! is infinite, π0 and all the other steady state proba-

bilities can be calculated. For our problem this condition will always be satisfied

because a is finite and µ is assumed to be greater than 0.

Since we now know the discrete probability distribution of these availabilities,

we can determine the expected value of the resource availability for resource

type k as E(ak) =
ak∑

m=0
mπm and use it as the buffered availability. In case

this buffered availability is smaller than max
i∈N

rik, we increase the value until the

activity with the highest resource demand for resource type k can be executed.

The schedule is then built using the exact RCPSP method or the ’largest CIW

11



first’-method, but now with these adapted, buffered availabilities.

Note, however, that it is possible that the obtained resource buffered schedule

exceeds the due date. Therefore, we need to add a mechanism that limits the

maximal amount of resource buffering so that the due date constraint is not

violated. If the resource buffered schedule turns out to be due date-infeasible,

we determine the most constraining resource type, and progressively increase its

availability up to the maximum (original) availability and re-execute the RCPSP

or ’largest CIW first’ procedure until the due date is met. We define the most

constraining resource type as the resource type that leads to the highest decrease

in schedule makespan when its buffered availability is increased by one unit. As

a tie-breaker we choose the resource type with the smallest deviation between

the expected resource availability and the adjusted buffered availability.

For our example, adding resource buffering to the minimal makespan sched-

ule would yield the schedule depicted in figure 5. In this schedule, the original

resource availability of eight units is reduced by one unit and the exact RCPSP

procedure is executed for the project using this new, buffered availability, yield-

ing the bottom schedule in figure 5.

Figure 5: Resource buffering applied to a minimal makespan schedule

12



3.4 Time buffering

Instead of, or in addition to, resource buffering, another form of schedule pro-

tection can be used. Time buffering boils down to the inclusion of slack time

in front of activities in order to absorb potential disruptions caused by earlier

resource breakdowns and the resulting activity shifts. We start from a feasi-

ble baseline schedule to which protection is added by iteratively right-shifting

activities with the aim of protecting the activity starting times as well as pos-

sible. Our objective is to insert a time buffer of size bi in front of the starting

times si of each activity i so that the expected instability is minimized while

not exceeding the due date.

In order to set correct buffer sizes bi for each activity i, we need to have a

rough idea of the impact of the disruption (Ii) we can expect for that activity

given a certain baseline schedule S. Disruptions, forcing the activity to start at

a later point in time than originally planned, can occur amongst others when

one or more of the activity’s predecessors finish at a later time than expected

because of resource breakdowns. First of all, we will describe how the expected

duration increase (∆i) of an activity due to resource breakdowns can be approx-

imated. We will then show how we can use these expected duration increases

to determine which activities in the schedule will be affected. Finally, we will

introduce a heuristic that selects the activities to be buffered and determines

the proper buffer size, based on the expected impact of resource breakdowns on

the activities constituting the project.

Imagine we have an activity i with a duration di and a single unit resource

requirement with a per period availability of one unit, a mean time to failure

equal to MTTF and a mean time to repair equal to MTTR. We assume that

after a broken down resource is repaired, execution can proceed from the point

where it was interrupted. In this case the number of resource breakdowns ac-

tivity i will experience is approximately equal to di
MTTF

, leading to an expected

duration increase of a magnitude di
MTTF

MTTR.

However, this approach is very restrictive because first of all, we will usually

work with resources for which the per period availability is higher than one.

This means that when a resource unit breaks down, this will not always translate

into a duration increase of the activity using that resource type. It is possible

that there is sufficient resource slack to absorb the breakdown or that another

activity is affected. For simplicity’s sake let’s however ignore these possibilities

since they strongly complicate the calculations. In situations where the resource

13



units are not interchangeable this assumption is not even unrealistic. Secondly,

activities will often have a resource requirement exceeding one unit. This again

complicates our analysis because now, multiple resource units can be responsible

for breakdowns and it is hard to analytically determine the aggregate effect.

