
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322413648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


8 

Non-Parametric Estimation  
of the Periodic Signal Parameters  

in the Frequency Domain 
Dušan Agrež 

University of Ljubljana,  
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1. Introduction 

Parameters estimations of periodic signals ( )g t , where frequency of the investigated 

component is the key parameter, play a fundamental role in a variety of applications: 

impedance measurement, power quality estimation, radar, A/D testing, etc. The problem 

of evaluating the spectral performance of a given periodic signal reduces to the parameter 

estimation of each spectral component (frequency, amplitude, and phase) in the presence 

of noise. Estimation methods can be classified as parametric (D’Antona & Ferrero, 2006) 

and nonparametric (Agrež, 2002). Parametric methods are model-based and have very 

good selectivity and statistical efficiency, but require computationally intensive algorithms 

and very good ‘model agreement’ with a real multi-component signal. For this reason, such 

methods are unsuitable for many estimation problems. A better approach is to use non-

parametric methods, which estimate the spectral parameters of interest by evaluating first 

the discrete Fourier transform (DFT) of the signal and then the parameters of the particular 

component. As we are dealing with periodic signals, the integral frequency transformation 

with the kernel j fte− 2π  is, in principle, the best approximation to periodicity of the signal. 

Analysis of the frequency spectrum provides the opportunity to see systematic 

periodicities in the presence of the reduced random noise by integration. Many of these 

estimations are based on coherent sampling; that is, on the accurate synchronization of the 

signal and the sampling rate, and on the collection of a number of samples belonging to an 

integer number of the signal periods. However, the normal situation for signal parameter 

estimation is non-coherent, or quasi-coherent sampling, and in such a sampled signal there 

can also be spurious components. When failing to observe an integer number of periods of 

even a single tone, the tone energy is spread over the whole frequency axis, and the 

leakage from neighboring components can significantly bias estimations of the component 

parameters. 

There are two fundamental principles that restrict estimations: the time-frequency 

uncertainty principle T W ≥ 1Δ Δ π  (Gabor, 1946), and the principle of the limited changes of 

signals. The first, where TΔ  and WΔ  are the effective widths of lobes in the time and 

frequency domains (1), is a generalization of the Heisenberg uncertainty principle. 
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In words, TΔ  and WΔ  cannot simultaneously be arbitrary small. In relation to measurements 
this is interpreted to imply that the uncertainty in the determination of a frequency, is of the 
order of magnitude of the reciprocal of the time taken to measure it.  

The second principle, that of the limited changes of signals, limits the design of the signal 
shape. The more smoothly and slowly a function changes, the more rapidly its 
transformation changes and vice versa (Seibert, 1986). In practice this means that the 
spectrum of the signal should essentially vanish for frequencies greater than some frequency 

maxf , and that the tails of the pulse in the time domain must die sufficiently rapidly that the 
tail of a large pulse will not seriously distort another smaller pulse at an adjacent time 
instant. The quantitative expression of this principle can be derived from Parseval’s theorem 
and the differentiation properties of the Fourier transformation ( ) ( )g t t fG f⇔d d j2π : 

 ( ) ( ) ( )ng t
t f G f f

t

∞ ∞

−∞ −∞
=∫ ∫

2n
22 2

n

d
d 2 d

d
π  (2) 

Thus, if all the derivatives of the signal ( )g t  through the ( )n − st
1  are square-integrable, but 

the nth  is not, we may in general conclude that its spectrum ( )G f  vanishes faster than 
n

f
− +1 2

, but not faster than 
n

f
− −1 2

. 

Both fundamental principles limit the accuracy of parameter estimations and depend upon 
the measurement time. Here this is taken to mean the relative time to measure a periodic 
signal, or the number of repetitions of the periodicity in it: 

 
fT

T f
T f

= = ⋅ =meas
meas

period

θ
Δ

 (3) 

where the measurement time determines the basic frequency resolution in the frequency 
domain  f T= meas1Δ . 

A finite time of measurement is a source of dynamic errors, which are shown as leakage 
parts of the measurement window spectrum, convolved on the spectrum of the measured-
sampled signal (Fig. 1). The sampled analogue multi-frequency signal ( )g t , by 

( )f t=sampling 1 Δ , can be written as follows: 

The normalized moment of 
inertia about the center of gravity 
of the signal distribution. 

The normalized first moment – 
center of gravity of the signal 
distribution. 
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 ( ) ( ) ( )
M

m m mN
m

g k t w k A f k t
=

= ⋅ +∑
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sin 2Δ π Δ ϕ ,       k N= −0, 1, , 1…  (4) 

where mf , mA , and mϕ  are frequency, amplitude, and  phase of one component with index 
m among M + 1 , respectively. Index k is the current time index of the successive samples 

tΔ  apart. Tones of the sampled signal do not generally coincide with the basic set of the 
periodic components of the DFT, which is the most well-known, non-parametric method for 
frequency decomposition of signals (Harris, 1978). Using N  samples of the signal (4), the 
DFT at the spectral line i  is given by: 

 ( ) ( ) ( )m m

M
j j

m m m
m

j
G i A W i e W i e−

=

⎡ ⎤= − − − +⎣ ⎦∑
02

ϕ ϕθ θ , (5) 

where ( )W *  is the spectrum of the used window ( )w k , and mθ  is the signal component 
frequency divided by the frequency resolution ( )f N t= 1 /Δ Δ , and can be written in two 
parts: 

 m
m m m

f
i

f
= = +θ δ
Δ

           m− < ≤0.5 0.5δ  (6) 

where mi  is an integer value and the displacement term mδ  is caused by the non-coherent 
sampling. The DFT coefficients surrounding one signal component are due to both the 
short-range leakage and the long-range leakage contributions from the second term of the 
investigated component, and from both terms of other components (7) (Fig. 1). 
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Fig. 1. The short-range leakage influences (a) and long-range leakage influences (b) on the 
amplitude DFT coefficients (rectangular window; m = 6.3θ ) 
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The long-range leakage contributions can be reduced in several ways: by increasing the 

measurement time, by using windows with a faster reduction of the side lobes than with a 

rectangular window (like the Hann window, Rife-Vincent windows, Dolph-Chebychev 

windows, etc., Fig. 2), or by using the multi-point interpolated DFT algorithms and a 

window with known behavior of the spectrum (Agrež, 2002). For the sake of analytical 

simplicity, cosine-class windows are frequently used (Belega & Dallet, 2009; Novotný & 

Sedláček, 2010). The three basic classes of cosine windows were defined RV1, RV2, and RV3. 

For analyses, the first two classes are interesting. 

