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Granular materials exhibit behaviours reminiscent of solids, liquids and gasses, and
typically contain particles with various sizes, densities and shapes. In dense liquid-
like flows, particles are sorted efficiently by size, producing inversely graded layers
of large particles above small, since smaller particles are more likely to fall through
void spaces. Size segregation in geophysical avalanches may increase run-out distance
and destructive capacity. Granular materials are also handled in many industries, and
rotating drum flows in which two or more granular materials are tossed together pro-
vide an eminent example of size segregation. Here, segregation is confined to a thin
free-surface avalanche through which material is continuously entrained, resulting in
an extraordinary variety of pattern formations and presenting a formidable obstacle
to mixture uniformity. In this thesis, a theoretical and numerical method for coupling
rheology and size segregation in polydisperse granular flows is developed, using the
partially regularised µ(I)-rheology (adapted to reflect the sizes and frictional proper-
ties of the local mixture composition) in an incompressible Navier-Stokes framework,
along with segregation and diffusion rates tied to the bulk flow properties. The nu-
merical method is tested using inclined plane flow simulations and the DEM data of
Tripathi & Khakhar (2011), before the petal-like pattern in a square rotating drum is
computed. The segregation and diffusion dependencies confine particle redistribution
to the free-surface avalanche, and the drum simulation gives promising qualitative
results. Triangular rotating drum experiments with varying fill fractions and mean
particle concentrations are then performed with bidisperse mixtures. The mixtures
are enclosed in a thin channel by clear lateral sidewalls which exert a frictional force
on the flow, producing a very thin avalanche which induces intense segregation. This
is incorporated into the theoretical and numerical model using width-averaged mass
and momentum balance equations with Coulomb slip assumed on the sidewalls, re-
sulting in a two-dimensional system with an additional momentum term representing
sidewall friction. The adapted numerical method is tested using an enclosed infinite
shear cell and used to compute triangular drum flows with parameters matched to
the experiments. The pattern formations and timescales of the simulations give ex-
cellent qualitative agreement with the experiments. A novel method for quantitative
analysis is used to project a concentration field onto laboratory images based on pixel
intensities, and strong quantitative agreement between the segregation intensities of
the experiments and simulations is observed. Complex rheology-segregation feedback
interactions are identified and clarified using the experimental and numerical results.
A tridisperse triangular drum flow is then computed, correctly predicting the pattern
formation observed experimentally. These results suggest that all the key features
of continuously avalanching rotating drum flows may be captured in a fully coupled,
incompressible continuum framework. Furthermore, by unifying previously disparate
theories for rheology and segregation, this research provides a powerful tool for ex-
tending understanding of polydisperse granular flows in general.
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Chapter 1

Introduction

1.1 Granular material

Grains come in many shapes and sizes. For the purposes of this thesis, grains are de-

fined as macroscopic solid particles with diameter greater than 100 µm; a grain of sand,

a grain of salt, a coin, a boulder, or an asteroid. Smaller particles are characterised

as powders or colloids, and different forms of inter-particle interaction then become

important (Andreotti et al., 2013). A granular material is a collection of such grains,

surrounded by some interstitial fluid, typically air or water. This collection could take

the mathematically convenient form of near-identical spherical marbles with uniform

radius or, more problematically, a heterogeneous pile of rubbish in a landfill. Granular

materials are frequently handled in some capacity in many industries, across sectors

such as food, agriculture, and pharmaceuticals. They are also ubiquitous across the

Earth’s many terrains; snow, sand and soil are all granular materials, while granular

avalanches, always a potentially destructive natural force, are also a common hazard

for peripheral urban settlements in many major cities (Davis, 2006). These industrial

and geophysical categories often overlap, in mining or the construction of roads, for

example. See figure 1.1 for some examples of different granular materials.

When static (or quasi-static), a granular material mimics the solid state of its

particulate constituents. However, under application of an external force a granular

material can exhibit properties typical of a liquid, or even a gas. Consider a static

desert sand dune: the grains are jammed together, but disturb the sand with sufficient

force and material at the free-surface may fail and avalanche downslope, before settling

13



14 CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of different granular materials. On the left, an assortment of
whole-grains, image courtesy of World Grain magazine. On the top right, dense liquid-
like granular flow triggered by human footsteps on the side of a desert sand dune
(Barale, 2015). On the bottom right, household waste being poured into a landfill
from a rubbish truck, image courtesy of Resource magazine.

again into a static, solid-like state. Light winds may blow grains out from the mound

in a gaseous form; extreme desert conditions could even lead to a sandstorm. The

sand has apparently passed through three states of matter without any alteration in

the atomic-level structure. These contrasting phenomena are indeed a precondition of

sand dune formation and transportation (Andreotti et al., 2013), and it is not unusual

for a single granular flow to encompass all three quasi-states simultaneously.

Under closer scrutiny however, granular materials reveal unique properties which



1.1. GRANULAR MATERIAL 15

elude any of these classifications. Grains do not experience Brownian motion. Solid-

like granular materials can sustain a stress without undergoing plastic (irreversible)

deformation but are bound together by frictional interactions between grains rather

than attractive forces. The fluid regime on the other hand is dominated by inelastic,

strongly dissipative collisions between grains and enduring frictional contacts, without

significant thermal fluctuation due to the macroscopic particle sizes. Inter-particle

collisions can be long lasting in the liquid regime, or instantaneous in the gaseous

regime (Armanini et al., 2014). Granular materials are compressible, and may also be

characterised as existing in the limit of zero surface tension (Cheng et al., 2008). It

is therefore unsurprising when it is suggested that granular materials may be said to

constitute their own unique state of matter (Jaeger et al., 1996).

Theoretical and numerical modelling of such multifarious behaviours is necessarily

very challenging. DEM (discrete element method) modelling simulates interactions

between individually tracked particles subject to external and collisional forces, but

these numerical computations quickly become very costly as the number of particles

increases - a mere handful of sand contains around 10,000 grains. Moreover, a unified

continuum theory encapsulating granular matter in its entirety remains a distant goal,

and until this is achieved, continuum approaches must be limited to some subset of

granular flows. For this thesis, the focus is upon dry (i.e. where the interstitial fluid

is air), dense sheared granular flows in the liquid-like regime, and where necessary

also the solid-like regime. This scope encompasses both geophysical avalanches and

industrial particulate handling involving silos and rotating mixers or drums. In many

of these flows polydispersity (the property of granular flows containing particles of

different sizes) is an important feature with consequences for the flow dynamics. The

central aim of this thesis is the development of a fully coupled continuum model for the

bulk flow and evolving particle-size distribution in transient polydisperse flows, and

the application of this coupled approach to rotating drum flows specifically. A fully

coupled theory can be used to understand and predict the complex interplay between

rheology and segregation within a continuum framework. The concepts of coupling

and particle-size segregation will be developed in detail from §1.3.
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1.2 Rheology of dense granular flows

1.2.1 The Coulomb friction model

The genesis of theoretical modelling for dense granular flows is arguably Charles-

Augustin de Coulomb’s seminal 1773 work, “Essay on the Application of the Rules

of Maxima and Minima to Statical Problems Relating to Architecture” (de Coulomb,

1773, see Heyman & de Coulomb (1972) for an English translation). This memoir-

essay details theories developed during the construction of Fort Desaix (initially known

as Fort Bourbon during the pre-revolutionary era) on the island of Martinique, where

Coulomb served as a military engineer amid territorial struggles between the imperial

powers of France and Britain. Coulomb studied earth fortifications, and was able to

predict the maximum slope angle of a static pile of granular material, postulating that

the material yields when the shear stress τ reaches or exceeds a critical (scalar) value

τc, so that for a yielding material

τ ≥ τc = σn tan δ + c, (1.2.1)

where σn represents the normal stress, tan δ is the internal friction coefficient with δ

the angle of repose of the pile, and c is the cohesion between grains. When τ < τc,

the granular material will not yield. For the dry granular flows to be studied here

there is no cohesion, and therefore c = 0. The relation (1.2.1) without cohesion is

analogous to the sliding block problem studied by Leonardo da Vinci centuries earlier

in his pioneering work on friction.

Alongside further constitutive assumptions, the ideas of Coulomb can be expressed

in a form more useful to the theory of modern fluid mechanics by re-writing (1.2.1) in

tensorial form (Drucker & Prager, 1952), where for a yielding material

∥τ∥ = µp, (1.2.2)

where µ is the dimensionless constant internal friction coefficient, p is the pressure,

related to the normal stress in tensorial form by σn = −p1 where 1 is the identity

matrix, and τ is the shear (or deviatoric) stress tensor, with ∥τ∥ denoting its second

invariant. In terms of plasticity theory, this is a Drucker-Prager type yield condition

(Yu, 2007). Note that the second invariant of some trace-free tensor ∥T ∥ is defined
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here in terms of the trace of its square,

∥T ∥ =

√
1

2
tr
(
T 2
)
. (1.2.3)

The shear and normal stresses can be expressed as components of the decomposed

Cauchy stress tensor,

σ = −p1+ τ . (1.2.4)

It is interesting to note as an aside that in the Napoleonic era the young Cauchy

was, like Coulomb, a military engineer, assisting with the construction of a naval base

before dedicating himself to his mathematical career.

It is further assumed the the shear stress tensor is aligned with the strain-rate

tensor (Savage, 1983; Goddard, 1986), where the strain-rate tensor for a continuous

medium undergoing deformation is given by

D =
1

2

(
∇u+ (∇u)T

)
, (1.2.5)

for bulk velocity u and the gradient operator ∇. The alignment condition is then

expressed as
τ

∥τ∥ =
D

∥D∥ , (1.2.6)

where tr(D) = ∇ · u = 0 for an incompressible flow field (see immediately below),

and the definition of the second tensor invariant (1.2.3) then means that ∥D∥ has the

same dimensions as the shear rate. Combining the alignment condition (1.2.6) with

the yield condition (1.2.2) gives an expression for the shear stress,

τ = µp
D

∥D∥ . (1.2.7)

For a dense granular flow, variations in the solids volume fraction Φ are small

(GDR-MiDi, 2004), and so the flow may be treated as incompressible. In this case,

the bulk density ρ is a constant, and conservation of mass is given by

∇ · u = 0. (1.2.8)

The expressions for the Cauchy stress tensor (1.2.4) and the shear stress (1.2.7) may

be substituted into the Cauchy momentum equation to give

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (2ηD) + ρg, (1.2.9)
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where t represents time, ‘·’ denotes the scalar product operator, the bulk density ρ is

related to the intrinsic grain density ρ∗ by ρ = Φρ∗, g is the gravitational acceleration

vector, and the internal friction coefficient µ appears through the granular viscosity η,

given by

η =
µp

2∥D∥ . (1.2.10)

The momentum conservation equation (1.2.9) bears a strong resemblance to the in-

compressible Navier-Stokes equation, and alongside the incompressible mass balance

equation (1.2.8) provides a powerful theoretical framework for modelling the plastic

deformation of yielding dense granular materials, i.e. those in the liquid-like regime.

Unfortunately, Schaeffer (1987) showed that when the internal friction µ is a constant,

this system of equations is unconditionally ill-posed. In this context, mathematical ill-

posedness means that short wavelength perturbations away from a base state solution

exhibit unbounded growth. This is both physically unrealistic and problematic for

numerical computations, where noise can lead to violent, grid dependent instabilities

in the results, which do not converge upon a well defined solution with increasing grid

resolution. Ill-posedness strongly implies that important physics is missing from the

theory.

1.2.2 Development of the µ(I)-rheology

Instead, for the theory to correspond more closely to the real physics of dense granular

flows within an incompressible framework, it is necessary to express the dimensionless

internal friction µ as a function of the other available non-dimensional physical quanti-

ties. It was observed from experimental measurements of shallow flows down a rough

inclined plane (Pouliquen, 1999a; Pouliquen & Forterre, 2002) that steady uniform

flows develop only between two critical inclination angles, the static angle ζs and the

dynamic angle ζd, with no flow when the inclination angle ζ < ζs and accelerating flow

when ζ > ζd. Based upon empirical measurements, Pouliquen & Forterre (2002) then

proposed a form for the basal friction coefficient µb, given by

µb = µs +
µd − µs

βh/(L Fr) + 1
, (1.2.11)

where µs = tan(ζs) is the static friction coefficient, µd = tan(ζd) is the dynamic friction

coefficient, h is the flowing depth, β and L are material constants to be measured
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empirically, and Fr is the Froude number, given by

Fr =
ū√

gh cos ζ
, (1.2.12)

where ū is the depth-averaged velocity, defined as

ū =
1

h

∫ h

0

u(z)dz. (1.2.13)

The basal friction law (1.2.11) and later modifications (Edwards et al., 2017, 2019) are

very powerful tools for the study of shallow granular flows within a depth-averaged

framework. However, the basal friction law (1.2.11) is only valid at the base of the

flowing layer, in the dynamic regime when steady uniform flows are possible, defined by

Fr ≥ β, and for the geometries to be studied in this thesis the shallowness assumption

does not necessarily hold.