We choose to approximate the global duration extension by multiplying the

expected duration increase with the resource usage of the considered resource:

∆i =maxk(
di

MTTFk
MTTRkrik). Even though this approach gives a reasonable

estimate of the order of magnitude of the disruption, it is mathematically not

correct and actually underestimates the real duration increase in the case of

multiple resource units. However, its advantages are its great speed compared

to calculating the real duration extension by means of simulation. Furthermore,

our experimental results revealed that the use of simulation, rather than the

simplified calculations, did not noticeably improve the objective function. For

an overview of these results we refer the reader to the end of section 5.2.

The expected duration increases can now be used to approximate the impact

of resource breakdowns on the given schedule S. For each non-dummy activity i

we determine its direct and transitive predecessors j ∈ P ∗i . In case the predicted

finish time of the considered predecessor (sj + dj + ∆j) exceeds the planned

starting time of activity i (si), it can be expected that there is a reasonable

chance that activity i will be disrupted. The impact Ii on the objective function

that can be attributed to the disruption of activity i caused by its predecessors

j can be estimated as Ii =
∑

jǫP∗

i

wi(sj + dj +∆j − si).

The non-dummy project activities are placed in a list Q in non-increasing

impact order with the lowest activity number as tie-breaker. The first activity

in list Q is selected and right-shifted with one time unit. Affected activities are

likewise right-shifted with one time unit in order to keep the schedule precedence

and resource feasible. In case the resulting schedule also respects the due date

constraint, we can move to the next iteration by recalculating the expected

impacts for each activity for the new schedule S′ and building a new list Q′. In

case the new schedule is not due date feasible we revert the move and select the

next activity in Q; if no such activity can be found, the procedure is terminated.

The pseudo-code for this approach is given in algorithm 1.

We illustrate the time buffering heuristic by describing some of the steps

applied to our example network. The single renewable resource type in the

example is assumed to have a mean time to failure equal to 18 and a mean

time to repair equal to 5. Using the procedure to calculate the expected activ-

14



Algorithm 1 Time buffering heuristic

1: ∀i : bi = 0
2: for i = 2 to n− 1 do

3: ∆i =maxk(
di

MTTFk
MTTRkrik)

4: end for

5: ∀i : Ii = 0
6: for i = 2 to n− 1 do
7: for j ∈ P ∗i do

8: if sj + dj +∆j > si then
9: Ii = Ii +wi ∗ (sj + dj +∆j − si)
10: end if

11: end for

12: end for

13: Q = N \ {1, n}
14: sort Q in non-increasing order of Ii (tie-breaker is lowest activity number)
15: bQ(1)

= bQ(1)
+ 1

16: determine S′

17: if s′n � δn then
18: S = S′

19: go to line 5
20: else

21: bQ(1)
= bQ(1)

− 1
22: Q \ {Q(1)}
23: if Q = ∅ then exit else go to line 15
24: end if

ity duration increases detailed above, we obtain the duration extension vector

∆ = (0, 1, 5, 3, 4, 6, 3, 3, 2, 0). We start from the largest CIW-baseline schedule

shown as the top schedule in Figure 6. Calculating the expected impacts for this

schedule yields the disruption impact vector I = (0, 0, 0, 11, 0, 27, 3, 5, 20, 76).

Activity 10 clearly has the highest impact value but is not considered for buffer-

ing because doing so would violate the due date of 18 since activity 10 is assumed

to start and end at the project due date. Therefore activity 6 is selected and

buffered with one time unit, yielding the second schedule in figure 6. The im-

pact values are indicated between brackets. Activities that could not be selected

for buffering because doing so would violate the due date are marked in white,

whereas the activity that is selected for buffering is marked in black. Continuing

the algorithm eventually yields the third schedule of figure 6, the corresponding

vector of buffer sizes being B = (0, 0, 0, 1, 0, 3, 2, 0, 1, 0).

15



Figure 6: Time buffering applied to a ’maximum CIW first schedule’

16



4 Reactive Strategies

After the baseline schedule has been determined, project execution can start.

