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Different Granularities - a Stochastic Approach
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Switzerland

1. Introduction

The domain of temporal data mining focuses on the discovery of causal relationships among
events that are ordered in time and may be causally related. The contributions in this domain
encompass the discovery of temporal rule, of sequences and of patterns. However, in many
respects this is just a terminological heterogeneity among researchers that are, nevertheless,
addressing the same problem, albeit from different starting points and domains.
It is obvious that there is an implicit relationship between the characteristics of the knowledge
extracted from data with temporal dimension and the time scale of the same data. Therefore,
a natural question is how (or when) an information discovered based on a given level of
time granularity may be reused if this granularity changes. For example, a temporal rule (T)
expressed as ”If the sales increase today by 10% and tomorrow by 5% then the day after tomorrow
they will increase only by 1%” may be used to make predictions if its degree of confidence
remains stable along a time scale using days as basic time granules. But what can we say
about the confidence of the rule (Tnew) obtained by replacing ”today”, ”tomorrow” and ”day
after tomorrow” with ”this week”, ”next week” and ”the week after next”, when applied on a time
scale using weeks as granules? Is this confidence still well-defined? And if the answer is yes,
can its degree be deduced from the confidence of T?
There are at least two important issues related to the conversion of T into Tnew that must be
emphasized. First, if the event ”increase” is in fact the elementary event ”daily increase”
(denoted e), it is quite simple (if daily sales are available) to check the truth of the proposition
”e by p% during day n” and, consequently, the truth of the implication/implicated clause of
T for a given day (or time granule). But if we consider the week as the new time granule, we
cannot interpret as true or false the proposition ”e by p% during week n” and, consequently,
not the truth of the implication/implicated clause of Tnew either. So the classical definition of
confidence for a rule is no more effective for this new time scale and a new, more appropriate
definition of confidence must be introduced. Second, if we consider, in the context of week
as time granule, the new event ”weekly increase” (denoted e∗), then we may retrieve the
classical definition of confidence for the rule (Tnew) if it were possible to check the truth of the
proposition ”e∗ by p% during week n”. As a remark, the value of truth for this proposition
cannot be checked in the initial context (day as time granule) simply because e∗ does not exist
here. The new event may be seen as an aggregation of basic events of type e (considering, for
example, the rate of the weekly increase as the mean of all daily increase rates, during the
week). Therefore, a formula linking the truth values of the basic events with the truth value
of the aggregated event must be introduced. And it is also clear that proposing either a new
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2 Data Mining

definition for the confidence measure or formulae linking the truth value of the same event in
worlds with different granularities cannot be made outside of a coherent, logical framework.

1.1 Previous work

Although there is a rich literature concerning the formalism for temporal databases,
there are few articles on this topic for temporal data mining. In Al-Naemi (1994);
Chen & Petrounias (1998); Malerba et al. (2001), general frameworks for temporal mining are
proposed, but usually the research on causal and temporal rules is more concentrated on the
methodological/algorithmic aspect and less on the formal aspect. An innovative formalism
based on first-order temporal logic, which permits an abstract view on temporal rules, was
proposed in Cotofrei & Stoffel (2005). The central concept defined in this formalism is the
property of consistency for a linear time structure M, which guarantees the preservation over
time of the confidence/support of a temporal rule (defined as the limit of a given sequence).
The formalismwas developed around a timemodel inwhich the events are those that describe
system evolution.
But the real world systems are systems whose components (events) have dynamic behavior
regulated by very different – even by magnitude – time granularities. Analyzing such systems
(hereinafter, granular systems) means approaching theories and methodologies that make use
of granules (or groups, clusters of a universe) in the process of problem solving. Granular
computing (the label which covers this approach) is a way of thinking that relies on our
ability to perceive the real world under various grain sizes, to abstract and to consider only
those things that serve our present interest, and to switch among different granularities. By
focusing on different levels of granularities, we can obtain various levels of knowledge, as well
as inherent knowledge structure. Granular computing is essential to human problem solving,
and hence has a very significant impact on the design and implementation of intelligent
systems, as in Yao & Zhong (1999); Zadeh (1998); Lin & Louie (2002).
The notions of granularity and abstraction are used in many subfields of artificial
intelligence. The granulation of time and space leads naturally to temporal and spatial
granularities. They play an important role in temporal and spatial reasoning (Euzenat,
1995; Hornsby, 2001; Combi et al., 2004). Based on granularity and abstraction, many
authors studied fundamental topics in artificial intelligence, such as knowledge representation
(Zhang & Zhang, 1992), search (Zhang & Zhang, 2003), natural language understanding
(Mani, 1998) or machine learning (Saitta & Zucker, 1998). Concerning data mining tasks,
Bettini et al. (Bettini, Wang, Jajodia & Lin, 1998; Bettini, Wang & Jajodia, 1998a;b) investigated
the formal relationships among event structures having temporal constraints, defined the
pattern-discovery problem with these structures and studied effective algorithms to solve it.
To include the concept of time granularity in the initial formalism, we defined
(Cotofrei & Stoffel, 2009) a process by which a given structure of time granules µ (called
temporal type) induces a first-order linear time structure Mµ (called granular world) on the
basic (or absolute) linear time structure M. The major change for the temporal logic based
on Mµ is at the semantic level: for a formula p, the interpretation does no more assign a
meaning of truth (one of the values {true, f alse}), but a degree of truth (a real value from [0,1]).
By an extension at the syntactic and semantic level, we were able to define an aggregation
mechanism for events reflecting the following intuitive phenomenon: in a coarser world, not
all events inherited from a finer world are satisfied, but in exchange, there are new events
which become satisfiable.
A deeper analysis of how these results may be applied to make predictions (i.e., the issues
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Temporal Rules Over Time Structures with Different Granularities - a Stochastic Approach 3

related to temporal rules evolution due to changes in data time scale) shows the limitation of
the pure logical approach to solve some open questions. One of these questions is to what
extent is it possible to guarantee the existence of the support for an aggregated event, and
consequently, the consistency of a given granular world? A second question is linked to the
way in which a temporal rule implying aggregated events can be used to make predictions in
a granular world.
Unfortunately, the answers to these questions cannot be given inside the granular temporal
logic formalism we developed, because the existence of the limit cannot be proven. The
solution we propose in this paper consists of adding a probabilistic dimension to the
granular formalism using the stochastic approach introduced in Cotofrei & Stoffel (2007). This
extension was put forward in response to the difficulty of checking the consistency property
for a linear time structure M (which involves verifying the existence of the support for each
well-defined formula). By providing a probability system to the set of states S, we could define
a stochastic linear time structure such that for each realization of the stochastic sequence ψ(ω)
obtained by randomly drawing a point ω in SN, there is a corresponding (ordinary) linear
time structure Mω . The key answer to the consistency question is the equivalence, as we
proved, between the existence of the support for a given formula p and the property of a
particular stochastic sequence to obey the strong law of large numbers (SLLN). The sequence
corresponding to p (characteristic sequence) is constructed, using appropriate transformations,
from the stochastic sequence ψ.
This stochastic layer added to the temporal granular logic allows us to define a unified
framework (the stochastic granular time formalism) in which many of the initially defined
concepts become consequences of the properties of a fundamental stochastic structure.
Among the results we will prove in the paper based on this formalism we may cite the
theorems concerning the existence of the consistency property for any granular time structure
induced from a stochastic structure M under the hypothesis that the random process ψ
contains a certain amount of dependence (i.i.d, α-mixing or L2-NED). These results are
stronger than those obtained in the framework of the classical temporal granular logic, due
to the fact that in a probabilistic framework we may apply fundamental results which go
beyond a simple algebraic manipulation. Furthermore, we could prove the consistency
property based only on the requirement that the function giving the interpretation of a
temporal formula is a Borel transformation. Concerning the support of an aggregate event, we
could establish that the characteristic sequence for this type of event is obtained by applying
a particular type of transformation, which asks certain restrictions for the temporal type.
Beside these theoretical results, the rationale we followed to prove them emphasizes the main
advantage of the stochastic approach: the possibility of inferring, from specific properties
of a stochastic process, the existence of different types of consistency, defined based on user
necessity.
The structure of the chapter is as follows. In the next section, the main terms (temporal
event, temporal rule) and concepts (support, consistency, confidence) of the first-order temporal
logic formalism are described. The definitions and theorems concerning the extension of the
formalism towards a temporal granular logic are presented in Sec. 3, whereas the limits of
these results from a practical viewpoint and the proposed solution to overcome these issues
(the stochastic extension) are described in the following section. Finally, the last section
summarizes the work and proposes some promising future developments.
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2. Logical formalism of temporal rules

