provided by Research Papers in Economics

. . Taylor & Francis
International Journal of Production Research, Taylor & Francis Group
Vol. 44, No. 2, 15 January 2006, 215-236

The trade-off between stability and makespan in
resource-constrained project scheduling

S. VAN DE VONDER, E. DEMEULEMEESTER,
W. HERROELEN* and R. LEUS

Research Centre for Operations Management, Katholieke Universiteit Leuven,
Naamsestraat 69, B-3000 Leuven, Belgium

(Received September 2004, in final form April 2005)

During the last decade, considerable research efforts in the project scheduling
literature have concentrated on resource-constrained project scheduling under
uncertainty. Most of this research focuses on protecting the project due date
against disruptions during execution. Few efforts have been made to protect
the starting times of intermediate activities. In this paper, we develop a heuristic
algorithm for minimizing a stability cost function (weighted sum of deviations
between planned and realized activity starting times). The algorithm basically
proposes a clever way to scatter time buffers throughout the baseline schedule.
We provide an extensive simulation experiment to investigate the trade-off
between quality robustness (measured in terms of project duration) and solution
robustness (stability). We address the issue whether to concentrate safety time in
so-called project and feeding buffers in order to protect the planned project
completion time or to scatter safety time throughout the baseline schedule in
order to enhance stability.

Keywords: Project management; Scheduling/sequencing; Simulation methods

1. Problem description

The resource-constrained project scheduling problem (RCPSP) aims at minimizing the
duration of a project, subject to the finish—start, zero-lag precedence constraints and
the renewable resource constraints. Many exact and heuristic algorithms for solving
the deterministic RCPSP have been described in the literature (for overviews, see
Herroelen et al. 1998, Brucker et al. 1999, Kolisch and Hartmann 1999, Kolisch and
Padman 1999, Demeulemeester and Herroelen 2002) for solving the deterministic
RCPSP. When uncertainty comes into play, it has been advocated that project-
planning practitioners rely on the well-known critical chain buffer management
(CC/BM) methodology (Goldratt 1997), a heuristic approach that tries to deliver
good makespan protection (i.e. quality robust schedules). Recently, however, stability
or solution robustness has become a central point of attention in project scheduling
(Herroelen and Leus 2005). This means that given the uncertainty during execution,

*Corresponding author. Email: willy.herroelen@econ.kuleuven.be

International Journal of Production Research
ISSN 00207543 print/ISSN 1366-588X online © 2006 Taylor & Francis
http://www.tandf.co.uk/journals
DOI: 10.1080/00207540500140914

https://core.ac.uk/display/6468751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

216 S. Van de Vonder et al.

one would like the realized schedule to resemble the projected schedule (as defined in
section 3) as much as possible. This projected schedule is used to organize resources,
negotiate contracts with subcontractors, etc. Deviations from this projected schedule
will induce stability costs, which may include financial costs, inventory costs or
various organizational costs.

For projects with ample resource availability, exact and suboptimal algorithms
have been developed to produce schedules under the objective of maximizing solu-
tion robustness (Leus 2003). In a recent paper (Van de Vonder et al. 2005), the
authors have provided an extensive analysis of the results of a simulation experiment
set up to investigate the trade-off between stability and makespan. Research on the
generation of stable baseline schedules in a project environment with constrained
resources is still in a burn-in stage. Recently, Leus (2003) and Leus and Herroelen
(2004) have proposed an exact resource-allocation procedure for a given baseline
schedule.

The main contribution of this paper is twofold. We develop a heuristic procedure
for generating baseline schedules that exhibit acceptable quality and solution robust-
ness in the presence of multiple activity disruptions, and we provide a thorough
analysis of the stability/makespan trade-off in a resource-constrained project sched-
uling environment. This analysis addresses the issue of whether it is beneficial to
protect the project makespan by concentrating buffers at the end of the project or to
spread buffers throughout the baseline schedule in order to enhance stability. For
this purpose, stability and makespan performance measures of the newly developed
heuristic procedure are compared with results of CC/BM for a wide range of project
characteristics.

The paper is organized as follows. In the next section, we present our heuristic
procedure for generating stable resource-constrained baseline schedules and provide
an illustration by means of an example problem. In section 3, we exploit the same
problem instance to describe our implementation of the CC/BM scheduling method-
ology for generating so-called buffered baseline schedules and unbuffered projected
schedules. Section 4 is devoted to the description of the computational experiment
set up to examine the stability/makespan trade-off. The experimental results
are described in section 5. We conclude the paper with overall conclusions and
suggestions for further research.

2. A heuristic procedure for generating stable resource-constrained schedules

Leus (2003), Herroelen and Leus (2004) and Van de Vonder et al. (2005) describe a
heuristic procedure for generating buffered baseline schedules for projects with
ample renewable resource availability. Basically, their adapted float factor
heuristic (ADFF) is an adaptation of the float factor model that was originally
introduced by Tavares et al. (1998) to generate a schedule S in which the start time
of activity 7 is obtained as s,S): = s{ESS) + o[s{LSS) — s{ESS)], where « € [0, 1] is
the so-called float factor, s{(ESS) denotes the earliest possible start time of activity i,
and s{LSS) represents the latest allowable start time of activity i. Both start times
are derived from critical path calculations for a given project due date. Instead of
using a single float factor « for all the activities, ADFF adopts an activity-dependent
float factor that is calculated as «;= B;/(B;+ 3;), where f; is the sum of the weight

Trade-off between stability and makespan 217

of activity i and the weights of all its transitive predecessors, while §; is the sum of the
weights of all transitive successors of activity i. In doing so, ADFF inserts longer
time buffers in front of activities that would incur a high cost if started earlier or later
than originally planned.

Obviously, when applied to a resource-constrained project, ADFF scatters inter-
mediate time buffers throughout a baseline schedule but does not prohibit resource
conflicts from occurring because neither the early start schedule nor the late start
schedule is guaranteed to be resource-feasible. To ensure that the buffered baseline
schedule is resource-feasible, the ADFF procedure is modified as follows.