Windows of the class RV1 (Fig. 2: curves a, b, and c) are designed for maximization of the 

window spectrum side-lobes fall-off b−θ , based on the number of the time domain window 

derivatives zeroes at the window ends (Novotný & Sedláček, 2010): 

 ( )
b

l
l

l

w k a l k
N

−

=

⎛ ⎞= − ⋅ ⋅⎜ ⎟
⎝ ⎠

∑
1

,1
0

2
( 1) cos

π , k N= −0, , 1…  (8) 

When the order b  is 1 (RV1-1), the coefficient a0,1  is 1 and the equation (8) gives the 

rectangular shape. If b  is 2 ( −RV1 2 : a =0,1 1 2 , a =1,1 1 2 ) we get the Hann window. Higher 

values of b  ( −RV1 4 : a =0,1 10 32 , a =1,1 15 32 , a =2,1 6 32 , a =3,1 1 32 ) expand the 

window transform main-lobe and reduce the spectral leakage. 

Windows of the class RV2 (Fig. 2: curves d and e) are designed for minimization of the 

window spectrum main-lobe width, for a given maximum level of the side-lobes relative 

magnitude ( ) dA A −
− =side lobe max

(0) 10 , where d is the exponent of the damping. They are the 

Taylor approximation to the Dolph-Chebychev windows and give good results when 

spectral components are very close (Andria et al., 1989). 
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Fig. 2. Spectra shapes of the windows: a – the rectangular window (RV1-1), b – the Hann 

window (RV1-2), c – the RV1-4 window, d – the RV2 window with d = 4  (RV2-4), e – the 

RV2 window with d = 6   (RV2-6) 
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2. Parameters estimations 

It is important how the used window works in the estimation. Especially in the first step if 
we have an iterative procedure of estimation. Estimation of the first step has the non-
parametric nature since there is no information about the signal at the beginning. 

2.1 Frequency estimation 

Parameters of the measurement component can be non-parametric estimates by means of 
the interpolation. From the comparative study (Schoukens et al., 1992) it can be concluded 
that the key for estimating the three basic parameters is in determining the position of the 
measurement component m m mi= −δ θ , between DFT coefficients mG i( )  and mG i +( 1) , 
surrounding the component m  (Fig. 1.). Estimation can be done by multi-point estimations 
(Agrež, 2002) and using windows with known spectra, like the Hann window: 

 ( ) ( )
( )N

W
>>

=
−

H 1 2

sin

2 1

πθ
θ

πθ θ
        in   ( ) ( )m

m m

A
G i W=

2
� δ  (9a) 

 for 2-points estimation: 
( ) ( )
( ) ( )

m m
m

m m

G i s G i
s

G i G i s

+ −
=

+ +2

2
�δ  (9b) 

where ( )ms = sign δ  is the sign of displacement and can be estimated by the difference of the 
phase DFT coefficients: ( ) ( )( )m ms=sign arg G i arg G i− + − π⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦1 2 . 

The three largest, local DFT coefficients can be used in the three-point interpolation and in 
this case, long-range leakage contributions can be considered. Portions ( )iΔ  (7) of the long-
range leakage tails have the following properties: they decrease with increasing frequency 
and they change sign at successive coefficients ( )G i , if they have a sine function in the 
kernel ( ( )( ) ( )( )m mi i+ = − ± +sin sin 1π δ π δ ). For example, the rectangular window, the 
Hann window, and Rife-Vincent Class I windows satisfy this condition. For mθ  that is large 
enough, the long-range leakage influence can be approximated to 

( ) ( ) ( )m m mi i i− ≈ ≈ +1 1Δ Δ Δ , so that the ratio of coefficients can be expressed as: 
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and the displacement term as: 

 
( ) ( )

( ) ( ) ( )
m mm

m
m m m m

G i G i

G i G i G i

+ − −−
≅ =

+ − + + +
3

3
3

1 11
2 2

1 1 2 1

αδ
α

 (11) 

The numerators and the denominators in (9) and (11) have the form where the amplitude 
DFT coefficients are added with suitable weights. The form of the denominator in (11) 

( ) ( ) ( )G i G i G i− + + +H H H1 2 1  is very characteristic, and looks like the form in the 

www.intechopen.com



 
Fourier Transform – Signal Processing 

 

190 

construction of the Hann window spectrum with the Dirac delta function ( )D * , and the 
spectrum of the rectangular window (Harris, 1978): 

 ( ) ( ) ( ) ( ) ( )W D i D i D i W
⎛ ⎞= − − − + ⊗⎜ ⎟
⎝ ⎠

Hann. rect.

1 1 1
1 1

2 4 4
θ θ  (12) 

but instead of the rectangular window, the Hann window can be used:  

 ( ) ( ) ( ) ( )( ) ( )W D i D i D i W= − + + + ⊗ Hann.1 2 1θ θ  (13) 

From the point of view of leakage, the denominator is a sum of the weighted leakages. We 

can get the weights with a triple subtraction of the long-range leakage tails: 

( ) ( ) ( )m m m mi i i i− = − −1, 1Δ Δ Δ ;     ( ) ( ) ( )m m m mi i i i+ = − +, 1 1Δ Δ Δ  

 
( ) ( ) ( )

( ) ( ) ( ) ( )
m m m m m m m

m m m m

i , i , i i , i i , i

i i i i

Δ − + = Δ − − Δ +

= Δ − − Δ + Δ + << Δ

1 1 1 1

1 2 1
 (14) 

The numerator is a subtraction of the sum of the first two, from the sum of the last two DFT 

coefficients ( ) ( )( ) ( ) ( )( ) ( ) ( )m m m m m mG i G i G i G i G i G i+ + − − + = + − −1 1 1 1 . In this case 

the long-range leakage tails are also reduced. 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )m m m m m mi i i i i i− + − − − + = − − +1 1 1 1Δ Δ Δ Δ Δ Δ  (15) 

It is appropriate to form multi-point interpolations on an odd number of coefficients, in 

order to have symmetry around the largest local coefficient ( )mG i . In a five-point 

interpolation with the Hann window, similar averages are used as in the three-point 

interpolation. The quotient is used to eliminate the amplitude influence of the investigated 

component. 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
m m m m

m

m m m m m

G i G i s G i G i

G i G i G i s G i G i

⎡ ⎤ ⎡ ⎤+ − − + ⋅ + + −⎣ ⎦ ⎣ ⎦= ⋅
⎡ ⎤ ⎡ ⎤+ + + − + ⋅ + − −⎣ ⎦ ⎣ ⎦

5

2 1 1 2 2
3

6 4 1 1 2 2
δ   (16) 

An estimation of the periodic parameter by the interpolation of the DFT gives the same 

effect as the reduction of spectrum tails. The meaning of the interpolation is the weighted 

summation of the amplitude coefficients, or better, symmetrical subtraction of the successive 

adjacent leakage parts of the window spectrum (14). The idea for long-range leakage 

reduction by summation of the adjacent weighted DFT coefficients, is at the core of the 

construction of the cosine class windows. Weights for forming the Hann window and the 

Rife-Vincent Class I windows from the rectangular window, are obtained by repeated 

convolution of the two-point weight pairs ( 1, 1 ), that is by repeated subtraction of the 

neighboring pairs of the spectrum leakage tails. Binomial weights ( )r
j
2 ( r = 1, 2, ...  is a 

number of coefficients of one half; j r= 0, 1, , 2… ) can be obtained from a Pascal triangle. 

