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Abstract 

Let H be a fixed graph whose vertices are called colours. Informally, an H-colouring of 
a graph G is an assignment of these colours to the vertices of G such that adjacent vertices 
receive adjacent colours. We introduce a new tool for proving NP-completeness of H-colouring 
problems, which unifies all methods used previously. As an application we extend, to infinite 
graphs of bounded degree, the theorem of Hell and NeSetiil that classifies finite H-colouring 
problems by complexity. 

1. Introduction 

Let G and H be graphs. A homomorphism of G to H is a function f: V(G) -+ V(H) 

such that f(u)f(u) EE(H) whenever uu E_!?(G). If the vertices of H are regarded as 

colours, then f is an assignment of these colours to the vertices of G so that 

adjacent vertices receive adjacent colours. An n-colouring of a graph G is a homomor- 

phism of G to K,, thus the term H-colouring of G has been employed to describe 

a homomorphism of G to H. If there is an H-colouring of G, we say that G is 

H-colourable. 

Let H be a fixed graph. The H-colouring problem is the decision problem defined 

below. 

H-COL (H-colouring) 

Instance: A finite graph G. 

Question: Does there exist an H-colouring of G? 

Hell and Neiet?il [l l] have determined the complexity of the H-colouring 

problem for any finite undirected graph H. The H-colouring problem is NP- 

complete if H contains an odd cycle, and is polynomial otherwise. No such 

classification exists for finite digraphs, although many families have been 

classified [l-6, 10, 11, 13, 141. A restricted version of H-COL is studied 

in [9]. 
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When H is a finite graph, the H-colouring problem is in NP. This is not always the 

case when H is infinite. Bauslaugh [7] has proved that for any recursive function 

f there is an infinite graph H such that H-COL has complexity at least f, that there 

exist graphs H with unsolvable H-colouring problems and, furthermore, that for any 

recursively enumberable degree of unsolvability A there is a graph H such that 

H-COL is exactly A-solvable. In [8] the same author proves that all recursive 

vertex-transitive graphs H have solvable H-colouring problems, but there are non- 

recursive vertex-transitive graphs H with unsolvable H-colouring problems. 

Another contrast to the finite case (assuming P # NP) is that the presence of an odd 

cycle is not sufficient for NP-hardness of H-COL. For instance the graph 

K= K,UKZV... vK,u... 

has an odd cycle, yet K-COL is polynomial because any finite graph is K-colourable. 

Similarly, the H-colouring problem is polynomial whenever H contains arbitrarily 

large cliques. 

In the next section, we introduce a new generic polynomial-time transformation 

(the HSI construction, Lemma 2.1) which unifies and generalizes the three principal 

constructions previously used (see [l-6, 10, 11, 13, 141). We hope this new tool will be 

helpful in simplifying some of the existing proofs (e.g. [l 11). A slightly restricted 

variation of the HSI construction is used to extend the result of Hell and NeSeti-il to 

infinite graphs of bounded degree. In Section 3 the aforementioned constructions are 

derived using the HSI construction. 

2. The HSI construction and the HS construction 

Let H be a subgraph of G. A retraction of G to His a homomorphism r of G to H for 

which r(h) = h for all vertices h of H. If there exists a retraction of G to H, we say H is 

a retract of G. There are then homomorphisms i of H to G (the inclusion) and r of G to 

H (a retraction), so a given graph is G-colourable if and only if it is H-colourable. 

Hence, for any retract H of G, the complexity of H-COL and G-COL is the same. 

A graph is retract-free if it does not admit a retraction to a proper subgraph. Every 

finite graph G contains a unique (up to isomorphism) subgraph C, called the core of G, 

which is retract-free, and for which there is a retraction of G to C (see [l 1, 151). It is an 

NP-complete problem to decide if a given finite graph is not retract-free [12]. 

We now describe the HSI construction. Let J be a fixed finite graph with specified 

vertices u, u,j1,j2, . . , jr, such that some automorphism of J maps u to v and u to U. The 

HSI construction with respect to (J,u, v, j,, j,, . . . , j,) transforms a given graph H into 

the graph H’, defined as follows. Let f denoted the set of homomorphisms of J to H. 

Define an equivalence relation on 9 by f~ g just if f(jJ = g(j,), i = 1,2, . . . , t. The 

vertex set V(H!) consists of a copy of V(H) corresponding to each equivalence class of 

g . Let f E#, and W be the graph constructed from HuJ by identifying j, andf&), 

k = 1,2, . . . . t. There is an edge in V(H!) joining vertices x and y in the copy of V(H) 



G. MacCiNivray 1 Discrete Applied Mathematics 54 (1994) 29-35 31 

corresponding to the equivalence class offjust if there is a retraction of W to H that 

maps u to x and v to y. (Our assumption about the symmetry of J guarantees that if 

such a mapping exists, then there is also a retraction of W to H that maps u to x and 

u to y; thus the edges of H! are undirected). 

Lemma 2.1. H!-COL polynomially transforms to H-COL. 