However, no matter how much we try to protect the predictive schedule against

possible disruptions, we can never totally eliminate their occurrence. The execu-

tion of the baseline schedule continues either until the completion of the dummy

end activity, signaling the end of the project, or until a resource conflict is en-

countered. When a resource conflict occurs, this conflict will have to be resolved

by postponing one or more activities in order to restore schedule feasibility. We

assume that preemption is not allowed unless a resource infeasibility due to a

resource breakdown is resolved by interrupting the execution of an activity that

was in progress at the time of the breakdown. Furthermore, we assume that this

interrupted activity then has to be restarted from scratch (preempt-repeat). An

extension to a preempt-resume setting would be an interesting topic for further

research.

4.1 List scheduling

A good reactive strategy restores schedule feasibility while minimizing the de-

viation from the baseline schedule and preventing future disruptions from oc-

curring. A simple reactive strategy could rely on list scheduling.

A random precedence feasible priority list can serve as a benchmark. As an

alternative, we rely on a scheduled order list that allows us to reschedule the

activities in the order dictated by the schedule, while taking into account the

new, reduced resource availabilities. More specifically, when a disruption occurs

at time t∗ we create a priority list L including the activities that are not yet

completed, ordered in non-decreasing order of their baseline starting times.

The priority list is decoded into a feasible schedule using a modified serial

schedule generation scheme and taking into account the known resource avail-

abilities up to the current time period. The modification of the serial schedule

generation scheme has to do with the case where the current activity taken

from the list is in progress but not yet completed when the infeasibility occurs.

This activity can be left unchanged, or it can be interrupted and repeated. The

pseudocode for this procedure is given in algorithm 2. The new activity starting

times are denoted as s′i, the currently known availabilities as a
′

kt and the set of

direct predecessors of activity i as Pi.

17



Algorithm 2 Modified Serial Schedule Generation Scheme

1: given t∗ = time period with resource infeasibility
2: given L = precedence feasible ordered list with activities i : si + di � t∗

3: for all k, t do
4: if t � t∗ then a′kt = akt
5: else a′kt = ak
6: end for

7: for i = 1 to n do

8: if i /∈ L then s′i = si
9: else s′i = −1
10: end for

11: for p = 1 to |L| do
12: if sL(p) � t∗ then s′L(p) = sL(p)
13: else s′L(p) =max(t∗ + 1,maxi∈PL(p) s

′

i + di)

14: while ∃k, t :
∑

i:i∈St

rik > a′kt do

15: s′L(p) = t+ 1

16: end while

17: end for

Activities selected from the list are scheduled as early as possible. For ac-

tivities that are in execution during the time of disruption t∗, this means that

the procedure first tries the current scheduled starting time. If this turns out

to be infeasible, the procedure searches for feasibility by starting the activity

in the next time period (t∗ + 1), and subsequent time periods if necessary. For

activities that did not start yet, it is only necessary to consider the earliest

precedence feasible starting time. Note that, as we stated in section 2, we never

allow an activity to start before its baseline starting time.

4.2 Tabu search

Solutions may be improved by superimposing a tabu-search based improvement

heuristic (Glover & Laguna 1993) on the priority list rule. This procedure

will try to improve the starting solution by iteratively executing the best non-

tabu precedence feasible adjacent interchange of two activities in the priority

list. The objective is to find a precedence feasible ordering of activities that

corresponds to a feasible schedule that deviates as little as possible from the

baseline schedule. This deviation is measured by calculating the weighted sum

of the absolute deviations between baseline and reactive schedule starting times.

The advantage of tabu search is that by using a tabu list (a list of moves that

18



are forbidden for a number of iterations) the procedure can also choose non-

improving moves so that it avoids getting stuck in local optima like traditional

local search approaches. The procedure is explained in algorithm 3.

