146,762 research outputs found

    Private Learning Implies Online Learning: An Efficient Reduction

    Full text link
    We study the relationship between the notions of differentially private learning and online learning in games. Several recent works have shown that differentially private learning implies online learning, but an open problem of Neel, Roth, and Wu \cite{NeelAaronRoth2018} asks whether this implication is {\it efficient}. Specifically, does an efficient differentially private learner imply an efficient online learner? In this paper we resolve this open question in the context of pure differential privacy. We derive an efficient black-box reduction from differentially private learning to online learning from expert advice

    Effective Informal Learning: Considerations For The Workplace

    Full text link
    This article consists of an academic librarian\u27s suggestions for an individual wanting to be a successful informal Learner in the workplace. Examples of modes of communication, scholarly activity, and education are explored, in addition to helpful mindsets and practical strategies for becoming an efficient and effective informal Learner. Discussion is given concerning an individual\u27s responsibilities and the environmental factors necessary for success in this type of learning. Prevailing climates and attitudes by administrators and employers are examined in addition to how these factors might influence learning of this typ

    Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning

    Get PDF
    There is growing interest in estimating and analyzing heterogeneous treatment effects in experimental and observational studies. We describe a number of meta-algorithms that can take advantage of any supervised learning or regression method in machine learning and statistics to estimate the Conditional Average Treatment Effect (CATE) function. Meta-algorithms build on base algorithms---such as Random Forests (RF), Bayesian Additive Regression Trees (BART) or neural networks---to estimate the CATE, a function that the base algorithms are not designed to estimate directly. We introduce a new meta-algorithm, the X-learner, that is provably efficient when the number of units in one treatment group is much larger than in the other, and can exploit structural properties of the CATE function. For example, if the CATE function is linear and the response functions in treatment and control are Lipschitz continuous, the X-learner can still achieve the parametric rate under regularity conditions. We then introduce versions of the X-learner that use RF and BART as base learners. In extensive simulation studies, the X-learner performs favorably, although none of the meta-learners is uniformly the best. In two persuasion field experiments from political science, we demonstrate how our new X-learner can be used to target treatment regimes and to shed light on underlying mechanisms. A software package is provided that implements our methods

    Understanding the Role of Adaptivity in Machine Teaching: The Case of Version Space Learners

    Get PDF
    In real-world applications of education, an effective teacher adaptively chooses the next example to teach based on the learner's current state. However, most existing work in algorithmic machine teaching focuses on the batch setting, where adaptivity plays no role. In this paper, we study the case of teaching consistent, version space learners in an interactive setting. At any time step, the teacher provides an example, the learner performs an update, and the teacher observes the learner's new state. We highlight that adaptivity does not speed up the teaching process when considering existing models of version space learners, such as "worst-case" (the learner picks the next hypothesis randomly from the version space) and "preference-based" (the learner picks hypothesis according to some global preference). Inspired by human teaching, we propose a new model where the learner picks hypotheses according to some local preference defined by the current hypothesis. We show that our model exhibits several desirable properties, e.g., adaptivity plays a key role, and the learner's transitions over hypotheses are smooth/interpretable. We develop efficient teaching algorithms and demonstrate our results via simulation and user studies.Comment: NeurIPS 2018 (extended version

    Efficient Optimal Learning for Contextual Bandits

    Full text link
    We address the problem of learning in an online setting where the learner repeatedly observes features, selects among a set of actions, and receives reward for the action taken. We provide the first efficient algorithm with an optimal regret. Our algorithm uses a cost sensitive classification learner as an oracle and has a running time polylog(N)\mathrm{polylog}(N), where NN is the number of classification rules among which the oracle might choose. This is exponentially faster than all previous algorithms that achieve optimal regret in this setting. Our formulation also enables us to create an algorithm with regret that is additive rather than multiplicative in feedback delay as in all previous work

    Efficient Learning with Partially Observed Attributes

    Full text link
    We describe and analyze efficient algorithms for learning a linear predictor from examples when the learner can only view a few attributes of each training example. This is the case, for instance, in medical research, where each patient participating in the experiment is only willing to go through a small number of tests. Our analysis bounds the number of additional examples sufficient to compensate for the lack of full information on each training example. We demonstrate the efficiency of our algorithms by showing that when running on digit recognition data, they obtain a high prediction accuracy even when the learner gets to see only four pixels of each image.Comment: This is a full version of the paper appearing in The 27th International Conference on Machine Learning (ICML 2010
    corecore