636 research outputs found

    Electrically induced tunable cohesion in granular systems

    Full text link
    Experimental observations of confined granular materials in the presence of an electric field that induces cohesive forces are reported. The angle of repose is found to increase with the cohesive force. A theoretical model for the stability of a granular heap, including both the effect of the sidewalls and cohesion is proposed. A good agreement between this model and the experimental results is found. The steady-state flow angle is practically unaffected by the electric field except for high field strengths and low flow rates.Comment: accepted for publication in "Journal of Statistical Mechanics: Theory and Experiment

    New patterns in high-speed granular flows

    Full text link
    We report on new patterns in high-speed flows of granular materials obtained by means of extensive numerical simulations. These patterns emerge from the destabilization of unidirectional flows upon increase of mass holdup and inclination angle, and are characterized by complex internal structures including secondary flows, heterogeneous particle volume fraction, symmetry breaking and dynamically maintained order. In particular, we evidenced steady and fully developed "supported" flows, which consist of a dense core surrounded by a highly energetic granular gas. Interestingly, despite their overall diversity, these regimes are shown to obey a scaling law for the mass flow rate as a function of the mass holdup. This unique set of 3D flow regimes raises new challenges for extending the scope of current granular rheological models

    Efficiency at maximum power output for an engine with a passive piston

    Get PDF
    Efficiency at maximum power (MP) output for an engine with a passive piston without mechanical controls between two reservoirs is theoretically studied. We enclose a hard core gas partitioned by a massive piston in a temperature-controlled container and analyze the efficiency at MP under a heating and cooling protocol without controlling the pressure acting on the piston from outside. We find the following three results: (i) The efficiency at MP for a dilute gas is close to the Chambadal-Novikov-Curzon-Ahlborn (CNCA) efficiency if we can ignore the side wall friction and the loss of energy between a gas particle and the piston, while (ii) the efficiency for a moderately dense gas becomes smaller than the CNCA efficiency even when the temperature difference of reservoirs is small. (iii) Introducing the Onsager matrix for an engine with a passive piston, we verify that the tight coupling condition for the matrix of the dilute gas is satisfied, while that of the moderately dense gas is not satisfied because of the inevitable heat leak. We confirm the validity of these results using the molecular dynamics simulation and introducing an effective mean-field-like model which we call stochastic mean field model.Comment: 24 pages, 13 figure

    Experimental investigation into segregating granular flows down chutes

    Get PDF
    We experimentally investigated how a binary granular mixture made up of spherical glass beads size ratio of 2 behaved when flowing down a chute. Initially, the mixture was normally graded, with all the small particles on top of the coarse grains. Segregation led to a grading inversion, in which the smallest particles percolated to the bottom of the flow, while the largest rose toward the top. Because of diffusive remixing, there was no sharp separation between the small-particle and large-particle layers, but a continuous transition. Processing images taken at the sidewall, we were able to measure the evolution of the concentration and velocity profiles. These experimental profiles were used to test a recent theory developed by Gray and Chugunov J. Fluid Mech. 569, 365 2006, who derived a nonlinear advection diffusion equation that describes segregation and remixing in dense granular flows of binary mixtures. We found that this theory was able to provide a consistent description of the segregation/remixing process under steady uniform flow conditions. To obtain the correct depth-averaged concentration far downstream, it was very important to use an accurate approximation to the downstream velocity profile through the avalanche depth. The S-shaped concentration profile in the far field provided a useful way of determining what we refer to as the PĂ©clet number for segregation, a dimensionless number that quantifies how large the segregation is compared to diffusive remixing. While the theory was able to closely match the final fully developed concentration profile far downstream, there were some discrepancies in the inversion region i.e., the region in which the mixing occurs. The reasons for this are not clear. The difficulty to set up the experiment with both well controlled initial conditions and a steady uniform bulk flow field is one of the most plausible explanations. Another interesting lead is that the flux of segregating particles, which was assumed to be a quadratic function of the concentration in small beads, takes a more complicated form
    • 

    corecore