Algorithm 3 Tabu-search based reactive procedure

1: set L∗ = L , O∗ =
∑

i∈N

wi|s
′

i − si| , T =
√
|L|

2: while (iter < MAXITER) do
3: O0 = 999999
4: for i = 2 to n− 2 do
5: if (L(i), L(i+1)) /∈ A then

6: exchange L(i) and L(i+1)
7: perform adapted SSGS on L
8: O =

∑

i∈N

wi|s
′

i − si|

9: if s′n � δn and O + freqL(i),s′L(i)
+ freqL(i+1),s′L(i+1)

< O0 then

10: if O0 < O∗ OR (iter > tabuL(i),s′L(i)
AND iter > tabuL(i+1),s′L(i+1)

)

then

11: store i→ i∗
12: end if

13: end if

14: exchange L(i) and L(i+1)
15: end if

16: end for

17: if ∃i∗ then
18: freqL(i),s′L(i)

+ 10 , freqL(i+1),s′L(i+1)
+ 10

19: tabuL(i),s′L(i)
= iter + T , tabuL(i+1),s′L(i+1)

= iter + T

20: exchange L(i∗) and L(i∗+1)
21: if O =

∑

i∈N

wi|s
′

i − si| < O∗ then

22: O∗ = O AND L∗ = L
23: end if

24: end if

25: end while

26: perform adapted SSGS on L∗

Our implementation considers a maximum number of iterationsMAXITER

that has to be executed before the procedure ends and includes a frequency based

penalty function to further prevent cycling. The tabu tenure is set to
√
|L|. The

best solution that is found so far is stored in L∗ and has an objective function

value equal to O∗. O0 then is the objective function value of the best adjacent

19



interchange found so far in the current iteration. The frequency based penalties

are stored per pair (i, si) in the variables freqi,si . Likewise, the tabu status is

stored in the variables tabui,si .

In order to illustrate the reactive procedure we include the example in figure

7. The time buffered ’largest CIW first’ schedule of figure 6 is disrupted in period

10 due to the breakdown of two resource units. Keeping the original schedule or-

der, the partial priority list (3, 7, 6, 8, 9, 10) is obtained, which yields the repaired

schedule S = (0, 0, 4, 3, 0, 10, 8, 11, 16, 18). However, improvement is possible. If

we preempt and postpone activity 7 instead of activity 6 we obtain the partial

priority list (3, 6, 7, 8, 9, 10) and the schedule S = (0, 0, 4, 3, 0, 9, 10, 11, 16, 18).

The former schedule corresponds to a weighted schedule deviation cost of 9,

whereas the latter schedule yields a weighted deviation cost of only 2.

Figure 7: Reactive improvement procedure: original versus improved ordering

5 Results

5.1 Experiment

The above algorithms were coded in Microsoft Visual C++ 6.0 and executed on a

Dell Optiplex GX270 workstation. In order to evaluate the instability objective

we use simulation. For determining the optimal solution to the deterministic

20



RCPSP, we use the branch-and-bound algorithm developed by Demeulemeester

and Herroelen (1992),(1997).

The instability weights wi for all non-dummy activities are drawn from a

discrete, triangularly shaped distribution between 1 and 10 with P (wi = x) =

0.21− 0.02x. Corresponding to what can be expected in real-life projects, most

activities will have a low instability weight whereas only a minority are more

heavily penalized for being started later than planned. The instability weight of

the dummy end activity represents the importance of meeting the projected due

date and is set equal to β times the average of the instability weight distribution

function, which is 3.85 for P (wi = x). Because usually, meeting the project

due date is deemed more important than starting each activity at the planned

starting time, we set β = 10 for our experiment.

The project due date is derived from the minimal makespan schedule. In

a static and deterministic environment, the lower bound on the makespan,

(CRCPSPmax ), corresponds to the makespan of the schedule obtained when op-

timally solving the RCPSP. It seems reasonable to assume that the project

manager will prefer a makespan that does not deviate too much from this lower

bound. Therefore, we set the due date of the robust schedule at CRCPSPmax (1+α),

where the due date factor α is a parameter chosen by the project manager that

constitutes the trade-off between project stability and project duration (Van de

Vonder et al. 2005).

As mentioned in section 3.3, it can be shown that resource breakdowns can

be modeled using exponential distributions with the parameters MTTFk and

MTTRk. We draw the MTTRk values from a uniform discrete distribution

between 1 and 5. The values for MTTFk are drawn from a uniform discrete

distribution between 50% and 150% of CRCPSPmax .