The Groupement De Recherche Milieux Divisés (GDR-MiDi, 2004) used experi-

ments and DEM simulations to investigate dense granular flows in six different steady-

state geometries, encompassing plane shear, annular shear, vertical chute flow, inclined

plane flow, heap flow from a discharging silo, and a circular rotating drum. Using di-

mensional analysis, they proposed that for flow in the dense regime, the friction µ is

a function of a single parameter only, known as the inertial number I, defined as

I =
2d∥D∥√
p/ρ∗

, (1.2.14)

where d is the grain diameter, and then the constitutive law (1.2.2) can be re-expressed

as
∥τ∥
p

= µ(I). (1.2.15)

The inertial number is the square root of the Savage or Coulomb number (Savage &

Sayed, 1984; Ancey et al., 1999). The relation (1.2.15) is equivalent to the assumption

of a local rheology, meaning that the stresses and shear rate at a given flow location

have a one to one relation (GDR-MiDi, 2004). The rheology is then considered to be

non-local when ∥τ∥/p depends on the shear rate at other locations or on another field

with unspecified governing equations. The local rheology hypothesis is supported by

the collapse of DEM and experimental data across a variety of flow configurations onto

a single µ(I) curve (GDR-MiDi, 2004; Da Cruz et al., 2005; Andreotti et al., 2013).

Non-local effects may still arise under a variety of circumstances (Kamrin, 2019); of
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particular concern in this thesis is non-locality in rotating drum flows, where material

deep in the quasi-static substrate undergoes creeping flow induced by the avalanching

free-surface. Nevertheless, this quasi-static region is unimportant for the avalanche

dynamics and particle segregation patterns investigated here and indeed, as will be

demonstrated in chapter 3, rotating drum flows can be accurately modelled with vis-

cous Newtonian fluid flow assumed (for the purposes of numerical regularisation) in

the deeper creeping region. Therefore, although a part of the full physics of granular

flows, current evidence does not suggest that non-locality is necessary for useful pre-

dictive modelling of rotating drum flows, and so the assumption of a local rheology

will be retained here for its greater simplicity.

GDR-MiDi (2004) offer a physical interpretation of I as the ratio between two

timescales, illustrated in figure 1.2. Consider two layers of flowing grains, confined by

a pressure p with shear rate γ̇ = 2∥D∥ between the upper and lower layers. The upper

layer moves relative to the lower layer with velocity γ̇d, and so the time taken for one

layer to travel a single grain width d in relation to the other is d/γ̇d. This defines the

deformation or macroscopic timescale, given by Tγ = 1/γ̇. After a grain in the upper

layer has travelled over a grain in the lower layer, the confinement or microscopic

timescale Tp is the time taken for the grain in the upper layer to drop back into a

position nested between grains in the lower layer due to the confining pressure. This

can be derived using Newton’s law in the normal direction, written F = md2z/dt2.

The massm ∝ ρd3, the force F ∝ ρd2, and the acceleration d2z/dt2 ∝ d/t2. Combining

these relations and rearranging gives the expression for the microscopic timescale as

Tp = d
√
ρ∗/p.

The inertial number can then be used to characterise the flowing regime (GDR-

MiDi, 2004; Da Cruz et al., 2005; Andreotti et al., 2013), with 10−3 < I < 1 ap-

proximately corresponding to the liquid-like or inertial regime, I < 10−3 representing

the solid-like or quasi-static regime, and I > 1 representing the gaseous or collisional

regime, where the assumption of dense flow breaks down and a coefficient of restitution

becomes important. This interpretation also hints at one of the difficulties in applying

continuum theories to granular materials: the lack of clear scale separation between

the macroscopic and microscopic length scales, since granular flows are often only a

few grain diameters in thickness. Although the focus of this thesis is primarily on the
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a)

b) p

u

u+ γ̇d

Tγ

Tp

Figure 1.2: Schematic diagram of a granular flow with shear and normal stresses,
illustrating (a) the macroscopic timescale for deformation Tγ = 1/γ̇ in the presence of

a shear rate γ̇, and (b) the microscopic timescale for grain rearrangement Tp = d
√
ρ∗/p,

under the application of pressure p. The inertial number I can be interpreted as the
ratio of these two timescales.

inertial and quasi-static regimes, the behaviour of granular material in the collisional

regime has been described using kinetic theory (see e.g. Campbell, 1990; Lun, 1991;

Armanini et al., 2014).

An explicit functional form for the constitutive law (1.2.15) was derived by Jop

et al. (2005) by comparison with the basal friction law (1.2.11). For a steady uniform

flow on a plane inclined at an angle ζ, the normal component of the momentum balance

(1.2.9) gives

p = ρg(h− z) cos ζ, (1.2.16)

where z is the normal co-ordinate and h is the flowing depth, assuming zero pressure

at the free-surface where z = h. The downslope component of the momentum balance

(1.2.9) then reduces to µ = tan ζ, implying that µ(I) and hence I = Iζ is constant
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through the layer and depends only on the inclination angle ζ. Since ∂u/∂z is the

only non-zero velocity gradient, in this geometry the second invariant of the strain-

rate tensor is

∥D∥ =
1

2

∂u

∂z
. (1.2.17)

Invoking the definition of the inertial number (1.2.14) and using the pressure scaling

(1.2.16) therefore gives an ordinary differential equation (ODE) for the downslope

velocity profile u(z), with the exact solution

u(z) =
2Iζ
3d

√
Φg cos ζ

(
h3/2 − (h− z)3/2

)
, (1.2.18)

using ρ/ρ∗ = Φ. This is known as Bagnold’s velocity profile (Bagnold, 1954), after

Ralph Bagnold, and is plotted in figure 1.3. Another military engineer and geologist,

Bagnold served for the British Empire in North Africa and the Indian subcontinent

during the interwar period. His explorations of the Libyan Desert in particular were

crucial to the formation of a scientific understanding of aeolian transport and granular

flows more generally, which he continued to develop through field research, experiments

and theoretical modelling throughout much of the 20th century.

The Bagnold velocity profile (1.2.18) can be integrated to give the depth-averaged

velocity profile defined by (1.2.13),

ū =
2Iζ
5d

√
Φg cos ζh3/2. (1.2.19)

The depth-averaged Bagnold velocity (1.2.19) can then be substituted into the def-

inition for the Froude number (1.2.12) to give an explicit expression for the Froude

number,

Fr =
2Iζ
5d

√
Φh. (1.2.20)

Since the internal friction is constant through the flowing depth, the region of validity

for the basal friction law (1.2.11) can be extended by substituting (1.2.20) and re-

writing (1.2.11) in terms of the inertial number I, as

µ(I) = µs +
µd − µs
I0/I + 1

, (1.2.21)

where I0 is related to the constants β and L by

I0 =
5βd

2
√
ΦL

. (1.2.22)
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Figure 1.3: Plot of the Bagnold velocity profile (1.2.18) for steady uniform flow down
an incline. The flowing layer has constant thickness h = 1 cm, the slope is inclined at
an angle ζ = 21◦, the grains have diameter d = 0.1 cm and the solids volume fraction
Φ = 0.6.

Note that L is a length scale considered to be linear in the particle size d (Jop et al.,

2005), and so I0 does not vary with d and is simply a material constant. The functional

form (1.2.21) expresses a local rheology based upon the constitutive laws (1.2.14) and

(1.2.15), known as the µ(I)-rheology.

The establishment of the µ(I)-rheology represented a major breakthrough in the

study of dense granular flows. It has been used to describe velocity profiles for granu-

lar flow on a pile between rough sidewalls, giving strong quantitative agreement with

experimental measurements (Jop et al., 2006). Furthermore, although its origin lies in

observations of steady-state flows (GDR-MiDi, 2004; Jop et al., 2005), strong evidence

was provided by Lacaze & Kerswell (2009) that the validity of the rheology extends

beyond this into dynamic, highly transient flows. They demonstrated that data ex-

tracted from three-dimensional DEM modelling of a cylindrical granular column col-

lapse matched very accurately with the µ(I) curve (1.2.21). Later, the incompressible

Navier-Stokes-like mass (1.2.8) and momentum balance equations (1.2.9), with the
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constant friction coefficient replaced by (1.2.21) in the definition of the granular vis-

cosity (1.2.10), were used to compute full two-dimensional numerical simulations of a

column collapse (Lagrée et al., 2011) and discharge from a silo (Staron et al., 2012,

2014), with promising qualitative results.

The µ(I)-rheology is able to capture both flowing and solid-like dense regimes, with

transition between the two modelled using the static friction coefficient µs attained

at I = 0, and static material predicted below the minimum yield stress of ∥τ∥ =

µsp, whereafter the functional form (1.2.21) is no longer valid. There is however

evidence from free-surface flows over a heap (Komatsu et al., 2001; Crassous et al.,

2008) suggesting that the solid-like regime for shear flows is instead characterised by

quasi-static creeping flow which tails off exponentially with depth below a flowing

layer.

Furthermore, the problem of ill-posedness related to the Coulomb friction model

(1.2.2) remains relevant to the µ(I)-rheology. Barker et al. (2015) showed that (1.2.21)

leads to ill-posedness in both the small and large inertial number limits, but is well

posed for intermediate values of I. This is a significant advance from the Coulomb

friction model which was always ill-posed, and implies that the validity of (1.2.21)

roughly corresponds to the dense flow or inertial regime, with additional important

physics present in the quasi-static and collisional regimes, along with the solid-liquid

and liquid-gas transitions.

Barker & Gray (2017) noted that µ(I = 0) = 0 is a necessary condition for well-

posedness throughout the quasi-static regime, and proposed a new functional form

which is well-posed for small I by introducing a creep state derived by inverting the

neutral stability curves, and a continuous transition with the inertial regime at the

point where the latter becomes ill-posed. They were also able to extend the maximum

well-posed inertial number up to a very high upper limit by having µ ∝ I as I → ∞,

as suggested by high speed chute flow experiments (Holyoake & McElwaine, 2012;

Barker & Gray, 2017). This new functional form, known as the partially regularised

µ(I)-rheology, is given by

µ =





√
α

log
(
A
I

) , for I ≤ I1,

µsI0 + µdI + µ∞I
2

I0 + I
, for I > I1,

(1.2.23)
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Figure 1.4: Plot of µ(I), for the original µ(I) curve given by (1.2.21) (blue line) and
the partially regularised form given by (1.2.23) (red line), for parameters µs = 0.404,
µs = 0.675, µ∞ = 0.04, I0 = 0.249, and α = 1.9. The vertical dashed blue lines
represent the lower and upper limits of well-posedness for the original µ(I) curve. The
lower limit is also very close to the point of transition between the two branches of
(1.2.23) since the µ∞I

2 term in (1.2.23) is dominated by the other terms in the region
where I < 1. While the original curve decays to µs for I = 0 and asymptotically
approaches µd for I → ∞, the partially regularised form enters a creep regime as
I → 0 which decays to µ(I = 0) = 0, and has no upper bound. The vertical red
dashed line represents the upper limit of well-posedness for the partially regularised
µ(I)-rheology, which for the given parameters is at I = 17.0189.

where α ≲ 2 ensures the creep state remains within the well-posed region, µ∞ is a

constant characterising collisional dissipation for large I (Barker & Gray, 2017), and

A = I1 exp

(
α(I0 + I1)

2

(µsI0 + µdI1 + µ∞I21 )
2

)
(1.2.24)

gives continuity between the two branches at the point of transition I = I1, below

which the upper branch would become ill-posed. The partially regularised formulation

(1.2.23) guarantees well-posedness throughout the quasi-static and inertial regimes,

and with an appropriate choice of µ∞, for a subset of the collisional regime, up to

some extreme maximum value depending on the particular choice of parameters. The

partially regularised µ(I)-rheology and the original curve of Jop et al. (2005) are
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plotted in figure 1.4, showing close agreement between the two in the region of well-

posedness for the original curve.

