64 research outputs found

    Existence theory for nonlocal boundary value problems involving mixed fractional derivatives

    Get PDF
    In this paper, we develop the existence theory for a new kind of nonlocal three-point boundary value problems for differential equations and inclusions involving both left Caputo and right Riemann–Liouville fractional derivatives. The Banach and Krasnoselskii fixed point theorems and the Leray–Schauder nonlinear alternative are used to obtain the desired results for the singlevalued problem. The existence of solutions for the multivalued problem concerning the upper semicontinuous and Lipschitz cases is proved by applying nonlinear alternative for Kakutani maps and Covitz and Nadler fixed point theorem. Examples illustrating the main results are also presented

    An Extension of Estimation of Domain of Attraction for Fractional Order Linear System Subject to Saturation Control

    Get PDF
    This paper employs the Lyapunov direct method for the stability analysis of fractional order linear systems subject to input saturation. A new stability condition based on saturation function is adopted for estimating the domain of attraction via ellipsoid approach. To further improve this estimation, the auxiliary feedback is also supported by the concept of stability region. The advantages of the proposed method are twofold: (1) it is straightforward to handle the problem both in analysis and design because of using Lyapunov method, (2) the estimation leads to less conservative results. A numerical example illustrates the feasibility of the proposed method

    New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus

    Get PDF
    This reprint focuses on exploring new developments in both pure and applied mathematics as a result of fractional behaviour. It covers the range of ongoing activities in the context of fractional calculus by offering alternate viewpoints, workable solutions, new derivatives, and methods to solve real-world problems. It is impossible to deny that fractional behaviour exists in nature. Any phenomenon that has a pulse, rhythm, or pattern appears to be a fractal. The 17 papers that were published and are part of this volume provide credence to that claim. A variety of topics illustrate the use of fractional calculus in a range of disciplines and offer sufficient coverage to pique every reader's attention

    Study on a class of Schrödinger elliptic system involving a nonlinear operator

    Get PDF
    This paper considers a class of Schrödinger elliptic system involving a nonlinear operator. Firstly, under the simple condition on and ', we prove the existence of the entire positive bounded radial solutions. Secondly, by using the iterative technique and the method of contradiction, we prove the existence and nonexistence of the entire positive blow-up radial solutions. Our results extend the previous existence and nonexistence results for both the single equation and systems. In the end, we give two examples to illustrate our results

    Fractional Differential Equations, Inclusions and Inequalities with Applications

    Get PDF
    During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering

    Positive solutions for (n− 1, 1)-type singular fractional differential system with coupled integral boundary conditions

    Get PDF
    We study the positive solutions of the ( − 1, 1)-type fractional differential system with coupled integral boundary conditions. The conditions for the existence of positive solutions to the system are established. In addition, we derive explicit formulae for the estimation of the positive solutions and obtain the unique positive solution when certain additional conditions hold. An example is then given to demonstrate the validity of our main results

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm

    Glosarium Matematika

    Get PDF
    • …
    corecore