As a test set for assessing the effectiveness of the proactive-reactive strate-

gies, we use the 480 30-activity RCPSP instances of the well-known PSPLIB set

of test problems (Kolisch & Sprecher 1997). Each combination of a proactive

policy and a reactive policy was tested using 10 replications for each problem

instance, each having differentMTTFk’s andMTTRk’s. Furthermore, we used

50 iteration steps for the reactive tabu search.

5.2 Computational Results

The computational results are shown in tables 8, 9 and 10. The results shown

in table 8 were obtained for a tight due date setting α = 15%, those in table 9

21



for α = 30%, and those in table 10 for an ample due date setting of α = 45%.

We list the median values of the weighted instability costs over all projects

and MTTF-MTTR scenarios for the 8 proactive scheduling combinations (time

buffering or not, resource buffering or not, in combination with a minimum

makespan schedule or a schedule obtained using ’largest CIW first’) in com-

bination with the three reactive procedures (random list scheduling, scheduled

order list scheduling and tabu search). The numbers shown in italic in the last

column give the average weighted instability cost value for each of the proactive

scheduling rules, the italic numbers in the bottom row represent the average

instability cost value for each of the reactive procedures.

Let us first have a look at the results for the proactive procedures. As could

be expected, a proactive scheduling procedure using time buffering always seems

to outperform procedures that do not. Of course, the possible improvement of

time buffering directly depends on the degree of freedom offered to the time

buffering algorithm for inserting buffers in the schedule. Therefore, whereas for

the α = 30% scenario, an average improvement of 40.05% can be observed for a

minimal makespan schedule, this decreases to 33.44% for the ’largest CIW first’-

schedule and only 22.92% for a resource buffered ’largest CIW first’-schedule.

Similar results hold when varying the due date factor. For minimal makespan

schedules, a 49.72% improvement seems to be possible when α = 45% compared

to only 23.01% when α = 15%.

Resource buffering performs quite well, offering average improvements of

60.53% for the minimal makespan case. Again, the improvement potential

decreases as the due date factor is decreased. Taking into consideration the

promising required computation time, resource buffering-based strategies can-

not be neglected. In case of minimal makespan scheduling, for 84 of the 480 test

instances the calculated buffered availability turned out to be too low. More

specifically, this was the case for on average 25% of the considered MTTF-

MTTR scenarios for each of these 84 problem instances. However, for ’largest

CIW first’ scheduling the picture is slightly different. For the networks for which

’largest CIW first’ scheduling respected the project due date, the average avail-

ability turned out to be insufficient to obtain a feasible schedule for 20.28% of

the cases when α = 15%, for 17.96% when α = 30% and finally for 17.5% when

α = 45%.

If resource buffering is not used, ’largest CIW first’ usually performs better

than minimal makespan scheduling. This is not surprising since we actively

try to improve the objective function value of the minimal makespan sched-

22



ule. However, for α = 30% the combination of minimal makespan scheduling,

resource buffering and time buffering actually seemed to outperform the combi-

nation of ’largest CIW first’, resource buffering and time buffering. A possible

reason might be that minimal makespan scheduling creates a shorter schedule

in which more opportunities for time buffering exist. On the other hand, sim-

ilar results were not found for α = 45%. For α = 45% the combination based

on ’largest CIW first’ performed slightly better than the one based on minimal

makespan but the difference is so small it is almost negligible. Also note that for

α = 15%, 30%, 45%, determining the ’largest CIW first’-schedule turned out to

be impossible in respectively 28.12%, 3.75% and 0.00% of the instances, because

the corresponding schedule exceeded the due date.

The results for the reactive strategies are as expected. Random list schedul-

ing performs worst. Scheduled order list scheduling offers a significant perfor-

mance increase. Tabu search allows further improvements upon scheduled order

list scheduling.