Time is ubiquitous in information systems, but the mode of representation/perception varies
in function of the purpose of the analysis (Chomicki & Toman, 1997; Emerson, 1990). The
temporal ontology, on which the logical formalism introduced in Cotofrei & Stoffel (2004;
2005) was constructed, is represented by linearly ordered discrete instants. Syntactically,
all the terms and formulae are defined over a restricted first-order temporal language L

containing constant symbols, n-ary function symbols, variable symbols {y1,y2, ...}, n-ary
predicate symbols (n ≥ 1), the set of relational symbols {=,<,≤,>,≥}, the logical connective
∧ and a temporal connective of the form∇k, k ∈ Z, where k strictly positive means after k time
instants, k strictly negative means before k time instant and k = 0 means now.
A Horn clause cannot be expressed in L because the logical connective → is not included.
However, to allow the description of rules, which formally look like Horn clauses, a new
logical connective, 	→, was introduced (in practical terms, it is a rewrite of the connective ∧).
The next definitions introduce the main types of formulae (based on known concepts from
temporal data mining) and the conditions allowing the use of the new connective.

Definition 1 An event (or temporal atom) is an atom formed by the predicate symbol E followed by
a bracketed n-tuple of terms (n ≥ 1) E(t1, t2, . . . , tn). The first term of the tuple, t1, is a constant
symbol representing the name of the event, and all others terms are expressed according to the rule
ti = f (ti1, . . . , tiki).

Definition 2 A constraint formula for the event E(t1, . . . tn) is a conjunctive compound formula,
E(t1, t2, . . . tn) ∧ C1 ∧ · · · ∧ Ck. Each Cj is a relational atom tρ c, where the term t is one of the terms
ti, i = 1 . . .n, the term c is a constant symbol and ρ a relational symbol.

Definition 3 A temporal rule in standard form is a formula of the form H1 ∧ · · · ∧ Hm 	→ Hm+1,
where Hm+1 is a constraint formula prefixed by ∇0 and Hi, i = 1..m are constraint formulae, prefixed
by the temporal connectives ∇−k, k > 0. The maximum value of the index k is called the time window
of the temporal rule.

Remark. The reason for which the implication connective was not included in L is related
to the truth table for a formula p → q: even if p is false, the formula is still true, which is
unacceptable for a temporal rationing of the form cause→ effect.
If all the terms ti, i = 1 . . .n, from the expression of a temporal atom, constraint formula or
temporal rule are represented by variable symbols (and not by constant symbols), then the
new formula is denoted a temporal atom template E(y1, . . . ,yn) (respectively, a constraint
formula template or temporal rule template). These templates are considered as general
patterns for events or temporal rules. Practically, the only formulae constructed in L are
temporal atoms, constraint formulae, temporal rules and the corresponding templates.
The semantics of L is provided by an interpretation I over a domain D. The interpretation
assigns an appropriate meaning overD to the (non-logical) symbols of L. Based on Definition
1, an event can be seen as a labelled (constant symbol t1) sequence of points extracted from raw
data and characterized by a finite set of features (terms t2, · · · , tn). Consequently, the domainD
is the unionDe ∪D f , where the setDe contains all the strings used as event names and the set
D f represents the union of all domains corresponding to chosen features. But a temporal logic
cannot be defined without a structure having a temporal dimension and capable of capturing
the relationship between a time moment and the interpretation I at this moment.

450 New Fundamental Technologies in Data Mining
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Temporal Rules Over Time Structures with Different Granularities - a Stochastic Approach 5

Definition 4 Given L and a domain D, a (first order) linear time structure is a triple M = (S,x,I),
where S is a set of states, x : N → S is an infinite sequence of states (s1, s2, . . . , sn, . . .) and I is a function
that associates with each state s an interpretation Is of all symbols from L.

In the framework of a linear temporal logic, the set of symbols is divided into two classes:
the class of global symbols (having the same interpretation in each state) and the class of
local symbols (the interpretation depends on the state in which they are evaluated). The
formalism of temporal rules assumes that all function symbols (including constants) and all
relational symbols are global, whereas the predicate symbols and variable symbols are local.
Consequently, the meaning of truth for any temporal atom, constraint formula, temporal rule
or corresponding template depends on the state at which they are evaluated. Given a first
order time structure M and a formula p, the instant i (or equivalently, the state si) for which
Isi(p) = true is denoted by i |= p. Therefore, i |= E(t1, . . . , tn)means that at time i an event with
the name I(t1) and characterized by the global features I(t2), . . . ,I(tn) occurs. Concerning the
event template E(y1, . . . ,yn), the interpretation of the variable symbols yj at the state si, Isi(yj),
is chosen such that i |= E(y1, . . . ,yn) for each time moment i. Finally, i |= ∇kp if and only if
i + k |= p, whereas a temporal rule (template) is true at time i if and only if i |= Hm+1 and
i |= (H1 ∧ · · · ∧ Hm).
The connection between the restricted first-order temporal logic and the temporal data
mining task this logic tries to formalize (temporal rules extraction) is given by the following
assumptions:

A. For each formula p in L, there is an algorithm that calculates the value of the interpretation
Is(p), for each state s, in a finite number of steps.

B. There are states (called incomplete states) that do not contain enough information to
calculate the interpretation for all formulae defined at these states.

C. It is possible to establish a measure (called general interpretation) about the degree of truth
of a compound formula along the entire sequence of states (s0, s1, .., sn, .).

The first assumption expresses the calculability of the interpretation I. The second assumption
expresses the situation (e.g., due to missing data) when only the body of a temporal rule can
be evaluated at a time moment i, but not the head of the rule. Therefore, for the state si,
the interpretation of the temporal rule cannot be calculated, and the only solution (expressed
by the third assumption) is to estimate it using a general interpretation. However, to ensure
that this general interpretation is well-defined, the linear time structure must present some
property of consistency. In practical terms, this means that the conclusions inferred from a
sufficiently large subset of time instants are sufficiently close to those inferred from the entire
set of time instants. Therefore,

Definition 5 A structure M is called consistent linear time structure for L if, for every formula p,

the limit supp(p) = lim
n→∞

n−1#A exists, where # means ”cardinality” and A= {i = 1..n | i |= p}. The

notation supp(p) denotes the support (of truth) of p.

Consequently, if M is a consistent time structure, the general interpretation - seen as a function
taking values in [0,1] - is well-defined for any formula p defined in L, by the relation
IG(p) = supp(p). There is another useful measure, called confidence, but available only for
temporal rules (templates). This measure is calculated as a limit ratio between the number of
certain applications (time instants where both the body and the head of the rule are evaluated
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6 Data Mining

as true) and the number of potential applications (time instants where only the body of the
rule is evaluated as true). Furthermore, it can be proved that, for a consistent structure, the
confidence is the ratio between the support of the entire rule and the support, not null, of its
body.
If, for different reasons (e.g., the states the user has access to are incomplete or are missing), the
support measure cannot be calculated, then a possible solution is to estimate supp(p) using a
finite linear time structure, i.e. a model.