The displacement estimations with the multi-point ( r= + =2 1 3, 5, 7,…η ) interpolations of 
the DFT using the Hann window can be written as: 
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m

d

n
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1

2

η
η

η
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where l  ( l r= ≤1, 2, ... ) is the current index. The first term of the numerator in (17) is a 

difference of the side coefficients around the largest one, and the remaining terms are sums 

of the symmetrical pairs of coefficients ( ( )mG i l± ). All terms [ ]∗  are weighted by  

( )
( )( ) ( )

( )( )l

r r
n r l r l

K
− −

− − −= −2 1 2 1

2
. The signs of weights alter successively. The largest coefficient in the  

denominator is weighted by ( )r
d rK =

1

2 , the sum of the first side coefficients by ( )r
d rK −=

2

2
( 1)  

and, the differences of the symmetrically located coefficients are weighted by  

( )l

r
d r lK
+ −=

1

2
( ) . The signs of weights also alter successively ( )l−1 . 

2.1.1 Reduction of systematic error 

The results of the simulations, where the relative frequency was changed, show that the 

systematic contribution of the error – the estimation bias - decreases (Fig. 3.), while the 

influence of noise on estimations (
mθσ ) increases with the number of interpolation points 

(Fig. 4.).  

The errors of the frequency estimations ( ) ( )E i ∗= + −θ δ θ  ( ∗θ  is the true value of the 

relative frequency) for one sine component in the signal have been checked with a double scan 

varying both frequency and phase ( mA = 1 , N = 1024 , ≤ ≤1 6θ , = 0.001Δθ  and 

− ≤ ≤2 2π ϕ π , = 180Δϕ π ). The absolute maximum values of the errors (from 181 

iterations) at the given relative frequency were compared for the multi-point DFT 

interpolations using the Hann window (Fig. 3). 
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Fig. 3. Maximal errors of frequency estimation with the multi-point interpolations of the 
DFT for the Hann window (a: two-point interpolation; b: three-point interpolation; c: five-
point interpolation; d: seven-point interpolation) 
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2.1.2 Uncertainty of the frequency estimations 

Distributions of errors ( ( ) ( )E G i G i= −
noise noiseless

) of the largest amplitude DFT coefficients  

have very similar (Gaussian) shapes with almost equal standard deviations 

( ) ( )m mi i≈ ± =DFT DFT DFT1,2,.σ σ σ , if the time domain noise with standard deviation tσ  

and a mean value u t →( ) 0 , is statistically independent of the signal and sampling process 

(18). In other words, if in the first approximation only the quantization noise is considered, 

the sampling frequency should be suitably larger than the frequency of the highest 

frequency component ( Mf ) Mf f >>S 2  and the effective number of bits ( ENOB b= ) of the 

A/D conversion suitably high enough b ≥ 3 , or SNR ≥ 20dB  (Widrow, Kollar. 2008). The 

signal to noise ratio in the time domain is defined as ( )m tSNR A= 2 22σ  ( dB 10log )SNR SNR= , 

or expressed with an effective number of bits ( )bSNR = ⋅
2

3 2 2 , where the rectangular 

distribution of the quantization errors is taken into account ( )b
t mA= ⋅2 1 3σ . 

 ( )
N

k

w k
N

−

=
= ∑

1
2

tDFT
0

1

2
σ σ  (18) 

The "absolute" form of the standard deviation (18) is usually related to the values of the DFT 
coefficients of interest. In coherent sampling the largest local amplitude DFT coefficient is 

equal to ( ) ( )m mG i A w k N= ⋅∑2 , where ( )w k N ≤∑ 1  represents the normalized peak 

signal gain of the window w(k) (Solomon 1992). The relative form of the standard deviation 
can be written as: 

 
( )

( )

( )

N

kx x
N

m mm

k

w k

ENBW
A AG i N

w k

−

=
−

=

= = =
∑

∑

1
2

DFT 0*
DFT 1

0

2
2

σ σ σ
σ  (19) 

The root of the equivalent noise bandwidth ENBW (Harris, 1978) is a factor determining the 
size of the standard deviation when using different windows: ENBW ENBW> =rect. 1 .  

Distortions of the DFT coefficients and their number in an interpolation have a significant 
influence on the uncertainty of the displacement estimation. The standard deviation of mδ , 
as a dependent quantity, can generally be expressed as (Joint Committee for Guides in 
Metrology [JCGM], 2008): 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )m m m

m

m m

p i r p i r v i r

G vG p G p
p i r p i r v p

c p r G p G v c p c v
= + = + − = +

= − = − = +
= ⋅ + ⋅ ⋅ ⋅ ⋅∑ ∑ ∑

12
2

C
1

2 ,δ δ δ δσ σ σ σ  (20) 

where ( ) ( )mc p G p= ∂ ∂δ δ  ( m mp i r i r= − +, ,… ) is the sensitivity coefficient associated 

with the amplitude coefficient ( )G p , and ( ) ( )( )r G p G vC ,  ( p v≠ ) is the correlation 

coefficient. In the case of the Hann window, two successive amplitude coefficients have the 

correlation factor ( ) ( )( )r G p G p + =C , 1 2 3 , and amplitude coefficients with a current index 

of two apart, have ( ) ( )( )r G p G p + =C , 2 1 6 . Other correlation coefficients are zero. 
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As the standard deviations of the amplitude coefficients are almost equal 

( ) ( )G vG p
≅ = DFTσ σ σ , it is possible to formulate the expression for the standard deviation of 

displacement. For the three-point interpolation using the Hann window (11), it can be 
expressed as: 

 

( ) ( ) ( )( )(
( ) ( ) ( ) ( )( )
( ) ( )( ))

m m m m

m m m m

m m

c i c i c i

c i c i c i c i

c i c i

− += + +

+ − ⋅ + ⋅ +

+ − ⋅ +

2 2 2 2 2
3 1 1DFT

4
            1 1

3
2

             1 1
6

δ δ δ δ

δ δ δ δ

δ δ

σ σ

 (21) 

The same mathematical procedure can be used for other higher multi-point interpolations 
(17). 