Figure 8: Median of weighted instability for alpha = 15 %

Figure 9: Median of weighted instability for alpha = 30 %

Table 11 lists the average required CPU times in seconds. Proactive poli-

cies based on ’largest CIW first’ are computationally very cheap. This is not

23



Figure 10: Median of weighted instability for alpha = 45 %

Figure 11: Average CPU time in seconds

surprising given the simple schedule construction procedures based on the serial

schedule generation scheme. Minimal makespan scheduling is slower because of

the exact branch-and-bound approach. Especially when looking at the case of

α = 15% we see that the minimal makespan procedure combined with resource

buffering is rather slow. This is probably due to the fact that given the restric-

tive due date-factor the procedure has to be executed a number of times until

the buffered availability allows for the creation of a due date-feasible schedule.

The time buffering procedure is likewise very fast with decreasing computation

times as the due date-factor increases. The simple reactive policies are very fast,

tabu search, however, is computationally slightly more expensive.

Finally, in order to evaluate the impact of using the simplifying calculation

of section 3.4 for computing the activity duration extensions ∆i, we performed

a small computational experiment in which this simplifying calculation is com-

pared with simulation. Table 12 shows the results of this computational exper-

iment using a subset of the instances used in the experiment detailed in section

5.1 for a due date factor of 30%. The time buffering approach based on simula-

tion is compared with the approach based on approximation for each of the two

24



other proactive options (minimal makespan or ’largest CIW first’ and resource

buffering or not) combined with each of the three reactive strategies. We used

a total of 1000 runs per activity to simulate the expected duration increase.

We can conclude from these results that calculating ∆i using simulation usu-

ally yields a better performance for the minimal makespan startschedule but the

gain is negligible when compared with the additional computational effort (CPU

times increased on average with a factor of 55). Furthermore, for a ’largest CIW

first’ startschedule simulation even seems to perform worse in most cases.

Figure 12: Comparison of approximation with simulation

6 Conclusion

In this paper we gave an overview of the challenges a project manager has to

deal with in an environment characterized by uncertain resource availabilities.

We gave an overview of the literature on scheduling under uncertainty and un-

derlined the necessity of building a proactive baseline schedule for minimizing

weighted instability. For the generation of a robust baseline schedule we pro-

posed eight strategies. First of all, a starting schedule can be built using for

example minimal makespan scheduling or largest CIW scheduling. This schedule

can then be protected against the effects of disruptions by using the average re-

source availabilities, obtained from steady-state probability calculations, instead

of the given deterministic availabilities. Alternatively or additionally, protec-

tion can be added in the form of explicitly inserted idle time. To determine

where and in what amount to insert these so called time buffers, we devel-

oped a time buffer allocation heuristic based on the estimation of the expected

impacts of activity duration prolongations due to resource breakdowns. The

advantages of ’largest CIW first’-scheduling combined with resource buffering

and time buffering immediately become apparent when comparing the weighted

25



instability results with those from a minimal makespan strategy without buffer-

ing. From a simulation experiment using the PSPLIB set of test problems we

were able to observe an average improvement of 84%.

Unfortunately, no matter how much one tries to protect the initial sched-

ule, the occurrence of disruptions during project execution can never be totally

avoided. Therefore reactive policies, indicating how to restore schedule feasi-

bility after the occurrence of a resource breakdown, are required. We proposed

three reactive policies to resolve infeasibilities resulting from schedule disrup-

tions. A random order rule was included for benchmarking purposes, the sched-

uled order rule seems to perform reasonably well in comparison but can still

be improved by tabu search at the cost of an increase in computation time.

Here the computational experiment also immediately showed the advantages of

using an intelligent reactive strategy. Using scheduled order instead of random

order allowed us to obtain results that were on average 79% better. A further

improvement of about 15% was possible when superimposing a tabu-search im-

provement procedure on the original order rule.

In conclusion, we were able to show that a combination of largest CIW

scheduling, resource buffering, time buffering and a reactive strategy based on

an improvement of the scheduled order rule, allows for an improvement of the

objective function of 96% compared to minimal makespan scheduling without

any buffering using a dumb random order strategy.