The first step is to obtain a good precedence and resource-feasible starting
schedule. A number of exact procedures for generating minimum duration schedules
for the RCPSP have been described in the literature (see Demeulemeester and
Herroelen 2002). For illustrative purposes, we use the branch-and-bound procedure
of Demeulemeester and Herroelen (1992, 1997) for generating a minimum makespan
resource-constrained schedule. The simple example network of figure 1 will be our
vehicle of analysis. This network is a 10-activity, zero-lag, finish—start activity-
on-the-node network with three single-item renewable resources, identified for
each activity by the bracketed capital letters above the corresponding node.
Activities 0 and 9 are dummies, respectively denoting the single start and end
node of the project. The numbers below each node denote the corresponding
expected activity duration to be used in generating a baseline schedule and a
weight that denotes a relative cost of actually starting the activity one time unit
earlier or later than originally planned in the baseline schedule. Activity 6, for
example, has a planned duration of nine periods, must be performed by single
unit resource A and has a stability cost of 1.

The activity-dependent weights may include unforeseen storage costs, extra orga-
nizational costs, costs related to agreements with subcontractors, costs to penalize
the resulting system nervousness and shop co-ordination difficulties, or they may just
represent a cost that expresses the dissatisfaction of employees with schedule
changes. In many practical settings, the weights may represent the penalties, stipu-
lated in the contractual agreements, that are to be paid by the project contractors
when intermediate project milestones or the project due date are exceeded.
In practice, these penalties may be considerable. For example, three delivery dates
were specified for the renovated Berlaymont building, housing the European
Commission in Brussels: 31 December 2003 for the basic building including all the

(duration, weight)

Figure 1. Example project network.

218 S. Van de Vonder et al.

main office surfaces, 31 March 2004 for all other works required to prepare the
physical infrastructure for enlargement, and 30 June 2004 for the multi-media
equipment. If either of the agreed delivery dates was not met, a penalty was set to
€221000 per month of delay until the date of the actual delivery (European
Commission 2004).

The minimum duration schedule obtained by the branch-and-bound procedure is
shown in figure 2. The critical sequence, i.e. the precedence and resource-constrained
chain of activities that determines the 22-period makespan, is the chain (0, 1,2,4,
7,6,9). The project due date is set to 33, 50% higher than the critical sequence
length. Note that alternative optimal schedules are possible. Figure 3 gives the
corresponding right-justified schedule. For every activity i, the float value ‘float[i]’
is calculated as the difference between its latest allowable starting time (its starting
time in the right-justified schedule) and its scheduled starting time in the minimum
duration schedule of figure 2 {float[i]=s{(LSS)—s(ESS)}. Given the project due
date of 33, the latest allowable starting time of activity 5 is 23 (as can be seen in
figure 3). Hence, because s5(ESS) = 11, we find that float[5]=23-11=12.

In a second step, the starting time of each activity i is calculated as
s{S):=s(B&B) + «,(float[i]), where 5(B&B) denotes the starting time of activity i
in the minimum duration schedule (the schedule of figure 2). However, using the
ADFF float factors o;=B,;/(B;+3;) does not ensure that the resulting s,(S) are
resource-feasible. Indeed, although both the activity starting times in the minimum
duration schedule and in the right-justified schedule are resource feasible, this might
not be the case for the computed s5,(S). Table 1 gives the weights w[i], floats f]i],
durations d[i] and value «; for all activities of the example network when the project

8
Due date
=33
3 :|5 M\
1 2|1 4|7 6
2'2 time

Figure 2. Minimum duration schedule.

Due date

=33 \
3 |:5 8

" : >

11 22 time

Figure 3. Right-justified schedule.

Trade-off between stability and makespan 219

Table 1. Calculation of starting times for figure 4.

s{B&B) ST wli] dfi] Bi 8 a 54S)

0 0 0 0 0 0 31 0 0

1 0 11 0 6 0 31 0 0

2 6 11 0 2 0 26 0 6

3 0 12 0 7 0 26 0 0

4 8 11 0 3 0 26 0 8

5 11 12 1 1 1 21 0.045 11.545
6 13 11 1 9 2 20 0.09 14

7 11 11 5 2 5 20 0.2 13.2

8 11 16 4 6 4 20 0.167 13.667
9 22 11 20 0 31 0 1 33

5
Due date
=33
3 5 ¢

time

Figure 4. Schedule generated by standard ADFF.

s
ow B:
Flow C: = ‘>

Figure 5. Resource flows for the example network.

due date is fixed at 33. Figure 4 shows us the resulting schedule, in which we observe
the existence of a resource conflict: activities 6 and 7 are concurrent users of the
single resource item A between time 14 and time 15.2, which obviously violates the
resource constraint.

In order to obtain a precedence and resource-feasible schedule, a set of different
float factors «; has to be used. For this purpose, a resource flow network is con-
structed for each resource type. A resource flow network (Artigues and Roubellat
2000) identifies how each single item of a resource is passed on through a schedule.
When a certain item of resource is transferred from activity i to activity j upon
completion of activity i, the flow between those two activities will be positive.
Figure 5 represents the flow network based on the schedule of figure 2 for all

220 S. Van de Vonder et al.

(A) (B) (A)

Figure 6. Adapted project network with extra flow-based precedence relations.

Table 2. Calculation of starting times for figure 7.

s{B&B) ST wli] dfi] Bi 8i o sS)
0 0 0 0 0 0 31 0 0
1 0 11 0 6 0 31 0 0
2 6 11 0 2 0 31 0 6
3 0 12 0 7 0 31 0 0
4 8 11 0 3 0 31 0 8
5 11 12 1 1 1 21 0.045 11.545
6 13 11 1 9 7 20 0.259 15.852
7 11 11 5 2 5 21 0.192 13.115
8 11 16 4 6 4 20 0.167 13.667
9 22 11 20 0 31 0 1 33

three single-unit resource types A, B and C. In general, of course, renewable
resources can have availabilities that are larger than one. If that is the case, multiple
possible flow networks can be constructed. We have opted for the procedure
described by Artigues and Roubellat (2000) to generate a feasible resource flow
network for each resource type.