 ( ) ( ) ( ) ( ) ( ) ( )
m m m

m

m m m

p i r p i r p i r

p i r p i r p i r

c p c p c p c p c p
= + = + − = + −

= − = − = −

= + ⋅ ⋅ + + ⋅ ⋅ +∑ ∑ ∑
1 22

2
DFT

4 1
1 2

3 3
η δ δ δ δ δ δσ σ  (22) 

Sensitivity coefficients ( )c p  have forms such as ( ) ( ) ( )( )c p d n n d n= ⋅ − ⋅
/ / 2

η η η η η , where dη ,  

nη  are the denominator and the numerator of fraction (17), respectively. Both are sums of 
the weighted amplitude DFT coefficients, which change with relative displacement - the 
short-range leakage influences. For this reason, the standard deviations of displacements 
change their values periodically m− < ≤0.5 0.5δ  (Fig. 4). 
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Fig. 4. Standard deviations of the displacement estimation related to the CRB standard 
deviation for the frequency estimation (a: two-point interpolation; b: three-point 
interpolation; c: five-point interpolation; d: seven-point interpolation) 

The standard deviation of the displacement estimation is related to the absolute form of  
the standard deviation of the amplitude DFT coefficient with a suitable factor 
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m
R= ⋅DFTδ η δσ σ  according to (22). If one wants to compare it with the unbiased Cramér-

Rao lower bound (CRB) for the estimation of the frequency (Petri, 2002) the relationship has 
to be reexpressed: 

( )
( )( ) ( )( )

m m m f
m

ENBW
G i R G i R

G i SNR N SNR N
= ⋅ ⋅ = ⋅ ⋅ ≥ =DFT

CRB,

1 1 1 3
δ η δ η δ

σ
σ σ

π
 (23) 

This form is larger than fCRB,σ  for the frequency estimation taking into account all 

measurement information (Fig. 4). 

Errors in relative frequency estimations with different numbers of interpolation points have 

normal distributions. The standard deviation of the three-point frequency estimation, which 

has the lowest standard deviation in the vicinity of the integer values of the relative 

frequency, is about 2.2 times higher than fCRB,σ  (Fig. 4: curve b). The lowest value 

(
m f ≈3 CRB, 1.9δσ σ ) is attained at m ≈ 0δ , and the highest ratio (

m f ≈3 CRB, 2.55δσ σ ) is at the 

worst cases of the non-coherent sampling ( m ≈ 0.5δ ). A two-point interpolation is worse 

around m ≈ 0δ  (
m f ≈2 CRB, 2.26δσ σ ), but it is superior in the interval m≤ ≤0.15 0.5δ  

(
m f ≥2 CRB, 1.59δσ σ ). 

2.1.3 A trade-off between bias and uncertainty 

If we reduce the leakage tails, or systematic errors by the interpolation, we apparently 

widen the estimation main-lobe WestΔ  ( ENBW>1 ), and the noise in the estimation 

increases in comparison to the CRB. For example, the noise of the cosine windows increases 

( )( ) ( )( )ENBW X ENBW X ≈ ≈2 4cos cos 1.5 1.94 1 1.29 , while the side-lobes levels decrease  

( )( ) ( )( )SL fall X SL fall X ≈ − −2 4cos cos 18dB 30dB  (Harris, 1978). At the same time, the 

systematic errors ( E
maxθ ) decrease with increasing numbers of points. Increasing the 

number of the used DFT coefficients is reasonable until the systematic error drops under the 

noise error. After this point, by increasing the relative frequency mθ , or with spacing 

between the two frequency components ( m∝ ⋅2 θ ), it is logical to decrease the number of 

interpolation points. 

The criterion for selecting one of the algorithms could be the minimum common uncertainty 
of the estimation considering both contributions: 

 
( )

m

mE⎛ ⎞
⎜ ⎟= + →
⎜ ⎟
⎝ ⎠

2

2max min
2

Σ θ

θ
σ σ  (24) 

The effective value of the systematic contribution is obtained by dividing the maximal error 
by the square root of two, since systematic errors are phase dependent with a sine like 
shape. 

The borders of relative frequency where one interpolation can pass over another depend 

upon the number b  of bits of the A/D converter. With a 10-bit A/D converter 

( SNR ≈ 62dB ), which is frequently used in industrial environments, it is convenient to use 

the three-point DFT interpolation with the Hann window, in the interval < <1 2.2θ  and 
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from <6.7 θ  onward (Fig. 5). Between values 2.2  and 6.7  of the relative frequency, it is 

better to use the five-point interpolation (or even the seven-point interpolation in intervals 

[ ]3.5, 3.8  and [ ]4.3, 4.5 ).  

Multi-point interpolations present worse results: at lower θ  owing to systematic error 

("window width"), and at higher values of θ  owing to the larger noise sensibility. The solid 

line at the top of Fig. 5 shows where different multi-point interpolations can be used to 

achieve the best results of the one-component frequency estimation. 

 

7 pt 
5 pt
3 pt 

c b 

a 

a 

b 

c 

( )θσ Σ

10 6−

10 4−

10 2−

θ10521  

Fig. 5. The use of multi-point DFT interpolations for a 10-bit A/D converter (a: three-point 
interpolationb: five-point interpolationc: seven-point interpolation) 

2.2 Amplitude estimation 

From the behavior of the systematic error of the frequency estimation (Fig. 3), it can be 

concluded that it is better to use the Hann, or some higher order cosine window for the 

estimation, if the window spectrum is analytically known. When the displacement mδ  for 

the specific component is determined, it is easy to get the amplitude using the Hann 

window (9a) and neglecting the long-range contribution ( )miΔ  in (7): 

 
( )
( ) ( )m m

m m
m

A G i
−

=
22 1

2
sin

πδ δ

πδ
 (25) 

As in the case of the frequency estimation, with the summation of the DFT coefficients, we 
subtract the long-range leakage tails and reduce their influences. We get the weights for the 
three-point summation with the triple subtraction of the long-range leakage tails (14). 

 ( ) ( ) ( ) ( )m m m mi i i i− − + + <<1 2 1Δ Δ Δ Δ  (26) 

In this manner, we can get the amplitude of the signal by summing the largest three local 
DFT coefficients around the signal component following the result of (26): 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

m
m m m m m

m m m m

A
G i G i G i W i

W i W i

⎡ ⎤ ⎡− + + + = + ± − +⎣ ⎦ ⎣

⎤+ + − ± + ⎦

1 2 1 1 1
2

2 2 1 1∓

δ Δ

δ Δ δ Δ
 

 
( ) ( ) ( )
( ) ( ) ( )

m m m

m
m m m

G i G i G i
A

W W W

⎡ ⎤− + + +⎣ ⎦≅ ⋅
+ + + −

1 2 1
2

1 2 1δ δ δ
 (27) 

Using the Hann window: 

 ( ) ( )
( ) ( ) ( )m m

m m
m m mm m

W W s
s s

≅ + ≅
+ +−

H H2

sin sin
 and 1

2 (1 )(2 )2 1

πδ πδ
δ δ

πδ δ δπδ δ
 (28) 

 ( ) ( ) ( ) ( )

( )( )
m

m m m
m

m m

W W W+ + + − =
− −2 2

sin 12
1 2 1

2 1 4

πδ
δ δ δ

πδ δ δ
, (29) 

the amplitude estimation with the three-point interpolation ( mA3 H ) can be expressed as 
follows: 