Proof. Suppose an instance of HI-COL, a finite graph D, is given. Without loss of 

generality D is connected, otherwise apply the construction below to each connected 

component. Construct a graph !D from V(D) and IE(D)I copies Ji, J2, . . . , JIEcDII of J, as 

follows. For i = 1, 2, . . . . t identify all IE(D)I copies ofji. If xy is the kth edge of D, then 

identify the vertices u and u in the kth copy of J with the vertices x and y in the copy of 

V(D) in !D, respectively. All graphs involved in the construction are finite, and it may 

clearly be carried out in polynomial time. 

We claim that !D + H if and only if D + H!. 

Suppose f is a homomorphism of !D to H. Let dd’ be the nth edge of D. The 

restriction off to the nth copy of J in !D can be extended to a retraction of W (as 

defined above, corresponding to the equivalence class off) to H which maps u tof(d) 

and u tof(d’) by mapping each vertex of H to itself. Therefore, for each edge dd’ of D, 

f(d)f(d’) is an edge of H!. Thus the restriction offto V(D) is a homomorphism of D to 

H!. 

Supposef is a homomorphism of D to H!. We must construct at homomorphism 

g of ‘D to H. Since D is connected, it maps to a connected component of H!, and hence 

to the subgraph of H! induced by some copy F of V(H). For each edge hh’ 
of the subgraph of H! induced by F, there is a retraction of W (defined as above, 

corresponding to elements in the equivalence class corresponding to F) to H taking 

u to h and u to h’. For j = 1,2, . . . . IE(D)I, let xy be the jth edge of D, and rj be 

a retraction of (the same) W to H that takes u tof(x) and u tof(y). The function g is 

defined as follows. 

g(d) =f(d), d EW), and 

g(W) = rj(W), W E V(Jj) - V(D), j = 1, 2, . . . . IE(D)I. 

Then g : V(!D) + V(H). Sincefand rj 0’ = 1,2, . . . , IE(D)I) are homomorphisms which 

agree on the intersection of their domains. Thus g is a homomorphism. 0 

We now describe a slightly restricted variation of the HSI construction which we 

will use to prove the result regarding the complexity of infinite H-COL. 

Let J be a fixed finite graph with specified vertices x, j,, j,, . . . , j,. The HS-construc- 
tion with respect to (J, x, jI, j 2, . __ ,jJ transforms a given graph H to the graph H# 
defined as follows. Let $8 denote the set of homomorphisms of J to H. Define an 

equivalence relation on 9 by f~ g such that if f(jJ = glii), i = 1,2, . . . . t. Let f be 

a representative of some equivalence class of z , and let W be the graph constructed 
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from H u J by identifying j, andf(j,), k = 1, 2, . . . , t. Let V, be the set of vertices which 

are images of the vertex x under retractions of W to H, and H, be the subgraph of 

H induced by Vr. The graph H# is the disjoint union of all graphs H,, over all 

equivalence classes of E . 

Corollary 2.2. H#-COL polynomially transforms to H-COL. 

Proof. Let J’ be the graph constructed from two copies of (J, x, j,, j,, . . . , j,) by identifying 

the corresponding vertices ji, i = 1,2, . . . , t. Let u, v be the two copies of the vertex x, 

and add the edge uv, to J’. Let H# and H!, respectively, be the result of applying the HS 

construction with respect to (J, x jI, j,, . . . . j,) and the HSI construction with respect to 

(J’, u, u,jl,j,, . . . . j,) to H. We claim that E(H)# = E(H!). Let ab be an edge of H!. Then 

there is a retraction of IV’ (constructed as above, using H and J’) to H that maps u to 

a and v to b. Since J’ was constructed using two copies of J, there are corresponding 

retractions of W to H that map x to a, and x to b. Thus ab is also an edge of H’. 

Conversely, if ab is an edge of H#, then there are retractions of W to H that map x to 

a, and x to y. These lead to a retraction of J’ to H’ that maps u to a and v to b. Hence 

ab is also an edge of H#. This proves the claim. Since, by definition, V(H “) contains 

V(H!), it follows that H# is a retract of H!. We now have that H#-COL is equivalent 

to H!-COL, which polynomially transforms to H-COL. 0 

We now use the HS construction to extend the result of Hell and NeSetiil to infinite 

graphs of bounded degree. We say that a graph H is of bounded degree if there is an 

integer B such that d(v) d B for all v EV(H). 

It is important to note why the HSI construction can be applied to infinite graphs. 

(Similar comments apply to the HS construction). Given an instance of HI-COL, i.e., 

a finite graph D, the HSI construction produces a graph !D from V(D), and IE(D)J 

copies of j. Since D and J are finite, so is !D. The HSI construction therefore produces 

an instance of H-COL. By contrast, the subindicator construction and edge-subindi- 

cator construction [ 1 l] (also see Section 3) cannot be applied to infinite graphs since 

the transformed problem instance contains the graph H, and if H is infinite this is not 

an instance of H-COL. 

Corollary 2.3. Let H be an in$nite graph of bounded degree. Zf H is bipartite, then 

H-COL is polynomial. Otherwise (H contains an odd cycle), H-COL is NP-hard. 