References

Al-Fawzan, M. A. & Haouari, M. (2005). A bi-objective model for robust

resource-constrained project scheduling. International Journal of Produc-

tion Economics, 96, pp 175—187.

Aytug, H., Lawley, M., McKay, K., Mohan, S. & Uzoy, R. (2005). Executing

production schedules in the face of uncertainties: A review and some future

directions. European Journal of Operational Research, 161, pp 86—110.

Brucker, P., Drexl, A., Möhring, R., Neumann, K. & Pesch, E. (1999). Resource-

constrained project scheduling: Notation, classification, models and meth-

ods. European Journal of Operational Research, 112, pp 3—41.

Davenport, A. & Beck, J. (2002). A survey of techniques for scheduling with

uncertainty. Unpublished manuscript.

26



Demeulemeester, E. & Herroelen, W. (1992). A branch-and-bound procedure for

the multiple resource-constrained project scheduling problem.Management

Science, 38, pp 1803—1818.

Demeulemeester, E. & Herroelen, W. (1997). New benchmark results for

the resource-constrained project scheduling problem.Management Science,

43, pp 1485—1492.

Demeulemeester, E. & Herroelen, W. (2002). Project scheduling - A research

handbook. Vol. 49 of International Series in Operations Research & Man-

agement Science. Kluwer Academic Publishers, Boston.

Drezet, L.-E. (2005). Résolution d’un problème de gestion de projets sous con-

traintes de ressources humaines: De l’approche prédictive à l’approche réac-

tive. PhD thesis. Université François Rabelais Tours, France.

Girault, M. (1959). Initiation aux Processus Aléatoires. Dunod, Paris.

Glover, F. & Laguna, M. (1993). Tabu Search. Blackwell Scientific, Oxford.

pp 70—141. In C. Reeves (Editor): Modern Heuristic Techniques for Com-

binatorial Problems.

Herroelen, W., De Reyck, B. & Demeulemeester, E. (1998). Resource-

constrained scheduling: A survey of recent developments. Computers and

Operations Research, 25, pp 279—302.

Herroelen, W., De Reyck, B. & Demeulemeester, E. (2000). On the paper

"Resource-constrained project scheduling: Notation, classification, models

and methods" by Brucker et al.. European Journal of Operations Research,

128(3), pp 221—230.

Hopp, W. & Spearman, M. (2001). Factory physics : Foundations of manufac-

turing management. McGraw-Hill.

Kolisch, R. & Sprecher, A. (1997). PSPLIB - A project scheduling library.

European Journal of Operational Research, 96, pp 205—216.

Leus, R. (2003). The generation of stable project plans. PhD thesis. Department

of applied economics, Katholieke Universiteit Leuven, Belgium.

Leus, R. & Herroelen, W. (2005). The complexity of machine scheduling for sta-

bility with a single disrupted job. Operations Research Letters, 33, pp 151—

156.

27



Mehta, S. & Uzsoy, R. (1998). Predictive scheduling of a job shop subject to

breakdowns. IEEE Transactions on Robotics and Automation, 14, pp 365—

378.

Mehta, S. & Uzsoy, R. (1999). Predictable scheduling of a single machine subject

to breakdowns. Int. J. Computer Integrated Manufacturing, 12, pp 15—38.

Pinedo, M. (1995). Scheduling - Theory, Algorithms and Systems. Prentice Hall,

Englewood Cliffs, New Jersey.

Stork, F. (2001). Stochastic Resource-Constrained Project Scheduling. PhD the-

sis. Technical University of Berlin, School of Mathematics and Natural

Sciences.

Van de Vonder, S., Demeulemeester, E., Herroelen, W. & Leus, R. (2004).

The trade-off between stability and makespan in resource-constrained

project scheduling. Research Report 0423. Department of applied eco-

nomics, Katholieke Universiteit Leuven, Belgium.

Van de Vonder, S., Demeulemeester, E., Herroelen, W. & Leus, R. (2005). The

use of buffers in project management: The trade-off between stability and

makespan. International Journal of Production Economics, 97, pp 227—240.

28