Although the µ(I)-rheology can only reasonably be expected to provide an accurate

approximation of the physics in the inertial regime due to its specific empirical ori-

gins (GDR-MiDi, 2004), the small I creep state introduced in the partially regularised

formulation means that solid and liquid-like material can be modelled simultaneously

without ill-posedness. For the relevant physics in the quasi-static regime as well as the

transition between inertial and quasi-static regimes to be reflected more accurately in

the theory, important phenomena such as frictional hysteresis (Edwards et al., 2017,

2019) or non-locality (Pouliquen & Forterre, 2009; Kamrin & Koval, 2012; Kamrin,

2019) must be included. In the collisional regime designated here by large I the co-

efficient of restitution becomes relevant since collisions between grains are inelastic

(Jenkins, 2007; Jenkins & Berzi, 2010; Armanini et al., 2014). Variation in the solids

volume fraction Φ also becomes increasingly important, and hence the assumption of

incompressiblity breaks down, and so kinetic theory models include some Φ depen-

dence. Attempts at modelling compressibility in the inertial regime have been made

by introducing Φ(I) dependence into the original µ(I)-rheology (GDR-MiDi, 2004;

Forterre & Pouliquen, 2008), which have recently been extended into forms which can

regularise the rheology (Heyman et al., 2017; Goddard & Lee, 2018; Schaeffer et al.,

2019). In particular, Schaeffer et al. (2019) showed that compressible theories can

include a yield stress and remain unconditionally well-posed.

Despite this, here the partially regularised incompressible µ(I)-rheology is pre-

ferred to these alternative approaches. In rotating drum flows, as discussed above

non-locality should be introduced into the model for an accurate physical approxi-

mation of the quasi-static creep regime below the flowing layer, but since segregation

in polydisperse drum flows is confined to the inertial avalanching region, non-locality

is overlooked here in favour of a simpler approach centred on the inertial regime.

As a lower order effect, compressibility is also neglected to simplify the numerical

computations and ensure the rheological approach is compatible with pre-existing in-

compressible segregation theories. Furthermore, drum flows cannot be depth-averaged

since they do not have a shallow dimension, and modelling frictional hysteresis with

non-monotonic µ(I) curves leads to ill-posedness in non-depth-averaged frameworks.
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Hysteresis is likely necessary for physical modelling of intermittently avalanching ro-

tating drum flows (Gray & Hutter, 1997) and so its omission here imposes a limitation

on the theory in the context of rotating drums. DEM approaches to modelling drum

flows are also currently infeasible for direct comparison to experimental data due to

the computational expense incurred when using particle numbers typical for experi-

ments or industrial mixers. Therefore, at the time of writing the partially regularised

incompressible µ(I)-rheology is an appropriate approach for numerical modelling of

the complex transient dense flows of interest in this thesis.

1.3 Particle-size segregation

The rheological modelling in §1.2 is formulated on the assumption of monodisperse

flows of uniform density (1.2.14), but in reality all granular flows contain some level of

variation in size (polydispersity), density or shape. This is perhaps most pronounced

in a geophysical context, where individual grains are formed as the result of sensitive

natural processes such as weathering, erosion or crystallisation. Furthermore, han-

dling of dissimilar classes of particles is important in mining, food manufacture, the

chemical and pharmaceutical industries, and agriculture, and the earliest research into

segregation was driven by these industrial interests, where particles may be mixed to

improve product uniformity or control chemical reactions, for example (Cooke et al.,

1976). Despite the pragmatism of early work, particle segregation has gained traction

as an exciting field of research in its own right due to the limited current understanding

which belies the ubiquity of segregation and its importance across varied flow phenom-

ena, and due to the arresting variety of pattern formations possible under different flow

configurations (Hill et al., 1999; McCarthy, 2009; Gray, 2018), with particle species

typically distinguished by colour.

For geophysical avalanche flows or those occurring during industrial mixing or

transportation, as well as tumbled or vibrated flows, segregation between different

particle classes inevitably occurs, exacerbating the already considerable difficulty as-

sociated with handling granular materials. This may result in wastage due to the in-

herent difficulty of obtaining desired mixture compositions, or geophysical avalanches

with unpredictable run-out distances and flow behaviours (Johnson et al., 2012). The
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scale of the problem is such that factories utilising granular materials typically suf-

fer much longer start-up times than those dealing exclusively with fluids (Shinbrot &

Muzzio, 2000). Developing theories for particle segregation is therefore an important,

ongoing aim within granular flow modelling, and although a general theory remains

elusive (as in the case of rheology), recent advances in understanding of segregation

dependencies in the inertial regime (Trewhela et al., 2021; Bancroft & Johnson, 2021)

give rise to the possibility of the full rheology-segregation coupling which is developed

in this thesis.

1.3.1 Segregation mechanisms

Early breakthroughs in experimental and theoretical studies of particle segregation

in cohesionless granular materials were led by John Bridgwater, with some overview

provided by Bridgwater (1994). Scott & Bridgwater (1975) discussed problems related

to the industrial mixing of polydisperse granular materials, noting the difficulty in

obtaining uniformly mixed materials, and even reliable data on particle distribution

with existing experimental or industrial methods. A limited physical explanation of

this phenomenon was given using the process of spontaneous percolation, and it was

suggested that the underlying mechanism for segregation was partially gravity driven.

They designed a simple shear cell experiment involving large particles of diameter dl

and smaller particles of diameter ds < dl which gave reliable results without the need

for a laborious sampling process, through which a relationship between strain-rate and

particle percolation time was ascertained. In their experiments the particle size ratio

R = dl/ds was the most important independent variable, while variations in particle

shape and density played a less significant role. The predominance of size segregation

over density-driven segregation in dense shear flows was later reaffirmed by Vallance

& Savage (2000); density variation between species also introduces compressibility

into theoretical models (Tripathi & Khakhar, 2013; Gray & Ancey, 2015), and will

therefore be convenient to overlook in later sections.

Over time a clearer picture of the mechanisms driving particle-size segregation

has emerged. Savage & Lun (1988) observed slow motion recordings of bidisperse

(mixtures containing two species distinguished by particle size) inclined plane flows

in the inertial regime confined between glass sidewalls, and used their observations
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u

Figure 1.5: Schematic diagram of gravity-driven size segregation in a shear flow be-
tween two plates, where gravity is assumed to point downwards. As the initially
well-mixed flow is sheared, smaller particles preferentially fall through void spaces in
the granular material and squeeze the larger particles upwards, resulting in the in-
versely graded layer depicted in the second graphic.

to discern the nature of size segregation at the inter-particle level. When a granular

material undergoes shear, the distribution in void spaces throughout the material

continuously changes, and if a void space is sufficiently large a particle from an upper

layer can drop down to occupy it (Shinohara et al., 1970). This is more likely to happen

for smaller particles. This process, known as ‘kinetic sieving’ (Savage & Lun, 1988) and

illustrated in figure 1.5, is fundamentally gravity-driven and results in inversely graded

layers with smaller particles concentrated towards the base of a flowing layer. In a

geophysical context, inversely graded sediment layers (Middleton, 1970) are observed

in which finer particles collect towards the base of flow deposits. A second, more

subtle mechanism was also apparent in the recordings, whereby a force imbalance on

an individual particle pushes it upwards into an adjacent layer, so that there is no net

mass flux in the direction normal to the inclined plane. This process, termed ‘squeeze

expulsion’, is not gravity driven or size preferential, and acts as a counterpart to
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kinetic sieving. Taken together, these two processes have been termed ‘gravity-driven

segregation’ (Gray, 2018). The propensity of larger particles to accumulate near the

top of a shaken granular material is commonly known as the Brazil nut effect.

Other mechanisms driving particle-size segregation include convection cycles in

vibrated granular materials (Knight et al., 1993; Ehrichs et al., 1995), trajectory seg-

regation induced by greater sensitivity to air resistance in smaller particles (Schulze,

2008), and fluidisation or condensation of one species before another (Hong et al., 2001;

Schröter et al., 2006) related to differences in granular temperature, which measures

the kinetic energy of random particle motion and is important in kinetic theory (see

e.g. Brilliantov & Pöschel, 2004). Condensation (the transition of fluid-like granular

material to a solid-like state, inducing segregation towards the bottom of a flowing

layer) can act against kinetic sieving in excited systems in a so-called reverse Brazil

nut effect (Hong et al., 2001). Alongside kinetic sieving/squeeze expulsion, these mech-

anisms have been designated as the most important and widely researched (McCarthy,

2009), although there are many others (see e.g. Gray, 2018).

For dense sheared flows in the inertial regime, gravity-driven segregation has usu-

ally been identified as the most important (Savage & Lun, 1988; Gray, 2018); trajectory

induced segregation can occur via discharge from an inclined chute, but in this case

the material is likely to have already formed an inversely graded layer due to grav-

ity, and convection induced segregation is mainly important in vibrating materials.

Condensation induced segregation appears to occur only in externally excited systems

with fluidised grains in the gaseous regime (Breu et al., 2003; Hong et al., 2001) rather

than in dense shear flows, and it can only override gravity-driven segregation under

specific conditions related to the density ratio, size ratio, and the excitation of the

system. Nevertheless, Hill & Tan (2014) demonstrated that gradients in the kinetic

stresses or granular temperature may drive segregation in dense rotating drum flows,

although these granular temperature gradients were ultimately induced by gravity and

for particle species of equal density the net result remains an inversely graded layer.

Conway et al. (2006) showed that in sparse dry systems or in particle suspensions

a shear rate gradient may drive segregation, with large particles segregated towards

regions of low shear rate. However, it has been observed that shear-induced kinetic

stress gradients may also drive segregation in certain dense flow regimes (Fan & Hill,
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2010, 2011; Hill & Tan, 2014), and even oppose gravity-driven segregation. Fan &

Hill (2011) used DEM simulations in which large and small grains were allowed to fall

between parallel plates to show that a kinetic stress gradient induced by a gradient

of shear rate alone could drive segregation. Large particles were segregated towards

the plates and small particles towards the middle of the chute by a kinetic sieving

mechanism acting in a direction normal to gravity, with large particles now segregated

towards regions of higher shear rate. This result seemingly contradicts observations

that in inclined plane flows with Bagnold-like velocity profiles (see figure 1.3), large

particles segregate towards the free-surface where the shear rate is lowest. In practice,

for gravity-driven flows contributions from both kinetic stress gradients arising from

shear rate gradients and gravity may drive segregation, but the relative importance

of these competing mechanisms is difficult to ascertain precisely (Staron & Phillips,

2015). The evidence across different dense flow geometries suggests that gravity plays

the pivotal role in the presence of a gravity-induced pressure gradient, but in certain

geometries which induce a shear-aligned pressure gradient normal to gravity the seg-

regation can be orientated normal to gravity. The pressure gradient is therefore a

versatile indicator of the correct alignment of the segregation direction.

Since this thesis is concerned with avalanche-type flows of dense granular materials

in the inertial or quasi-static regimes in which large particles are known to segregate to-

wards the low-shear free-surface region, it is reasonable to subsume segregation driven

by shear rate gradients as an underlying constraint within a gravity-driven segrega-

tion theory. The opposing effect of shear rate gradients can then be considered to be

implicitly incorporated into the segregation scaling derived by Trewhela et al. (2021)

in a simplified form as a background process feeding into parameter measurements.

1.3.2 Continuum modelling of particle-size segregation

A continuum model for size segregation and diffusion in dense regimes was first de-

veloped by Bridgwater et al. (1985) for a polydisperse mixture in a uniform flow, and

subsequent theories generally share a similar structure. Consider a polydisperse flow

where each component of the mixture ν is identified with a constant particle size dν .