The original project network will now be modified as follows. Every pair of
activities i and j that are not (directly or transitively) ordered in the original project
network and for which there is a positive flow going from i to j in the resource flow
network will be linked by an extra precedence constraint. In this way, we obtain an
adapted network as depicted in figure 6. The computation of the «; taking into
account the extra precedence constraints is shown in table 2. The corresponding
final schedule is shown in figure 7. We will later refer to this procedure as the resource
flow-dependent float factor (RFDFF) heuristic.

3. Critical chain buffer management (CC/BM)

In the experimental set-up of the next section the above-described RFDFF-
heuristic will be compared with CC/BM. CC/BM—the direct application of the
Theory of Constraints (TOC) to project management (Goldratt 1997)—has received
considerable attention in the project management literature. The fundamental

Trade-off between stability and makespan 221

Deadline

3 5|:| 8 =33\4

time

Figure 7. Baseline schedule generated by the RFDFF heuristic.

working principles of CC/BM have been reviewed by Goldratt (1997), Newbold
(1998) and Herroelen and Leus (2001). CC/BM builds a baseline schedule using
aggressive median or average activity duration estimates rather than using activity
durations that are based on the 80-90% confidence levels which, according to
CC/BM, are in common use in project-management practice. The safety in the
durations of activities that was cut away by selecting aggressive duration estimates
is concentrated at the end of the schedule in the form of a project buffer (PB) that is
positioned at the end of the so-called critical chain. The critical chain is defined as the
longest chain of precedence and resource-dependent activities that determines the
overall duration of a project. If there is more than one critical chain, an arbitrary
choice is made. The project buffer should protect the project due date from
variability in the critical chain activities. Feeding buffers (FB) are inserted whenever
a non-critical chain activity joins the critical chain. This basically means that non-
critical chains will start earlier in time. By doing this, new resource conflicts can be
provoked. The literature is not very clear on how those conflicts should be solved.
For executing a project, the CC/BM approach does not rely on the buffered schedule
but relies on a so-called projected schedule. This schedule is precedence- and
resource-feasible, contains no buffers and is to be executed according to the road-
runner mentality, i.e. the so-called gating tasks (activities with no non-dummy pre-
decessors) are started at their scheduled start time in the buffered schedule while the
other activities are started as soon as possible. The projected schedule is recomputed
when disruptions occur. Neither the buffered schedule nor the projected schedule is
constructed with a view to stability (solution robustness, i.e. the insensitivity of
planned activity start times to schedule disruptions). At this juncture, we can explain
the implementation of CC/BM that is used in the remainder of this paper.

First, we solve the deterministic RCPSP by running the branch-and-bound
code of Demeulemeester and Herroelen (1992, 1997). Because CC/BM starts with
a baseline schedule that is as late as possible, we run the procedure on the inverse
network and reverse the resulting schedule again to obtain a right-justified resource
feasible unbuffered schedule. For our example network of figure 1, this results in
the schedule of figure 8, where we identify the critical chain as the sequence
(0,2,1,4,7,6,9). Note that this critical chain differs slightly from that obtained in
the previous section. The order of the unrelated activities 1 and 2 is reversed because
the code was executed on the reversed network. This will obviously not affect the
project makespan.

222 S. Van de Vonder et al.

time 22

Figure 8. Right-shifted minimal duration schedule.

IR R e
= >

245 time

Figure 9. Buffered CC/BM baseline schedule.

Besides identifying the critical chain, we now also have to compute the feeding
buffers. For the example network in figure 1, clearly three non-critical chains can be
discovered. CC/BM adds feeding buffers between the last activity of the non-critical
chains and the activity of the critical chain where this feeding non-critical chain joins
the critical chain. In the example, we will add three feeding buffers, namely between
the activities 3 and 4, 5 and 6 and 8 and 9. For the time being, the size of a feeding
buffer is set to 50% of the length of its feeding chain. The buffer sizing decision will
be further examined in section 5.6.

As was already mentioned ecarlier and as has been demonstrated by Herroelen
and Leus (2001), simply starting the feeding chains earlier in time to make room for
the feeding buffers may introduce new resource conflicts. Instead of using some
heuristic to resolve these resource conflicts, we opt for a complete rescheduling
procedure in which the buffers are properly sized and considered as extra dummy
activities with positive duration and no resource requirements, while ensuring that
the sequential order of the critical chain activities is kept unchanged. For the
example network, this results in the buffered baseline schedule of figure 9 where
three feeding buffers and a 50% project buffer have been inserted.

For executing a project, however, CC/BM does not rely on this buffered baseline
schedule but relies on the so-called projected schedule, which has been introduced
earlier in this section. The alert reader will observe that the construction of such a
projected schedule requires some additional information, which can for example be
obtained by fixing the flows of a resource flow network. The derivation of the earliest
possible activity starting times in the projected schedule depends not only on the
original precedence constraints but also on the resource flows between activities.
All activities that pass on resources to other activities should be completed by
the time these other activities start. Clearly, when disruptions occur during project

Trade-off between stability and makespan 223

time 545

Figure 10. Initial CC/BM projected schedule.

execution, the projected schedule has to be recomputed. Figure 10 shows the
initial projected schedule for our example network of figure 1. Activities 5 and 8
are started earlier, i.e. at the completion time of activity 4. Note that there is
obviously no resource flow between activities 5 and 8 so that they can be scheduled
concurrently.

4. Set-up of the computational experiment

In this section, we describe our experimental set-up that is used to investigate the
trade-off between quality robustness and solution robustness. Several network gen-
erators for project scheduling problems have been developed (Demeulemeester et al.
1993, 2003, Kolisch et al. 1995, Schwindt 1995, Agrawal et al. 1996). The often-used
instances in the project scheduling problem library PSPLIB have been generated
using ProGen (Kolisch er al. 1995), which takes into account network topology
and resource-related characteristics.