Proof. We prove only the second statement, the first statement being obvious. Let 

H be an infinite graph of bounded degree and having an odd cycle. We use the HS 

construction to find a finite non-bipartite graph G such that G-COL polynomially 

transforms to H-COL. The theorem of Hell and NeSetiil asserts that G-COL is 

NP-complete, hence H-COL is NP-hard. 

Since H is fixed, it may be assumed that some odd cycle C, of length 2c + 1, is 

known. We use P, to denote the path of length n, with vertex set V(P,) = (0, 1, . . . . n} 
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and edge set E(P,,) = {i(i + 1): i = 1, 2, . . . , n - l}. Let H# be the result of applying the 

HS construction with respect to ( Pzc + 1, 0,2c + 1) to H. The graph H# has infinitely 

many components, and each of them has maximum degree at most that of H, and 

diameter at most 4c + 2. Therefore each component of H# is a finite graph. Further- 

more, it is easy to see that each component of H# that corresponds to an equivalence 

class in which 2c + 1 is mapped to a vertex of C contains an odd cycle isomorphic to 

C. Let G be the core of H. Since there are only finitely many graphs with diameter at 

most 4c + 2 and degrees bounded by the maximum degree in H, the graph G is finite. 

In addition, being a retract of a graph with an odd cycle, G also has an odd cycle. We 

now have that G-COL is equivalent to H#-COL, which polynomially transforms to 

H-COL. 0 

3. Derivation of the other principal constructions 

We now illustrate how the HSI-construction unifies all of the principal construc- 

tions that have so far been employed, namely the indicator construction, the subindi- 

cator construction, and the edge-subindicator construction [l-6, 10, 11, 13, 143. We 

describe each transformation, and then prove it correct using the HSI construction, or 

the HS construction. 

Let I be a fixed graph, and let u and o be distinct vertices of I, such that some 

automorphism of I maps u to v and v to u. The indicator construction with respect to 

(I, u, v) transforms a given graph H into the graph H*, defined to have the same vertex 

set as H, and to have as the edge set all pairs hh’ for which there is a homomorphism of 

I to H taking u to h and v to h’. 

Lemma 3.1 [ll]. H*-COL polynomially transforms to H-COL. 

Proof. Let H* be the result of applying the indicator construction with respect to 

(I, U, V) to H. Let H! be the result of applying the HSI construction with respect to 

(I u { y}, u, v, y) to H, where y is an isolated vertex. Since u and v are not in the same 

component as y the graph H! consists of 1 V(H)1 disjoint copies of H*, so H* is a retract 

of H!. 0 

Let J be a fixed graph with specified vertices x and ji, j,, . . ..jt. The subindicator 

construction with respect to (J,x, j,, j,, . . . . j,), and hI, h2, . . . . h, transforms a given 

retract-free graph H with specified vertices hI, hl, . . . . h,, to its subgraph H” induced 

by the vertex set V” defined as follows. Let W be the graph obtained from the disjoint 

union of J and H by identifying ji and hi, i = 1,2, . . . , t. A vertex v of H belongs to V” 

such that if there is a retraction of W and H which maps x to u. 

Lemma 3.2 [ll]. Zf H is$nite and retract-free, then H”-COL polynomially transforms 

to H-COL. 
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Proof. Let H be a retract-free graph. Let H” be the result of applying the subindicator 

construction with respect to (J, X, ji, jZ, . . . , j,) and hi, hZ, . . . , h, to H, and let H# be the 

result of applying the HS construction with respect to (IV, x, j,, j,, . .., j,) to H, where 

W is defined as above. Since H is finite and retract-free, every homomorphism of H to 

itself is an automorphism. Thus the graph H# consists of lAut(H)l disjoint copies of 

H”, so H” is a retract of H#. q 

Similarly, let J be a fixed graph with a specified edge xy and specified vertices 

jbj2 , . . . , jt, such that some automorphism of J maps x to y and y to x. The 

edge-subindicator construction with respect to (J, xy, j,, j, , . . ..jJ. and h, h, . . . . h, 
transforms a given retract-free graph H with specified vertices hI, h2, . . ..ht into its 

subgraph HA induced by the edges of H which are images of the edge xy under 

retractions of W (as defined above) to H. 

Lemma 3.3 [ 111. If H is$nite and retract-free, then HA -COL polynomially transforms 

to H-COL. 

Proof. Let H be a retract-free graph. Let HA be the result of applying the edge- 

subindicator construction with respect to (J, xy, j,, j2, . . . . j,) and hI, h2, . . . . h, to H, 
and let H’ be the result of applying the HSI construction with respect to 

(W,x,y,jhj2,..., jJ, where W is defined as above, to H. As above, H! consists of 

IAut(H)l disjoint copies of HA, so H” is a retract of H!. 0 

Finally, we mention the origin of the name HSI-construction. This construction can 

be viewed as having three phases: a Homomorphism phase in which the vertices 

jbj2 , . . . . j, are “mapped” to some subset of V(H), a Subindicator phase wherein the 

graph W is retracted to H, and an Indicator phase in which edges of H! are added 

between images of the specified vertices u and u. In the HS construction there is no 

“indicator” phase. 
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