Each component or species has a concentration ϕν defined as a proportion of the overall
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solids volume fraction Φ, and so by definition,

∑

∀ν

ϕν = 1, (1.3.1)

for an arbitrary number of particle species. Gray & Ancey (2011) derived a multi-

component mixture theory for shallow granular avalanches with explicit expressions

for the normal velocity of each phase based upon a species interaction law (Gray &

Chugunov, 2006) and a hydrostatic pressure scaling (Gray & Thornton, 2005). In a

more general form, by analogy with standard mixture theory (Morland, 1992), each

species has a volume fraction weighted partial density given by

ρν = ϕνρ, (1.3.2)

where the constant bulk density is related to the intrinsic grain density by ρ = Φρ∗

for each species as in §1.2. The continuity equation is then

∂ρν

∂t
+∇ · (ρνuν) , (1.3.3)

where uν is the velocity of species ν. This only reduces to the incompressiblity condi-

tion (1.2.8) when summed over each of the phases, since

∑

∀ν

ρν = ρ
∑

∀ν

ϕν = ρ. (1.3.4)

Substituting the partial density definition (1.3.2) into the mass continuity equation

(1.3.3) trivially results in the concentration continuity equation,

∂ϕν

∂t
+∇ · (ϕνuν) . (1.3.5)

Following Bridgwater et al. (1985), the species flux qν = ϕνuν may be split into con-

tributions from the bulk velocity, segregation and diffusion, resulting in a generalised

multi-component advection-segregation-diffusion equation, of the form

∂ϕν

∂t
+∇ · (ϕνu) +∇ · F ν = ∇ ·Dν , (1.3.6)

where F ν is the segregation flux and Dν is the diffusive flux. This represents a

generalisation of the one-dimensional continuity equation derived by Bridgwater et al.

(1985), which included contributions to the normal species velocity from segregation
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and diffusion but discarded the advective term using the assumption of uniform flow.

By imposing the constraint that the segregation and diffusive fluxes sum to zero,

∑

∀ν

F ν = 0,
∑

∀ν

Dν = 0, (1.3.7a,b)

the incompressible mass balance (1.2.8) is recovered by summation of the advection-

segregation-diffusion equation (1.3.6) over each phase.

Another model of the general form (1.3.6) was proposed by Dolgunin & Ukolov

(1995) for an explicitly bidisperse mixture including an advection term along with

segregation and diffusion. For a mixture containing small and large particles with

ν = s and ν = l respectively, the concentration summation constraint (1.3.1) requires

that ϕl = 1−ϕs, and so particle redistribution can be described using a single equation

of the form (1.3.6). The segregation flux function in two or three dimensions is a vector

F ν = F νeνλ, where eνλ is a unit vector determining the direction of segregation, and

the diffusive flux similarly is a vector Dν related to concentration gradients. For

gravity-driven segregation,

F s = F s g

|g| , F l = −F l g

|g| , (1.3.8a,b)

and the summation constraint for the segregation fluxes (1.3.7a) is satisfied as long as

F s = F l. Since it is necessary that no segregation should occur when ϕν = 0 or 1, the

cubic function

F s = F l = fslϕ
s(1− ϕs)2, (1.3.9)

was suggested by Bridgwater et al. (1985) as an arbitrary functional form for the bidis-

perse segregation flux satisfying these requirements, where fsl represents the bidisperse

segregation coefficient. Dolgunin & Ukolov (1995) instead used a simpler quadratic

dependence,

F s = F l = fslϕ
s(1− ϕs), (1.3.10)

which is the simplest form satisfying F ν = 0 at ϕν = 0 or 1. Either the cubic

(1.3.9) or quadratic (1.3.10) formulations may be generalised for an arbitrary number

of particle species by assuming that each species flux function is the sum of the relevant

bidisperse flux functions (Gray & Ancey, 2011) where the segregation coefficient for

arbitrary species ν and λ is denoted by fνλ. A generalised asymmetric cubic function

has also been suggested based upon observations of shear box experiments (Gajjar &
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Gray, 2014; van der Vaart et al., 2015). The asymmetric flux function (1.3.9) is able to

capture the phenomenon that a single small particle intruder percolates down through

a body of large particles faster than a single large intruder is able to be squeezed

upwards through a body of small particles (Golick & Daniels, 2009; van der Vaart

et al., 2015).

For an asymmetric dependency of the form (1.3.9) with no concentration depen-

dency in the segregation coefficients fνλ, care must be taken with a polydisperse mix-

ture to ensure that each bidisperse flux function is linear in the smaller particle concen-

tration and quadratic in larger particle concentration in order to satisfy the segregation

flux summation constraint (1.3.7a). For this reason, ultimately it is simpler to choose

the symmetric flux function (1.3.10) and confine the asymmetry discussed by Gajjar

& Gray (2014) to the segregation rate fνλ, as will be seen in chapter 2.

Various analytic and numerical solutions of the advection-segregation-diffusion

equation (1.3.6) in a reduced form have been found, with boundary conditions formu-

lated at concentration shocks (discontinuities), for mixtures with two or three distinct

particle sizes with or without diffusion (Bridgwater et al., 1985; Dolgunin & Ukolov,

1995; Gray & Thornton, 2005; Thornton et al., 2006; Gray & Chugunov, 2006; Thorn-

ton & Gray, 2008; Gray & Ancey, 2011; Gajjar & Gray, 2014; Gray & Ancey, 2015).

Considerable complexity may be captured using analytic solutions where the segre-

gation coefficient fνλ is held constant. For example, when large particles have been

segregated towards the free-surface of a bidisperse avalanche, they are preferentially

transported towards the flow front (Pouliquen et al., 1997) where they may be overrun

and recirculated in a breaking size-segregation wave (Thornton & Gray, 2008; van der

Vaart et al., 2018), inside a complex lens structure formed by a pair of expansion fans

(see e.g. Roshko & Liepmann, 1957) containing a mix of small and large particles.

Ultimately however, these segregation models are limited by a level of arbitrariness in

selection of a constant segregation or diffusion coefficient, and prescription of a bulk

velocity profile, when in reality there is strong two-way interaction between the bulk

flow properties and the mixing process (for more detail see chapter 2).

One approach to coupling the bulk flow and evolving particle distribution for in-

clined plane flows is to exploit their shallowness by coupling depth-averaged mass

(1.2.8) and momentum balances (1.2.9), including the µ(I)-rheology (1.2.21), and a
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Figure 1.6: Examples of two polydisperse shallow granular flows. On the top, a
geophysical snow avalanche bounded by levees (Edwards et al., 2017). On the bottom,
a photograph of an experiment with segregation-induced fingering instabilities at the
flow front, with larger brown particles advected to the sides to form levees for each
finger (Baker et al., 2016).

bidisperse segregation-advection-diffusion equation (1.3.6), itself depth-averaged with

an assumed shear profile and inversely graded layer (Gray & Kokelaar, 2010b; Baker

et al., 2016). Feedback of the particle distribution onto the bulk flow is achieved by in-

corporating frictional differences between small and large particles into a concentration-

dependent basal friction coefficient (Pouliquen & Vallance, 1999; Woodhouse et al.,

2012), and feedback of the bulk flow onto the particle distribution occurs through ad-

vection only, rather than the functional dependencies of the segregation and diffusion

rates. For this reason the depth-averaged segregation equation is known as the large
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particle transport equation (Gray & Kokelaar, 2010a).

Using the large particle transport equation, the complex structure of the breaking

size-segregation wave is transformed into a simpler propagating concentration shock

(Baker et al., 2016). This framework has been able to predict widely observed geo-

physical phenomena related to size segregation (see figure 1.6 for some examples),

such as levee formation (Iverson, 1997; Félix & Thomas, 2004; Bartelt et al., 2012),

in which predominantly large particles advected to the sides of a flow form stationary

lateral barriers confining an inner channel of flowing material and extending run-out

distances (Johnson et al., 2012); fingering instabilities (Pouliquen & Vallance, 1999) in

a large particle rich flow front themselves bounded by levees (Woodhouse et al., 2012;

Baker et al., 2016); and bulbous head formation (Denissen et al., 2019), in which the

more frictional large particles advected to the flow front bulge relative to material

upstream. Depth-averaged approaches are attractive for the simplicity by which they

can illuminate important geophysical phenomena without recourse to a fully coupled

theory, but their application is limited to shallow flows, and in non-shallow geometries

such as rotating drums or storage silos there is a more complex interaction between

the bulk flow properties and the evolving particle distribution than can be captured

using the large particle transport equation. To be applicable to such geometries, a

general segregation theory for dense flows must incorporate segregation and diffusion

rates dependent on the strain-rate, pressure, gravity and other relevant parameters in

conjunction with frictional feedback from the mixture composition onto the bulk flow.

1.3.3 Rotating drums

Rotating drums are an industrial mechanism widely used for mixing distinct species of

solid particles, and have long been the subject of academic investigation (for a review

of early literature on rotating drums, see e.g. Cooke et al., 1976). As the drums rotate,

particle species tend to segregate out into regions of high concentration, often in direct

opposition to the intended and desired result. In some more recent studies (Metcalfe

et al., 1995; Khakhar et al., 1997; Hill et al., 1999; Khakhar et al., 1999; Gray, 2001;

Zuriguel et al., 2006), these large three-dimensional industrial mixers have been re-

placed by an experimental analogue; a quasi-two-dimensional drum which minimises

the importance of axial segregation, with transparent lateral sidewalls through which
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Figure 1.7: Experimental images of different flows in a circular rotating drum. Clock-
wise from top left; a continuously avalanching drum flow filled with three particle
species (red small, white medium, and green large particles) (Gray & Ancey, 2011), a
petal pattern in a half filled drum with small white and large red particles (Zuriguel
et al., 2006), a baffled drum inhibiting segregation between small white and large red
particles (McCarthy, 2009), and a Catherine wheel pattern formed by an intermittent
avalanche for small black and large white particles (Gray & Hutter, 1997).

emerging particle patterns can be observed. Particle species are typically colour-coded

so that the particle-size distribution can be easily tracked, resulting in a stunning vari-

ety of patterns, some of which are shown in figure 1.7. The particle pattern formation

depends on many variables, such as the particle properties, the fill level of the con-

tainer, the relative quantity of each particle species, the drum shape and drum rotation

speed (see e.g. Rajchenbach, 1990; Hill et al., 1999; Mounty, 2007).

Although many flow regimes are possible (Rajchenbach, 1990), the most commonly
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studied and easily produced is the continuously avalanching or rolling regime, char-

acterised by a thin, continuously flowing free-surface avalanche above a substrate of

quasi-static material performing solid body rotation, which may assume a steady-state

for circular drums. When drums are slightly over half-filled, complex mobility feedback

interactions between the particle distribution and bulk flow can produce radial streaks

or petals (Hill et al., 1999; Khakhar et al., 2001; Hill et al., 2004; Zuriguel et al.,

2006) highly sensitive to the rotation speed. At slower rotation rates, intermittent

avalanches form which may result in Catherine wheel patterns (Gray & Hutter, 1997).

For non-circular drums, chaotic advection is possible (Khakhar et al., 1999; Ottino &

Khakhar, 2000), and such drums have been described as the simplest experimental

demonstration of competition between chaotic advection and (segregation-induced)

order (Hill et al., 1999).

Despite the complexity of the underlying physical mechanisms governing segrega-

tion, various methods have by necessity been developed for its avoidance or minimi-

sation (Tang & Puri, 2004; Schulze, 2008; McCarthy, 2009). Inter-particle cohesion

generated by an interstitial fluid can inhibit segregation if the grains are sufficiently

saturated (Samadani & Kudrolli, 2000; Li & McCarthy, 2005). Shi et al. (2007) demon-

strated that insertion of a centrally located baffle into a rotating drum flow can dras-

tically reduce the intensity of segregation by periodically varying the direction of seg-

regation in relation to streamlines. For engineers tasked with devising new methods

for segregation reduction, the ability to quantitatively model rotating drum flows is

an invaluable tool, and continuum approaches can help characterise flow phenomena

according to their underlying physics while providing new insight into the relationship

between segregation and the bulk flow dynamics. Additionally, the sensitivity and as-

tonishing diversity of pattern formations and flow behaviours in rotating drums means

they are both an attractive research topic and a useful benchmark against which to

test and understand granular flow models. Much of the remainder of this thesis is

dedicated to establishing a method for fully coupling the bulk flow rheology and a

theory for particle-size segregation, in essence unifying the approaches described in

these two introductory sections, and then utilising this method to investigate rotating

drum flows. A more comprehensive description of the dynamics within rotating drums

is left for chapters 2 and, in particular, 3.
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1.4 The finite volume method in OpenFOAM

The coupling framework developed in this thesis leads to a non-linear set of governing

equations which cannot be solved analytically, except in certain highly reduced cases.

