201 research outputs found

    The Frequency Distribution of Quantization Error in Digitizers for Coherent Sampling

    Get PDF
    In this paper the frequency distribution of quantization error in coherent sampling of digitizers will be investigated. As the distribution of the quantization error affects the values of THD and SNR, it is relevant for a correct interpretation of THD and SNR of sine waves in coherent sampling. The distribution of the quantization error will be analyzed as a function of N, total number of samples and M, number of cycles in the sample set and it will be proved that for certain cases, the quantization error falls on odd harmonics only of the frequency of the sampled sine wave

    Development of a PJVS System for Quantum-Based Sampled Power Measurements

    Get PDF
    The paper deals with recent progresses at INRiM towards the development and characterization of a programmable Josephson voltage standard (PJVS) operating in a small liquid helium dewar as well as with its integration for the realization of a practical quantum sampling electrical power standard. The PJVS is based on a 1V superconductor-normal metal-superconductor (SNS) binary-divided array of 8192 Josephson junctions. To ensure proper operating conditions of the PJVS chip, a custom short cryoprobe was designed, built and successfully tested. The overall system is being developed in the framework of EMPIR project 19RPT01-QuantumPower. The goal is to establish a new quantum power standard (QPS) based on a single Josephson voltage standard for sampled power measurements and to gain confidence in running PJVS for precise calibration of digital sampling multimeters and arbitrary waveform digitizers used in the ac-voltage and power metrology community

    Multitones’ Performance for Ultra Wideband Software Defined Radar

    Get PDF
    This chapter proposes and tests an approach for an unbiased study of radar waveforms’ performances. Through an empirical performance analysis, the performances of Chirp and Multitones are compared with both simulations and measurements. An ultra wideband software defined radar prototype was designed and the prototype has performances comparable to the state of the art in software defined radar. The study looks at peak-to-mean-envelope power ratio, spectrum efficiency, and pulse compression as independent waveform criteria. The experimental results are consistent with the simulations. The study shows that a minimum of 10 bits resolution for the AD/DA converters is required to obtain near-optimum performances

    Non-Parametric Estimation of the Periodic Signal Parameters in the Frequency Domain

    Get PDF

    PuMaII: A wide band pulsar machine for the WSRT

    Full text link
    The Pulsar Machine II (PuMa II) is the new flexible pulsar processing backend system at the Westerbork Synthesis Radio Telescope (WSRT), specifically designed to take advantage of the upgraded WSRT. The instrument is based on a computer cluster running the Linux operating system, with minimal custom hardware. A maximum of 160 MHz analogue bandwidth sampled as 8X20 MHz subbands with 8-bit resolution can be recorded on disks attached to separate computer nodes. Processing of the data is done in the additional 32-nodes allowing near real time coherent dedispersion for most pulsars observed at the WSRT. This has doubled the bandwidth for pulsar observations in general, and has enabled the use of coherent dedispersion over a bandwidth eight times larger than was previously possible at the WSRT. PuMa II is one of the widest bandwidth coherent dedispersion machines currently in use and has a maximum time resolution of 50ns. The system is now routinely used for high precision pulsar timing studies, polarization studies, single pulse work and a variety of other observational work.Comment: 29 pages, 8 figures. To appear in February issue of the PAS
    corecore