15,318 research outputs found

    Temporalized logics and automata for time granularity

    Full text link
    Suitable extensions of the monadic second-order theory of k successors have been proposed in the literature to capture the notion of time granularity. In this paper, we provide the monadic second-order theories of downward unbounded layered structures, which are infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains, and of upward unbounded layered structures, which consist of a finest domain and an infinite number of coarser and coarser domains, with expressively complete and elementarily decidable temporal logic counterparts. We obtain such a result in two steps. First, we define a new class of combined automata, called temporalized automata, which can be proved to be the automata-theoretic counterpart of temporalized logics, and show that relevant properties, such as closure under Boolean operations, decidability, and expressive equivalence with respect to temporal logics, transfer from component automata to temporalized ones. Then, we exploit the correspondence between temporalized logics and automata to reduce the task of finding the temporal logic counterparts of the given theories of time granularity to the easier one of finding temporalized automata counterparts of them.Comment: Journal: Theory and Practice of Logic Programming Journal Acronym: TPLP Category: Paper for Special Issue (Verification and Computational Logic) Submitted: 18 March 2002, revised: 14 Januari 2003, accepted: 5 September 200

    Ontology and medical terminology: Why description logics are not enough

    Get PDF
    Ontology is currently perceived as the solution of first resort for all problems related to biomedical terminology, and the use of description logics is seen as a minimal requirement on adequate ontology-based systems. Contrary to common conceptions, however, description logics alone are not able to prevent incorrect representations; this is because they do not come with a theory indicating what is computed by using them, just as classical arithmetic does not tell us anything about the entities that are added or subtracted. In this paper we shall show that ontology is indeed an essential part of any solution to the problems of medical terminology – but only if it is understood in the right sort of way. Ontological engineering, we shall argue, should in every case go hand in hand with a sound ontological theory

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Consent Verification Under Evolving Privacy Policies

    Get PDF

    A unified framework for building ontological theories with application and testing in the field of clinical trials

    Get PDF
    The objective of this research programme is to contribute to the establishment of the emerging science of Formal Ontology in Information Systems via a collaborative project involving researchers from a range of disciplines including philosophy, logic, computer science, linguistics, and the medical sciences. The re­searchers will work together on the construction of a unified formal ontology, which means: a general framework for the construction of ontological theories in specific domains. The framework will be constructed using the axiomatic-deductive method of modern formal ontology. It will be tested via a series of applications relating to on-going work in Leipzig on medical taxonomies and data dictionaries in the context of clinical trials. This will lead to the production of a domain-specific ontology which is designed to serve as a basis for applications in the medical field

    A unified theory of granularity, vagueness and approximation

    Get PDF
    Abstract: We propose a view of vagueness as a semantic property of names and predicates. All entities are crisp, on this semantic view, but there are, for each vague name, multiple portions of reality that are equally good candidates for being its referent, and, for each vague predicate, multiple classes of objects that are equally good candidates for being its extension. We provide a new formulation of these ideas in terms of a theory of granular partitions. We show that this theory provides a general framework within which we can understand the relation between vague terms and concepts and the corresponding crisp portions of reality. We also sketch how it might be possible to formulate within this framework a theory of vagueness which dispenses with the notion of truth-value gaps and other artifacts of more familiar approaches. Central to our approach is the idea that judgments about reality involve in every case (1) a separation of reality into foreground and background of attention and (2) the feature of granularity. On this basis we attempt to show that even vague judgments made in naturally occurring contexts are not marked by truth-value indeterminacy. We distinguish, in addition to crisp granular partitions, also vague partitions, and reference partitions, and we explain the role of the latter in the context of judgments that involve vagueness. We conclude by showing how reference partitions provide an effective means by which judging subjects are able to temper the vagueness of their judgments by means of approximations
    • …
    corecore