Numerical solutions are instead calculated using the finite volume method, with a cus-

tom multiphase fluid solver implemented in the open source computational fluid dy-

namics toolbox OpenFOAM. While the precise method used for rheology-segregation

coupling is deferred until Chapter 2, details of the general numerical method will be

provided here.

1.4.1 Discretisation procedure

The finite volume method is based on the integral form of conservation equations. A

general advection-diffusion equation for a conservative scalar property ψ(x, t) takes

the form
∂ψ

∂t︸︷︷︸
temporal derivative

+ ∇ · (ψu)︸ ︷︷ ︸
advective term

+∇ · (Dψ∇ψ)︸ ︷︷ ︸
diffusive term

= Sψ.︸︷︷︸
source term

(1.4.1)

The spatial domain is discretised by a polygonal mesh of finite volume cells which do

not overlap and completely fill the domain. The transport equation (1.4.1) is then

expressed in the form of an integral over a finite volume VP , corresponding to the

volume of the cell P with geometric centre xP , as

∂

∂t

∫

VP

ψ dV +

∫

VP

∇ · (ψu) dV +

∫

VP

∇ · (Dψ∇ψ) dV =

∫

VP

Sψ dV. (1.4.2)

This can then be transformed using the divergence theorem to become

∂

∂t

∫

VP

ψ dV +

∮

∂VP

n · (ψu) dS +

∮

∂VP

n · (Dψ∇ψ) dS =

∫

VP

Sψ dV, (1.4.3)

where ∂VP is the closed surface bounding the volume VP , and dS represents an in-

finitesimal surface element with outward pointing normal n. The surface ∂VP consists

of a finite number of faces f with geometric centres xf and surface areas Sf . The ge-

ometric centres or centroids xP and xf for the faces f of a given cell P are calculated

by decomposing each polygonal face into triangles sharing apex points Af , defined as

the mean of the face vertices. The area ST and the centroid xT for each triangle on

a particular face can then be calculated from the vertices using known formulae, and
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used to give expressions for the face area Sf =
∑

T∈f ST and the face centroid

xf =
1

Sf

∑

T∈f

STxT . (1.4.4)

The cell centroid is then calculated using the expression

xP =
1

2VP

∑

f

Sf |xf |2. (1.4.5)

Full derivations for the centroid expressions can be found in Greenshields & Weller

(2022).

A second order accurate approximation of the property ψ within the cell P with

assumed linear spatial variation (Jasak, 1996) is given by

ψ(x, t) = ψP (t) + (x− xP ) · ∇ψP (t), (1.4.6)

where ψP (t) = ψ(xP , t), and ∇ψP (t) is uniform inside the cell since it refers to the

gradient at the cell centre only. The volume integral of ψ(x, t) over cell P is then

∫

VP

ψ(x, t) dV =

∫

VP

ψP (t) + (x− xP ) · ∇ψP (t) dV

= ψP (t)

∫

VP

dV +

(∫

VP

(x− xP ) dV

)
· ∇ψP (t)

= ψP (t)VP , (1.4.7)

where the second integral term vanishes since xP is the centre point of the cell. Simi-

larly, closed surface integrals can be expressed as the sum of integrals over faces,

∮

∂VP

ψ(x, t) dS =
∑

f

[∫

f

ψf (t) + (x− xf ) · ∇ψf (t) dS
]

=
∑

f

[
ψf (t)

∫

f

dS +

(∫

f

(x− xf ) dS

)
· ∇ψf (t)

]

=
∑

f

ψf (t)Sf , (1.4.8)

where ψf (t) = ψ(xf , t), which is approximated using a linear interpolation of the

values of ψ on cell centres,

ψf = αψP + (1− α)ψN , (1.4.9)

where N denotes the neighbouring cell sharing face f with cell P . OpenFOAM uses a

blended interpolation scheme combining upwind and central differencing, full details of
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which can be found in Jasak et al. (1999). The interpolation rule (1.4.9) is replaced at

boundary faces with an expression reflecting the specified boundary conditions. Note

that, since the divergence theorem states that

∫

VP

∇ · a dV =

∮

∂VP

n · a dS, (1.4.10)

for some arbitrary vector property a, making use of analogous discretisations for vol-

ume (1.4.7) and surface integrals (1.4.8) gives a second order discretised form of the

divergence theorem:

(∇ · a)VP =
∑

f

(nf · af )Sf , (1.4.11)

with an analogous expression for an arbitrary scalar property.

The diffusive term in the transport equation (1.4.3) can be discretised using (1.4.8),

∮

∂VP

n · (Dψ∇ψ) dS =
∑

f

nf ·Dψ,f (∇ψ)fSf , (1.4.12)

which, assuming mesh orthogonality, can be simplified using the second order approx-

imation

nf · (∇ψ)f =
ψN − ψP
|xN − xP |

. (1.4.13)

For non-orthogonal meshes, a correction term must be introduced to the approximation

(1.4.13) (see e.g. Jasak, 1996). Temporal discretisation is achieved using the implicit

Euler method, so that
∂ψiP
∂t

=
ψiP − ψi−1

P

∆t
, (1.4.14)

where the superscript i denotes evaluation at time ti = ti−1+∆t. This approximation

has first order temporal accuracy. The transport equation (1.4.3) can then be written

as

ψiP − ψi−1
P

∆t
VP +

∑

f

nf · ψifuifSf +
∑

f

Dψ,f
ψiN − ψiP
|xN − xP |

Sf = Sψ,PVP . (1.4.15)

Applying the interpolation rule (1.4.9) gives the implicit, fully discretised system of

equations for each cell:

ψiP − ψi−1
P

∆t
VP +

∑

f

nf · (αψiP + (1− α)ψiN)u
i
fSf +

∑

f

Dψ,f
ψiN − ψiP
|xN − xP |

Sf = Sψ,PVP . (1.4.16)
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This can be expressed as the algebraic equation

aPψ
i
P +

∑

N

aNψ
i
N = biP . (1.4.17)

An equation of this form is solved for every cell P . This describes the discretisation

process for a simple advection-diffusion equation.

1.4.2 Boundary conditions

The two fundamental types of boundary condition used in OpenFOAM are Dirichlet

and Neumann, from which other more specialised types are derived. Dirichlet condi-

tions take the form

ψ = ψb (1.4.18)

on a boundary face b. Discretisation of the advective term gives

∫

VP

∇ · (ψu) dV =
∑

f

nf · ψfufSf , (1.4.19)

and the term for the boundary face is then

nb · ψbubSb. (1.4.20)

For the diffusive term the discretisation is

∫

VP

∇ · (Dψ∇ψ) dV =
∑

f

nf ·Dψ,f (∇ψ)fSf . (1.4.21)

The face gradient at the boundary is calculated from the given boundary value and

the value at the cell centre:

nb · (∇ψ)b =
ψb − ψP
|db|

, (1.4.22)

where db is the vector from the cell centre P to the boundary face which is normal to

the face. For orthogonal boundaries, |db| = |xb − xP |.
Neumann conditions are specified on the gradient of the given property at the

boundary, expressed as

nb · (∇ψ)b = gb, (1.4.23)
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where gb is the prescribed condition. For the advective term, the boundary value ψb

is calculated from the value at the cell centre and the prescribed gradient, as

ψb = ψP + |db|gb. (1.4.24)

For the diffusive term the boundary condition can be applied directly,

nb · (∇ψ)bSb = gbSb. (1.4.25)

1.4.3 Governing equations

For the geometries of interest in this thesis, as discussed above the mass and momen-

tum balance equations take the form of Navier-Stokes-like equations, which can be

expressed in conservative form as

∇ · u = 0, (1.4.26)

∂

∂t
(ρu) +∇ · (ρu⊗ u) = −∇p+∇ · (2ηD) + ρg. (1.4.27)

Additionally, segregation-advection-diffusion equations for an arbitrary number of par-

ticle phases with respective concentrations ϕν must also be solved, taking the form

∂ϕν

∂t
+∇ · (ϕνu) +∇ · F ν = ∇ ·Dν . (1.4.28)

The transport equation procedure in § 1.4.1 gives the general method for discretisation

of the terms in the governing equations (1.4.26)-(1.4.28), using analogous statements

of the divergence theorem. The segregation-advection-diffusion equations are solved

in OpenFOAM using an implementation of flux corrected transport theory (Zalesak,

1979) known as MULES (Multidimensional Universal Limiter for Explicit Solution)

(see Damián, 2013, for the full algorithm), which limits the respective phase fluxes to

ensure solutions remain bounded within ϕν ∈ [0, 1], with
∑

ν ϕ
ν = 1.

When solving equations (1.4.26) and (1.4.27), particular care must be taken over

the discretisation of the non-linear term

∇ · (ρu⊗ u) . (1.4.29)

Using the discretised divergence theorem (1.4.11) and evaluating at time ti gives

∇ · (ρu⊗ u) =
1

VP

∑

f

(nf · ρuif )uifSf . (1.4.30)
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This is linearised using the assumption uif
∼= ui−1

f , which holds for small Courant–

Friedrichs–Lewy (CFL) numbers (Jasak, 1996), where the CFL number is

CFL =
|u|∆t
∆x

+
η∆t

ρ∆x2
. (1.4.31)

Adaptive time stepping is used, where the time step ∆t is determined by applying a

constraint on the magnitude of the CFL number to ensure it remains appropriately

small. The equation (1.4.30) can then be linearised:

∇ · (ρu⊗ u) ∼= 1

VP

∑

f

(nf · ρui−1
f )uifSf

= aPu
i
P = +

∑

N

aNu
i
N , (1.4.32)

where ui−1
f is known from the previous time step. The viscous momentum term is

similarly linearised by calculating the granular viscosity η = µ(I)p/2∥D∥ using values

for the velocity and pressure from the previous time step.

1.4.4 Derivation of the pressure equation

A semi-discretised form of the momentum equation (1.4.27) can be written in the form

aPuP = H(u)−∇p, (1.4.33)

whereH(u) includes contributions from neighbouring cells and source terms excluding

the pressure gradient. The cell centre velocity uP as expressed by (1.4.33) can be

interpolated at faces to give

uf =

(
H(u)

aP

)

f

−
(

1

aP

)

f

(∇p)f , (1.4.34)

and discretising the mass balance equation (1.4.26) gives

∇ · u =
∑

f

nf · ufSf = 0. (1.4.35)

The set of discretised equations deriving from the mass and momentum balance equa-

tions (1.4.26) and (1.4.27) is then

aPuP = H(u)−
∑

f

S(p)f , (1.4.36)

∑

f

nf ·
((

1

aP

)

f

(∇p)f
)
Sf =

∑

f

nf ·
(
H(u)

aP

)

f

Sf , (1.4.37)
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where S(p) is a pressure gradient source term. Momentum conservation is represented

by (1.4.36), while the pressure equation (1.4.37) is obtained by substituting the face

velocity (1.4.34) into the mass conservation equation (1.4.35). The face flux F is

derived from (1.4.34) to give

F = nf · ufSf = nf ·
[(

H(u)

aP

)

f

−
(

1

aP

)

f

(∇p)f
]
Sf . (1.4.38)

1.4.5 The PISO algorithm

The system (1.4.36) and (1.4.37) is expressed in a form which can be solved in Open-

FOAM using the PISO (Pressure-Implicit with Splitting of Operators) algorithm pro-

posed by Issa (1986). The PISO algorithm solves the pressure-velocity coupling ex-

pressed by this system using a segregated approach in which the equations are solved

in sequence. This operates as follows:

1. The momentum equation (1.4.36) is solved to give an approximation of the ve-

locity field, where the pressure field from the previous time step is used since the

pressure gradient source term S(p) is not yet known, and the advective term in

H(u) is linearised as in (1.4.32).

2. The pressure equation (1.4.37) is assembled and solved using the approximated

velocity field.

3. The face fluxes are calculated using (1.4.38).

4. The velocity is corrected for the new pressure field using (1.4.33) in the form

uP =
H(u)

aP
− ∇p
aP

. (1.4.39)

5. Return to step 2; this process is repeated for a pre-specified number of iterations.

This introductory section details the finite volume discretisation and solution tech-

nique employed in OpenFOAM and used extensively throughout this thesis. Numerical

solutions to the Navier-Stokes-like equations (1.4.26) and (1.4.27) produced below are

calculated using the PISO algorithm. While the pressure-velocity coupling is calcu-

lated in the PISO loop, other inter-equation couplings, such as rheology-segregation

coupling, are lagged, and hence in the coupling framework developed in Chapter 2 the
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segregation-advection-diffusion equations (1.4.28) are solved prior to the momentum

predictor stage (step 1 in the above description) at each time step.