Definition 6 Given L and a consistent time structure M = (S,x,I), a model for M is a structure
M̃= (T̃, x̃) where T̃ is a finite temporal domain {i1, . . . , in}, x̃ is the subsequence of states {xi1 , . . . ,xin}
(the restriction of x to the temporal domain T̃) and for each ij, j = 1, . . . ,n, the state xij is a complete
state.

This particular structure can be used to obtain an estimator for the support measure
(supp(p, M̃) = #T̃−1#{i ∈ T̃ | i |= p}) or for the confidence measure (conf(H, M̃) = #B−1#A,
where A= {i ∈ T̃ | i |= H1 ∧ · · · ∧ Hm ∧ Hm+1} and B = {i ∈ T̃ | i |= H1 ∧ · · · ∧ Hm}).
EXAMPLE 1. Consider raw data representing the price variations (six daily records) of a given
stock and suppose that a particular methodology for event detection reveals two types of
potentially useful events. The output of the methodology is a database of events, where each
tuple (v1,v2) with record index i expresses the event occurring at time moment i, labeled (v1
value) with one of the strings {increse,decrease} and characterized (v2 value) by the feature
given by the mean of the daily records. In the frame of the temporal logic formalism, the
language L will contain a 2-ary predicate symbol E, two variable symbols y1,y2, a 6-ary
function symbol f , two sets of constant symbols – {d1,d2} and {c1, . . . , cn} – and the usual
set of relational symbols and logical (temporal) connectives. According to the syntactic rules
of L, a temporal atom is defined as E(di, f (cj1 , .., cj6)), an event template as E(y1,y2), whereas
a possible temporal rule (H) is

E(t1, t2) ∧ (t1 = increase) ∧ (t2 ≤ 5) 	→ ∇1(E(t1, t2) ∧ (t1 = decrease) ∧ (t2 ≥ 3))

(”translated” in a natural language as ”IF at time t the price increases in average with at most five

units THEN at time t + 1 the price decreases in average with at least 3 units”). A linear time structure
M = (S,x,I) may be defined by considering the set S as the set of all distinct tuples from
the event database and the sequence x as the ordered sequence of tuples in the database (see
Table 1). At this stage the interpretation of all symbols (global and local) can be defined. For
the global symbols, the interpretation is quite intuitive: the meaning I(d1) is increase, I(d2) is
decrease and I( f ) is the function f : R6 	→ R, f (x1, . . .x6) = 1/6∑

6
i=1 xi. For the predicate symbol

E, the function Isi(E(t1, t2)) : D → {true, f alse} is provided by a finite algorithm, receiving as
input the state si = (v1,v2) and providing as output the value true if Isi(tj) = vj for all j = 1..2

and false otherwise. If M is a consistent linear time structure having a model M̃ given by
the first n states from the sequence x, then the finite structure M̃ can be used to estimate the
confidence of the temporal rule H (based on the first ten states, this estimation is 2/5). And,
due to the consistency property, this degree of confidence is reliable information about the
prediction power of this rule when applied to future data.

v1 increase increase decrease increase increase increase decrease increase decrease decrease

v2 3 5 5 1 8 4 2 4 3 2

Table 1. The first ten states of the linear time structure M
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Temporal Rules Over Time Structures with Different Granularities - a Stochastic Approach 7

3. The granularity model

The inherent granularity of time implies necessary granular-dependent structure of
knowledge extracted by any general temporal dataminingmethodology. Once the framework
in which temporal data is analyzed accepts the dynamic of time scale change, natural
questions arise, such as how temporal rule interpretations related to different levels of
granularities are connected, or when the consistency property is preserved under time scale
changes. In order to find answers to these issues, we extended the initial ”static” formalism to
include the concept of time granularity (Cotofrei & Stoffel, 2009) by defining a process from
which a given structure of time granules µ (called temporal type) induces a first-order linear
time structure Mµ (called granular world) on the basic (or absolute) linear time structure M.
The concept of a temporal type, formalizing the notion of time granularity, was introduced by
Bettini, Wang & Jajodia (1998a).

Definition 7 Let (T ,<) (index) be a linearly ordered temporal domain isomorphic to a subset of
integers with the usual order relation, and let (A,<) (absolute time) be a linearly ordered set. Then a
temporal type on (T ,A) is a mapping µ from T to 2A such that

1. µ(i) �= ∅ and µ(j) �= ∅, where i < j, imply that each element in µ(i) is less than all the elements
in µ(j),

2. for all i < j, if µ(i) �= ∅ and µ(j) �= ∅, then ∀k , i < k < j implies µ(k) �= ∅.

Each set µ(i), if non-empty, is called a granule of µ. Property (1) says that granules do
not overlap and that the order on indexes follows the order on the corresponding granules.
Property (2) disallows an empty set to be the value of a mapping for a certain index value if a
lower index and a higher index are mapped to non-empty sets.
When considering a particular application or formal context, we can specialize this very
general model along in different directions, as the choice of the sets T orA, or the restrictions
on the structure of granules. We call the resulting formalization a temporal type system. Also
following Bettini, Wang & Jajodia (1998a), a number of interesting relationships between two
temporal types, µ and ν, on (T ,A), are defined.

A. Finer-than: µ is said to be finer than ν, denoted µ � ν, if ∀i ∈ T , ∃j∈ T such that µ(i)⊆ ν(j).

B. Groups-into: µ is said to group into ν, denoted µ � ν, if ∀ν(j) �= ∅, ∃S ⊂ T such that ν(j) =
⋃

i∈S µ(i).

C. Shifting: µ and ν are said to be shifting equivalent, denoted µ1 ⇋ µ2, if there is a bijective
function h : T → T such that µ(i) = ν(h(i)), for all i ∈ T .

When a temporal type µ is finer than a temporal type ν, we also say that ν is coarser than
µ. The finer-than relationship formalizes the notion of finer partitions of the absolute time.
This relation is reflexive, transitive, but if no restrictions are given, it is not antisymmetric,
and hence it is not a partial order. Considering the groups-into relation, µ � ν ensures that for
each granule of µ there exists a set of granules of ν covering exactly the same span of time.
The groups-into relation has the same properties as the finer-than relation, but generally µ � ν
does not imply µ � ν or vice-versa. Finally, shifting is clearly an equivalence relation. But
by considering only temporal type systems satisfying the restriction that no pair of different
types can be shifting equivalent, we obtain a class of systems for which the relationships �
and � are partial order, i.e, are reflexive, transitive and antisymmetric.

453Temporal Rules Over Time Structures with Different Granularities - a Stochastic Approach
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Let G0 denote the set of temporal types for which the index set and the absolute time set
are isomorphic with the set of positive natural numbers, i.e. A = T = N. Consider now the
following particular subsets of G0, represented by temporal typeswith a) non-empty granules,
b) with granules covering all the absolute time and c) with constant size granules:

G1 = {µ ∈ G0 | ∀i ∈ N, 0< #µ(i)} (1)

G2 = {µ ∈ G1 | ∀i ∈ N, µ(i)−1 �= 0} (2)

G3 = {µ ∈ G2 | ∀i ∈ N, µ(i) = cµ} (3)

The membership of a temporal type defined by one of these subsets implies very useful
properties, the most important being:

µ,ν ∈ G2 =⇒ µ � ν ⇔ µ � ν. (4)

If M = (S,x,I) is a first-order linear time structure, then let the absolute time A be given by
the sequence x, by identifying the time moment i with the state s(i) (on the ith position in the

sequence). If µ is a temporal type from G2, then the temporal granule µ(i) may be identified
with the set {sj ∈ S | j ∈ µ(i)}. Therefore, the temporal type µ induces a new sequence, xµ,

defined as xµ : N → 2S , xµ(i) = µ(i). Consider now the linear time structure derived from

M, Mµ = (2S,xµ,I
µ). To be well-defined, we must give the interpretation I

µ

µ(i)
for each i ∈ N.

