3,219 research outputs found

    Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons

    Get PDF
    Tendons can broadly be categorized according to their function: those that act purely to position the limb and those that have an additional function as energy stores. Energy-storing tendons undergo many cycles of large deformations during locomotion, and so must be able to extend and recoil efficiently, rapidly and repeatedly. Our previous work has shown rotation in response to applied strain in fascicles from energy-storing tendons, indicating the presence of helical substructures which may provide greater elasticity and recovery. In the current study, we assessed how preconditioning and fatigue loading affect the ability of fascicles from the energy-storing equine superficial digital flexor tendon to extend and recoil. We hypothesized that preconditioned samples would exhibit changes in microstructural strain response, but would retain their ability to recover. We further hypothesized that fatigue loading would result in sample damage, causing further alterations in extension mechanisms and a significant reduction in sample recovery. The results broadly support these hypotheses: preconditioned samples showed some alterations in microstructural strain response, but were able to recover following the removal of load. However, fatigue loaded samples showed visual evidence of damage and exhibited further alterations in extension mechanisms, characterized by decreased rotation in response to applied strain. This was accompanied by increased hysteresis and decreased recovery. These results suggest that fatigue loading results in a compromised helix substructure, reducing the ability of energy-storing tendons to recoil. A decreased ability to recoil may lead to an impaired response to further loading, potentially increasing the likelihood of injury

    The investigation of tendon ECM alterations in response to stress relaxation for improving the Ponseti method

    Get PDF
    Congenital clubfoot or congenital talipes equinovarus (CTEV) is a complex paediatric foot deformity which will lead to long-term disability, deformity, and pain if left untreated. At present, the Ponseti method composed of a series of manipulation and casting is recognized as the standard treatment for clubfoot. However, the evaluation for the treatment outcome is based primarily on the clinical examinations and functional parameters while no work has explored the material response and the alterations of extracellular matrix (ECM) of a clubfoot tendon in response to the treatment – a long term stress relaxation. Ex vivo stress relaxation experiments discovered time-dependent tendon lengthening and ECM alterations including crimp angle reduction and elastin fragmentation, which illustrated the mechanism behind the treatment – a material-based tissue lengthening resulted from elastin fragmentation. This proposed mechanism was further supported by the relaxation results using elastin-digested tendons which also found a positive contribution to stress relaxation and relaxation rate from elastin. As the changes in crimp and elastin structures will be influential in the function and health of the tendon tissue, the capability of recovery of these ECM alterations in a tendon became a critical examination. The in vivo results derived from stress-relaxed tendons of young rabbits observed restoration of the above-mentioned ECM alterations along with increased elastin and vascularity level, and the existence of inflammation, indicating process of healing and recovery from the tendon in reaction to the treatment over time. While the increased vascularity and persisted inflammation may potentially bring concerns to the tendon health, they are both important biological adaptation in response to the mechanical treatment. Additionally, cellular response derived from the in vitro experiment discovered increased gene expressions of COL1A1 and ELN, supporting the incidence of recovery. Overall, this study reveals the treatment mechanism and proves the efficacy of the Ponseti method to correct clubfoot from an ECM-oriented perspective

    Numerical Assessment of the Structural Effects of Relative Sliding between Tissues in a Finite Element Model of the Foot

    Get PDF
    Penetration and shared nodes between muscles, tendons and the plantar aponeurosis mesh elements in finite element models of the foot may cause inappropriate structural behavior of the tissues. Penetration between tissues caused using separate mesh without motion constraints or contacts can change the loading direction because of an inadequate mesh displacement. Shared nodes between mesh elements create bonded areas in the model, causing progressive or complete loss of load transmitted by tissue. This paper compares by the finite element method the structural behavior of the foot model in cases where a shared mesh has been used versus a separated mesh with sliding contacts between some important tissues. A very detailed finite element model of the foot and ankle that simulates the muscles, tendons and plantar aponeurosis with real geometry has been used for the research. The analysis showed that the use of a separate mesh with sliding contacts and a better characterization of the mechanical behavior of the soft tissues increased the mean of the absolute values of stress by 83.3% and displacement by 17.4% compared with a shared mesh. These increases mean an improvement of muscle and tendon behavior in the foot model. Additionally, a better quantitative and qualitative distribution of plantar pressure was also observed.Fac. de Enfermería, Fisioterapia y PodologíaTRUEMinistry of Economy Government of SpainCONACYT, Mexicopu

    Finite element modelling of the foot for clinical application: A systematic review

