30 research outputs found

    The First Order Definability of Graphs with Separators via the Ehrenfeucht Game

    Get PDF
    We say that a first order formula Φ\Phi defines a graph GG if Φ\Phi is true on GG and false on every graph GG' non-isomorphic with GG. Let D(G)D(G) be the minimal quantifier rank of a such formula. We prove that, if GG is a tree of bounded degree or a Hamiltonian (equivalently, 2-connected) outerplanar graph, then D(G)=O(logn)D(G)=O(\log n), where nn denotes the order of GG. This bound is optimal up to a constant factor. If hh is a constant, for connected graphs with no minor KhK_h and degree O(n/logn)O(\sqrt n/\log n), we prove the bound D(G)=O(n)D(G)=O(\sqrt n). This result applies to planar graphs and, more generally, to graphs of bounded genus.Comment: 17 page

    Order Invariance on Decomposable Structures

    Full text link
    Order-invariant formulas access an ordering on a structure's universe, but the model relation is independent of the used ordering. Order invariance is frequently used for logic-based approaches in computer science. Order-invariant formulas capture unordered problems of complexity classes and they model the independence of the answer to a database query from low-level aspects of databases. We study the expressive power of order-invariant monadic second-order (MSO) and first-order (FO) logic on restricted classes of structures that admit certain forms of tree decompositions (not necessarily of bounded width). While order-invariant MSO is more expressive than MSO and, even, CMSO (MSO with modulo-counting predicates), we show that order-invariant MSO and CMSO are equally expressive on graphs of bounded tree width and on planar graphs. This extends an earlier result for trees due to Courcelle. Moreover, we show that all properties definable in order-invariant FO are also definable in MSO on these classes. These results are applications of a theorem that shows how to lift up definability results for order-invariant logics from the bags of a graph's tree decomposition to the graph itself.Comment: Accepted for LICS 201

    Logarithmic Weisfeiler--Leman and Treewidth

    Full text link
    In this paper, we show that the (3k+4)(3k+4)-dimensional Weisfeiler--Leman algorithm can identify graphs of treewidth kk in O(logn)O(\log n) rounds. This improves the result of Grohe & Verbitsky (ICALP 2006), who previously established the analogous result for (4k+3)(4k+3)-dimensional Weisfeiler--Leman. In light of the equivalence between Weisfeiler--Leman and the logic FO+C\textsf{FO} + \textsf{C} (Cai, F\"urer, & Immerman, Combinatorica 1992), we obtain an improvement in the descriptive complexity for graphs of treewidth kk. Precisely, if GG is a graph of treewidth kk, then there exists a (3k+5)(3k+5)-variable formula φ\varphi in FO+C\textsf{FO} + \textsf{C} with quantifier depth O(logn)O(\log n) that identifies GG up to isomorphism

    First-Order Definability of Trees and Sparse Random Graphs

    Get PDF
    This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Let D(G) be the smallest quantifier depth of a first-order formula which is true for a graph G but false for any other non-isomorphic graph. This can be viewed as a measure for the descriptive complexity of G in first-order logic. We show that almost surely , where G is a random tree of order n or the giant component of a random graph with constant c<1. These results rely on computing the maximum of D(T) for a tree T of order n and maximum degree l, so we study this problem as well.Peer Reviewe

    The Power of the Weisfeiler-Leman Algorithm to Decompose Graphs

    Get PDF
    The Weisfeiler-Leman procedure is a widely-used approach for graph isomorphism testing that works by iteratively computing an isomorphism-invariant coloring of vertex tuples. Meanwhile, a fundamental tool in structural graph theory, which is often exploited in approaches to tackle the graph isomorphism problem, is the decomposition into 2- and 3-connected components. We prove that the 2-dimensional Weisfeiler-Leman algorithm implicitly computes the decomposition of a graph into its 3-connected components. Thus, the dimension of the algorithm needed to distinguish two given graphs is at most the dimension required to distinguish the corresponding decompositions into 3-connected components (assuming it is at least 2). This result implies that for k >= 2, the k-dimensional algorithm distinguishes k-separators, i.e., k-tuples of vertices that separate the graph, from other vertex k-tuples. As a byproduct, we also obtain insights about the connectivity of constituent graphs of association schemes. In an application of the results, we show the new upper bound of k on the Weisfeiler-Leman dimension of graphs of treewidth at most k. Using a construction by Cai, F\"urer, and Immerman, we also provide a new lower bound that is asymptotically tight up to a factor of 2.Comment: 30 pages, 4 figures, full version of a paper accepted at MFCS 201
    corecore