448 research outputs found

    Design, Control, and Optimization of Robots with Advanced Energy Regenerative Drive Systems

    Get PDF
    We investigate the control and optimization of robots with ultracapacitor based regenerative drive systems. A subset of the robot joints are conventional, in the sense that external power is used for actuation. Other joints are energetically self-contained passive systems that use ultracapacitors for energy storage. An electrical interconnection known as the star configuration is considered for the regenerative drives that allows for direct electric energy redistribution among joints, and enables higher energy utilization efficiencies. A semi-active virtual control strategy is used to achieve control objectives. We find closed-form expressions for the optimal robot and actuator parameters (link lengths, gear ratios, etc.) that maximize energy regeneration between any two times, given motion trajectories. In addition, we solve several trajectory optimization problems for maximizing energy regeneration that admit closed-form solutions, given system parameters. Optimal solutions are shown to be global and unique. In addition, closed-form expressions are provided for the maximum attainable energy. This theoretical maximum places limits on the amount of energy that can be recovered. Numerical examples are provided in each case to demonstrate the results. For problems that don\u27t admit analytical solutions, we formulate the general nonlinear optimal control problem, and solve it numerically, based on the direct collocation method. The optimization problem, its numerical solution and an experimental evaluation are demonstrated using a PUMA manipulator with custom regenerative drives. Power flows, stored regenerative energy and efficiency are evaluated. Experimental results show that when following optimal trajectories, a reduction of about 10-22% in energy consumption can be achieved. Furthermore, we present the design, control, and experimental evaluation of an energy regenerative powered transfemoral prosthesis. Our prosthesis prototype is comprised of a passive ankle, and an active regenerative knee joint. A novel varying impedance control approach controls the prosthesis in both the stance and swing phase of the gait cycle, while explicitly considering energy regeneration. Experimental evaluation is done with an amputee test subject walking at different speeds on a treadmill. The results validate the effectiveness of the control method. In addition, net energy regeneration is achieved while walking with near-natural gait across all speeds

    Sci Robot

    Get PDF
    Robotic leg prostheses promise to improve the mobility and quality of life of millions of individuals with lower-limb amputations by imitating the biomechanics of the missing biological leg. Unfortunately, existing powered prostheses are much heavier and bigger and have shorter battery life than conventional passive prostheses, severely limiting their clinical viability and utility in the daily life of amputees. Here, we present a robotic leg prosthesis that replicates the key biomechanical functions of the biological knee, ankle, and toe in the sagittal plane while matching the weight, size, and battery life of conventional microprocessor-controlled prostheses. The powered knee joint uses a unique torque-sensitive mechanism combining the benefits of elastic actuators with that of variable transmissions. A single actuator powers the ankle and toe joints through a compliant, underactuated mechanism. Because the biological toe dissipates energy while the biological ankle injects energy into the gait cycle, this underactuated system regenerates substantial mechanical energy and replicates the key biomechanical functions of the ankle/foot complex during walking. A compact prosthesis frame encloses all mechanical and electrical components for increased robustness and efficiency. Preclinical tests with three individuals with above-knee amputation show that the proposed robotic leg prosthesis allows for common ambulation activities with close to normative kinematics and kinetics. Using an optional passive mode, users can walk on level ground indefinitely without charging the battery, which has not been shown with any other powered or microprocessor-controlled prostheses. A prosthesis with these characteristics has the potential to improve real-world mobility in individuals with above-knee amputation.R01 HD098154/HD/NICHD NIH HHSUnited States/T42 OH008414/OH/NIOSH CDC HHSUnited States

    Determination Of Optimal Counter-Mass Location In Active Prostheses For Transfemoral Amputees To Replicate Normal Swing

    Get PDF
    Transfemoral amputees suffer the loss of the knee and ankle joints, as well as partial or complete loss of many of the lower extremity muscle groups involved in ambulation. Recent advances in lower limb prostheses have involved the design of active, powered prosthetic knee and ankle-foot components capable of generating knee and ankle torques similar to that of normal gait. The associated onboard motors, conditioning/processing, and battery units of these active components result in increased mass of the respective prosthesis. While not an issue during stance, this increased mass of the prosthesis affects swing. The goal of this study is to develop and validate mathematical models of the transfemoral residual limb and prosthesis, expand these models to include an active ankle-foot, and investigate counter-mass magnitude(s) and location(s) via model optimization that might improve kinematic symmetry during swing. Single- (thigh only, shank only) and multi-segment (combined thigh and shank) optimization of counter-mass magnitudes and locations indicated that a 2.0 kg counter-mass added 8 cm distal and 10 cm posterior to the distal end of knee unit within the shank segment approximated knee kinematics of able-bodied subjects. This location, however, induced artificial hip torques that reduced hip flexion during swing. While such a counter-mass location and magnitude demonstrated theoretical potential, this location is not clinically realistic; mass can only be added within the prosthesis, distal to the residual limb. Clinically realistic counter-masses must also keep the total prosthetic mass to less than 5 kg; greater mass requires supplemental prosthetic suspension, would likely increase energy expenditure during ambulation, and contribute to increased likelihood of fatigue even with active prosthetic components. The ability to simulate the effects of active prosthetic components inclusive of varying placement of battery and signal conditioning units may advance the design of active prostheses that will minimize kinematic asymmetry and result in greater patient acceptance

