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ABSTRACT 

  
This paper employs the Lyapunov direct method for the stability analysis of frac- tional order linear systems 
subject to input saturation. A new  stability  condition based on saturation function is adopted for estimating the 
domain of attraction via ellipsoid approach. To further improve this estimation, the auxiliary feedback is also 
supported by the concept of stability region. The advantages of the proposed method are twofold: (1) it is 
straightforward to handle the problem both in analysis and de- sign because of using Lyapunov method, (2) the 
estimation leads to less conservative results. A numerical example illustrates the feasibility of the proposed 
method. 
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1. Introduction 
 

Saturation is a ubiquitous phenomenon in physical systems that plays an important role in mathematics and 

engineering. During the last decades this topic was studied in the scope of Integer Order (IO) sys- tems [1,2]. 

Hu et al. [1] derived a condition stability for IO linear system subject to actuator saturation in terms of an auxiliary 

feedback using the ellipsoid approach. However, it is still an open problem of Fractional Order (FO) systems. In spite 

of the interest in FO dynamical system in modeling and control [3–6], only a few papers were devoted to 

saturation nonlinearity [7,8]. Lim et al. [7] obtained the sufficient stability based on the solution of the fractional 

linear equation. They adopted the Gronwall–Bellman lemma and the property of sector bounded saturation in the 

general case with 0 < α < 2, where α represents the fractional order. In [8], the stability of FO saturation system is 

addressed by means of a Lyapunov function using Riemann–Liouville definition. In [9] and references therein, it 

has been shown that the fractional derivative of Lyapunov function (CDαV ) is a finite series and that there exists a 

boundedness on CDαV . 0 t 0 t 
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The contribution of this paper is to analyze the stability of FO linear system with saturation nonlinearity via the 

relation between the Riemann–Liouville and the Caputo definitions. The Lyapunov direct method is employed 

where the estimated region of attraction is obtained through the ellipsoid approach based on the boundedness of 
CDαV . An auxiliary feedback is also utilized to improve the estimation of domain of 0 t 
attraction. Having these idea in mind the paper is organized as follows. Section 2 presents the fundamental 

concepts. Section 3 describes the problem and formulates the stability analysis. Section 4 estimates the domain 

of attraction by using auxiliary feedback. Section 5 presents simulation results. Finally, Section 6 outlines the main 

conclusions. 

 

2. Fundamental concepts 

 
There are several definitions of FO derivatives being well-known the Riemann–Liouville and Caputo for- mulations 

[10]. The physical interpretations of fractional derivative are given in [11]. The operators CDα 

and RDα denote the Caputo and Riemann–Liouville fractional derivatives, respectively. 
 

Remark 1  ([12]). There is the following relation between CDα  and   RDα. 
t t 

m k−α 
RDα C α  t k 

t f (t) = Dt f (t) +  

k=
1 

Γ (k − α + 1) 
f

 
(0). (1) 

 

Remark 2 ([12]). Using Riemann–Liouville definition, FO derivative of positive constant a > 0 is 

 RDα at−α 

t (a) = 
Γ (1

 
α) 

. (2) 

 

In the rest of the paper, we refer to x instead of x(t) to simplify the   notation. 
 

Remark 3 ([9]). According to Leibniz’s rule of differentiation in FO system, the αth order time derivative of h(x) = 

xT x can be extended   as 

Dα α T T α 
 

where 

t h(x) = (Dt x) x + x (Dt x) + 2γ, (3) 

∞ k    T α−k 

γ = 
 Γ (1 + α)[Dt x] [Dt x] 

. (4)
 

k=0 
Γ (1 + k)Γ (1 − k + α) 

 

From [9], γ is bounded as follows.  
∥γ∥ ≤ σ ∥x∥ , σ > 0. (5) 

Consider the following Lyapunov function: 
 

V  = xT Px (6) 

where P is a positive definite matrix. According to Remarks 1 and 3, we can easily  conclude 
CDα  R    α   T 

 T R    α R    α T 

 

where 

t V  = [ Dt x] Px + x  P [ Dt x] − Dt [x(0) Px(0)] + γ, (7) 

∥γ∥ ≤ β ∥x∥ , β > 0. (8) 

− 



 

with β = p × σ and p is maximum eigenvalue of P . 