 
( )

( )( )
( ) ( ) ( )m mm

m m m m
m

A G i G i G i
− −

⎡ ⎤≅ ⋅ − + + +⎣ ⎦

2 2

3 H

1 4
1 2 1

sin 3

δ δπδ
πδ

 (30) 

We can use the same procedure for the five-point interpolation with ten subtractions of the 
tails. In the first step of the procedure we do four subtractions of the adjacent tails 

( )m mi i− −2, 1Δ , …, ( )m mi i+ +1, 2Δ  as in (14), or summations of the DFT coefficients, then 
three subtractions of the obtained and reduced tails as in (26), and so on. After 
rearrangement the amplitude can be expressed with the weighted five largest coefficients: 

 ( )
( )( )( )

( ) ( ) ( )( ) ( ) ( )

m m mm
m

m

m m m m m

A

G i G i G i G i G i

− − −
= ⋅

⎡ ⎤⋅ + + + − + + − −⎣ ⎦

2 2 2

5 H

1 4 9

sin 90

6 4 1 1 2 2

δ δ δπδ
πδ  (31) 

In the last term of the equation (31), the absolute value of the difference is used, since one of 
the coefficients ( )mG i − 2  or ( )mG i + 2  drops out of the spectrum main lobe ( f4Δ  wide in 
the Hann case) and gets a negative sign. 

The same procedure can be used for the seven-point interpolation: 

 

( )
( )( )( )( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )

m m m mm
m

m

m m m

m m m m

A

G i G i G i

G i G i G i G i

− − − −
= ⋅

⎡⋅ ⋅ + ⋅ + + − +⎣
⎤+ ⋅ + − − − + − − ⎦

2 2 2 2

7 H

1 4 9 16

sin 5040

20 15 1 1

 6 2 2 3 3

δ δ δ δπδ
πδ

 (32) 
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The relative error ( ) ( )e A A A∗= − 1  ( A∗ = 1  is the true value of the amplitude) drops with 
increasing relative frequency and with the number of the interpolation points (Fig. 6: 0 e - 
the amplitude is estimated only with the largest coefficient, 1 e - estimation with (25), e3 - 
estimation with (30), etc; The same testing conditions as for Fig. 3). Comparing figures 6 and 
7 shows the importance of the frequency estimation accuracy. If we know the value of the  

 

5  

0 e

7 e

5 e

3 e

1 e

( )e A
max

 

10 9−
 

10 6−
 

10 3−
 

1
 

0 1 θ10  

Fig. 6. Maximal relative values of errors of the amplitude estimation with the multi-point 
DFT interpolations with the Hann window (θ  is known) 

 

7 e  
5 e

5

3 e

1 e

0 e

( )e A
max

10 9−

10 6−

10 3−

1
 

0 1 10 θ  

Fig. 7. Maximal relative values of errors of the amplitude estimation with the multi-point 
DFT interpolations with the Hann window (θ  is obtained with the three-point int. (11)) 
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frequency on the three-point interpolation accuracy level, then the amplitude estimation is 

reasonable with the three-point interpolation. The accuracy of the amplitude estimation can 

be improved, if the frequency is better estimated (e.g., by the multipoint interpolations). 

2.2.1 Influence of noise on the amplitude estimation 

Uncertainty of the component amplitude estimation mainly depends on the uncertainties of 

the amplitude DFT coefficients. Equation (19) is valid for all amplitude coefficients of the 

DFT that are large enough and sufficiently (half of the main lobe width) moved away from 

the margins of the spectral field ( N= 0, / 2θ ).  

The price for the effective leakage reduction is in the increase of the estimation uncertainties, 

related to the unbiased CRB fixed by the signal-to-noise-ratio for a particular component. In 

Fig. 8, there are standard uncertainties of the amplitude estimation related to the CRB (33) 

(Petri, 2002) for the three-point estimation. 

 
mA A

SNR N
≥ = CRB,

1 1σ σ  (33) 

 

 

 

 
     

θ

b

a

AAm CRB,
σσ

1.6

1.4

1.2

1
1                  2                  3                  4                  5                  6  

Fig. 8. Standard uncertainty of the amplitude three-point estimation using the Hann 

window related to the CRB (33) (a: θ  is estimated, b: θ  is known) 

The distortions of the DFT coefficients and the number of points in the interpolation, have 

significant influence on the uncertainty of displacement mδ , and amplitude mA , succesively. 

As with the frequency estimation, the systematic errors decrease when increasing the 

number of points. Increasing the number of DFT coefficients used in the interpolation is 

reasonable, until the systematic error drops under the noise error (Fig. 9). After this point, 

by increasing the relative frequency mθ  (the number of periods of the measured signal in 

the measurement interval), or increasing spacing between two frequency components 

( m∝ ⋅2 θ ), the number of interpolation points can be decreased. A smaller number of the 

DFT coefficients in the calculation produces lower noise distortion, which becomes 

dominant in the final result. 
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(b) 

Fig. 9. The influence of the quantization noise on the amplitude estimation with 10-bit A/D 
converter (a) and 16-bit A/D converter (b) 

2.3 Phase estimation 

The second parameter of the signal component, besides the amplitude of the frequency main 
lobe, is the phase, i.e. the time position of the signal structure. As with previous estimations, 
the function ( )W θ  has to be analytically known. For the rectangular window with a large 
number of points N >> 1 , the following equation is valid, where the Dirichlet kernel is used 
(Harris, 1978): 
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 ( ) ( )
( )

N

NW
N N

−⎛ ⎞− ⎜ ⎟
⎝ ⎠= ⋅

1
j

rect.

sin
e

sin

π θπθ
θ

πθ
 (34) 

The largest DFT coefficient, which is mostly composed of the short-range leakage 
contribution of the investigated component m , can be deduced from (5), and (34) using 

( )a N N= − 1π  and −− = j 2j e π : 

( )
( )( )
( )( )

( ) ( )( )
( )( )

( )m m m m m ma i a i
m m m mm

m
m m m m

i iA
G i

N i N N i N

⎛ ⎞ ⎛ ⎞− + − − + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞− +⎜ ⎟= −
⎜ ⎟− +

⎠⎝

j j
2 2

sin sin
e e

2 sin sin

π πθ ϕ θ ϕπ θ π θ
π θ π θ

 (35) 

The component phase mϕ  is referred to as the start point of the window (not the middle 
point as is the case with the frequency and amplitude).  