    A Loosely-Coupled Passive Dynamics and Finite Element based Model for Minimising Biomechanically Driven Unhealthy Joint Loads during Walking in Transtibial Amputees

    Get PDF
    The primary objective of a prosthetic foot is to improve the quality of life for amputees by enabling them to walk in a similar way to healthy individuals. Amputees su˙er from health risks including joint pain, back pain and joint inflammation. The aim of this thesis is to develop a new computational approach to reduce the likelihood of biomechanically driven joint pain in transtibial amputees resulting from sustained exposure to Unhealthy Loads (ULs) during walking. This is achieved by developing a computational methodology to achieve a customisable sti˙ness design solution for prosthetic feet so that the occurrence of unhealthy joint loads during walking is minimised.It is assumed that the healthy population is able to spend energy most optimally during walking at all walking speeds. During walking, the force exerted by the body on the ground is measured by the ground reaction force (GRF). The GRF value is normalised with the body weight defining a dimensionless parameter . The values are similar for both legs in healthy populations but are di˙erent for the sound and a˙ected leg for amputees. A new hypothesis has been proposed in this thesis that walking is comfortable for an amputee when the di˙erence between values is minimal between the amputee and an equivalent healthy population. The values for healthy adults, as well as amputees, follow a finite number of patterns. The pattern of the values (or the GRF curve) depends on the walking speed of an individual, categorised as slow, fast or free walking. However, it is observed in the literature that free walking speed (FWS) varies over a wide range for healthy individuals (e.g. 1.1 m/s to 1.5 m/s). As a result, it was diÿcult to establish a relationship between walking speed and GRF pattern. A novel parametrised description of GRF curves for a healthy population and amputees is proposed so that a new dimensionless velocity ratio parameter and the corresponding value of the FWS can be predicted by observing the GRF pattern of a healthy adult or an amputee. A new classification approach based on the parametrised description of GRF curves, along with the dimensionless velocity ratio parameter, has been recommended for categorising very slow, slow, free, fast and very fast walking. The GRF result predictions are validated on healthy adults in an experiment conducted in a gait lab. A group of candidates who walk a lot in their daily life were specially selected for this experiment. This classification approach is used to develop a new measure of ULs based on the parametrised GRF description for healthy population and amputees. An innovative computational methodology is proposed to design an optimal sti˙ness response of a prosthetic foot that minimises the occurrence of ULs. This is achieved by transferring the roll-over shape (ROS) information of the prosthetic foot and the corresponding information for a given velocity ratio across a passive walking dynamic (PWD) and a finite element model via a newly defined form of loose coupling. A theoretical case study is presented in which an amputee walks in a gait lab with a representative C-shaped prosthetic foot. The thesis explains how the proposed novel computational methodology is able to redesign the prosthetic foot in a way that is better suited to minimising ULs. The redesign process of the prosthetic foot has led to the development of an innovative 3D printable double keel and double heel design. With the advancement of carbon reinforced polymers and additive manufacturing technology, the sti˙ness customisation methodology proposed in this thesis has the potential to create a new generation of energy-eÿcient prosthetic feet

    A low-power ankle-foot prosthesis for push-off enhancement

    Get PDF
    Passive ankle-foot prostheses are light-weighted and reliable, but they cannot generate net positive power, which is essential in restoring the natural gait pattern of amputees. Recent robotic prostheses addressed the problem by actively controlling the storage and release of energy generated during the stance phase through the mechanical deformation of elastic elements housed in the device. This study proposes an innovative low-power active prosthetic module that fits on off-the-shelf passive ankle-foot energy-storage-and-release (ESAR) prostheses. The module is placed parallel to the ESAR foot, actively augmenting the energy stored in the foot and controlling the energy return for an enhanced push-off. The parallel elastic actuation takes advantage of the amputee’s natural loading action on the foot’s elastic structure, retaining its deformation. The actuation unit is designed to additionally deform the foot and command the return of the total stored energy. The control strategy of the prosthesis adapts to changes in the user’s cadence and loading conditions to return the energy at a desired stride phase. An early verification on two transtibial amputees during treadmill walking showed that the proposed mechanism could increase the subjects’ dorsiflexion peak of 15.2% and 41.6% for subjects 1 and 2, respectively, and the cadence of about 2%. Moreover, an increase of 26% and 45% was observed in the energy return for subjects 1 and 2, respectively

