307 research outputs found

    On the Complexity of Digraph Colourings and Vertex Arboricity

    Full text link
    It has been shown by Bokal et al. that deciding 2-colourability of digraphs is an NP-complete problem. This result was later on extended by Feder et al. to prove that deciding whether a digraph has a circular pp-colouring is NP-complete for all rational p>1p>1. In this paper, we consider the complexity of corresponding decision problems for related notions of fractional colourings for digraphs and graphs, including the star dichromatic number, the fractional dichromatic number and the circular vertex arboricity. We prove the following results: Deciding if the star dichromatic number of a digraph is at most pp is NP-complete for every rational p>1p>1. Deciding if the fractional dichromatic number of a digraph is at most pp is NP-complete for every p>1,p≠2p>1, p \neq 2. Deciding if the circular vertex arboricity of a graph is at most pp is NP-complete for every rational p>1p>1. To show these results, different techniques are required in each case. In order to prove the first result, we relate the star dichromatic number to a new notion of homomorphisms between digraphs, called circular homomorphisms, which might be of independent interest. We provide a classification of the computational complexities of the corresponding homomorphism colouring problems similar to the one derived by Feder et al. for acyclic homomorphisms.Comment: 21 pages, 1 figur

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    Shortest paths between shortest paths and independent sets

    Full text link
    We study problems of reconfiguration of shortest paths in graphs. We prove that the shortest reconfiguration sequence can be exponential in the size of the graph and that it is NP-hard to compute the shortest reconfiguration sequence even when we know that the sequence has polynomial length. Moreover, we also study reconfiguration of independent sets in three different models and analyze relationships between these models, observing that shortest path reconfiguration is a special case of independent set reconfiguration in perfect graphs, under any of the three models. Finally, we give polynomial results for restricted classes of graphs (even-hole-free and P4P_4-free graphs)

    Hereditarily hard H-colouring problems

    Get PDF
    AbstractLet H be a graph (respectively digraph) whose vertices are called ‘colours’. An H-colouring of a graph (respectively digraph) G is an assignment of these colours to the vertices of G so that if u is adjacent to v in G, then the colour of u is adjacent to the colour of v in H. We continue the study of the complexity of the H-colouring problem ‘Does a given graph (respectively digraph) admit an H-colouring?’. For graphs it was proved that the H-colouring problem is NP-complete whenever H contains an odd cycle, and is polynomial for bipartite graphs. For directed graphs the situation is quite different, as the addition of an edge to H can result in the complexity of the H-colouring problem shifting from NP-complete to polynomial. In fact, there is not even a plausible conjecture as to what makes directed H-colouring problems difficult in general. Some order may perhaps be found for those digraphs H in which each vertex has positive in-degree and positive out-degree. In any event, there is at least, in this case, a conjecture of a classification by complexity of these directed H-colouring problems. Another way, which we propose here, to bring some order to the situation is to restrict our attention to those digraphs H which, like odd cycles in the case of graphs, are hereditarily hard, i.e., are such that the H′-colouring problem is NP-hard for any digraph H′ containing H as a subdigraph. After establishing some properties of the digraphs in this class, we make a conjecture as to precisely which digraphs are hereditarily hard. Surprisingly, this conjecture turns out to be equivalent to the one mentioned earlier. We describe several infinite families of hereditarily hard digraphs, and identify a family of digraphs which are minimal in the sense that it would be sufficient to verify the conjecture for members of that family

    Graph homomorphisms with infinite targets

    Get PDF
    AbstractLet H be a fixed graph whose vertices are called colours. Informally, an H-colouring of a graph G is an assignment of these colours to the vertices of G such that adjacent vertices receive adjacent colours. We introduce a new tool for proving NP-completeness of H-colouring problems, which unifies all methods used previously. As an application we extend, to infinite graphs of bounded degree, the theorem of Hell and Nešetřil that classifies finite H-colouring problems by complexity

    Algebraic Methods in the Congested Clique

    Full text link
    In this work, we use algebraic methods for studying distance computation and subgraph detection tasks in the congested clique model. Specifically, we adapt parallel matrix multiplication implementations to the congested clique, obtaining an O(n1−2/ω)O(n^{1-2/\omega}) round matrix multiplication algorithm, where ω<2.3728639\omega < 2.3728639 is the exponent of matrix multiplication. In conjunction with known techniques from centralised algorithmics, this gives significant improvements over previous best upper bounds in the congested clique model. The highlight results include: -- triangle and 4-cycle counting in O(n0.158)O(n^{0.158}) rounds, improving upon the O(n1/3)O(n^{1/3}) triangle detection algorithm of Dolev et al. [DISC 2012], -- a (1+o(1))(1 + o(1))-approximation of all-pairs shortest paths in O(n0.158)O(n^{0.158}) rounds, improving upon the O~(n1/2)\tilde{O} (n^{1/2})-round (2+o(1))(2 + o(1))-approximation algorithm of Nanongkai [STOC 2014], and -- computing the girth in O(n0.158)O(n^{0.158}) rounds, which is the first non-trivial solution in this model. In addition, we present a novel constant-round combinatorial algorithm for detecting 4-cycles.Comment: This is work is a merger of arxiv:1412.2109 and arxiv:1412.266

    Mixing Times of Markov Chains on Degree Constrained Orientations of Planar Graphs

    Full text link
    We study Markov chains for α\alpha-orientations of plane graphs, these are orientations where the outdegree of each vertex is prescribed by the value of a given function α\alpha. The set of α\alpha-orientations of a plane graph has a natural distributive lattice structure. The moves of the up-down Markov chain on this distributive lattice corresponds to reversals of directed facial cycles in the α\alpha-orientation. We have a positive and several negative results regarding the mixing time of such Markov chains. A 2-orientation of a plane quadrangulation is an orientation where every inner vertex has outdegree 2. We show that there is a class of plane quadrangulations such that the up-down Markov chain on the 2-orientations of these quadrangulations is slowly mixing. On the other hand the chain is rapidly mixing on 2-orientations of quadrangulations with maximum degree at most 4. Regarding examples for slow mixing we also revisit the case of 3-orientations of triangulations which has been studied before by Miracle et al.. Our examples for slow mixing are simpler and have a smaller maximum degree, Finally we present the first example of a function α\alpha and a class of plane triangulations of constant maximum degree such that the up-down Markov chain on the α\alpha-orientations of these graphs is slowly mixing
    • …
    corecore