Because for a fixed i the set µ(i) is a finite sequence of states, it defines (if all the states are
complete states) a model M̃µ(i) for M. Therefore, the estimated support measure exists, and
we consider, by definition, that for a temporal free formula (which does not contains any ∇
operator, e.g. a temporal atom) p in L

I
µ

µ(i)
(p) = supp(p, M̃µ(i)) (5)

This interpretation is extended to any temporal formula in L according to the rule:

I
µ

µ(i)
(∇k1 p1 ∧ . . . ∧∇kn pn) =

1

n

n

∑
j=1

I
µ

µ(i+k j)
(pj) (6)

where pi are temporal free formulae and ki ∈ Z, i = 1 . . .n.

Definition 8 If M = (S,x,I) is a first-order linear time structure and µ is a temporal type from G2,
then the linear granular time structure induced by µ on M is the triple Mµ = (2S,xµ,I

µ), where

xµ : N → 2S, xµ(i) = µ(i) and Iµ is a function that associates with almost each set of states µ(i) an

interpretation I
µ

µ(i)
according to rules (5)-(6).

3.1 Linking two granular structures

All the granular time structures induced by a temporal type have in common interpretations
which take values in [0,1] if applied to formulae in L. This observation allows us to
establish relationships linking the interpretations Iµ and Iν, from two linear granular time
structures induced by µ and ν, when there exists a relationship finer-than (µ � ν) between
these two temporal types. The key for establishing such a relation is given by property 4,
which guarantees that for each i ∈ N there is a subset Ni ⊂ N such that ν(i) =

⋃

j∈Ni
µ(j).

As we proved in Cotofrei & Stoffel (2009), the capacity to ”transfer” information (here,
formula interpretation) from a finer world to a coarser one depends strictly on the nature
of information.
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Temporal Rules Over Time Structures with Different Granularities - a Stochastic Approach 9

– The time independent part of information may be ”transferred” between two granular
worlds, i.e. knowing the interpretation of an event in a finer structure allows the calculation
of its interpretation (degree of truth) in each coarser structure (see Theorem 1).

– The time dependent part of information can’t be ”transferred” without loss between two
granular worlds, and concerns especially the interpretation of temporal rules (see Theorem
2). One consequence of this theorem is that all the information related to temporal formulae
having a time window less than k (where k is the coefficient of conversion between the two
worlds) is lost during the transition to the coarser world.

Theorem 1 If µ, ν are temporal types from G2 such that µ � ν, and Iµ,Iν are the interpretations from
the induced linear time structures Mµ and Mν on M, then ∀i ∈ N,

Iν
ν(i)(p) =

1

#ν(i) ∑
j∈Ni

#µ(j)I
µ

µ(j)
(p), (7)

where Ni is the subset of N satisfying ν(i) =
⋃

j∈Ni
µ(j) and p is a temporal free formula in L.

Theorem 2 If Mµ, Mν are granular time structures induced by µ,ν ∈ G3 (constant size granular
worlds), µ � ν, then ∀i ∈ N,

Iν
ν(i)(∇k1 p1 ∧ ...∇kn pn) =

1

k ∑
j∈Ni

I
µ

µ(j)
Zk(∇k1 p1 ∧ ...∇kn pn)) (8)

where k= cν/cµ, ν(i) =
⋃

j∈Ni
µ(j), pi , i= 1..n, are temporal free formulae in L and Zk is the operator

defined over the set of formulae in L, as Zk(∇k1 p1 ∧ . . . ∧∇kn pn) =∇k·k1p1 ∧ . . .∧∇k·knpn.

3.2 The consistency problem

The importance of the concepts of consistency, support and confidence (see Sec. 2) for the
process of information transfer between worlds with different granularity may be highlighted
by analyzing the analogous expressions for a linear granular time structure Mµ.

Definition 9 Given L and a linear granular time structure Mµ on M, we say that Mµ is a consistent

granular time structure if, for every formula p, the limit supp(p,Mµ) = lim
n→∞

1

n

n

∑
i=1

I
µ

µ(i)
(p) exists. The

notation supp(p,Mµ) denotes the support (degree of truth) of p under Mµ.

A natural question concerns the inheritance of the consistency property from the basic linear
time structure M by the induced time structure Mµ. The answer is formalized in the following
theorem (see (Cotofrei & Stoffel, 2009) for proof).

Theorem 3 If M is a consistent time structure and µ ∈ G3 then the granular time structure Mµ is
also consistent.

The implications of Theorem 3 are extremely important, because by defining the confidence
of a temporal ruleH, H1 ∧ . . .∧ Hm 	→ Hm+1 over a consistent granular time structure Mµ as:

conf(H,Mµ) =
supp(H1 ∧ . . . ∧ Hm ∧ Hm+1,Mµ)

supp(H1 ∧ . . . ∧ Hm,Mµ)
(9)

455Temporal Rules Over Time Structures with Different Granularities - a Stochastic Approach

www.intechopen.com
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we could prove the corollary that the confidence of H, over any granular time structure
Mµ induced on a consistent time structure M by a temporal type µ ∈ G3, exists and is
independent of µ. In other words, the property of consistency is a sufficient condition for
the independence of the measure of support/confidence, during the process of information
transfer between worlds with different granularities, all derived from an absolute world using
constant conversion factors. In practice, this means that even if we are not able to establish,
for a given granule µ(i) in a given world Mµ, the degree of truth for the temporal rule H, we
are sure that the confidence ofH, given by (9), is the same in each world Mµ,∀µ ∈ G3.

3.3 Events aggregation

Another inherent phenomenon accompanying the process of transition between two real
worlds with different time granularities is related to the creation of new kinds of significant
events. Intuitively, a new event is obtained by applying a kind of ”aggregation” mechanism
on a set of ”similar” events. Formally we need to define the syntax and semantics of these
concepts.
We introduce the notion of event type (denoted E[t]) as the set of all temporal atoms from
L having the same name (or head). Consider E(t, t2, . . . , tn) ∈ E[t]. According to Definition
1, a term ti, i ∈ {2, ..,n} has the form ti = f (ti1, . . . , tiki). Suppose now that for each index i
the function symbol f from the expression of ti belongs to a family of function symbols with
different arities, denoted Fi[t] (so different sets for different event types E[t] and different
index i). Fi[t] has the property that the interpretation for each of its members is given by a real
function which is applied to a variable number of arguments, and is invariant in the order of
arguments. A good example of a such real function is a statistical function, e.g. mean(x1, ..,xn).
Let Ti[t] be the set of terms expressed as fk(c1, . . . , ck), where fk is a function symbol from Fi[t]
and cj are constant symbols. Consider now the following two operators,⊕ : Ti[t]× Ti[t]→ Ti[t]
and ⊞ : E[t]× E[t]→ E[t] such that:

fn(c1, .., cn)⊕ fm(d1, ..,dm) = fn+m(c1, .., cn,d1, ..,dm)

E(t, t2, .., tn)⊞ E(t, t′2, .., t
′
n) = E(t, t2 ⊕ t′2, .., tn ⊕ t′n)

Obviously the operators ⊕ and ⊞ are commutative and associative. Therefore, we can apply
the operator⊞ on a subset E of temporal atoms from E[t] and denote the result as ⊞

ei∈E
ei.