As N  is usually large N >> 1 , and considering (6), equation (35) can be rewritten: 

  ( ) ( ) ( ) ( )
( )

( )m m m m ma a i
m mm

m
m m m

A
G i

i

⎛ ⎞ ⎛ ⎞+ − − + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟= −
⎜ ⎟+
⎝ ⎠

j j 2
2 2sin sin

e e
2 2

π πδ ϕ δ ϕπδ πδ
πδ π δ

 (36) 

Both, amplitude and phase have additional disturbing components from the second part in 
(36): 

 ( ) ( )
( )

( )
m ma

m m mG i G i i

⎛ ⎞+ −⎜ ⎟
⎝ ⎠= ±

j
2e

πδ ϕ
Δ ,   ( )( ) ( )m m m mG i a i= + − ±arg

2

πϕ δ Δϕ  (37) 

If the displacement term is positive m> ≥0.5 0δ , then the second largest DFT coefficient is 

( )mG i + 1 , and if the displacement term is negative m> ≥ −0 0.5δ , then the second largest DFT 
coefficient is ( )mG i − 1  (Fig. 10). The largest side coefficient may commonly be expressed as: 

 ( ) ( )( )
( )

( ) ( )( )
( )

( )m m m ma s a s
m m mm

m
m m m

s i sA
G i s

s i s

⎛ ⎞ ⎛ ⎞− + − − − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞− + +⎜ ⎟+ = −
⎜ ⎟− + +
⎝ ⎠

j j
2 2

sin sin 2
e e

2 2

π πδ ϕ δ ϕπ δ π δ
π δ π δ

 (38) 

( ) ( )
( )

( )
m ma s

m m mG i s G i s i s

⎛ ⎞− + −⎜ ⎟
⎝ ⎠+ = + +

j
2e ∓
πδ ϕ

Δ  

 ( )( ) ( ) ( )m m m mG i s a s i s+ = + − − +arg
2
∓πϕ δ Δϕ  (39) 

Fig. 10, with large values of displacements, shows the amplitude and the phase differences 
between the phasors of the short-range contributions (dotted lines) and the complete 
phasors ( )mG i  and ( )mG i s+ . It should be noted that differences have opposite signs at the 
largest two DFT coefficients surrounding the investigated component. 

As we know, the spectrum with the Hann window can be obtained by shifting and weighing 
summations of the rectangular window spectrum (12). Using (34) in (12), it can be written: 

( ) ( )
( ) ( )( ) ( )( )

a a aW
N N N N N N

− −
⎛ ⎞⎛ ⎞− −⎜ ⎟= ⋅ ⋅ − ⋅ + ⋅⎜ ⎟⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠

j j j
H

sin 1 1 1 1
e e e

2 sin 2 sin 1 sin 1
θπθ

θ
πθ π θ π θ
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                                      (a)                                                                                         (b) 

Fig. 10. Phasors diagrams for a single component mA = 1 , m = 3ϕ π , and the rectangular 

window: a) m = 2.4θ , mi = 2 , m = 0.4δ ;  b) m = 1.6θ , mi = 2 , m = −0.4δ  

If we have a lot of points in the measurement set N >> 1 , the sine function can be 

approximated by ( )N N≈sin πθ πθ . Considering also a ≈ −je 1  and a− ≈ −je 1 , the expression 

in brackets can be simplified 
( ) ( ) ( )

⎛ ⎞⎛ ⎞
− + =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ − −⎝ ⎠⎝ ⎠

2

1 1 1 1 1

2 1 1 1πθ π θ π θ πθ θ
, and we finally get: 

 ( ) ( )

( )
aW −= ⋅

−

j
H

2

sin1
e

2 1

θπθ
θ

πθ θ
 (40) 

The largest DFT coefficient can be deduced from (5) and (40) considering m m mi − = −θ δ  and 

m m m mi i+ = +2θ δ : 

( ) ( )

( )
( ) ( )

( ) ( )( )
( )m m m m ma a i

m mm
m

m m m m m m

A
G i

i i

⎛ ⎞ ⎛ ⎞+ − − + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎞⎛
⎟⎜= − ⎟⎜
⎟⎜ − + − +⎝ ⎠

j j 2
2 2

H
22

sin sin
e e

4 1 2 1 2

π πδ ϕ δ ϕπδ πδ

πδ δ π δ δ
 (41) 

As with the rectangular window, the second part in (41) causes additional disturbing 
components: 

( ) ( )
( )

( )
m ma

m m mG i G i i

⎛ ⎞+ −⎜ ⎟
⎝ ⎠= ±

j
2

H H e Δ
πδ ϕ

,  ( ) ( )

( )
mm

m

m m

A
G i =

−
H

2

sin

4 1

πδ

πδ δ
 

 ( )( ) ( )
mm i m m mG i a i= = + − ±Harg Δ

2

πϕ ϕ δ ϕ  (42) 
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The largest side coefficient can be expressed in short form as: 

( ) ( )
( )

( )
m ma s

m H m mG i s G i s i s

⎛ ⎞− + −⎜ ⎟
⎝ ⎠+ = + +

j
2

H e Δ∓
πδ ϕ

; ( ) ( )( )
( ) ( )( )

mm
m

m m

sA
G i s

s s

−
+ =

− − −
H

2

sin

4
1

π δ

π δ δ
 

 ( )( ) ( ) ( )
mm i s m m mG i s a s i s++ = = + − − +Harg Δ

2
∓πϕ ϕ δ ϕ  (43) 

2.3.1 Reduction of the systematic error 

In the first approximation using the rectangular window, the second term in (36) and (38) 

can be neglected and the phase of component can be estimated by: 

 ( )m m mG i a⎡ ⎤= − +⎣ ⎦
I

,R arg
2

πϕ δ  (44) 

 ( ) ( )m m mG i s a s⎡ ⎤= + + − +⎣ ⎦
II

,R arg
2

πϕ δ  (45) 

Another possibility is to estimate the component phase only by the phase DFT coefficient 

itself, where mϕ  is referred to the middle point of the measurement window. However, this 

method has the same weak point as (44) and (45), since it doesn’t consider the long-range 

contributions of the window (Fig. 14d). 

We can improve the estimation by considering the long-range contributions. Because the 

disturbing angle components ( )∗Δϕ  in (37) and (39) are small, they can be exchanged by 

sine functions and approximated by quotients: 

 ( )
( )

( )
( )

( )
( )

( )
( )

m m mm

m m m m

i i G i si

i s i s G i i s

⎡ ⎤ +⎣ ⎦≅ =
+ ⎡ ⎤+ +⎣ ⎦

sin

sin

Δϕ ΔΔϕ
Δϕ Δϕ Δ

 (46) 

Here, the maximal amplitude values *  from (36) and (38) are taken in approximation: 

 
( )

( )
( )
( )

( )
( )

m m mm m

m mm m m

i G i s G i si s

ii s G i G i

+ ++ +
⋅ = ⋅

++
2

2

Δ δ
δΔ

 (47) 

If considering only one component with the DFT coefficient index large enough mi >> 1 , or 

we want to symmetrically ‘equalize’ the long-range leakage contributions coming from both 

sides of the frequency axis, considering a multi-component signal - non-parametric 

approach, leakages can be equalized ( ) ( )m mi i s≈ +Δ Δ  and (46) rewritten as: 

 ( )
( )