    Potential Optimal Gait Performance of Mauch S-N-S Prosthetic Knee Configurations as Predicted by Dynamic Modeling

    Get PDF
    Patients with prosthetic legs routinely suffer from abnormal gait patterns which can cause health issues and eventually lower the quality of their lives. Despite the half-century advance in the technology of prosthetic knees, from the purely mechanical to microprocessor controlled systems, patient testing suggests that very little progress has been made in the quality of the kinetics and kinematics of amputee gait. Moreover, the cost of microprocessor controlled prosthetic knees may be 10 times more than the purely mechanical knees. While prosthetic knees have become more complex and expensive, it is not proven that the prosthetic knee is a central factor limiting amputee patient gait. The goal of this project is to determine the degree to which the Mauch S-N-S prosthetic knee limits the ability of a subject to achieve a close to normal gait pattern. In this research, we developed dynamic models of the Mauch S-N-S prosthetic knee based on gait-like motion tests of a Mauch knee cylinder and used the dynamic models in computational simulations to determine the best achievable gait, on the basis of obtaining near-to-normal gait kinematics and kinetics. Idealized assumptions were made for patient performance capability and characteristics of the other prosthetic leg components, to obtain the desired focus on knee capabilities and limitations. The results indicate that even with this relatively old technology prosthetic knee, subjects have the potential to walk much more normally than the patient-test data indicates. An extension of the study showed the significant interaction of the prosthetic knee and ankle with respect to achieving optimal gait. The methodology of this study can be applied to evaluation other knees, prosthetic components and prosthetic systems combining these component

    Potential Optimal Gait Performance of Mauch S-N-S Prosthetic Knee Configurations as Predicted by Dynamic Modeling

    Get PDF
    Patients with prosthetic legs routinely suffer from abnormal gait patterns which can cause health issues and eventually lower the quality of their lives. Despite the half-century advance in the technology of prosthetic knees, from the purely mechanical to microprocessor controlled systems, patient testing suggests that very little progress has been made in the quality of the kinetics and kinematics of amputee gait. Moreover, the cost of microprocessor controlled prosthetic knees may be 10 times more than the purely mechanical knees. While prosthetic knees have become more complex and expensive, it is not proven that the prosthetic knee is a central factor limiting amputee patient gait. The goal of this project is to determine the degree to which the Mauch S-N-S prosthetic knee limits the ability of a subject to achieve a close to normal gait pattern. In this research, we developed dynamic models of the Mauch S-N-S prosthetic knee based on gait-like motion tests of a Mauch knee cylinder and used the dynamic models in computational simulations to determine the best achievable gait, on the basis of obtaining near-to-normal gait kinematics and kinetics. Idealized assumptions were made for patient performance capability and characteristics of the other prosthetic leg components, to obtain the desired focus on knee capabilities and limitations. The results indicate that even with this relatively old technology prosthetic knee, subjects have the potential to walk much more normally than the patient-test data indicates. An extension of the study showed the significant interaction of the prosthetic knee and ankle with respect to achieving optimal gait. The methodology of this study can be applied to evaluation other knees, prosthetic components and prosthetic systems combining these component

    ANTHROPOMORPHIC ROBOTIC ANKLE-FOOT PROSTHESIS WITH ACTIVE DORSIFLEXION- PLANTARFLEXION AND INVERSION-EVERSION

    Get PDF
    The main goal of the research presented in this paper is the development of a powered ankle-foot prosthesis with anthropomorphic characteristics to facilitate turning, walking on irregular grounds, and reducing secondary injuries on bellow knee amputees. The research includes the study of the gait in unimpaired human subjects that includes the kinetics and kinematics of the ankle during different types of gait, in different gait speeds at different turning maneuvers. The development of a robotic ankle-foot prosthesis with two active degrees of freedom (DOF) controlled using admittance and impedance controllers is presented. Also, a novel testing apparatus for estimation of the ankle mechanical impedance in two DOF is presented. The testing apparatus allows the estimation of the time-varying impedance of the human ankle in stance phase during walking in arbitrary directions. The presented work gives insight on the turning mechanisms of the human ankle and how they can be mimicked by the prosthesis to improve the gait and agility of below-knee amputees