By definition, a formula p is satisfied by a linear time structure M = (S,x,I) (or by a model
M̃ of M) if there is at least a state si ∈ x (respectively in x̃) such that Isi(p) = true. Therefore,
the set of events of type t satisfied by M is given by E[t]M = {e ∈ E[t] | ∃si ∈ x ,Isi(e) = true}.
Similarly, the set of events of type t satisfied by Mµ (the structure induced by µ on M) is

defined as E[t]Mµ
= {e ∈ E[t] | ∃µi ∈ xµ,I

µ

µ(i)
(e) = 1}. Generally E[t]M ⊃ E[t]Mµ

⊃ E[t]Mν
, for

µ � ν, which is a consequence of the fact that a coarser world satisfies less temporal events
than a finer one. At the same time a coarser world may satisfy new events, representing a
kind of aggregation of local, ”finer” events.

Definition 10 If µ ∈ G2 then the aggregate event of type t induced by the subset of satisfied events
A ⊂ E[t]M (denoted e[t]A) is the event obtained by applying the operator ⊞ on the set of events from
A, i.e.

e[t]A = ⊞
ei∈A

ei (10)
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Temporal Rules Over Time Structures with Different Granularities - a Stochastic Approach 11

Of a practical interest is the aggregate event induced by the subset A containing all the events
of type t satisfied by a model M̃µ(i) (for a given i) denoted e[t]µ(i). According to (5), the
interpretation of an event e in any world Mµ depends on the interpretation of the same event

in M. Therefore, if e is not satisfied by M it is obvious that I
µ

µ(i)
(e) = 0, for all µ and all i ∈ N.

Because an aggregate event (conceived as a new, ”federative” event) is not usually satisfied
by M, the relation (5) is not appropriate to give the degree of truth for e[t]µ(i). By restricting
to linear time structures M satisfying the condition that two different events of type t cannot
be evaluated as true at the same state s ∈ S, the formula expressing the interpretation for an
aggregate temporal atom is given by the following definition:

Definition 11 If Mµ is a linear granular time structure (µ ∈ G2) and e[t]A is an aggregate event,
then the interpretation of e[t]A in the state µ(i) is defined as:

I
µ

µ(i)
(e[t]A) =

#(Ei ∩A)

#A ∑
ej∈A

I
µ

µ(i)
(ej) (11)

where Ei = E[t]M̃µ(i)
.

The restriction is necessary to assure that the interpretation of an aggregate event is
well-defined, i.e. I

µ

µ(i)
(e[t]A) ≤ 1. Furthermore, the interpretation is equal one if and only

if all (and only these) satisfied events of type t from A are also satisfied by M̃µi
.

4. Temporal rules in a granular world: toward a stochastic approach

The theoretical framework used to define a linear granular time structure allowed us to prove
some nice mathematical results, as the heritage of the consistency property by the worlds
with constant granule size, or the independence regarding µ of the confidence measure for a
temporal rule over a world Mµ. But if we return to the ”real world” and reflect on how these
results could be practically applied, we found a number of issues which cannot be avoided.
To start our reasoning, let’s consider another more simple temporal rule H, defined in the
context of Example 1 (according to the described context, the absolute unit time of the linear
time structure M is ”day”). Suppose that the confidence of this rule (in a natural language,
it says that ”IF today there is a daily increase in average of five percent THEN tomorrow will be a
daily decrease in average of three percent”) is 0.6. Consider now the granular time structure Mµ,
induced on M by µ(i) =week i (constant granule size equals five).

– First issue: the temporal rule meaning. The rule in the new context Mµ (translated as
”IF this week there is a daily increase in average of five percent THEN the next week will be a
daily decrease in average of three percents”) is lacking utility, due to the fact that the events
E(t1, t2), even if formally theorem 1 permits them to calculate their interpretation for each
week granule, reflects well the system behavior only for a time scale using days as basic
granules. A ”daily increase in average of five percent during a week” has no meaning, except
the particular case where in each day of the week there is an increase in average of five
percent. On the other hand, if during a given week there are three daily increase events
in average of 5, 8 and 11 percent (and two daily decrease events in average of 3 and 1
percents), a natural way to define a meaningful event of type increase for a week granule is
to consider a ”weekly increase” with an average of (5+ 8+ 11)/3 = 8 percent (the feature
is the mean function), with a degree of truth for this week equal to 3/5 (respectively a
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”weekly decrease” event with an average of (3 + 1)/2 = 4 percent). This is exactly the
approach ”events aggregation”, introduced in Subsec. 3.3, which allows us to consider the
new (now meaningful) rule Hnew: ”IF this week there is a weekly increase in average of eight
percent THEN the next week will be a weekly decrease in average of two percent”.

– Second issue: predictive power. If events aggregation (when applicable) represents a
solution to obtain meaningful events for a given granular time structure, let’s analyse how
a temporal rule implying such events can be used to make predictions. In the world M, if
the implication clause of H is true for a particular day, then we expect, with a confidence
(probability) of 0.6, that the implicated clause will also be true the next day. The corollary
of Theorem 3 assures us that the confidence – defined in (9) as a ratio of the degree of truth
for all rule clauses/all implication clauses – of the rule H over the world Mµ exists. But
the fact that in a particular week the implication clauses of Hnew have a degree of truth
equal to (lets say) 0.4 and that the confidence is (lets say) 0.8 does not allow us to infer any
information about the degree of truth for the implicated clause. A useful way to employ
the rule would be a rationing of type ”If the degree of truth for the implication clauses of Hnew

is at least (lets say) 0.7 for a particular week then we expect, with a confidence of 0.8, that the
degree of truth of the implicated clause to be at least (lets say) 0.6 the next week”. In order to be
able to apply this inference schema we need a new definition for the confidence measure
over a granular world, seen as the limit ratio between the number of granules where both
the implication clauses and the implicated clause have a degree of truth greater than some
chosen constants and the number of granules where only the implication clauses have a
degree of truth greater than the chosen constant.

Definition 12 Given Mµ a linear time structure on M andH a temporal rule H1 ∧ ..∧Hm 	→ Hm+1,

the confidence (α,β) of H, denoted confα,β(H,Mµ), is the limit (if exists) lim
n→∞

(#B)−1#A, where

A = {i ≤ n|I
µ

µ(i)
(H1 ∧ .. ∧ Hm) ≥ α,I

µ

µ(i)
Hm+1 ≥ β} and B = {i ≤ n|I

µ

µ(i)
(H1 ∧ .. ∧ Hm) ≥ α},

where α,β ∈ (0,1].

At this moment two questions naturally arise: (1) If Mµ is consistent, does the support
of an aggregate event exist? (2) If Mµ is consistent, does the confidence (α,β) for a
temporal rule exist? Unfortunately, the answers to these questions cannot be given inside
the granular temporal logic formalism we developed because the existence of the limits can’t
be proved. A possible solution is to extend this pure logical formalism using the stochastic
approach introduced in Cotofrei & Stoffel (2007). This extension was proposed in response
to the difficulty of checking the consistency property for a linear time structure M (which
involves verifying the existence of the support for each well-defined formula), by deriving the
consistency as an objective consequence of a specific property of a stochastic process.