Numerical errors in the discretisation procedure may be expected to result from

discretisation of terms to below second order accuracy, and the discretisation of the

solution domain, i.e. mesh generation. In the latter case, the assumed linear varia-

tion of a property within a cell P may diffuse important grid-scale effects. Rotating

drum simulations have been computed at different resolutions with the aim of demon-

strating grid converging solutions and identifying the appropriate refinement level for

minimising error due to insufficient mesh resolution. Error due to sub-second order

discretisation may be expected to result from the implicit Euler method (1.4.14), which

only gives first order temporal accuracy. Other temporal discretisation methods with

second order accuracy, such as the Crank-Nicholson method, are available as built-in

features of OpenFOAM, but the first order scheme was preferred because it guarantees

boundedness of the solution (Hirsch, 2007). A full treatment of numerical error and its

estimation in the finite volume implementation of OpenFOAM is provided by Jasak

(1996).

1.5 Thesis structure

This thesis is presented in alternative format, meaning that the chapters are presented

in the style of journal articles. It is made up of one paper published in The Journal

of Fluid Mechanics and another in preparation for submission to the same journal.

Each paper is a self-contained work, and so there is necessarily some overlap in content

between them due to their related topics. They each conform to their own internal

section, figure, equation and table numbering with independent bibliographies, but

page numbering has been adapted to be consistent over the whole thesis.

The main content of the thesis is divided into two chapters. As alluded to above,

chapter 2, Coupling rheology and segregation in granular flows, develops a generalised

framework for coupling particle-size segregation mechanics to flow rheology and vice

versa. A specific theory coupling a strain-rate dependent diffusion coefficient and a

segregation theory developed by Trewhela et al. (2021) to the partially regularised

µ(I)-rheology (Barker & Gray, 2017) detailed in §1.2.2 is then described. This results
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in a system of governing equations for the bulk velocity, pressure and species concen-

trations, and it is shown how inclusion of an excess air phase segregating away from the

granular material is advantageous for numerical schemes involving interface tracking.

The numerical implementation is tested against known exact solutions of concentra-

tion shocks, steady-state concentration profiles and the Bagnold velocity profile, and

computations of inclined plane flows are also able to predict breaking size-segregation

waves, the frontal shape implied by depth-averaged equations, and segregation mo-

bility feedback resulting in the formation of a large particle-rich bulbous head. The

coupled model also shows good agreement with the DEM data of Tripathi & Khakhar

(2011). Finally, a fully coupled numerical simulation of a square rotating drum is com-

puted to demonstrate the possibilities of the model. The results are impressive and

qualitatively similar to those observed in experiments, but the lack of lateral sidewall

friction in the theory imposes a limitation on quantitative comparison to experiments.

Chapter 3, Particle-size segregation in triangular rotating drums with sidewall fric-

tion, uses the coupling method described in the previous chapter to investigate trian-

gular drum flows, with a full experimental comparison. Friction from confining lateral

sidewalls is incorporated into the model by integrating three-dimensional mass and

momentum balance equations through the width with Coulomb slip boundary condi-

tions applied at the sidewalls, resulting in an additional term in the two-dimensional

momentum balance equation modelling sidewall friction. An adapted segregation scal-

ing law suggested by Trewhela et al. (2021) is used which reproduces the result that

segregation intensity in rotating drums is maximal near particle-size ratios of R = 2.

The extended numerical model is tested against an analytic solution for a shear cell

with sidewall friction, providing a very precise match.

Experiments are then performed for triangular rotating drums containing bidis-

perse mixtures with various fill levels and mean small particle concentrations. Equiva-

lent numerical simulations for each case are then computed, with no fitting parameters,

and an excellent congruence between all the features of the experiments and simula-

tions is demonstrated across the entire timescale of segregation. This is only possible

due to the inclusion of lateral sidewall friction in the numerical model, which produces

a thin, rapidly flowing free-surface avalanche where the segregation is very intense.

All the particle redistribution occurs in this avalanching region, which acts as a thin
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boundary-layer and can only be fully resolved using a fine numerical mesh. A method

of quantitative analysis is devised, using pixel intensity data from experimental images

of drums with known mean particle concentration to project a particle-size distribu-

tion onto the images of more complex pattern evolutions. This data is then used

to calculate an intensity of segregation, which matches closely with the intensity of

segregation in the simulations. Finally, a tridisperse rotating drum flow is computed,

giving a good qualitative match to experiments and revealing a mechanism by which

the intermediate particle species is simultaneously segregated in opposing directions

by the small and large species.
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During the last fifteen years there has been a paradigm shift in the continuum

modelling of granular materials; most notably with the development of rheological

models, such as the µ(I)-rheology, but also with significant advances in theories

for particle segregation. This paper details theoretical and numerical frameworks

(based on OpenFOAM®) which unify these currently disconnected endeavours.

Coupling the segregation with the flow, and vice-versa, is not only vital for

a complete theory of granular materials, but is also beneficial for developing

numerical methods to handle evolving free-surfaces. This general approach is

based on the partially-regularised incompressible µ(I)-rheology, which is coupled

to the gravity-driven segregation theory of Gray & Ancey (J. Fluid Mech., vol.

678, 2011, 353–588). These advection-diffusion-segregation equations describe the

evolving concentrations of the constituents, which then couple back to the variable

viscosity in the incompressible Navier-Stokes equations. A novel feature of this

approach is that any number of differently sized phases may be included, which

may have disparate frictional properties. Further inclusion of an excess air phase,

which segregates away from the granular material, then allows the complex evo-

lution of the free-surface to be captured simultaneously. Three primary coupling

mechanisms are identified; (i) advection of the particle concentrations by the
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bulk velocity, (ii) feedback of the particle-size and/or frictional properties on the

bulk flow field and (iii) influence of the shear rate, pressure, gravity, particle

size and particle-size ratio on the locally evolving segregation and diffusion rates.

The numerical method is extensively tested in one-way coupled computations,

before the fully coupled model is compared to the DEM simulations of Tripathi &

Khakhar (Phys. Fluids, vol. 23, 2011, 113302) and used to compute the petal-like

segregation pattern that spontaneously develops in a square rotating drum.

1. Introduction

Despite nearly all natural and man-made granular materials being composed of

grains of varying size, shape and frictional properties, the majority of continuum

flow modelling has largely been restricted to perfectly monodisperse aggregates.

The purpose of this work is therefore to extend the current granular flow models

by introducing multiple phases, with different properties, and to model inter-phase

segregation. Coupling the flow rheology to the local constituent concentrations is

important because the mobility of a granular flow is strongly affected by the local

frictional properties of the grains. In turn, the bulk flow controls the strength and

direction of the segregation as well as the advection of the granular phases.

Striking examples of segregation induced feedback on the bulk flow are found

during levee formation (Iverson & Vallance 2001; Johnson et al. 2012; Koke-

laar et al. 2014) and fingering instabilities (Pouliquen, Delour & Savage 1997;

Pouliquen & Vallance 1999; Woodhouse et al. 2012; Baker, Johnson & Gray

2016b), which commonly occur during the run-out of pyroclastic density currents,

debris flows and snow avalanches. Many other examples of segregation-flow cou-

pling occur in industrial settings (Williams 1968; Makse et al. 1997; Gray & Hutter

1997; Hill, Khakhar, Gilchrist, McCarthy & Ottino 1999; Ottino & Khakhar

2000; Zuriguel et al. 2006). Storage silo filling and emptying, stirring mixers and

rotating tumblers all have the common features of cyclic deformation and an

ambition of generating well mixed material. However, experiments consistently

suggest that these processes have a tendency to promote local segregation, which

can feedback on the bulk flow velocities. Considering the inherent destructive

potential of geophysical phenomena and the implications of poor efficiency in
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industrial mixing, a continuum theory which captures the important physics of

flow and of segregation simultaneously is therefore highly desirable.

To date, the leading approaches for solving coupled flow and segregation have

come from either discrete particle simulations (Tripathi & Khakhar 2011; Thorn-

ton et al. 2012) or from depth-averaged equations (Woodhouse et al. 2012; Baker

et al. 2016b; Viroulet et al. 2018). Particle simulations, using the discrete element

method (DEM), provide important rheological information as evolving velocities,

stresses and constituent concentrations can be directly computed given only

minimal approximations. Such results can then be used to motivate models for

the bulk flow (GDR MiDi 2004; Jop, Forterre & Pouliquen 2006; Singh et al.

2015) and also to form connections between flow and segregation processes (Hill

& Fan 2008; Staron & Phillips 2015). Unfortunately, the discrete particle approach

is naturally limited by computational expense as many flows of interest include

such a large number of particles that direct DEM calculations are unfeasible.

Recently efforts have been made to overcome this limitation with the development

of hybrid schemes (e.g. Yue et al. 2018; Xiao et al. 2019) which couple discrete

particle dynamics to continuum solvers, but these approaches naturally invoke

additional complexity and new assumptions are required in order to map properly

and consistently between the somewhat disparate approaches.

Depth-averaged models, which reduce the full three-dimensional flow to two

dimensions by integrating though the depth and assuming shallowness, lead to

efficient numerical codes which are widely used in geophysical modelling (see

e.g. Grigorian, Eglit & Iakimov 1967; Savage & Hutter 1989; Iverson 1997;

Gray, Wieland & Hutter 1999; Pouliquen & Forterre 2002; Sheridan et al. 2005;

Mangeney et al. 2007; Christen, Kowalski & Bartelt 2010; Gray & Edwards 2014;

Delannay et al. 2017; Rauter & Tuković 2018; Rocha et al. 2019). However, depth-

averaged approaches are limited to geometries in which there is a clear dimension

that remains shallow throughout the dynamics. This approximation holds well for

thin flows on inclined planes and for flows over certain gradually varying terrain,

but breaks down in many flows of practical interest, such as those in hoppers,

silos and rotating drums.

Historical attempts to construct three-dimensional continuum models for

monodisperse granular materials focused on quasi-static deformations and lead to
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elasto-plastic formulations of models such as the Drucker-Prager yield condition

(Lubliner 2008) and Critical State Soil Mechanics (Schofield & Wroth 1968).

Despite successes in modelling the point of failure of materials under load,

calculations of the subsequent time-dependent flow proved to be problematic,

because the results are grid mesh-size dependent. Schaeffer (1987) showed that

this was because the underlying equations are mathematically ill-posed, i.e. in the

small wavelength limit the growth rate of linear instabilities becomes unbounded

in certain directions.

Despite the Mohr-Coulomb/Drucker-Prager plasticity theory being designed

for the flow of monodisperse grains, the grain diameter d does not appear in the

constitutive model. It can be incorporated by making the friction µ a function of

the non-dimensional inertial number, which is defined as

I =
dγ̇√
p/ρ∗

, (1.1)

where γ̇ is the shear rate, p is the pressure and ρ∗ is the intrinsic grain density

(Savage 1984; Ancey, Coussot & Evesque 1999; GDR MiDi 2004). Jop et al. (2006)

generalized the scalar µ(I)-rheology to tensorial form. The resultant incompress-

ible µ(I)-rheology leads to a significantly better posed system of equations (Barker

et al. 2015). For the µ(I) curve suggested by Jop, Forterre & Pouliquen (2005),

the equations are well-posed for a large range of intermediate values of I and are

only ill-posed for very low or relatively high inertial numbers.

Barker & Gray (2017) derived a new functional form for the µ(I) relation, which

is known as the partially regularised µ(I)-rheology. This ensures well-posedness

for 0 < I < Imax, where Imax is a very large value, and leads to stable and

reliable numerical schemes. It also provides a better fit to experimental (Holyoake

& McElwaine 2012; Barker & Gray 2017) and DEM data (Kamrin & Koval 2012)

than the original µ(I) curve, but also introduces a creep state (i.e. µ = 0 when I =

0) so the granular material no longer has a yield stress. It is possible to formulate

well-posed models with a yield stress by introducing bulk compressibility (Barker,

Schaeffer, Shearer & Gray 2017; Schaeffer et al. 2019) or non-locality (Henann

& Kamrin 2013). However, in this paper the partially regularised µ(I)-rheology
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is chosen for the bulk flow, both for simplicity and because it is most readily

compatible with existing numerical methods and particle segregation models.