We use the RanGen software developed by Demeulemeester er al. (2003) to
generate network instances. The reasons for selecting RanGen can be summarized
as follows (see also Demeulemeester et al. 2003). The generator aims at generating
strongly random problem instances that span the full range of problem complexity
and uses a non-superfluous reliable set of complexity measures which have been
shown in former studies to stand in clear and strong relation to the hardness of
resource-constrained project scheduling problems. It guarantees networks with
pre-specified values of the order strength (OS), resource factor (RF) and resource
constrainedness (RC), being precisely the three complexity measures used in our
factorial design.

The settings for the parameters used in our factorial design are shown in table 3.
Every network is characterized by the number of activities n and by OS (Mastor
1970). OS describes the density of the network and is defined as the number of
precedence relations, including the transitive relations, divided by the theoret-
ical maximum number of such precedence relations, [n(n — 1)]/2. Previous studies
(Herroelen and De Reyck 1999) have demonstrated that the order strength is an
excellent measure of the impact of the topology of practical project networks on the
complexity of the associated resource-constrained project scheduling problem:
the higher the value of OS, i.e. the higher the density of the network, the easier

224 S. Van de Vonder et al.

Table 3. Parameter settings for the factorial experiment.

Low Medium High
n 10 20 30
(0N 0.3 0.5 0.7
RF 0.5 0.75 1
RC 0.3 0.5 0.7

resource-constrained project scheduling becomes. In our experiments, we will use
representative order strength settings of 0.3, 0.5 and 0.7.

In the experiment, four different resource types are considered. The resource usage
is defined by two parameters: the resource factor (RF) and the resource constrainedness
(RC). The resource factor reflects the average number of resource types used by
an activity (Pascoe 1966). RF =1 thus means that all activities require all resource
types in a certain non-zero quantity. RF =0 indicates that no activity requests any
resource. According to Kolisch et al. (1995), there is a positive correlation between
the RF and the required CPU time to solve the well-known resource-constrained
project scheduling problem, while Alvarez-Valdés and Tamarit (1989) have observed
that problems with RF=1 were easier to solve than problems with RF=0.5.
We include representative RF-settings of 0.5, 0.75 and 1 in our factorial design.

The resource constrainedness (Patterson 1976) defines the average portion of the
resource availability that is used by an activity. RC=0.5 means that the average
usage of an activity that needs a certain resource type equals half the availability of
that type. The three settings for RC (0.3, 0.5 and 0.7) used in the factorial design
represent the critical values found by Herroelen and De Reyck (1999) to characterize
the easy—hard—easy phase transition in the complexity of the resource-constrained
project scheduling problem.

We set up a factorial experiment to investigate the impact of the above-described
parameters on the makespan/stability trade-off. We will only examine the main
effects of the parameters by varying the corresponding parameter one by one. For
every examined parameter combination, 100 network instances are generated.

The activity weights (apart from the weight of the dummy end activity) are drawn
from a uniform distribution between 0 and 4. As mentioned earlier, these weights
represent the cost incurred if the corresponding activity would start one time unit
earlier or later than planned. The weight of the dummy end activity, which identifies
the cost of completing the project later than planned, is defined by the weighting
parameter, wp. This weighting parameter is the ratio between the weight of the
dummy end activity and the average of the distribution of all other activity weights
(2 in this case). We allow wp to fluctuate from 1 to 15, and we redo all calculations
for each discrete intermediate value. Such a range makes it possible to represent the
transition from a situation where project management deems project completion as
equally important as meeting the intermediate milestones, to the situation often
occurring in practice, where project management deems timely project completion
as of utmost importance.

Given a certain network and specific choices for all parameters, we compute
the CC/BM schedule according to the procedure explained in section 3. Then,
100 project executions are simulated using a right-skewed beta distribution for the

Trade-off between stability and makespan 225

actual activity durations (mean duration value equal to the deterministic duration
used in the baseline schedule, minimum value equal to half the baseline duration and
maximum value equal to 2.25 times the baseline duration). For every execution, the
makespan performance and the stability cost are computed. The evaluation measure
for makespan performance is the timely project completion probability (TPCP) that
expresses the probability that the project will end by the project due date for certain
parameter settings. Stability is measured as the weighted sum of deviations between
planned and actual activity start times. Both measures obviously depend highly on
the project due date. For this reason, stability and makespan performance are recal-
culated for different project due dates. More precisely, we add a project buffer,
whose size is expressed as a fraction of the critical chain length, to the due date of
the baseline schedule. This fraction is incrementally increased from an aggressive 0%
to 200%, which ensures a very safe project buffer. Figure 9 shows an example of such
a project buffer, where 50% of critical chain length has been added to the due date.
Stability cost is also dependent on the weighting parameter, because the weighted
sum of deviations also includes the possible tardiness of the project completion,
multiplied by the weight of the last activity, which is defined by the wp. Thus, all
stability calculations have to be repeated for the considered range of wp values.

The aim of this paper is to compare stability and makespan performance
for a makespan protecting schedule and a stable schedule. CC/BM was chosen as
a method that protects the project makespan, while the RFDFF will be used as a
heuristic for maximizing the stability. Thus, the same measures should be calculated
for the RFDFF-heuristic. However, for this heuristic, the values of wp and the
project due date affect not only the performance measures but also the baseline
schedules (the schedule in figure 7 assumed wp =10 and due date =33). Thus, for
each combination of wp and due-date prolongation (expressed as a percentage of the
critical chain length), a completely new schedule has to be computed. Afterwards,
averages over the 100 project executions are compared between CC/BM and
RFDFF for any combination of parameter setting, weighting parameter and project
due date. Results and interpretations are given in the following sections.