4.1 The stochastic model

The key of the stochastic extension for a first order time structure M = (S,x,I) is given by the
observation that the sequence x may be considered as a particular realization of a stochastic
process. Technically, this can be done by providing a probability system (S,σ(S),P) for the set
of states S. Indeed, if S = {s0, s1, . . .} is a countable set of states, consider σ(S) the σ−algebra
generated by S. The probability measure P on σ(S) is defined such that P(si) = pi > 0,∀i ∈ N.
Consider now a random variable X : S → R such that the probability P(X = si) = pi for all
i ∈ N. If SN = {ω |ω = (ω1,ω2, . . . ,ωt, . . .),ωt ∈ S, t ∈ N}, then the variable X induces the
stochastic sequence ψ : SN → RN , where ψ(ω) = {Xt(ω), t ∈ N} and Xt(ω) = X(ωt) for all
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Temporal Rules Over Time Structures with Different Granularities - a Stochastic Approach 13

t∈N. The fact that each ω ∈ SN may be uniquely identifiedwith a function x :N → S and that
X is a bijection between S and X(S) allows us to uniquely identify the function xwith a single
realization of the stochastic sequence. In other words, the sequence x = (s(1), s(2), . . . , s(i), . . .)
from the structureM can be seen as one of the outcomes of an infinite sequence of experiments,
each experiment being modelled by the probabilistic system (S,σ(S),P).

Definition 13 Given L and a domain D, a stochastic (first order) linear time structure is a quintuple
M = (S,P,X,ψ,I), where

– S = {s1, s2, . . .} is a (countable) set of states,

– P is a probability measure on the σ−algebra σ(S) such that P(si) = pi > 0, i ∈ N

– X is a random variable such that P(X = si) = pi,

– ψ is a random sequence, ψ(ω) = {X(ωi)}
∞
1 where ω ∈ SN,

– I is a function that associates with each state s an interpretation Is for all symbols from L.

To each realization of the stochastic sequence ψ, obtained by random drawing of a point in R
∞

(or equivalently, of a point ω in SN), corresponds a realization of the stochastic structure M.
This realization is given by the (ordinary) linear time structure Mω = (S,ω,I), which implies
that the semantics attached to the symbols of L, described in Section 2, is totally effective.
Moreover, if p is a formula defined in language L and Ap the event

1 ”the interpretation of the
formula p is true”, then

1Apn
(ω) =

∑
n
t=11Ap

(ωi)

n
=

#{i ≤ n |1Ap
(ωi) = 1}

n
=

#{i ≤ n | Is(i)(p) = true}

n
(12)

where the last term is exactly the expression which gives, at the limit, the support of p.
Consequently, supp(p) exists (almost sure) if the stochastic sequence {1Ap

}∞
1 satisfies the

strong law of large numbers.
To obey the law of large numbers, a sequencemust satisfy regularity conditions relating to two
distinct factors: the probability of extreme values (limited by bounding absolute moments)
and the degree of dependence between coordinates. The necessity of a set of regularity
conditions is usually hard to prove (except if the sequences are independent), but various
configurations of dependency and boundedness conditions can be shown to be sufficient. The
characteristic sequences, which are derived from the stochastic process ψ using appropriate
Borel transformation (depending on p), have all absolute moments bounded by 0 and 1.
Therefore, the only regularity condition which may vary (and which is inherited from ψ) is the
degree of dependence. After a deeper analysis of the various types of dependence restrictions
a stochastic process may contain, we proved (Cotofrei & Stoffel, 2007) the following results:

– Independence and Consistency. If the random process ψ from the stochastic first-order linear
time structure M = (S,P,X,ψ,I) is i.i.d., then almost all linear time structures Mω = (S,ω,Is) are
consistent. But the independence condition represents a serious drawback for any temporal
rule extraction methodology, because it implies a null correlation between the body and the
head of a rule, i.e. not at all meaningful temporal rules.

1In this context, an event is a set of possible outcomes of a random experiment

459Temporal Rules Over Time Structures with Different Granularities - a Stochastic Approach

www.intechopen.com
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– Dependence and Consistency. If the random process ψ from the stochastic first-order linear time
structure M = (S,P,X,ψ,I) is α-mixing2 or is L2 − NED3, then almost all linear time structures
Mω = (S,ω,Is) are consistent. Therefore,with up to a certain amount of dependence between
events (that makes the rules meaningful), it is possible to guarantee the ”correctness” of the
temporal rules (expressed by the confidence measure) when applied to future data.

4.2 The granularity stochastic model

If we apply the stochastic approach, as developed in the previous subsection, to the
granularity model, we obtain what we call a stochastic granular time formalism. Let ψ =
{Xi}

∞
1 be a stochastic process and µ a temporal type. If we denote Xµ(i) the random vector

(Xj1 , . . . ,Xjk), where ji, i= 1..k are all the indices from µ(i), then the random sequence induced

by µ on ψ is simply µ[ψ] = {Xµ(i)}
∞
i=1. Similarly, if ω ∈ SN then ωµ(i) = (ωj1 , . . . ,ωjk) and

µ[ω] = {ωµ(i)}
∞
1 . Therefore, we define a stochastic granular time structure as:

Definition 14 If M = (S,P,X,ψ,I) is a stochastic (first-order) linear time structure and µ is a
temporal type from G1, then the stochastic granular time structure induced by µ on M is the quintuple
Mµ = (2S,P,X,µ[ψ],Iµ), where Iµ is given by (5)-(6).

Practically, the random process µ[ψ] from the stochastic granular time structure Mµ is a
sequence of random vectors obtained by grouping the coordinates of the process ψ according
to the mapping µ. To each realization of the stochastic sequence ψ, obtained by a random
drawing of a point ω in SN , corresponds to a realization of the stochastic structure M (i.e., the
time structure Mω = (S,ω,Iω)) and a corresponding realization of the stochastic structure Mµ

(i.e., the granular time structure Mµ[ω] = (2S,µ[ω],I
µ
ω)).

In the following we establish the expression linking the interpretation Iµ of a given formula in
L with the random process µ[ψ]. For this we introduce the function S defined by S(Xµ(i)) =

(#µ(i))−1 ∑j∈µ(i)Xj. If {Xi} are identical distributed, with E(Xi) = γ, then it is evident that

E(S(Xµ(i))) = γ, for all i ∈ N. Consider the following two situations:

– Temporal free formula: According to (5) and to (12),

I
µ

µ[ω](i)
(p) = supp(p, M̃µ[ω](i)) = S

(

(1Ap
)µ[ω](i)

)

. (13)

– Temporal formula: According to (6) and (13), for a temporal formula∇k1 p1 ∧ . . . ∧∇kn pn

I
µ

µ[ω](i)
(∇k1 p1 ∧ . . . ∧∇kn pn) =

1

n

n

∑
j=1

I
µ

µ[ω](i+k j)
(pj) =

1

n

n

∑
j=1

S
(

(1Apj
)µ[ω](i+k j)

)

. (14)

The consequence of these relations is that the support of any formula p under Mµ[ω] exists if

and only if the characteristic sequence {S(1Ap
)µ[ω]} satisfies the strong law of large numbers.

The sequence corresponding to p is constructed by applying a mapping µ and a particular
Borel transformation on the stochastic sequence ψ. By analyzing the sufficient conditions (the
dependence degree) for ψ which assure, through the transformation function, the applicability
of SLLN for any characteristic sequence, we arrived at the following results:

2the degree of dependence converges to zero if the distance between coordinates converges to ∞
3a function of a mixing sequence with an infinite number of parameters
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Theorem 4 (Independence and Consistency) If the random process ψ from the stochastic first-order
linear time structure M = (S,P,X,ψ,I) is i.i.d., then almost all granular time structures induced by
a temporal type µ ∈ G1, Mµ[ω] = (2S,µ[ω],Iµ), are consistent.