( )
( )
mm m

m mm

G i si

i s sG i

+
≅ =

+ −
;

Δϕ δ
Δϕ δ

     ( ) ( ) ( )m m m ms i i s− ≅ +δ Δϕ δ Δϕ  (48) 

The multiplication of (37) and (39) by the correction (48), and subsequent summation gives 

us an estimation of the phase, as an averaging of the two arguments ( )
mi mG i⎡ ⎤= ⎣ ⎦argϕ  and 

( )
mi s mG i s+ ⎡ ⎤= +⎣ ⎦argϕ  surrounding the component (Fig. 12b): 
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 ( )
m mm m i m i s+= − ⋅ + ⋅ +III

,R 1
2

πϕ δ ϕ δ ϕ  (49) 
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Fig. 11. Phase dependency errors at = 2.2θ , − ≤ ≤2 2π ϕ π ; Estimations: a – by (44), b – by 

(49), c – by (51), d – by (45) 
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Fig. 12. Maximal systematic errors of the phase estimations with the rectangular window:  

a – by (44), b – by (49), c – by (51); θ  is known 

A better estimation can be obtained by also considering the long-range contributions in (47), 

when only one component is dominant in the signal – a more parametric approach (Fig. 

12c): 
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( )

( )
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( )
( )

m mm m m

m m m m m

G i s G i si i s
b

i s i G i G i

+ ++ +
≅ ⋅ = ⋅
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2
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Δϕ δ
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 (50) 

 
( )

( ) ( )
m mm i m i s m

m m
m m m m

G i b G i s b G i s
sa

G i b G i s G i b G i s

+ ⎛ ⎞+ + +
⎜ ⎟= + − +⎜ ⎟+ + + +⎝ ⎠

IV
,R

( ) ( )

2( ) ( )

ϕ ϕ πϕ δ  (51) 

The systematic errors of the phase estimations mE = − 0ϕ ϕ ( 0ϕ  - is the true value of the 

phase) are phase dependent (Fig. 11: The error curves are very close to the sine like 

functions). In simulations, the absolute maximum values of the errors at a given relative 

frequency have been searched when phase has been changed in intervals − ≤ ≤2 2π ϕ π  

(Fig. 12). The estimation errors drop with the increasing relative frequency. 

Fig. 13 shows the importance of the accuracy of the frequency estimation. If the frequency is 

estimated by a known two-point estimation (9) the overall errors increase (Fig. 3: 

E E∗ ≈cc
200 ). 
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Fig. 13. Maximal systematic errors of the phase estimations with the rectangular window in 

the interval ≤ ≤1.98 2.02θ : a – by (44), b –by (49), c –by (51); ∗ ∗ ∗a ,b ,c -θ  is estimated by (9) 

Using the Hann window, the expressions for phase have the same forms as for the 

rectangular window when the second term in (41) and (43) is neglected: 

 
mm i ma= − +I

,H
2

πϕ ϕ δ  (52) 

 ( )
mm i s ma s+= + − +II

,H
2

πϕ ϕ δ  (53) 

We can again improve the estimation by considering the long-range contributions, which 

have the following properties: 
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= ⋅

+ − +

2
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2 H

2 1 2

2 1 2

δ δ

δ δ
 (54) 

In the non-parametric approach, one can also equalize ( ) ( )m mi i s≈ +Δ Δ  and (54) can be 
rewritten as: 

 
( )

( )
( )
( )

( )
( ) ( )( )

m mmm m

m mm
m m

G i si s

i s sG i
s s

−+ +
≅ = =

+ −− − −

2
H

2H

1 1

2
1

δ δΔϕ δ
Δϕ δδ δ

 (55) 

If we equalize ( ) ( ) ( ) ( )m m m ms i s i s− ≅ + +2 1δ Δϕ δ Δϕ , the equations (42) and (43) can be 
multiplied by corrections and added: 

( ) ( )
mm i m m ma i s= − + ± ⋅ −I

,H 2
2

πϕ ϕ δ Δϕ δ  

( ) ( ) ( )
mm i s m m ma s i s s+= + − + + ⋅ +II

,H 1
2
∓πϕ ϕ δ Δϕ δ  

 
( ) ( )

( )m mm i m i s
m m

s s a
s

+− + +
= + − +III

,H

2 1
2

3 3 2

δ ϕ δ ϕ πϕ δ  (56) 

When the sign of the displacement is positive s = 1 , the phase estimation (56) is made with 
arguments 

mi
ϕ  and 

mi +1ϕ : 

 ( ) ( ) ( )
( )m m

m m

m i m i
m i i m

a+
+

− + +
= + − +1III

,H 1

2 1
, 1 2

3 3 2

δ ϕ δ ϕ πϕ ϕ ϕ δ , (57) 

and when the sign is negative s = −1 , the estimation is done with 
mi

ϕ  and 
mi −1ϕ : 

 ( ) ( ) ( )
( )m m

m m

m i m i
m i i m

a−
−

+ + −
= − + +1III

,H 1

2 1
, 1 2

3 3 2

δ ϕ δ ϕ πϕ ϕ ϕ δ  (58) 

The phase estimation can be improved further with averaging of the estimations by (57) and 

(58). With this averaging we get the three-point estimation (Fig. 14c): 

 ( ) ( ) ( )
m m m m

m m m

m i i m i i

m i i i

+ −
+ −

+
=

III III
,H 1 ,H 1IV

,H 1 1

, ,
, ,

2

ϕ φ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ  (59) 

 
( ) ( )

m m mm i i m i m
m

a− +− + + +
= − +1 1IV

,H

1 4 1 2

6 3 2

δ ϕ ϕ δ ϕ δ πϕ  (60) 
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The best results are obtained from the three-point estimation using the Hann window, when 

the frequency is known (Fig. 14c: ( )E −≤ ⋅ ≈ ° ⇐ >5
max

1.7 10 rad 1m 5.5ϕ θ ). If the 

frequency has to be estimated, the overall error increases, but it is still under the error level 

of the one-point estimation (Fig. 14: < ⇐ >*b a 5.5θ ). In Fig. 14, for error curve *b , the 

frequency is estimated by the three-point interpolation (11). 