    Study of design issues in a prototype lower-limb prosthesis - proof-of-concept in a 3D printed model

    Get PDF
    Dissertação de Mestrado Integrado em Engenharia Biomédica Ramo de Biomateriais, Reabilitação e BiomecânicaThe amputation of one or both lower limbs, which can be brought on by trauma, diabetes, or other vascular diseases, is an increasingly common occurrence, especially due to the increase in the number of cases of diabetes in the developed world. In Portugal alone 1300 amputations each year are attributed to diabetes. These amputations severely impact the mobility, self-esteem, and quality of life of the patients, a situation that can be alleviated via the installation of a lower limb prosthesis. Sadly, these prostheses are not yet capable of completely emulating a sound limb in an affordable fashion. In this dissertation, state-of-the-art research was carried out regarding the mechanics of human gait, both healthy and prosthetic. An investigation regarding the state-of-the-art research was also carried out regarding lower-limb prostheses, their evolution, mechanics, and prospects, as well as additive manufacturing techniques, and how they can be crucial to the development of affordable prostheses. Special attention was provided to the study of the leading edge of prostheses research, namely active prostheses, capable of generating and introducing energy into the human gait, rather than simply acting as passive devices. This dissertation follows up on previous work carried out in the BioWalk Project of Universidade do Minho’s BiRDLab: “Prosthetic Devices and Rehabilitation Solutions for the Lower Limbs Amputees”. This work consisted of the development of an active lower-limb prosthesis prototype, with the goal of providing an affordable, but functional, prosthesis for future testing with patients. However, the resulting prototype was laden with issues, such as excessive weight and an underpowered motor. As such, this work set out to identify these issues, design, implement and test modifications to the prosthesis to produce a satisfying prototype. Given the limited resources and facilities available, it was decided to work on a smaller model prosthesis installed in a bipedal robot, the DARwIn-OP, using it as proof-of-concept for modifications to be implemented in the BiRDLab prosthesis. Modifications were successfully implemented, chiefly among them a planetary gear-based reductor and a novel attachment mechanism built using additive manufacturing techniques. It is possible to conclude that there is a great potential in the implementation of additive manufacturing techniques in the development of affordable prosthesis.A amputação de um ou ambos os membros inferiores, que pode ser causada por trauma, diabetes, ou outras doenças vasculares, é um evento cada vez mais frequente, especialmente devido ao aumento do número de casos de diabetes no mundo desenvolvido. Em Portugal, 1300 amputações são atribuídas aos diabetes todos os anos. Estas amputações influenciam negativamente a mobilidade, autoestima e qualidade de vida dos pacientes, mas estes efeitos podem ser minimizados através da instalação de uma prótese de membro inferior. Infelizmente, estas próteses ainda não são capazes de emular completamente um membro saudável de forma económica. Nesta dissertação, um estado da arte do caminhar humano foi realizado, tendo em atenção o funcionamento deste, quer em sujeitos saudáveis ou amputados. Um estado da arte também foi realizado relativamente às próteses de membros inferiores, a sua evolução, funcionamento, e perspetivas futuras, e também relativamente a técnicas de fabrico aditivas e a forma como estas podem ser aplicadas em próteses acessíveis. Tomou-se atenção especial ao estudo das próteses ativas, capazes de gerar e introduzir energia no caminhar, ao invés das próteses passivas tradicionais. Esta dissertação baseia-se em trabalho prévio ao abrigo do projeto BioWalk do laboratório BiRDLab da Universidade do Minho: “Dispositivos prostéticos e soluções de reabilitação para amputados dos membros inferiores”. Este trabalho consistiu no desenvolvimento de um protótipo de prótese de membro inferior ativa, com o objetivo de criar uma prótese de baixo custo para testes em pacientes. No entanto, o protótipo produzido possuí vários problemas, tais como peso excessivo e um motor subdimensionado. Assim sendo, este trabalho propôs-se a identificar estes problemas e a desenhar, implementar, e testar modificações. Tendo em conta os limitados recursos disponíveis, decidiu-se trabalhar numa prótese modelo mais pequena, instalada num robô bipedal, o DARwIN-OP, e a usá-la para testar modificações a implementar na prótese do BiRDLab. As modificações foram implementadas com sucesso, especialmente um redutor de engrenagens planetárias e um novo método de conectar a prótese, usando técnicas de fabrico aditivas
    corecore