 

t 

t 

CDα 

RDα 

RDα 

RDα 

 

 

Lemma 1 ([12]). For each vector T and Y , there is a positive scalar ε > 0 that the following inequality is satisfied: 

TT Y ≤ εTT T + ε−1Y T Y. (9) 

 

Theorem 1 ([13]). For fractional linear system Dαx = Ax, if and only if there exists a positive definite 

matrix P  such that 
      1         1   

(−(−A) 2−α )T P + P (−(−A) 2−α ) < 0. (10) 

Then the linear system is t−α  asymptotically  stable. 

 

Theorem 2 ([14]). Let x = 0 is an equilibrium point for nonautonomous CDαx = f (x, t) and ℵ ⊂ Rn be a domain 
containing x = 0. Let V (t, x) : [0, ∞) × ℵ → R be a continuously differentiable function such that 

W1(x) ≤ V (t, x) ≤ W2(x), (11) 

t  V (t, x) ≤ −W3(x), ∀t ≥ 0,  ∀x ∈ ℵ,  0 < α < 1, (12) 

where W1(x), W2(x) and W3(x) are continuous positive definite functions on ℵ. Then, x = 0 is uniformly 

asymptotically stable. 
 

3. Stability analysis 
 

Consider the system with 0 < α < 1 described by 

t  x = Ax + Bsat(u), u = Kx, {−u0  ≤ u ≤ u0}, (13) 

where x ∈ Rn and u ∈ Rm are the state vector and control input vector, respectively, A ∈ Rn×n, B ∈ Rn×m 

and  K  ∈ Rm×n   are  constant  matrices  and  u0   >  0  is  the  bound  of  control.  Moreover,  sat(.)  :  Rm → 
Rm,  is  a  saturation  function  such  that  sat(u)   =   [sat(u1)    sat(u2)    . . .    sat(um)]T    where  sat(ui)    = 

sign(ui) min(∥ui∥ , 1). Then the corresponding closed-loop system is 

t x = Ax + Bsat(Kx). (14) 

By defining ψ = { x| |Kx| ≤ u0i}, i = 1, . . . , m, the aim is to find the stability condition in two cases. 

Case I: If u0i ≤ 1,  i = 1, . . . , m 

In this case, we have sat(Kx) = Kx. Thus, the system can be represented by the FO linear system as follows. 

t x = (A + BK)x. (15) 

 

Lemma 2. The system (15) is stable if and only if there exist a positive definite matrix P such   that 
      1         1   

(−(−(A + BK)) 2−α )T P + P (−(−(A + BK)) 2−α ) < 0. (16) 
 

Proof. This Lemma is simply concluded from Theorem 1 by substituting (A + BK) instead of A. 

 
Remark 4. Lemma 2 can be used as a criterion to investigate whether the linear system is in stability region or not. 



 

RDα 

AT 

CDα 
− t 

∥ ∥ ≥ 

 
 

Case II: If u0i > 1,  i = 1, . . . , m 

In this case, we consider the general form of FO linear system subject to saturation nonlinearity. The system 

(14) can be rewritten as 

t x = Aclx + Bϕ(x), (17) 

where Acl = A + BK and ϕ(x) = sat(Kx) − Kx. 

Lemma 3. The following inequality can be explored from the special property of saturation function. 

∥ϕ(x1) − ϕ(x2)∥ ≤ ∥K(x1  − x2)∥ . (18) 

 
Proof.  It can be easily seen that for saturation function if u0i  ≤ 1, then ∥ϕ(x1) − ϕ(x2)∥ ≤ ∥K(x1  − x2)∥. Also, if u0i  
> 1, then sat(Kx) = ±1 ⇒ ∥ϕ(x1) − ϕ(x2)∥ ≤ ∥K(x1  − x2)∥. 

In the following, the stability condition is given for equilibrium of the system (17). 

