10,754 research outputs found

    Higher Dimensional Lattice Chains and Delannoy Numbers

    Get PDF
    Fix nonnegative integers n1 , . . ., nd, and let L denote the lattice of points (a1 , . . ., ad) ∈ ℤd that satisfy 0 ≤ ai ≤ ni for 1 ≤ i ≤ d. Let L be partially ordered by the usual dominance ordering. In this paper we use elementary combinatorial arguments to derive new expressions for the number of chains and the number of Delannoy paths in L. Setting ni = n (for all i) in these expressions yields a new proof of a recent result of Duichi and Sulanke [9] relating the total number of chains to the central Delannoy numbers. We also give a novel derivation of the generating functions for these numbers in arbitrary dimension

    Local Lagrangian Approximations for the Evolution of the Density Distribution Function in Large-Scale Structure

    Get PDF
    We examine local Lagrangian approximations for the gravitational evolution of the density distribution function. In these approximations, the final density at a Lagrangian point q at a time t is taken to be a function only of t and of the initial density at the same Lagrangian point. A general expression is given for the evolved density distribution function for such approximations, and we show that the vertex generating function for a local Lagrangian mapping applied to an initially Gaussian density field bears a simple relation to the mapping itself. Using this result, we design a local Lagrangian mapping which reproduces nearly exactly the hierarchical amplitudes given by perturbation theory for gravitational evolution. When extended to smoothed density fields and applied to Gaussian initial conditions, this mapping produces a final density distribution function in excellent agreement with full numerical simulations of gravitational clustering. We also examine the application of these local Lagrangian approximations to non-Gaussian initial conditions.Comment: LaTeX, 22 pages, and 11 postscript figure

    Some formal results for the valence bond basis

    Full text link
    In a system with an even number of SU(2) spins, there is an overcomplete set of states--consisting of all possible pairings of the spins into valence bonds--that spans the S=0 Hilbert subspace. Operator expectation values in this basis are related to the properties of the closed loops that are formed by the overlap of valence bond states. We construct a generating function for spin correlation functions of arbitrary order and show that all nonvanishing contributions arise from configurations that are topologically irreducible. We derive explicit formulas for the correlation functions at second, fourth, and sixth order. We then extend the valence bond basis to include triplet bonds and discuss how to compute properties that are related to operators acting outside the singlet sector. These results are relevant to analytical calculations and to numerical valence bond simulations using quantum Monte Carlo, variational wavefunctions, or exact diagonalization.Comment: 22 pages, 14 figure

    Euclidean asymptotic expansions of Green functions of quantum fields (II) Combinatorics of the asymptotic operation

    Full text link
    The results of part I (hep-ph/9612284) are used to obtain full asymptotic expansions of Feynman diagrams renormalized within the MS-scheme in the regimes when some of the masses and external momenta are large with respect to the others. The large momenta are Euclidean, and the expanded diagrams are regarded as distributions with respect to them. The small masses may be equal to zero. The asymptotic operation for integrals is defined and a simple combinatorial techniques is developed to study its exponentiation. The asymptotic operation is used to obtain the corresponding expansions of arbitrary Green functions. Such expansions generalize and improve upon the well-known short-distance operator-product expansions, the decoupling theorem etc.; e.g. the low-energy effective Lagrangians are obtained to all orders of the inverse heavy mass. The obtained expansions possess the property of perfect factorization of large and small parameters, which is essential for meaningful applications to phenomenology. As an auxiliary tool, the inversion of the R-operation is constructed. The results are valid for arbitrary QFT models.Comment: one .sty + one .tex (LaTeX 2.09) + one .ps (GSview) = 46 pp. Many fewer misprints than the journal versio

    SAGA: A project to automate the management of software production systems

    Get PDF
    The project to automate the management of software production systems is described. The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. Several major components of the SAGA system are completed to prototype form. The construction methods are described

    Angular reduction in multiparticle matrix elements

    Full text link
    A general method for the reduction of coupled spherical harmonic products is presented. When the total angular coupling is zero, the reduction leads to an explicitly real expression in the scalar products within the unit vector arguments of the spherical harmonics. For non-scalar couplings, the reduction gives Cartesian tensor forms for the spherical harmonic products, with tensors built from the physical vectors in the original expression. The reduction for arbitrary couplings is given in closed form, making it amenable to symbolic manipulation on a computer. The final expressions do not depend on a special choice of coordinate axes, nor do they contain azimuthal quantum number summations, nor do they have complex tensor terms for couplings to a scalar. Consequently, they are easily interpretable from the properties of the physical vectors they contain.Comment: This version contains added comments and typographical corrections to the original article. Now 27 pages, 0 figure

    Charged massive particle at rest in the field of a Reissner-Nordstr\"om black hole

    Full text link
    The interaction of a Reissner-Nordstr\"om black hole and a charged massive particle is studied in the framework of perturbation theory. The particle backreaction is taken into account, studying the effect of general static perturbations of the hole following the approach of Zerilli. The solutions of the combined Einstein-Maxwell equations for both perturbed gravitational and electromagnetic fields at first order of the perturbation are exactly reconstructed by summing all multipoles, and are given explicit closed form expressions. The existence of a singularity-free solution of the Einstein-Maxwell system requires that the charge to mass ratios of the black hole and of the particle satisfy an equilibrium condition which is in general dependent on the separation between the two bodies. If the black hole is undercritically charged (i.e. its charge to mass ratio is less than one), the particle must be overcritically charged, in the sense that the particle must have a charge to mass ratio greater than one. If the charge to mass ratios of the black hole and of the particle are both equal to one (so that they are both critically charged, or "extreme"), the equilibrium can exist for any separation distance, and the solution we find coincides with the linearization in the present context of the well known Majumdar-Papapetrou solution for two extreme Reissner-Nordstr\"om black holes. In addition to these singularity-free solutions, we also analyze the corresponding solution for the problem of a massive particle at rest near a Schwarzschild black hole, exhibiting a strut singularity on the axis between the two bodies. The relations between our perturbative solutions and the corresponding exact two-body solutions belonging to the Weyl class are also discussed.Comment: 42 pages, 3 eps figures, revtex macro
    corecore