(For proof see Appendix). This result is stronger than those obtained in Theorem 3, where the
temporal type has to satisfy a more restrictive condition, i.e. µ ∈ G3. This is explained by the
fact that in a probabilistic framework we can apply fundamental results which go beyond a
simple algebraic manipulation. Furthermore, we can prove that the consistency is preserved
even if we replace the function giving the interpretation of a temporal formula (the arithmetic
mean, see (6)) with any t-norm transformation.

Theorem 5 (α−Mixing and Consistency) If the random process ψ from the stochastic first-order
linear time structureM = (S,P,X,ψ,I) is α−mixing, then almost all granular time structures induced
by a temporal type µ ∈ G2, Mµ[ω] = (2S,µ[ω],Iµ), are consistent.

(For proof see Appendix). This result is, once again, stronger than those obtained in the pure
granular logical formalism, but we must remark on the supplementary condition imposed on
µ (now in G2) compared with the independence case.

Theorem 6 (Near-Epoch Dependence and Consistency) If the random process ψ from the
stochastic first-order linear time structure M = (S,P,X,ψ,I) is L2-NED on an α−mixing sequence,
then almost all granular time structures induced by a temporal type µ ∈ G3, Mµ[ω] = (2S ,µ[ω],Iµ),
are consistent.

(For proof see Appendix). For the near-epoch dependence case we were forced to impose the
stronger restriction to the temporal type µ (constant size and total coverage) to compensate the
higher degree of dependence of the stochastic processψ. This type of dependence is, according
to the stochastic limit theory (Davidson, 1994; Davidson & de Jong, 1997), the highest degree
of dependence for which theorems concerning SLLN still hold.

4.2.1 Aggregated event support and (α,β) confidence
All these results were obtained by analyzing the characteristic sequences for the formulae
constructed in L, for which the interpretation is given by the expressions (5)-(6). The
transformations applied to the process ψ to generate characteristic sequences belong to a
family of Borel functions G ,

gp(Xi+k(ω)) = (gp ◦ Xi+k)(ω) =

{

1 if ωi+k ∈ Ap,

0 if not
for all k ≥ 0 (15)

(for independence and α−mixing dependence) and to a slightly different family G̃ , satisfying

i) g̃p(Xi(ω)) = gp(Xi(ω)), ii) g̃p continuous and iii) |g̃(XXX1)− g̃(XXX2)| ≤ M∑
n
i=1 |x

1
i − x2i | a.s.,

where XXX1, XXX2 are random vectors from R
n (for near-epoch dependence).

The degree of truth of an aggregate event is given by a different rule (11), implying that
a particular type of transformation (T ) must be applied to ψ to obtain the corresponding
characteristic sequence. To start the rationale, let ω be a sequence of states generated by the
process ψ and e[t]A an aggregate event induced by the setA. The expression given at the limit
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the support of e[t]A in the granular time structure Mµ is

1

n

n

∑
i=1

I
µ

µ[ω](i)
(e[t]A) =

1

n

n

∑
i=1

⎛

⎝

#(Ei ∩A)

#A ∑
ej∈A

I
µ

µ[ω](i)
(ej)

⎞

⎠=
1

#A ∑
ej∈A

(

1

n

n

∑
i=1

#(Ei ∩A)I
µ

µ[ω](i)
(ej)

)

For a fixed j and according to (13), I
µ

µ[ω](i)
(ej) = S

(

(1Aej
)µ[ω](i)

)

, which represents the ith

coordinate of a random sequence (X
j
i )

∞
1 of variables obtained from ψ by applying a Borel

transformation (an application of the mean function on functions from family G). Consider

now the sequence (1Aej
)∞
1 , N

j
i = ∑k∈µ[ω](i)1Aej

(ωk) (the variable counting the number of times

ej is satisfied in µ[ω](i)) and gt(·) a function defined as

gt(N
j
i ) =

{

1 if N
j
i ≥ 1,

0 if not

Consequently we have #(Ei ∩ A) = ∑k∈µ[ω](i) gt(N
k
i ), which represents the ith coordinate of a

second random sequence (Yi)
∞
1 , obtained again from ψ by applying a Borel transformation.

The variables Y
j
i are identical distributed if and only if #µ[ω](i) is a constant, which implies

µ ∈ G3. Under this restriction, the characteristic sequence for the aggregate event e[t]A (which

is
(

1
#A ∑ej∈AYi · X

j
i

)∞

1
and is obtained from ψ by applying a particular Borel transformation)

inherits the dependence degree of ψ. Therefore, the answer to our first question is given by
the following theorem:

Theorem 7 If the random process ψ from the stochastic first-order linear time structure M =
(S,P,X,ψ,I) is i.i.d or α-mixing or L2-NED on an α−mixing sequence, then in almost all granular
time structures induced by a temporal type µ ∈ G3, an aggregated event has a support.

Concerning the confidence (α,β) for a temporal rule, let introduces a particular type of
measure, the (α)support for a formula p under Mµ, denoted suppα(p,Mµ) and defined as

lim
n→∞

n−1#{i ≤ n | I
µ

µ(i)
(p) ≥ α}. Furthermore, following a similar rationing used in the proofs

of theorems 4-6 and treating the two cases (p temporal free formula and p temporal rule), we

can prove the possibility of constructing a specific characteristic sequence - denoted
(

(Xα
p)i

)∞

1
- derived from ψ by applying a specific Borel transformation, such that the existence of
suppα(p) is guaranteed by the capacity of the specific sequence to obey SLLN. Because this
capacity is assured only if µ ∈ G3, we can assert that

Theorem 8 If the random process ψ from the stochastic first-order linear time structure M =
(S,P,X,ψ,I) is i.i.d or α-mixing or L2-NED on an α−mixing sequence, then in almost all granular
time structures induced by a temporal type µ ∈ G3, an aggregated event has an (α)support, for any
α ∈ (0,1]

The expression given confα,β(H,Mµ) may be rewritten as:

lim
n→∞

#{i ≤ n|I
µ

µ(i)
(H1 ∧ ..∧ Hm)≥ α,I

µ

µ(i)
Hm+1 ≥ β}

#{i ≤ n|I
µ

µ(i)
(H1 ∧ ..∧ Hm)≥ α}

= lim
n→∞

(

Xα
H1∧..∧Hm

· X
β
Hm+1

)

n
(

Xα
H1∧..∧Hm

)

n
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so the existence of the confidence(α,β) is directly related to the existence of a non null

suppα(H1 ∧ .. ∧ Hm) and of the property of the sequence
(

(Xα
H1∧..∧Hm

· X
β
Hm+1

)i

)∞

1
to obey

SSLN (which is assured by Theorem 8). In conclusion, the answer to our second question is:

Theorem 9 If the random process ψ from the stochastic first-order linear time structure M =
(S,P,X,ψ,I) is i.i.d or α-mixing or L2-NED on an α−mixing sequence then in almost all granular
time structures induced by a temporal type µ ∈ G3, a temporal rule (H), H1 ∧ .. ∧ Hm 	→ Hm+1 for
which suppα(H1 ∧ ..∧ Hm) �= 0 has a well-defined confidence con f(α,β)(H,Mµ), ∀α,β ∈ (0,1].

The rationale we followed to prove the existence of the confidence (α,β) for a temporal rule
emphasizes the main advantage of the stochastic approach: the possibility to infer, from
specific properties of a stochastic process, the existence of different types of consistency, defined
based on user necessity. For a temporal granular structure Mµ, as an example, the consistency
may be defined either in the classical way (Definition 9) or as the existence, for any formula p,
of suppα(p,Mµ). And depending on the user’s needs for other types of confidence measures,
other concepts of consistency may be defined (of course, under the hypothesis that SLLN
still implies these new concepts). Therefore, by considering all the consistency concepts
introduced in this chapter we could prove that:

Theorem 10 If the random process ψ from the stochastic linear time structure M = (S,P,X,ψ,I) is
i.i.d, α-mixing or L2-NED, then almost all granular time structures induced by a temporal type µ ∈ G3,
are consistent.

