research

Hereditarily hard H-colouring problems

Abstract

AbstractLet H be a graph (respectively digraph) whose vertices are called ‘colours’. An H-colouring of a graph (respectively digraph) G is an assignment of these colours to the vertices of G so that if u is adjacent to v in G, then the colour of u is adjacent to the colour of v in H. We continue the study of the complexity of the H-colouring problem ‘Does a given graph (respectively digraph) admit an H-colouring?’. For graphs it was proved that the H-colouring problem is NP-complete whenever H contains an odd cycle, and is polynomial for bipartite graphs. For directed graphs the situation is quite different, as the addition of an edge to H can result in the complexity of the H-colouring problem shifting from NP-complete to polynomial. In fact, there is not even a plausible conjecture as to what makes directed H-colouring problems difficult in general. Some order may perhaps be found for those digraphs H in which each vertex has positive in-degree and positive out-degree. In any event, there is at least, in this case, a conjecture of a classification by complexity of these directed H-colouring problems. Another way, which we propose here, to bring some order to the situation is to restrict our attention to those digraphs H which, like odd cycles in the case of graphs, are hereditarily hard, i.e., are such that the H′-colouring problem is NP-hard for any digraph H′ containing H as a subdigraph. After establishing some properties of the digraphs in this class, we make a conjecture as to precisely which digraphs are hereditarily hard. Surprisingly, this conjecture turns out to be equivalent to the one mentioned earlier. We describe several infinite families of hereditarily hard digraphs, and identify a family of digraphs which are minimal in the sense that it would be sufficient to verify the conjecture for members of that family

    Similar works