Note that CC/BM and RFDFF do not result in the same minimal project due
date. For RFDFF, 0% of project due-date prolongation means that the project due
date equals the critical chain length found by the RCPSP procedure. In contrast, in
CC/BM the critical chain does not necessarily start at time 0 because of the insertion
of the feeding buffers. For example, in figure 10, we note that activity 2 only starts at
time 2.5. This results in a project due date of 24.5 instead of 22, the value obtained by
the RCPSP procedure of figure 2. We will call this delay of 2.5 time units the critical
chain delay. Thus, adding a zero-sized project buffer to the CC/BM schedule results
in a makespan that equals the CC length plus CC delay. In order to obtain an honest
comparison between both methods, we add the critical chain delay to the due date
that is imposed on RFDFF in order to ensure that both methods have equal due
dates.

5. Experimental results

All previous sections served to introduce the algorithms and the experimental set-up
that we need to investigate whether it is advantageous to protect a schedule only for

226 S. Van de Vonder et al.

makespan performance or also for stability. Protecting for makespan performance,
as done by CC/BM, certainly produces a high TPCP. On the other hand, protecting
individual activities for possible disruptions, as done by RFDFF, decreases the
stability cost. The interesting issue addressed in this section is the magnitude of
the loss of makespan performance when protecting the intermediate milestones.
We also investigate the impact of all parameter settings on the makespan/stability
trade-off.

5.1 Impact of the weighting parameter wp

In this section, we study the results for increasing values of the weighting parameter.
A higher wp means that the cost of not meeting the proposed project due date
increases. Note that the advocates of the CC/BM philosophy typically assume that
this weight is rather high. We allow the wp to fluctuate between 1 and 15, while all
other parameter settings are kept constant (OS=0.5, RF=0.75, RC=0.5).

When wp =1, we notice that the REFDFF schedule needs on average a prolonga-
tion of 100% of the critical chain length (above the critical chain length plus the
critical chain delay) in order to ensure a 95% TPCP. A 50% prolongation only
guarantees an average of 77% of the projects to finish on time. For CC/BM, on
the other hand, a project buffer of 31% of the critical chain length already protects
the makespan in 95% of all cases. The stability cost for this makespan protective
schedule is rather high (compared with the RFDFF schedule), but because a 100%
project prolongation is simply infeasible, there is not much choice but to incur the
high stability cost of CC/BM to ensure a good makespan performance. However, the
setting wp = 1 seems rather unrealistic for many real-life projects because the cost of
not meeting the project due date will most probably exceed the cost of not meeting
an average planned activity starting time.

When wp increases, RFDFF devotes more attention to project completion.
A larger portion of the total buffer size will be placed in front of the dummy
ending activity. This improves the makespan performance. For example, for
wp =3, 45% of critical chain prolongation already ensures the proposed makespan
to be met in 95% of all cases. Obviously, although makespan performance is
still better for CC/BM (remains 31% because the schedule is independent of wp),
this is a valuable alternative for CC/BM because the stability costs are much lower.
Some project managers might opt for such a strategy.

For projects with an even higher wp, this effect will still be stronger. When
wp =15, postponing the due date by 28% of critical chain length already results
in a 95% TPCP. Surprisingly, this is less than the 31% for CC/BM. The reason
for this is that the critical chain delay that occurs at the beginning of the CC/BM
schedule will be put at the end of the RFDFF schedule. Thus, when wp is very high,
the total buffering at the end of the project can become larger for RFDFF than the
project buffer inserted by CC/BM. This will be especially the case when the critical
chain delay is large.

All of this results in a paradoxical conclusion. The CC/BM philosophy tries to
protect project completion because it assumes that project completion is much more
important than the timely completion of intermediate activities (actually CC/BM
rejects the use of milestones). However, the above remarks show us that exactly when
the weight of the ending project activity is high, CC/BM becomes hard to defend.

Trade-off between stability and makespan 227

30
Stability
25 \\ Cost [l
1
20 1 < - - .TPCP
15 1

10 +— S~

5 3
0 A
5 5 10 15

wp

Figure 11. Comparison of RFDFF and CC/BM for total buffering equal to 50% of CC
length.

40
Stability

35

N Cost
30 4—

N - - .TPCP

25 + \
20 1

15 A . \
'
10 A \

5 ~
0 -~
-5 5 10 15

wp

Figure 12. Comparison of RFDFF and CC/BM for total buffering equal to 50% of CC
length in the non-resource constrained case.

Even if we would make abstraction of the critical chain delay, we see that the huge
advantage of RFDFF in stability cannot be compensated by the difference in make-
span performance. We summarize the trade-off between makespan and stability in
figure 11. The bold curve indicates the ratio between the CC/BM stability cost for a
50% project due date delay compared with the RFDFF stability cost for the same
due date. Obviously this advantage of RFDFF decreases for a higher wp, but the
difference remains substantial for every wp value considered. The dashed curve, on
the other hand, denotes the difference in TPCP percentage points between CC/BM
and RFDFF. This advantage in makespan performance of CC/BM seems to
decrease much more rapidly for increasing wp.

The above conclusions are very similar to those found in Van de Vonder ez al.
(2005) for the non-resource-constrained case. However, we must note that in
both papers, different assumptions have been made concerning the stochastic dis-
tributions of activity weights. To solve this inconvenience, figure 12 represents the
makespan/stability trade-off for the same networks, parameter settings (including
activity weights distribution) and disturbances of figure 11 when resources are not
considered to be a restricting factor. We remark that figure 11 and figure 12 also
show a similar impact of the wp on both measures of performance. Relaxing the

228 S. Van de Vonder et al.

resource constraints does lower stability cost, but almost equally for REDFF and
CC/BM. So, the stability cost ratio will hardly change. The difference in TPCP
percentage points also shifts marginally between both figures, but not to the
extent that it would change any conclusion.

5.2 Impact of the number of activities

In the previous section, we examined the trade-off between quality robustness and
solution robustness for varying wp values, other project settings being kept constant.
In this section, we will investigate the impact of the number of activities (n) in the
network on the previous conclusions.

While n was always kept equal to 20 in the previous settings, we have rerun all
calculations for networks of 10 and 30 activities. Table 4 shows the average critical
chain length and the average deterministic CC/BM due date for the three examined
values of n. We note that the CC/BM due date is proportional to the number of
activities. It is important to remark that also the critical chain delay increases with
increasing number of activities.