From a practical point of view, after testing (see Cotofrei & Stoffel (2007) for a discussion
about possible statistical tests) that the sequence ω of states, derived from raw data, contains a
certain amount of dependence, this theorem assures us that any temporal rule H1 ∧ ..∧ Hm 	→
Hm+1 (implying any type of defined temporal events - aggregated events included), for which
the support of H1 ∧ ..∧ Hm is not null, has a well-defined (but not µ independent) confidence
over any Mµ with µ ∈ G3.

5. Conclusions

Starting from the inherent behavior of temporal systems - the perception of events and of their
interactions is determined, in a large measure, by the temporal scale - the question about the
mechanisms of transferring (transforming) discovered knowledge from a finer time scale to a
coarser one is naturally imposed. We approached this question using a theoretical framework
based on first-order temporal logic and extended to ”capture” the concept of time granularity.
The introduced formalism allows us to define main notions such as event, temporal rule, support
and confidence in a formal way, based on the fundamental concept of consistency for a linear
time structure M.
To keep a unitary viewpoint on the semantics of the same formula at different scales of time,
the usual definition of the interpretation Iµ for a formula was changed: now it returns the
degree of truth (a real value between zero and one) and not only the meaning of truth (true
or false). Based on the concept of consistency extended to granular time structures, we could
prove that this property is inherited from the basic time structure M if the temporal type µ is
of type G3 (granules with constant size). The major consequence of this theorem is that a given
form of confidence, expressed by (9), is preserved in all granular time structures derived from
the same consistent time structure.
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By reflecting on how the changes of the time scale affect the meaning (in the ”real world”)
of the temporal rules, we could emphasize an intrinsic connection between the significance
of an event for a user and the granularity of the time. Indeed, any methodology which
extracts events from raw temporal data acts based on an implicit granularity (usually given
by the time scale of raw data). Therefore, all the generated temporal events have a specific
meaning only for this initial time scale, and any change in the time granularity implies the
”loss” of this meaning. Our solution to this problem was the introduction of the concept of
”event aggregation”, a mechanism generating new events with an appropriate significance
and satisfied in a coarser world. To achieve this we extended the syntax and the semantics of
the language L by allowing ”families” of function symbols and by adding two new operators.
Due to the limitations in proving the existence of the support for aggregate events and of the
new introduced confidence (α,β) (allowing the use of temporal rules for prediction purposes
under a granular world), we extended our formalism by a stochastic dimension. In this
framework, using the relation between the capacity of a stochastic process to obey the strong
law of large numbers and the consistency property, we proved that under a given amount
of dependency (which implies meaningful rules), the existence of the confidence for any
temporal rule is guaranteed (which implies preserving the predictive power of the rule on
any future data sets).
In our opinion, the conclusion of our analysis may be summarized as follows: only the
fundamental properties (knowledge) concerning the time structures conceived as a whole may be
transferred (preserved) during a granularity time change process. On the other hand, the information
linked to a granule, seen as ”local knowledge” cannot be transferred during the same process (or if it
can, it’s a meaningless transfer).

6. Appendix

6.1 Proof of theorem 4

If ψ is an i.i.d. process, then for p a temporal free formula the sequence {1Ap
}∞
1 is

also i.i.d. By applying Pfeiffer (1989, page 255) Theorem , the vectors (1Ap
)µ(i) are

independent, and consequently, according to the Theorem (Pfeiffer, 1989, page 254) and to

the fact that the function S is a Borel transformation, the sequence
{

S
(

(1Ap
)µ[ω](i)

)}∞

i=1
is independent. Therefore, the classical Kolmogorov theorem may be applied, and so the
support of the formula p, under the granular time structure Mµ[ω], exists almost sure.
For the temporal formula ∇k1 p1 ∧ . . . ∧ ∇kn pn, similar considerations assure that, for a

fixed i, the random variables S
(

(1Ap1
)µ[ω](i+k1)

)

, . . . ,S
(

(1Apn
)µ[ω](i+kn)

)

are independent.

The sequence corresponding to the temporal formula (see 14) is not independent, but
kn-dependent, and so the conditions of the Theorem (Hall & Heyde, 1980, page 40) are
satisfied. As a consequence, this sequence obeys the law of large numbers, i.e. the support of
the temporal formula exists.

6.2 Proof of theorem 5

If ψ is α-mixing then it is evident that any subsequence of ψ is also α-mixing. The following
result, necessary for our rationale, is a consequence of the fact that mixing is a property of
σ-fields generated by {Xi}.

Lemma 1 Consider Xi an α-mixing sequence of size −ϕ and let be k sequences jYi obtained
by applying on {Xi} the measurable functions gj(Xt, . . . ,Xt−τj ), j = 1 . . . k. Then the sequence
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1Yi1 ,2Yi2 , . . . , kYik ,1Yik+1
, . . ., obtained by tacking successively from each sequence jYi coordinates

with indices in an increasing order, is also α-mixing of size −ϕ.

The utility of this lemma is due to the fact that the granules of a temporal type from G2

have a variable size, and so we cannot apply a single measurable function g(·), with a fixed
number of parameters, on {1Ap

}. By considering for each effective size k ∈ N the function

meank(x1, . . . ,xk) = k−1 ∑xi and applying Lemma 1 on {1Ap
} we obtain that S

(

(1Ap
)µ[ω](i)

)

,

p a temporal free formula, is α−mixing. Concerning a temporal formula∇k1 p1 ∧ . . . ∧∇kn pn ,
by applying n times Lemma 1 for the α−mixing sequences {1Apj

}, j = 1 . . .n, we obtain

the α−mixing sequences S
(

(1Apj
)µ[ω](i)

)

, j = 1 . . .n. From these sequences we extract

the subsequence S
(

(1Ap1
)µ[ω](i+k1)

)

, . . . ,S
(

(1Apn
)µ[ω](i+kn)

)

, i ∈ N (which is α−mixing,

according to the same Lemma), on which we apply the function gn(·). The resulting sequence
is again α−mixing, according to the Theorem (Davidson, 1994, page 210). Finally, the
corresponding sequence for any formula in L is α−mixing, bounded by the interval [0,1],
thus fulfilling the conditions of Theorem (Hall & Heyde, 1980, page 40).

6.3 Proof of theorem 6

According to a corollary proved in Cotofrei & Stoffel (2007), any sequence {1Ap
} is also

L2-NED on the same sequence {Vi}. If #µ(i) = k then it is easy to show that the function
meank(·) is continuous and satisfies the uniform Lipschitz condition. Therefore, according to
the Theorem (Davidson, 1994, page 269), the sequence corresponding to the temporal free

formula p, S
(

(1Ap
)µ[ω](i)

)

, is also L2-NED on {Vi}. The same theorem, applied to the

sequence of vectors
(

S
(

(1Ap1
)µ[ω](i+k1),

)

. . . ,S
(

(1Apn
)µ[ω](i+kn)

))

, all L2-NED on {Vi}, and

for the Lipschitz function meann(·), assures that the sequence 1
n ∑

n
j=1S

(

(1Apj
)µ[ω](i+k j)

)

is

L2-NED on {Vi}. Therefore, for any formula in L the corresponding sequence is L2-NED
on the α-mixing sequence {Vi}. Furthermore, these sequences fulfil the conditions of the
Theorem (Davidson & de Jong, 1997, page 258) for q = 2 and so obey the strong law of large
numbers.
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