 
Theorem 3. Let x = 0 is the equilibrium point of the system (17). Then, x = 0 is uniformly asymptotically stable if 

clP + PAcl + PBBT Pφ1 + φ2(eK)2I < 0, (19) 

where φ1 = ε1 + ε2 > 0, φ2 = ε−1 + ε−1 > 0, ε1, ε2 > 0, and eK is the maximum of absolute of the eigenvalue 
1 2 

of matrix KT K, and I is the identical matrix with appropriate dimension. 
 

Proof. If the conditions (11) and (12) given in Theorem 2 are satisfied, then the proof is completed. Consider 
Lyapunov function (6). Assume that there exists this function satisfying W1(x) ≤ V (t, x) ≤ W2(x). It  then 

follows that the condition (11) is satisfied. Afterward, we must establish a condition to satisfy inequality (12). To do 

this, by taking FO derivative from (6) and substituting system (17), we have 

t V = (Aclx + Bϕ(x))T Px + xT P (Aclx + Bϕ(x))   R Dα(x(0)T Px(0)) + γ, (20) 

in which Eq. (8) is satisfied. By simplifying (20), it leads to 
CDα T   T T    T T 

T R α T 

t V  = x 
α 

AclP x + ϕ(x) B Px + x PAclx + x PBϕ(x) − Dt (x(0) Px(0)) + γ. (21) 

Using (2), since 2    t x(0) 0 we have 
Γ (1−α) 

CDα T T T    T T 

t V  = x (AclP + PAcl)x + ϕ(x) B Px + x PBϕ(x) + γ. (22) 

By considering Lemma 1, it yields 
CDα T T T T −1   

T 
T T −1   T 

t V  = x (AclP + PAcl)x + ε1x PBB Px + ε1 ϕ (x)ϕ(x) + ε2 x PBB Px + ε2 ϕ (x)ϕ(x) + γ 
= xT (AT P + PAcl)x + (ε1 + ε2)xT PBBT Px + (ε−1 + ε−1)ϕT (x)ϕ(x) + γ. (23) 

cl 1 2 

From (8) and (18), it is straightforward to see  that 
CDα T T T T

 −1 
−1 T T 

t V  = x 
2 

(AclP + PAcl)x + (ε1 + ε2)x PBB Px + (ε1    + ε2   )x K Kx + β ∥x∥ . (24) 

If W3(x) = ε3 ∥x∥ , ε3 > 0, then we get 
CDα T T T T

 −1 
−1 T T 2 

t V  = x (AclP + PAcl)x + (ε1 + ε2)x PBB Px + (ε1    + ε2   )x K Kx + β ∥x∥ ≤ −ε3 ∥x∥ . (25) 

From there, it can be rewritten as follows: 
2 2 

xT (AT P + PAcl)x + (ε1  + ε2)xT PBBT Px + (ε−1  + ε−1)xT KT Kx ≤ −ε3 ∥x∥ − β ∥x∥ ≤ −ε3 ∥x∥ .(26) 
cl 1 2 

Therefore, inequality (19) is satisfied. This completes the proof. 



 

. 

CDα 
− t 

CDα 

 

 
 

As it is evident above, Theorem 3 illustrates the sufficient stability condition based on special property of 

saturation function. Moreover, if P1  = P−1 is multiplied in both direction of (19), then the stability 

condition can be written in the form of Linear Matrix Inequality (LMI). Hence, it is very easy to handle the problem in 

hand in both analysis and design. 

 

4. Extension of the estimation of domain of attraction 

 
In this section, we extend the estimation of domain of attraction by using the special property of saturation 

nonlinearity as well as an auxiliary feedback C ∈ Rm×n which is always in the linear region of saturation function. 
This means that L : { x| x ∈ ℜ(P, ρ), |Cx| ≤ 1} where ℜ(P, ρ) = {x ∈ Rn, xT Px ≤ ρ} is a domain of attraction. Consider 
vector s ∈ Rm  where s ∈ ϑ and ϑ = {s ∈ Rm  : s = 0   or  s = 1}; we can define  the 

following matrix. 
 