Figure 13 shows the difference in required due date delay to ensure a 95% TPCP
between RFDFF and CC/BM. We immediately observe that both the trade-off and
the paradox that we introduced in the previous section persist. For 10-activity net-
works, the difference decreases even faster for low wp values, which will favour
RFDFF. Also, the more activities are in the network, the better RFDFF becomes
for very high wp values. This can be explained by the positive correlation between
n and the critical chain delay. A large critical chain delay means that CC/BM has

Table 4. Critical chain length as a function of n.

n CC/BM due date=a CC length=» CC delay=a—»b

10 349 33.9 1.0
20 69.4 65.4 4.0
30 103.7 96.0 7.7
90
80 — —n=10—
n=20
70 \ n=30[|
60 \
50 \
40
\
30
\\
20 v
10 \\
N
O \I
-10 5 10 15
wp

Figure 13. Impact of n on makespan performance for RFDFF and CC/BM.

Trade-off between stability and makespan 229

a buffer at the beginning of the schedule, while the stable schedule can spread this
buffer over all activities. If wp is very high, REDFF will concentrate this delay at the
end of the schedule and thus protect the makespan. By consequence, a larger number
of activities leads to an increasingly better makespan performance for the quality
robust schedules when wp is high.

When the number of activities exceeds 30, our stable heuristic may consume a lot
of computational time in some instances. The bottleneck in the heuristic is obviously
the branch-and-bound procedure that, although very efficient, may consume a large
amount of CPU time for a specific combination of OS, RF and RC. In this case,
we would have to truncate it or replace it by a heuristic procedure for solving the
RCPSP. Our results have indicated that this excessive CPU time requirement is only
needed by a few network instances. Thus, we have put an upper limit on the CPU
time allowed for the branch-and-bound procedure. If this time limit is surpassed, the
suboptimal truncated branch-and-bound result will be used.

5.3 Impact of the order strength

In this section, we analyse the effect of the order strength on the stability/makespan
trade-off. Figure 14 reveals the difference in required due date delay to obtain 95%
TPCP between CC/BM and RFDFF for order strengths respectively equal to 0.3, 0.5
and 0.7. We note that the maximal wp value for which CC/BM has an advantage
over RFDFF is higher when the density of the network increases. For example,
for OS =0.3, the advantage in makespan already disappears when wp =6, while it
only disappears when wp =9 for OS=0.7.

Table 5 indicates that the CC/BM project due date and critical chain delay
increase for increasing OS, but this effect is much smaller than for the number of

o —eyry
60 \ 0S=05
50)\ —0S8=07
a0
30 A
20{ \

10 N

0 |\ _—— — —

-10

wp

Figure 14. Impact of OS on makespan performance for RFDFF and CC/BM.

Table 5. Critical chain length as a function of OS.

(0N} CC/BM due date=a CC length=» CC delay=a—b

0.3 64.4 61.4 3.0
0.5 69.4 65.4 4.0
0.7 76.6 72.5 4.1

230 S. Van de Vonder et al.

activities. By consequence, we observe in figure 14 that for large wp values, the
difference in required due date delay between both methods is not dependent
on OS. A higher-order strength favours CC/BM for every wp and thus makes the
trade-off less explicit.

5.4 Impact of the resource factor

In previous sections the resource factor RF (Pascoe 1966) was kept equal to 0.75,
meaning that an activity uses on average three out of four resource types. We will
now investigate the effect of a different RF value, ceteris paribus. RF values of 0.5
and 1 will be considered. Table 6 again gives the CC/BM due date, critical chain
length and critical chain delay for the different parameter values.

We note that a higher RF results in a larger makespan. This is no surprise
because a higher RF means that more activities require the same resource and
thus more flow precedence relations need to be added. Also, a smaller RF seems
to induce a larger critical chain delay. Indeed, a small RF means that many activities
are scheduled in parallel, and as a result, more feeding buffers are inserted, which can
have a stronger effect on the rather aggressive makespan. Following the intuition of
previous sections, this negative correlation between RF and the critical chain delay
is expected to result in a better makespan performance for CC/BM for high
wp values. Indeed, figure 15 confirms this expectation, but differences are rather
small. Compared with the results in previous and subsequent sections, the RF is
the parameter with the smallest impact on the stability/makespan trade-off.

Table 6. Critical chain length as a function of RF.

RF CC/BM due date=a CC length=5 CC delay=a—»b
0.5 57.9 51.0 6.9
0.75 69.4 65.4 4.0
1 83.7 82.4 1.3
100
\ ——RF =05
80 \ RF=0.75["
60 T\ ——RF=1
40 A !
\
204 N
0 \k_ = =
5 10 15
-20
wp

Figure 15. Impact of RF on makespan performance for RFDFF and CC/BM.

Trade-off between stability and makespan 231

5.5 Impact of the resource constrainedness (RC)

The resource factor informs us about the percentage of all resource types used on
average, but does not give any information about the average resource amount
required by the project activities. This is exactly what RC measures. In the previous
settings, we used RC =0.5, meaning that an activity that uses a resource type needs
on average 50% of its availability. In this section, we will examine the impact of
respectively a lower (0.3) and a higher (0.7) value of RC on the makespan/stability
trade-off. Table 7 shows the effect of these RC values on the average makespan.

RC can be seen to have the same impact as RF. A higher RC also means that the
resource requirements are more restrictive and thus that less activities can be sched-
uled in parallel. Less parallel activities make the effect of including feeding buffers
smaller, which results in a negative correlation between RC and the critical chain
delay. However, unlike RF, RC has a strongly significant effect on the stability/
makespan trade-off. For small wp values, Figure 16 shows that networks with a
small RC need a much larger prolongation of the project due date to ensure 95%
TPCP. On the other hand, for high wp values, a network with a high RC will result in
a very clear makespan performance advantage for RFDFF. The paradox is nowhere
more clear-cut than here.