    Get PDF
    Over the last two decades finite element modelling has been widely used to give new insight on foot and footwear biomechanics. However its actual contribution for the improvement of the therapeutic outcome of different pathological conditions of the foot, such as the diabetic foot, remains relatively limited. This is mainly because finite element modelling is only been used within the research domain. Clinically applicable finite element modelling can open the way for novel diagnostic techniques and novel methods for treatment planning/optimisation which would significantly enhance clinical practice. In this context this review aims to provide an overview of modelling techniques in the field of foot and footwear biomechanics and to investigate their applicability in a clinical setting. Even though no integrated modelling system exists that could be directly used in the clinic and considerable progress is still required, current literature includes a comprehensive toolbox for future work towards clinically applicable finite element modelling. The key challenges include collecting the information that is needed for geometry design, the assignment of material properties and loading on a patient-specific basis and in a cost-effective and non-invasive way. The ultimate challenge for the implementation of any computational system into clinical practice is to ensure that it can produce reliable results for any person that belongs in the population for which it was developed. Consequently this highlights the need for thorough and extensive validation of each individual step of the modelling process as well as for the overall validation of the final integrated system

    Biomechanics

    Get PDF
    Biomechanics is a vast discipline within the field of Biomedical Engineering. It explores the underlying mechanics of how biological and physiological systems move. It encompasses important clinical applications to address questions related to medicine using engineering mechanics principles. Biomechanics includes interdisciplinary concepts from engineers, physicians, therapists, biologists, physicists, and mathematicians. Through their collaborative efforts, biomechanics research is ever changing and expanding, explaining new mechanisms and principles for dynamic human systems. Biomechanics is used to describe how the human body moves, walks, and breathes, in addition to how it responds to injury and rehabilitation. Advanced biomechanical modeling methods, such as inverse dynamics, finite element analysis, and musculoskeletal modeling are used to simulate and investigate human situations in regard to movement and injury. Biomechanical technologies are progressing to answer contemporary medical questions. The future of biomechanics is dependent on interdisciplinary research efforts and the education of tomorrow’s scientists

    Medial longitudinal arch mechanics before and after a prolonged run

    Get PDF
    Collapse and reformation of the medial longitudinal arch during gait is controlled passively and actively. If either tissue group fatigues over the duration of a run, the change in arch mechanics may increase risk of running injuries. However, a 3-dimensional kinematic analysis of the medial longitudinal arch after a prolonged run has not been performed. Additionally, rarely has arch collapse been quantified for walking and running in the same study. PURPOSE: To compare arch mechanics before and after a 45 minute run and to compare walking and running arch deformation. METHODS: Thirty runners performed barefoot walking and running trials before and after a 45 minute treadmill run. Reflective markers were placed on the foot and lower limb. Arch lengthening, navicular displacement, and arch height index quantified arch motion. Arch rigidity index and dynamic arch stiffness, a new measurement, quantified resistance to collapse. RESULTS: There was a significant gender y time interaction for arch rigidity index, decreasing after the run for men and increasing for women. There was no main effect for either time or gender for any other dependent variable. Walking and running, however, were significantly different for all relevant variables. Arch collapse was significantly greater for running than walking. CONCLUSION: The structures of the medial longitudinal arch of the foot may have adapted to the cyclical loading of the run by recruiting other muscles, or the arch may be resilient to change after a non-exhausting run. Greater arch deformation during running was likely a function of increased plantarflexion moment and ground reaction forces compared to walking

