research

The First Order Definability of Graphs with Separators via the Ehrenfeucht Game

Abstract

We say that a first order formula Ī¦\Phi defines a graph GG if Ī¦\Phi is true on GG and false on every graph Gā€²G' non-isomorphic with GG. Let D(G)D(G) be the minimal quantifier rank of a such formula. We prove that, if GG is a tree of bounded degree or a Hamiltonian (equivalently, 2-connected) outerplanar graph, then D(G)=O(logā”n)D(G)=O(\log n), where nn denotes the order of GG. This bound is optimal up to a constant factor. If hh is a constant, for connected graphs with no minor KhK_h and degree O(n/logā”n)O(\sqrt n/\log n), we prove the bound D(G)=O(n)D(G)=O(\sqrt n). This result applies to planar graphs and, more generally, to graphs of bounded genus.Comment: 17 page

    Similar works