5.6 Impact of the buffer sizes in CC|BM

In the previous sections, we have compared the performance of a stable scheduling
heuristic with a makespan protecting schedule constructed by the CC/BM approach.

Table 7. Critical chain length as a function of RC.

RC CC/BM due date=a CC length=»5 CC delay=a—»

0.3 48.1 38.1 10.0
0.5 69.4 65.4 4.0
0.7 89.5 88.6 0.9

120
100 14 — —RC=03

80 \ RC =05
60 | ——RC =07

0 N T

20 0 5 ~~——g————5

wp

Figure 16. Impact of RC on makespan performance for REFDFF and CC/BM.

232 S. Van de Vonder et al.

In this latter approach, however, we made an assumption about buffer sizes that
might substantially influence the performance of the approach: the feeding buffer
size was fixed at 50% of the length of the non-critical path that it is protecting. We
will investigate other feeding buffer sizes in this section. Also, some conclusions
about the required project buffer size for CC/BM will be formulated later in this
section.

5.6.1 Feeding buffer size. In CC/BM, a feeding buffer is inserted wherever a non-
critical chain joins the critical chain. Thus, all non-critical activities are started earlier
in time than their late start time. Otherwise, any delay in the non-critical chain would
directly affect the critical chain activities. Starting all activities as early as possible is
not applied in CC/BM because this would enormously increase the work in process
of the project. Traditional CC/BM literature proposes feeding buffers that are 50%
of the length of the chain it has to protect. Figure 17 explores the correlation between
the feeding buffer size and the obtained TPCP. y denotes the percentage of the
critical chain length that is added as a project buffer to the original project makespan
to produce a project due date, and § denotes the feeding buffer size as a percentage of
non-critical chain length. The resulting curves are represented for y values of 0, 30
and 50. At first sight, we would conclude that large feeding buffers improve the
makespan performance for all three y values because higher percentages of TPCP
are recorded. However, we must stress that the project due dates are not equal and
thus dependent on 8. Indeed, increasing the feeding buffer sizes increases the possi-
bility that a non-critical chain will start before the start of the critical chain. This
means that the critical chain will not start at time 0, as already shown in figures 9 and
10, which results in an increase of the project due date. The relation between feeding
buffer size and makespan performance (in terms of obtained makespan) can be
investigated by fixing the due dates. Figure 18 again represents the TPCP values
for different 8, but now y gives the percentage of the critical chain length that is
added to the critical chain length (and not to the project makespan), which is inde-
pendent of the feeding buffer size. By doing this, we can compare the TPCP for
different & values for an equal due date, although it is not the due date that will be

120
100
80 -
S
60 — — -0
& Y
40 Y=30
20 ~ V=50
o E==="""
0 50 100
o

Figure 17. Correlation between feeding buffer size and TPCP.

Trade-off between stability and makespan 233

120
100
80
S
O 60
-
40 - ———
¥=30
20 1%
0 F— ===
0 20 40 60 80 100

Figure 18. Correlation between feeding buffer size and obtained makespan.

350
300
250
200

150
100 —v=0

v=30
— —vy=50

—

—~
P—
e — — — . e i

Stability Cost

50

0 50 100
5

Figure 19. Stability cost for different feeding buffer sizes when wp =>5.

proposed by CC/BM. Figure 18 shows that the TPCP now decreases for larger
feeding buffers. In fact, this means that the makespan obtained will increase for
increasing &, which is the opposite of what figure 17 suggests.

The average stability costs (when wp = 5) for different values of § and y are given
in figure 19. We note that stability costs disfavour small feeding buffers. Once the
feeding buffer size surpasses 50% of the chain length, we note that stability costs
remain quite stable, especially for realistic project buffer sizes. Thus, from the
stability point of view, we note that starting as early as possible is the best option,
while a good makespan performance requires that we avoid delaying the critical
chain. From those two measures, we would thus advise inserting maximal feeding
buffers such that the non-critical chain will never start earlier than the critical chain.
However, by doing this, we would neglect the major reason why CC/BM departs
from a late start schedule, namely to reduce the work in process. By taking this into
account, we can conclude that the 50% feeding buffer size generates good results and
is certainly not outperformed by a different § value. However, more advanced sizing
rules have also been proposed in the literature (Newbold 1998, Herroelen and Leus
2001). Those rules will probably yield better results, but because the focus of this
paper is on a trade-off between protecting the makespan and protecting for stability,

234 S. Van de Vonder et al.

we do not intend to give a complete review of CC/BM and refer to the specialized
literature for an extensive overview.

5.6.2 Project buffer size. In this section, we will take a look at the required project
buffer size for CC/BM. The influence of project characteristics on the required buffer
size has already been discussed in previous sections, but will be centralized here.
Traditionally, a project buffer that equals 50% of the critical chain length is pro-
posed. There seems to be a negative correlation between required project buffer size
and n, OS and RC, respectively. Note that tables 4, 5 and 7 show that an increase in
n, OS and RC also triggers an increase in the makespan. Thus, a buffer size equal to a
smaller percentage of the critical chain is needed when the critical chain is longer.
However, table 6 shows that RF also influences the critical chain length and
the project makespan, but the percentage of project buffer required is not dependent
on RF.

In general, however, it is no surprise that projects with a large makespan require
a smaller percentage of project buffering. In absolute terms, the buffers are still
increasing for increasing makespan. For example, it is perfectly possible that a
two week project needs a one week buffer, while a one year buffer will most likely
be much too safe for a two year project. When we take a 95% TPCP as an absolute
requirement, we note that 50% is too much safety for most projects, especially for
projects that have a large makespan. It is difficult to give advice about the best
project buffer size to make sure that the required TPCP will be obtained, but we
must stress that this percentage is dependent on the project characteristics.