 

Co(s, K, C) =  
 

(1 − s1)k1  + s1c1    
. 
.  

 

 
(27) 

(1 − sm)km + smcm, 

where ki  and ci  are the ith row of K and C, respectively. In the following, we have a condition for an ellipsoid to be 

inside the domain of attraction. 

 

Theorem 4. Consider the ellipsoid ℜ(P, 1). If there exists an auxiliary feedback C ∈ Rm×n  such  that 

AT P + PA + PBCo(sK, C) + Co(s, K, C)T BT P < 0, s ∈ ϑ, i = [1, m] , (28) 

then, ℜ(P, 1) is contractively invariant set. 
 

Proof. Consider the Lyapunov function (6). By taking the FO derivative from (6) and substituting in system (14), we 

have 

t V = (Ax + Bsat(Kx))T Px + xT P (Ax + Bsat(Kx))  R Dα(x(0)T Px(0)) + γ. (29) 

By simplifying (29) and considering (2), it yields 

 

t V ≤ (AT P + PA)x + [sat(Kx)]
T

 BT Px + xT PB [sat(Kx)] + γ. (30) 

From [1], we have xT P bisat(kix) ≤ xT P bi max(kix, cix) ∀x ∈ ℜ(P, ρ), i = [1, m]. 

Thus, the following result can be obtained: 

 
m 

CDα T T 
 
T 

 
 T T  T 

t V  ≤ x (A P + PA)x + x 

i=1 
P bi((1 − si)ki + sici)x + x ((1 − si)ki + sici) bi  P x + γ. (31) 

Using (8) and (27), it concludes 

 
CDα T T T T 

t V  ≤ x (A P + PA + PBCo(s, K, C) + [Co(s, K, C)] B  P )x + β ∥x∥ . (32) 

Choosing W3  as mentioned previously, we have 

CDα T T T T 2 

t V  ≤ x (A P + PA + PBCo(s, K, C) + [Co(s, K, C)] B P )x + β ∥x∥ ≤ −ε3 ∥x∥ 
2 

, (33) 
2 

xT (AT P + PA + PBCo(s, K, C) + [Co(s, K, C)]
T 

BT P )x ≤ −ε3 ∥x∥ − β ∥x∥ ≤ −ε3 ∥x∥ . (34) 

If (28) is satisfied, then it follows that ℜ(P, 1) is contractively invariant set and the proof is completed. 



 

nT 

nT ≥ 

ki P kT
 

2 

K , 

 

Let  Xr  = x ∈ Rn, xT Rx < 1 be a  prescribed  bounded  convex  set.  For  a  set  G ⊂ Rn, we  can  define 

ν(G) := sup(ν > 0, νXr ⊂ G). If ν(G) > 1, then Xr ⊂ G [1]. According to the results given in Theorem 4 

and the initial Xr , we propose the following optimization problem, such that υXr is maximized: 

sup(ν) 

P > 0,  ρ = 1, C 
(a) νX 

 r ⊂ ℜ(P, ρ) (35) 
st (b) AT P + PA + PBCo(sK, C) + Co(s, K, C)T BT P < 0 

(c)      ℜ(P, ρ) ⊂ L. 

In the optimization problem mentioned above, the constraint (b) is the stability condition given in (28) and 

(c)  is  the  constraint  on  auxiliary  feedback  based  on  [1].  The  first  and  third  constraints  can  be  converted to  LMI.  

The  constraint  (a)  is  equal  to  
ϖR I  

 
≥ 0,  where  P1  = P −1  and  ϖ =   1  .  Regarding  (c),  it  can I P1 

be rewritten as 
 
1 ni ≥ 0, where N = CP and n 

ν2 
is the ith row  of N  [1,2]. From  there, (35) can   be 

simplified as 
i P1 1 i 

 

Inf (ϖ) 

P1 > 0, N 
 
(a)  

 

ϖR I  

I P1   
≥

 

 
(36) 

 
(b) 
 
(c) 

 

P1AT + AP1 + BCo(s, K, C)P1 + P1Co(s, K, C)T BT < 0 

1 ni 
 

0. 
i P1 

 

Remark 5. There are 2m  matrix inequalities in constraint (b) for all si ∈ ϑ, i = [1, m]. 