 

810−

100 1 5 θ

b

c

610−

410−

210−

1
( ) rad

maxmE ϕ

a

*b

d

 

Fig. 14. Maximal systematic errors of the phase estimations with Hann window: a – one-

point by (52), b – two-point by (56), c – three-point by (60), θ  is known; ∗b  - θ  is estimated 

by (11); and estimations using only phase DFT coefficient: d – the rectangular window, a – the 

Hann window 

2.3.2 Uncertainty of the phase estimation 

The uncertainty propagation through the DFT procedure is well known 

( ) ( ) ( )
N

R I tG i
k

N w k
−

=

= = = = ∑
1

2
DFT

0

2σ σ σ σ σ  (Agrež, 2007), where we use ( ) ( )R i G i= ⎡ ⎤⎣ ⎦Re  

and ( ) ( )I i G i= ⎡ ⎤⎣ ⎦Im  for the real and imaginary parts of the DFT, respectively, and 

( ) ( ) ( )G i R i I i= +2 2  for the amplitude, and ( ) ( ) ( ) ( )( )i G i I i R i= ⎡ ⎤ =⎣ ⎦
-1arg tanϕ  for the 

phase. The phase uncertainty is equal to the uncertainty of the DFT procedure scaled by the 

amplitude coefficient ( ) ( )i G i= DFTϕσ σ : 

 ( ) ( )
( )

( )
( )

R

i I i
c i

R i G i

∂
= = −
∂ 2

ϕ
;    ( ) ( )

( )
( )
( )

I

i R i
c i

I i G i

∂
= =
∂ 2

ϕ
 (61) 
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 ( ) ( ) ( )
( ) ( )

R R I Ii

I R
c c

G i G i

+
= + = =

2 2 2
2 22 2 DFT

DFT 4 2ϕ
σσ σ σ σ  (62) 

It is evident that the standard uncertainty of the phase depends on the amplitude of the 

component. Moreover, in non-coherent sampling it changes with displacement δ  as we see 

in the following examples. 

First, we consider that frequency is known ( = 0δσ ). For ease of understanding, one can 

omit index m  in (44) ( )i a= − ⋅ +a 2ϕ ϕ δ π , and from (62) we get (Fig. 15a): 

 
( )G i

=a

DFT

1ϕσ
σ

 (63) 

For the second estimation by ( ) ( ) ( )s s= − + + +b 1 i i s 2ϕ δ ϕ δ ϕ π  (49) one needs sensitivity 

coefficients associated with the real and imaginary coefficients for two spectral lines i , 

i s+ : 

( )
( ) ( ) ( )R i R

i
c s c i

R i

∂
= = −
∂b

b
, 1

ϕ
δ ;  

( )
( ) ( ) ( )I i I

i
c s c i

I i

∂
= = −

∂b

b
, 1

ϕ
δ  

    
( )
( ) ( )R i s R

i s
c s c i s

R i s
+

∂ +
= = +
∂ +b

b
,

ϕ
δ ;  

( )
( ) ( )I i s I

i s
c s c i s

I i s
+

∂ +
= = +

∂ +b

b
,

ϕ
δ  (64) 

As the correlation coefficients for the rectangular window ( ) ( )( )r R i R i s+,  and ( ) ( )( )r I i I i s+,  

are zero, and standard uncertainties are equal R I∗ ∗= =, , DFTσ σ σ  ( i i s∗ = +, ) we can write 

according to (JCGM, 2008) (Fig. 15b): 

 R i I i R i s I i sc c c c+ +
⎛ ⎞

= + + +⎜ ⎟⎜ ⎟
⎝ ⎠

b

b b b b

2

2 2 2 2
, , , ,

DFT

ϕσ
σ

;     ( ) ( )( ) ( )( )s G i G i s= − + +b
2 2

DFT

1
ϕσ δ δ

σ
 (65) 

In calculations of the four sensitivity coefficients for the third estimation (51), one needs 

partial sensitivity coefficients for the amplitude ( ) ( ) ( ) ( )G R R G∂ ∗ ∂ ∗ = ∗ ∗ , 

( ) ( ) ( ) ( )G I I G∂ ∗ ∂ ∗ = ∗ ∗  and for the phase coefficients ( ) ( )R∂ ∗ ∂ ∗ϕ , ( ) ( )I∂ ∗ ∂ ∗ϕ  (61), 

since all of them contribute in the estimation: 

 
( ) ( ) ( ) ( )

( ) ( )
G i b G i s b G i s

sa s
G i b G i s G i b G i s

⎛ ⎞+ + + +
= + − +⎜ ⎟⎜ ⎟+ + + +⎝ ⎠

c

i i s ( )

2( ) ( )

ϕ ϕ πϕ δ  (66) 

 
( )
( )Rc

R
∗

∂ ∗
=
∂ ∗c

c
,

ϕ
 ;        

( )
( )Ic

I
∗

∂ ∗
=

∂ ∗c

c
,

ϕ
 (67) 

In this case the uncertainty is close to the uncertainty of the estimation by (49) (Fig. 15c).  
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The price for the effective leakage reduction is in the increase of the estimation uncertainties 

related to the unbiased CRB. Ratios of the uncertainties of the phase estimations related to 

the CRB (68), are between 1 and 1.7 symmetrically, depending upon the term δ  at higher 

values of the relative frequency θ  (Fig. 15).  

 
m SNR N

≥ = CRB,

1 1
2ϕ ϕσ σ  (68) 

 

5
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1
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2

42 50 1 3

a

b

c
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b* c*

σσ CRB,ϕ ϕ

 

Fig. 15. Ratios of the uncertainties of the phase estimations with rectangular window related 

to the CRB (68). Estimations: a – by (44), b – by (49), c – by (51), θ  is known; ∗ ∗ ∗a ,b ,c  - θ  is 

estimated by (9b) 

The uncertainties of the estimations increase if one needs to also estimate the displacement 

term ( ) ( )( )G i G i s+,δ . In estimation algorithms (44), (49), and (51), one also needs partial 

sensitivity coefficients for the displacement terms ( )G i∂ ∂δ  and ( )G i s∂ ∂ +δ . Fig. 15 

shows that uncertainties of the estimations increase for a factor ÷2 2.3  if frequency is 

estimated by (9b). The uncertainties of the estimations where frequency has to be estimated 

first, are very close to each other (Fig. 15: E E E≈ ≈* * *a b c
) at higher values of θ . For the 

Hann window, the uncertainty levels increase (62), as the main amplitude coefficient 

decreases by a factor of 2 with respect to the rectangular window. 

3. Conclusion 

In chapter, the non-parametric interpolated DFT algorithms for emulating coherent 

sampling are described. The advantages of the DFT interpolations for the frequency, 

amplitude, and phase of the signal component are identified. Interpolations where the long-

range leakage is considered, illustrate a decrease in systematic effects. The algorithms retain 

all benefits of the DFT approach and improve the estimation accuracy adaptively for a 
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particular component as a function of its frequency position. The weights emphasize the 

DFT coefficients of the spectrum peak related to the investigated component. The spectrum 

of the window used must be formally well-known, like the Hann window, for a better 

analytical expression. Interpolation with a larger number of the DFT coefficients decreases 

the systematic errors. It can be concluded, that if we selectively use a different number of the 

DFT coefficients in the interpolation algorithms for a particular component of the signal, we 

adapt the apparent window shape for that component. A trade-off between a reduction in 

systematic error of the parameter estimation and the uncertainty of the estimated results is 

highlighted. The use of a suitable interpolation algorithm depends on the level of the noise 

floor of the acquisition channel, or better SNR, and on the position of the frequency 

component along the frequency axis. 
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