6. Conclusions and further research

This paper has described a trade-off between makespan performance and stability,
which is an important issue for every project. We have observed that the advantages
of the two scheduling approaches developed in this paper depend highly on the
project characteristics and especially on the relative importance of timely project
completion compared with the importance of timely completion of the intermediate
activities. The paradoxical fact that makespan protecting schedules (such as CC/BM)
were shown to be hard to defend when makespan becomes very important is the
main conclusion of this paper. Improving project managers’ awareness of the differ-
ent scheduling strategies and their strengths and weaknesses is the ultimate aim of
our research.

We have made a comparison between makespan protecting scheduling and stable
scheduling by applying two algorithms, CC/BM and RFDFF, on a set of projects.
Because we were not aware of any algorithm that optimizes the RCPSP for stability
under uncertainty, the REDFF heuristic was developed for this purpose. Developing
new stable scheduling heuristics and comparing those with various makespan
protecting schedules can be an interesting topic for further research.

In this paper, we build a proactive schedule that includes safety buffers to absorb
disruptions. However, during execution, even this stable schedule can become infea-
sible, and thus a reactive policy will be needed to decide how to react in that case. We
have opted for preserving the resource flows between activities whenever a disruption
occurs and afterwards planning as early as possible within these restrictions.

Trade-off between stability and makespan 235

However, other reactive policies could be implemented. An interesting open
research topic is to investigate the effect of these reactive policies on makespan
and stability.

Acknowledgements

This research has been supported by project OT/03/14 of the Research Fund
K.U. Leuven and project G.0109.04 of the Research Foundation—Flanders
(FWO—Vlaanderen). Roel Leus is partly funded as Postdoctoral Fellow of the
Research Foundation—Flanders.

References

Agrawal, M.K., Elmaghraby, S.E. and Herroelen, W.S., DAGEN: a generator of testsets for
project activity nets. Eur. J. Oper. Res., 1996, 90, 376-382.

Alvarez-Valdés, R. and Tamarit, J.M., Heuristic algorithms for resource-constrained project
scheduling. In Advances in Project Scheduling, edited by R. Slowinski and J. Weglarz,
pp. 134-143, 1989 (Elsevier: Amsterdam).

Artigues, C. and Roubellat, F., A polynomial activity insertion algorithm in a multi-resource
schedule with cumulative constraints and multiple modes. Eur. J. Oper. Res., 2000, 127,
294-316.

Brucker, P., Drexl, A., Md&hring, R., Neumann, K. and Pesch, E., Resource constrained
project scheduling: notation, classification, models and methods. Eur. J. Oper. Res.,
1999, 112, 3-41.

Demeulemeester, E., Dodin, B. and Herroelen, W., A random activity network generator.
Oper. Res., 1993, 41, 972-980.

Demeulemeester, E. and Herroelen, W., A branch-and-bound procedure for the multiple
resource-constrained project scheduling problem. Manage. Sci., 1992, 38, 1803—1818.

Demeulemeester, E. and Herroelen, W., New benchmark results for the resource-constrained
project scheduling problem. Manage. Sci., 1997, 43, 1485-1492.

Demeulemeester, E. and Herroelen, W., Project Scheduling—A Research Handbook. Vol. 49
of International Series in Operations Research & Management Science, 2002
(Kluwer Academic Publishers: Boston, MA).

Demeulemeester, E., Vanhoucke, M. and Herroelen, W., RanGen: a random network
generator for activity-on-the-node networks. J. Sched., 2003, 6, 17-38.

European Commission, Press Release, MEMO/04/207, 2 September 2004.

Goldratt, E., Critical Chain, 1997 (North River Press: Great Barrington, MA).

Herroelen, W. and De Reyck, B., Phase transitions in project scheduling. J. Oper. Res. Soc.,
1999, 50, 148-156.

Herroelen, W., De Reyck, B. and Demeulemeester, E., Resource-constrained scheduling:
a survey of recent developments. Comput. Oper. Res., 1998, 25, 279-302.

Herroelen, W. and Leus, R., On the merits and pitfalls of critical chain scheduling.
J. Oper. Manage., 2001, 19, 559-577.

Herroelen, W. and Leus, R., The construction of stable project baseline schedules.
Eur. J. Oper. Res., 2004, 156, 550-565.

Herroelen, W. and Leus, R., Project scheduling under uncertainty—survey and research
potentials. Eur. J. Oper. Res., 2005, 165, 289-306.

Kolisch, R. and Hartmann, S., Heuristic algorithms for solving the resource-constrained
project scheduling problem: classification and computational analysis. In Project
Scheduling: Recent Models, Algorithms and Applications, edited by J. Weglarz, 1999
(Kluwer Academic: Boston, MA).

236 S. Van de Vonder et al.

Kolisch, R. and Padman, R., An integrated survey of deterministic project scheduling. Omega,
1999, 49, 249-272.

Kolisch, R., Sprecher, A. and Drexl, A., Characterization and generation of a general class of
resource-constrained project scheduling problems. Manage. Sci., 1995, 41, 1693-1703.

Leus, R., The generation of stable project plans. PhD thesis, Katholieke Universiteit Leuven,
Belgium, 2003.

Leus, R. and Herroelen, W., Stability and resource allocation in project planning. //E Trans.,
2004, 36, 1-16.

Mastor, A., An experimental and comparative evaluation of production line balancing
techniques. Manage. Sci., 1970, 16, 728-746.

Newbold, R., Project management in the fast lane—Applying the theory of constraints. APICS
Series on Constraints Management, 1998 (The St. Lucie Press: Boca Raton, FL).

Pascoe, T., Allocations of resources C.P.M. Rev. Fr. Rech. Opér., 1966, 38, 31-38.

Patterson, J., Project scheduling: the effects of problem structure on heuristic scheduling.
Naval Res. Logist., 1976, 23, 95-123.

Tavares, L., Ferreira, J. and Coelho, J., On the optimal management of project risk.
Eur. J. Oper. Res., 1998, 107, 451-4609.

Van de Vonder, S., Demeulemeester, E., Herroelen, W. and Leus, R., The use of buffers in
project management: the trade-off between stability and makespan. Int. J. Prod. Econ.,
2005, 97, 227-240.