    Computational foot modeling for clinical assessment

    Get PDF
    Esta Tesis desarrolla un modelo de elementos finitos del pie humano completo y detallado en tres dimensiones para avanzar hacia una simulación computacional más precisa que proporcione información realista y relevante para la práctica clínica. Desde el punto de vista ingenieril, el pie humano es una compleja estructura de pequeños huesos, soportados por fuertes ligamentos y controlada por una red de músculos y tendones con una capacidad de respuesta mecánica excepcional. La barrera actual en la simulación computacional del pie es la inclusión de estas estructuras musculotendinosas en los modelos. Para avanzar en esta dirección, se crea un modelo de elementos finitos del pie completo y detallado con geometría real de la estructura interna diferenciando hueso cortical y esponjoso, tendón, músculo, cartílago y grasa. Se realizan ensayos experimentales de los tendones del pie y la suela plantar para determinar sus propiedades materiales y estructurales y caracterizar computacionalmente su comportamiento mecánico no lineal. Estos avances están orientados hacia la mejora de la representación geométrica y caracterización del tejido de los componentes internos del pie. El modelo desarrollado en esta Tesis puede usarse en el campo de la biomecánica en áreas de ortopedia, lesiones, tratamiento, cirugía y deporte. La investigación está estructurada por capítulos en los cuales se desarrollan pequeños avances hacia el objetivo principal de la Tesis al mismo tiempo que se aplica el potencial de estos avances a casos particulares. Estas contribuciones parciales en el área de los ensayos experimentales son: la determinación de un completo conjunto de datos de las propiedades mecánicas de los tendones del pie, la definición de un criterio para cuantificar las regiones de la curva de tensión-deformación del tendón y el análisis de la respuesta a compresión de la suela plantar en función de la posición. Y, en el área de la biomecánica clínica las contribuciones son: la investigación de un parámetro del esqueleto como factor etiológico del hallux valgus, el estudio de sensibilidad de la fuerza de los cinco mayores tendones estabilizadores, el análisis cuasi-estático de la fase de apoyo de la marcha y el estudio del mecanismo de absorción de la fuerza de impacto del pie durante la carrera descalzo a diferentes ángulos de impacto.In this Thesis, a complete detailed three-dimensional finite element model of the human foot is described to advance towards a more refined computational simulation which provides realistic and meaningful information for clinical practice. From an engineering perspective, the human foot is a complex structure of small bones supported by strong ligaments and controlled by a network of tendons and muscles that achieves a superb mechanical responsiveness. The current barrier in foot computational simulation is the inclusion of these musculotendinous structures in the models. To advance in this direction, a complete detailed three-dimensional foot finite element model with actual geometry of the inner structure is created differentiating cortical and trabecular bone, tendon, muscle, cartilage and fat tissues. Experimental tests of foot tendons and plantar soles are performed to determine their structural and material properties and to characterize computationally their non-linear mechanical behavior. Those advances are oriented to refine the geometry and the tissue characterization of the internal foot components. The model developed in this Thesis can be used in the field of biomechanics, in the areas of orthopedics, injury, treatment, surgery and sports biomechanics. The research is structured by chapters where small steps towards the main objective are developed and the potential of these advances are applied to particular cases. These partial contributions in the area of the experimental testing are: the determination of a complete dataset of the mechanical properties of the balance foot tendons, the definition of a criteria to quantify the regions of the tendon stress-strain curve and the analysis of the compressive response of plantar soft tissue as function of the location. And, in the area of clinical biomechanics the contributions are: the investigation of a skeletal parameter as etiology factor of the hallux valgus, the tendon force sensitivity study of the five major stabilizer tendons, the quasi-static analysis of the midstance phase of walking and the study of the impact absorption mechanism of the foot during barefoot running at different strike patterns

    Achilles tendon material properties are greater in the jump leg of jumping athletes

    Get PDF
    Purpose: The Achilles tendon (AT) must adapt to meet changes in demands. This study explored AT adaptation by comparing properties within the jump and non-jump legs of jumping athletes. Non-jumping control athletes were included to control limb dominance effects. Methods: AT properties were assessed in the preferred (jump) and non-preferred (lead) jumping legs of male collegiate-level long and/or high jump (jumpers; n=10) and cross-country (controls; n=10) athletes. Cross-sectional area (CSA), elongation, and force during isometric contractions were used to estimate the morphological, mechanical and material properties of the ATs bilaterally. Results: Jumpers exposed their ATs to more force and stress than controls (all p≤0.03). AT force and stress were also greater in the jump leg of both jumpers and controls than in the lead leg (all p0.05). Conclusion: ATs chronically exposed to elevated mechanical loading were found to exhibit greater mechanical (stiffness) and material (Young’s modulus) properties

    Soft tissue motion influences skeletal loads during impacts

    Get PDF
    Soft tissue motion occurs as impulsive loads are applied to the skeletal system. It has been demonstrated that the wave like motion of these wobbling masses can reduce the loads acting on the musculoskeletal system. This is an important concept to consider, whether the loads acting on the musculoskeletal system are being determined using either inverse or direct dynamics

    Subject-specific finite element modelling of the human hand complex : muscle-driven simulations and experimental validation

    Get PDF
    This paper aims to develop and validate a subject-specific framework for modelling the human hand. This was achieved by combining medical image-based finite element modelling, individualized muscle force and kinematic measurements. Firstly, a subject-specific human hand finite element (FE) model was developed. The geometries of the phalanges, carpal bones, wrist bones, ligaments, tendons, subcutaneous tissue and skin were all included. The material properties were derived from in-vivo and in-vitro experiment results available in the literature. The boundary and loading conditions were defined based on the kinematic data and muscle forces of a specific subject captured from the in-vivo grasping tests. The predicted contact pressure and contact area were in good agreement with the in-vivo test results of the same subject, with the relative errors for the contact pressures all being below 20%. Finally, sensitivity analysis was performed to investigate the effects of important modelling parameters on the predictions. The results showed that contact pressure and area were sensitive to the material properties and muscle forces. This FE human hand model can be used to make a detailed and quantitative evaluation into biomechanical and neurophysiological aspects of human hand contact during daily perception and manipulation. The findings can be applied to the design of the bionic hands or neuro-prosthetics in the future
    • …
    corecore