Initially well mixed granular materials have a strong propensity of ordering

spatially when they undergo flow. Chief among these effects is that of particle size

segregation, made famous through the moniker “the Brazil nut effect” (Rosato,

Strandburg, Prinz & Swendsen 1987), whereby particles move relative to the bulk

flow based on their size compared to their neighbours. The resultant vertical dis-

tribution, in which larger particles are often concentrated at the surface of a flow,

can also be observed in many geophysical mass flows, forming so-called inversely

graded deposits (e.g. Middleton 1970; Festa et al. 2015). The origin of this effect

was explained through statistical entropic arguments by Savage & Lun (1988)

who proposed a means of “kinetic sieving” (Middleton 1970) in which smaller

grains are more likely to fall (by gravity) into voids that are created as layers

of particles are sheared over one another. Force imbalances then drive particles

out of the denser layer, which is known as “squeeze expulsion”. The combination

of kinetic sieving and squeeze expulsion produces a net upward motion of large

particles as the smaller grains percolate downwards. These concepts formed the

basis of the theory of Gray & Thornton (2005) who focused on this form of gravity

driven segregation in granular free-surface flows. The theory was later extended by

Gray & Chugunov (2006), in order to account for diffusive mixing, and has been

successfully applied to a range of gravity-driven flows (Gray 2018). However, Fan

& Hill (2011) found that the direction of segregation was not always aligned with

the vector of gravitational acceleration. Instead gradients in kinetic stress were

found to drive and orient segregation in a range of geometries (Hill & Tan 2014).

These findings have since inspired many investigations into the micromechanical

origin of size segregation (Staron & Phillips 2015; Guillard, Forterre & Pouliquen

2016; van der Vaart et al. 2018), but a unified and compelling theory is still

lacking.

In order to accommodate different models for size segregation and different

flow rheologies, this paper first introduces a very general framework for multi-

component flows in §2. In particular, the multicomponent segregation theory of

Gray & Ancey (2011) is generalized to allow submixtures to segregate in different

directions and with differing diffusion rates. In §3 the three primary coupling
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mechanisms are discussed in detail. §4 documents the general numerical method,

which is then extensively tested against the one-way coupled simulations in §5.

Two-way fully coupled simulations are then presented for flow down an inclined

plane, in §6, and in §7 simulations are performed for a square rotating drum. The

new experimental segregation law of Trewhela, Ancey & Gray (2021) is tested

against the steady-state DEM solutions of Tripathi & Khakhar (2011) in §6.3 and

then used in §7 for the rotating drum simulations, which are able to spontaneously

generate petal-like patterns that have previously been seen in the experiments of

Hill et al. (1999), Ottino & Khakhar (2000) and Mounty (2007).

2. Governing equations

2.1. The partially regularized µ(I)-rheology for the bulk flow

The granular material is assumed to be composed of a mixture of particles that

may differ in size, shape and surface properties, but have the same intrinsic particle

density ρ∗. If the solids volume fraction Φ is constant, which is a reasonable first

approximation (GDR MiDi 2004; Tripathi & Khakhar 2011; Thornton et al. 2012),

then the bulk density ρ = Φρ∗ is constant and uniform throughout the material.

Mass balance then implies that the bulk velocity field u is incompressible

∇ · u = 0. (2.1)

where ∇ is the gradient and · is the dot product. The momentum balance is

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ∇ · (2ηD) + ρg, (2.2)

where p is the pressure, η is the viscosity, D = 1
2

(
∇u + (∇u)T

)
is the strain-rate

tensor and g is the gravitational acceleration. Assuming alignment of the shear-

stress and strain-rate tensors the µ(I)-rheology (Jop et al. 2006) implies that the

granular viscosity is

η =
µ(I)p

2||D|| , (2.3)

where the second invariant of the strain-rate tensor is defined as

||D|| =

√
1

2
tr(D2), (2.4)
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µs = 0.342, µd = 0.557, µ∞ = 0.05, I0 = 0.069,
α = 1.9, I1 = 0.004, d = 0.5× 10−3 m, ρ∗ = 2500 kg/m3

Φ = 0.6 ϱa∗ = 1 kg/m3 ηa
∗ = 10−3 kg/(ms)

Table 1. The frictional parameters µs, µd, µ∞, I0 and α in Barker & Gray’s (2017)
friction law, which were measured for 143 micron glass beads. The value I1 ≃ IN1 is set by
the lower bound for well posedness in Jop et al.’s (2006) friction law using the parameters
above. Unless stated otherwise, the remaining parameters are the values chosen in the
numerical simulations. Note that the air viscosity is higher than the physical value
of ηa

∗ = 1.81 × 10−5 kg/(ms) to prevent the convective Courant number limiting the
time-step size.

and the inertial number, defined in (1.1), in this notation becomes

I =
2d||D||√
p/ρ∗

. (2.5)

The meaning of the particle size d in a polydisperse mixture will be clarified in

§3.2. Note that this paper is restricted to two-dimensional deformations with an

isotropic Drucker-Prager yield surface. However, as shown by Rauter, Barker &

Fellin (2020), this framework can be extended to include three-dimensional defor-

mations through further modification of the granular viscosity i.e. dependence on

det(D).

The viscosity (2.3) is a highly non-linear function of the inertial number depen-

dent friction µ = µ(I), pressure p and the second invariant of the strain-rate ||D||.
Barker et al. (2015) examined the linear instability of the system, to show that

the growth rate becomes unbounded in the high wavenumber limit, and hence the

incompressible µ(I)-rheology is mathematically ill-posed, when the inequality

4

(
Iµ′

µ

)2

− 4

(
Iµ′

µ

)
+ µ2

(
1 − Iµ′

2µ

)
> 0, (2.6)

is satisfied, where µ′ = ∂µ/∂I. Ill-posedness of this type is not only unphysical,

but results in two-dimensional time-dependent numerical computations that do

not converge with mesh refinement (see e.g. Barker et al. 2015; Martin, Ionescu,

Mangeney, Bouchut & Farin 2017; Barker & Gray 2017). If the friction is not

inertial number dependent (µ = const) the ill-posedness condition (2.6) is satisfied

for all inertial numbers and the system of equations is always ill-posed (Schaeffer

1987). The equations are also ill-posed if the friction µ is a decreasing function of

I, since all the terms in (2.6) are strictly positive.
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Figure 1. Comparison between the friction law of Jop et al. (2006) (red line) and the
partially regularized law of Barker & Gray (2017) (blue line). The Jop et al. (2006)
curve has a finite yield stress µs (red dot) and asymptotes to µd at large inertial
number (dashed line). For the parameters summarized in table 1, it is well-posed in
the range [IN1 , IN2 ] = [0.00397, 0.28016] (red shaded region). A necessary condition for
well posedness is that the friction µ is zero at I = 0 (blue dot). Barker & Gray’s (2017)
curve therefore introduces a creep state for I ∈ [0, I1] to the left of the green dot (see
inset) and becomes linear at large inertial numbers. The value of I1 = 0.004 is chosen
to be very slightly larger than IN1 . The resulting partially regularized law is well-posed
for I ∈ [0, 16.9918].

The original form of the µ(I)-curve proposed by Jop et al. (2005) is a mono-

tonically increasing function of I starting at µs at I = 0 and asymptoting to µd

at large I,

µ(I) =
µsI0 + µdI

I0 + I
, (2.7)

where I0 is a material specific constant. The inertial number dependence in

(2.7) gives the rheology considerably better properties than the original, constant

friction coefficient, Mohr-Coulomb/Drucker-Prager theory. Provided µd − µs is

large enough, the system is well-posed when the inertial number lies in a large

intermediate range of inertial numbers I ∈ [IN1 , I
N
2 ]. The equations are, however,

ill-posed if either the inertial number is too low I < IN1 or too high I > IN2 , or if

µd − µs is not large enough. For the parameter values given in table 1 the µ(I)

rheology is well posed for I ∈ [0.00397, 0.28016].

The range of well-posedness was extended by Barker & Gray (2017) to 0 ⩽
I ⩽ Imax, where Imax is a large maximal value, by changing the shape of the
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µ(I)-curve. This paper uses the µ(I)-curve proposed by Barker & Gray (2017)

µ =





√
α

log
(
A
I

) , for I ⩽ I1,

µsI0 + µdI + µ∞I2

I0 + I
, for I > I1,

(2.8)

where α and µ∞ are new material constants and

A = I1 exp

(
α(I0 + I1)2

(µsI0 + µdI1 + µ∞I21 )2

)
, (2.9)

is chosen to ensure continuity between the two branches at I = I1. As shown

in figure 1 this curve stays close to (2.7) in the well-posed region of parameter

space, but passes though µ = 0 at I = 0 and is asymptotically linear in I at

large inertial numbers. For the parameters given in table 1, the matching occurs

at I1 = 0.004 (which is very slightly larger than IN1 ) and the maximum well-posed

inertial number is Imax = 16.9918.

The partially regularised µ(I)-rheology not only ensures well-posedness for I <

Imax, but it also provides better fitting to experimental and DEM results. For

instance, relative to (2.7) the new µ(I)-curve (2.8) predicts higher viscosities for

large values of I, as seen in the chute flow experiments of Holyoake & McElwaine

(2012) and Barker & Gray (2017). For low values of I, the partially regularised

µ(I)-rheology predicts very slow creeping flow, since µ → 0 as I → 0. This

behaviour is seen, to a certain extent, in DEM simulations (Kamrin & Koval

2012; Singh et al. 2015) and has been postulated by Jerolmack & Daniels (2019)

to play an important role in soil creep. The lack of a yield stress may, however, be

viewed as a disadvantage of the theory. It is important to note that by allowing

some bulk compressibility, it is possible to formulate granular rheologies that

are always well-posed mathematically (Barker et al. 2017; Heyman et al. 2017;

Goddard & Lee 2018; Schaeffer et al. 2019) and support a yield stress.

2.2. Generalized polydisperse segregation theory

The granular material is assumed to be composed of a finite number of grain

size classes, or species ν, which have different sizes dν , but all have the same

intrinsic density ρν∗ = ρ∗. Note that the inclusion of density differences between

the particles implies that the bulk velocity field is compressible, which significantly
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complicates the theory (Tripathi & Khakhar 2013; Gray & Ancey 2015; Gilberg &

Steiner 2020) and is therefore neglected. Even for a bidisperse mixture of particles

of the same density, the grains can pack slightly denser in a mixed state than in a

segregated one (Golick & Daniels 2009). However, the DEM simulations (Tripathi

& Khakhar 2011; Thornton et al. 2012) suggest these packing effects are small,

and for simplicity, and compatibility with the incompressible µ(I)-rheology, these

solids volume fraction changes are neglected. Each grain-size class is therefore

assumed to occupy a volume fraction ϕν ∈ [0, 1] per unit granular volume, and

the sum over all grain sizes therefore equals unity

∑

∀ν
ϕν = 1. (2.10)

Many models to describe particle segregation have been proposed (see e.g. Bridg-

water, Foo & Stephens 1985; Savage & Lun 1988; Dolgunin & Ukolov 1995;

Khakhar, Orpe & Hajra 2003; Gray & Thornton 2005; Gray & Chugunov 2006;

Fan & Hill 2011; Gray & Ancey 2011; Schlick, Fan, Umbanhowar, Ottino &

Lueptow 2015) and these all have the general form of an advection-segregation-

diffusion equation

∂ϕν

∂t
+ ∇ · (ϕνu) + ∇ · F ν = ∇ ·Dν , (2.11)

where F ν is the segregation flux and Dν is the diffusive flux. Provided that these

fluxes are independent, this formulation is compatible with the bulk incompress-

ibility provided

∑

∀ν
F ν = 0, and

∑

∀ν
Dν = 0. (2.12)

The form of the segregation flux is motivated by early bidisperse models

(Bridgwater et al. 1985; Dolgunin & Ukolov 1995; Gray & Thornton 2005). These

all had the property that the segregation shut off when the volume fraction of

either species reached zero. This is satisfied if the segregation flux for species ν and

λ is proportional to ϕνϕλ. In polydisperse systems, Gray & Ancey (2011) proposed

that the segregation flux for species ν was simply the sum of the bidisperse

segregation fluxes with all the remaining constituents λ. This paper proposes

a significant generalization of this concept, by allowing the local direction of

segregation to be different for each bidisperse sub-mixture, so that the segregation
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flux takes the general polydisperse form

F ν =
∑

∀λ ̸=ν

fνλϕ
νϕλeνλ, (2.13)

where fνλ is the segregation velocity magnitude and eνλ is the unit vector in the

direction of segregation, for species ν relative to species λ. This segregation flux

function satisfies the summation constraint (2.12) provided

fνλ = fλν , and eνλ = −eλν . (2.14)

In contrast to the theory of Gray & Ancey (2011) the segregation velocity

magnitude is the same for species ν with species λ and species λ with species ν, and

it is instead the direction of segregation that now points in the opposite sense.