 
Remark 6. To achieve estimation of domain of attraction Xr , we update the algorithm given in [8] by 

considering the stability condition proposed in this paper, namely expression (19). 

Step 1: Compute K such that matrix Acl is in stability region by Lemma 1. Step 2: 

Compute P such that the inequality (19)  satisfies. 

Step 3: Compute ρ = min 
   u0i      . 

i 
 

This algorithm offers a controller that the linear system is in stability region. Based on this, we have an 
estimation of domain of attraction as ℜ(P, ρ). 

 
Remark 7. In practice, the parameters of the system are not precisely known, or may deviate from nominal values; 

therefore, the control action may be sub-optimal [15,16]. Based on this, future works in this area is to develop the 

proposed approach by considering parametric uncertainties. 

 

5. Simulation results 

 
In order to demonstrate the performance of proposed control method, we compare it with a previous method 

proposed in [7]. To this goal, the unstable system adopted in [7] is used in the sequel. Considering 
system  (13)  with  A  =   

0.1       −3
 
, B  =   

5       0
 
,   α  =   0.8, u0i    =   15  and  i  =   1, 2.  To  perform  a  fair 

1 2 0      1 

comparison,  we  opt =   
−1       −3

    
since  the  linear  system  is  stable.  Based  on  the  algorithm  given 

2 −1 

st 

0 



 

1 

2.4594       11.0999 

 

 

 

 

 
 

 

Fig. 1. Comparison results of the region of domain of attraction. 
 

 

 

 

 
 

 

Fig. 2. Estimated stable region obtained by the present work with auxiliary  feedback. 
 
 

in  Section  4,  we  can  obtain  the  primary  estimation  of  domain  of  attraction  as  follows.  By choosing 

P  =  
1.6979 2.4594 

 
, ϕ1   =  5.5056 × 10−4   and  ϕ2   =  0.0194,  it  leads  to  ρ  =  51.4794.  Fig.  1  shows  the 

corresponding results where we verify the superiority of the new method. In addition, the procedure of auxiliary 

feedback design is given as follows. By using the previous estimation of domain of attraction as 
a primary estimation, Xr = xT P∗x, P∗  = P−1 = R, we can solve the problem (36). Using LMI, it yields: 

P  =  0.0004       0.0004
 
, N  =  −0.3125       0.0079

 
× 10−14, ϖ =  2.3305 × 10−4   and  C  =  −0.8876 0.0224  

 
× 

10−11. 0.0004     
0.0015 

−0.3125     
0.0079 

0.0144 −0.0004 

Fig. 2 depicts the result of region of domain of attraction with auxiliary feedback. It is apparent that the 

estimation of domain of attraction has been extended by the present work with auxiliary feedback. Referring 

to Figs. 1 and 2, it can be seen the effectiveness of the present work without/with auxiliary feedback. The 

corresponding phase portrait of the proposed control method, with and without auxiliary feedback, is illustrated 

in Figs. 3 and 4. 

 

6. Conclusions 

 



 
In this paper, we studied the stability analysis of linear systems with fractional-order belonging to 0 < α < 

1 subject to saturation nonlinearity, by means of the Lyapunov direct method. Sufficient stability 



 

 
 

 

 

 
 

 

Fig. 3. Phase portrait of without auxiliary feedback. 
 

 

 

 

 
 

 

Fig. 4. Phase portrait of the system with auxiliary  feedback. 
 

 
condition was provided based on the properties of saturation function that can be used to the estimation of 

domain of attraction based on ellipsoid approach. We showed that the ellipsoid approach is a successful tool, both 

for FO and IO systems. The auxiliary feedback was employed in a second phase to extend the primary 

estimation. An illustrative example was provided to demonstrate the applicability of the proposed approach. Future 

work in this area will include the effect of parametric uncertainty upon the stability. 
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