This approach has the property that individual sub-mixtures may segregate in

different directions, which allows the theory to be applied to polydisperse problems

where gravity driven segregation (e.g. Gray 2018) competes against segregation

driven by gradients in kinetic stress (Fan & Hill 2011). This would require the

constituent vector momentum balance to be solved in order to determine the

resultant magnitude and direction of segregation (Hill & Tan 2014; Tunuguntla,

Weinhart & Thornton 2017). In this paper the inter-particle segregation is always

assumed to align with gravity. However, the direction of segregation for the

particles and air can be chosen to be different. This proves to be advantageous

in the numerical method that will be developed to solve the coupled system of

equations in §4.

It is also very useful in the numerical method to allow the rate of diffusion

between the various sub-mixtures to be different. By direct analogy with the

Maxwell–Stefan equations (Maxwell 1867) for multi-component gas diffusion, the

diffusive flux vector is therefore assumed to take the form

Dν =
∑

∀λ̸=ν

Dνλ

(
ϕλ∇ϕν − ϕν∇ϕλ

)
, (2.15)

where Dνλ is the diffusion coefficient of species ν with species λ. Equation (2.15)

satisfies the summation constraint (2.12), provided Dνλ = Dλν , and reduces to

the usual Fickian diffusion for the case of bidisperse mixtures (see e.g. Gray &

Chugunov 2006). For a mixture of n distinct species, it is necessary to solve n− 1
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separate equations of the form (2.11) together with the summation constraint

(2.10) for the n concentrations ϕν , assuming that the bulk velocity field u is

given.

In the absence of diffusion, concentration shocks form naturally in the system

(see e.g. Gray & Thornton 2005; Thornton, Gray & Hogg 2006; Gray & Ancey

2011). The jumps in concentration across such boundaries can be determined

using jump conditions that are derived from the conservation law (2.11) (see

e.g. Chadwick 1976). These jump conditions are also useful when formulating

boundary conditions with diffusion. The most general form of the jump condition

for species ν is

Jϕν(u · n− vn)K+

u
v∑

∀λ ̸=ν

fνλϕ
νϕλeνλ · n

}
~ =

u
v∑

∀λ̸=ν

Dνλ

(
ϕλ∇ϕν − ϕν∇ϕλ

)
· n

}
~ ,

(2.16)

where n is the normal to the shock, vn is the normal speed of the shock and

the jump bracket J K is the difference of the enclosed quantity on the forward

and rearward sides of the shock. In particular, if the flow is moving parallel to a

solid stationary wall, then the jump condition reduces to the one-sided boundary

condition

∑

∀λ ̸=ν

fνλϕ
νϕλeνλ · n =

∑

∀λ ̸=ν

Dνλ

(
ϕλ∇ϕν − ϕν∇ϕλ

)
· n. (2.17)

This implies that the segregation and diffusive fluxes balance and that there is no

mass lost or gained through the wall.

2.3. Reduction to the bidisperse case

For the case of a mixture of large and small particles, which will be referred to

by the constituent letters ν = s, l respectively, the summation constraint (2.10)

becomes

ϕs + ϕl = 1. (2.18)

Assuming that the gravitational acceleration vector g points downwards and that

the segregation aligns with this direction, the concentration equation (2.11) for
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small particles reduces to

∂ϕs

∂t
+ ∇ · (ϕsu) + ∇ ·

(
fslϕ

sϕl
g

|g|

)
= ∇ · (Dsl∇ϕs) . (2.19)

where fsl is the segregation velocity magnitude and Dsl is the diffusivity of

the small and large particles. The functional dependence of these quantities on

the shear rate, pressure, gravity, particle size and the particle-size ratio, will be

discussed in detail in §3.3.

3. Coupling the bulk flow with the segregation

One of the key advances of this paper is to develop a coupled framework that

solves for the bulk velocity field u, the pressure p and the particle concentrations

ϕν at the same time. This framework allows us to explore some of the intimate

couplings between the segregation and the bulk flow. A variety of couplings are

envisaged, that may act singly or all at once, to generate very complex behaviour.

The models fall into two classes: (i) one-way coupled and (ii) two-way coupled,

and both forms of coupling are investigated in this paper.

3.1. Advection by the bulk flow field

Many important practical segregation problems involve a time dependent spa-

tially evolving bulk flow that can not easily be prescribed or determined from

DEM simulations. Since the particle concentrations are advected by the bulk

velocity u, the most basic one-way coupling involves the solution of the mass

(2.1) and momentum (2.2) balances to determine this velocity field. This enables

the segregation equation (2.11) to be solved within a physically relevant flow

field, provided the segregation velocity magnitudes and diffusivities are prescribed.

Computations of this nature may give a good indication of where differently sized

particles are transported, in a flow field that does not experience strong frictional

feedback from the evolving species concentrations. This simplification implicitly

assumes that an essentially monodisperse flow field provides a reasonable ap-

proximation for the dynamics of a much more complex polydisperse mixture of

particles, and that there is no feedback of this local flow field on the segregation

and diffusion rates. This simple coupling is investigated in §5 for a time-dependent

spatially evolving flow down an inclined plane. Importantly, this simple one-way
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coupling also enables the accuracy of the numerical method to be tested against

known exact travelling wave and steady-state solutions for the bulk flow field

and the particle concentrations. In general, the particle concentrations are always

transported by the bulk flow field, so this mechanism is also active in models with

more complex couplings, which will be investigated in §6 and §7.

3.2. Segregation induced frictional feedback on the bulk flow

Each distinct granular phase may have differing particle size, shapes or surface

properties, that lead to different macroscopic friction and/or rheological param-

eters. In this next stage of coupling these rheological differences are built into

the model, so that the evolving particle concentrations feedback on the bulk flow

through the evolving macroscopic friction of the mixture. There are two basic

ways to introduce this coupling.

A key finding of the µ(I)-rheology (GDR MiDi 2004) was that the inertial

number (2.5) is a function of the particle size d. This is clearly defined in a

monodisperse mixture, but an important generalization is needed for polydisperse

systems. Based on DEM simulations of bidisperse two-dimensional assemblies of

disks, Rognon et al. (2007) proposed an inertial number in which the particle size

d was replaced by the local volume fraction weighted average particle size d̄. The

same law was also proposed by Tripathi & Khakhar (2011) and shown to agree

with three-dimensional DEM simulations of spheres. Generalizing this concept to

polydisperse systems, implies that the average particle size

d̄ =
∑

∀ν
ϕνdν , (3.1)

evolves as the local concentrations ϕν of each particle species change. As a result,

given the same local shear rate 2||D||, pressure p and intrinsic grain density ρ∗,

the new inertial number

I =
2d̄||D||√
p/ρ∗

. (3.2)

will be larger for a mixture composed of larger particles than one made of smaller

grains.

As well as differences in size, the particles may also differ in shape and/or surface

properties. A prime example of this are segregation induced fingering instabilities,
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which develop with large angular (resistive) particles and finer spherical particles

(Pouliquen et al. 1997; Pouliquen & Vallance 1999; Woodhouse et al. 2012; Baker

et al. 2016b). The effect of particle shape and surface properties can certainly be

modelled in monodisperse flows by changing the assumed macroscopic frictional

parameters (see e.g. Pouliquen & Forterre 2002; Forterre 2006; Edwards et al.

2019; Rocha et al. 2019). Furthermore, the results of Baker et al.’s (2016b)

granular fingering model suggest that a good approach is to assume that each

phase satisfies a monodisperse friction law µν = µν(I) of the form (2.8) and then

compute the effective friction by the weighted sum of these laws, i.e.

µ̄ =
∑

∀ν
ϕνµν . (3.3)

On the other hand, it is also possible to assume that there is a single µ(I)-curve,

given by (2.8), but that the parameters in it evolve as the mixture composition

changes, i.e.

µ̄s =
∑

∀ν
ϕνµν

s , µ̄d =
∑

∀ν
ϕνµν

d, µ̄∞ =
∑

∀ν
ϕνµν

∞, Ī0 =
∑

∀ν
ϕνIν0 , (3.4)

where µν
s , µν

d, µν
∞ and Iν0 are the frictional parameters for a pure phase of

constituent ν. There is clearly potential for a great deal of complexity here that

needs to be explored. However, to the best of our knowledge there are no DEM

studies that measure the effective frictional properties of mixtures of particles of

different sizes, shapes and surface properties that could further guide the model

formulation. Segregation mobility feedback on the bulk flow will be investigated

further in §6.

3.3. Feedback of the bulk flow on the segregation rate and diffusivity

The shear rate γ̇ = 2∥D∥, the pressure p, gravity g and the particle properties

also enter the equations more subtly through the functional dependence of the

segregation velocity magnitude fνλ and diffusivity Dνλ in the fluxes (2.13) and

(2.15). Even in bidisperse granular mixtures very little is known about their

precise functional dependencies. However, dimensional analysis is very helpful

in constraining the allowable forms.

Consider a bidisperse mixture of large and small grains of sizes dl and ds,
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respectively, which have the same intrinsic density ρ∗. The small particles occupy

a volume fraction ϕs = 1−ϕl per unit granular volume and the total solids volume

fraction is Φ. The system is subject to a bulk shear stress τ , a pressure p and

gravity g, which results in a shear rate γ̇. Even though these variables are spatially

varying, they are considered here as inputs to the system, whereas the segregation

velocity magnitude fsl and the diffusivity Dsl are outputs. Since there are nine

variables, with three primary dimensions (mass, length and time), dimensional

analysis implies that there are six independent non-dimensional quantities

µ =
τ

p
, I =

γ̇d̄√
p/ρ∗

, Φ, P =
p

ρ∗gd̄
, R =

dl

ds
, ϕs, (3.5)

where d̄ is the volume fraction weighted average grain size defined in (3.1), P is

the non-dimensional pressure and R is the grain-size ratio. For a monodisperse

system in the absence of gravity, only the first three quantities are relevant and

GDR MiDi (2004) made a strong case for the friction µ being purely a function

of the inertial number I. This led to the development of the incompressible µ(I)-

rheology (GDR MiDi 2004; Jop et al. 2006; Barker & Gray 2017), which is used

in this paper.

Using the monodisperse scalings, it follows that in the absence of gravity the

self diffusion of grains should scale as

D ∼ γ̇d̄2 F(µ, I, Φ), (3.6)

where F is an arbitrary function of the friction, the inertial number and the

solids volume fraction, and with no dependence on P , R and ϕs. In both the

incompressible and compressible µ(I)-rheologies (GDR MiDi 2004; da Cruz et al.

2005; Jop et al. 2006; Forterre & Pouliquen 2008) the friction µ and the solids

volume fraction Φ are rigidly bound to the inertial number I, so it is not necessary

to retain their dependence in (3.6). However, in the latest well-posed compressible

theories (e.g. Barker & Gray 2017; Heyman et al. 2017; Schaeffer et al. 2019) the

µ = µ(I) and Φ = Φ(I) laws only hold at steady-state, and so the general form of

the diffusivity (3.6) applies.

Utter & Behringer (2004) showed experimentally that the self-diffusion coeffi-

cient scaled with the shear rate and the particle size squared. This suggests that
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the simplest model for the diffusion of the grains in a polydisperse system is

Dνµ = Aγ̇d̄2, (3.7)

where A = 0.108 is a universal constant (Utter & Behringer 2004) and d̄ is now

interpreted as the average, locally evolving, particle size defined in (3.1). Some

evidence for this is provided by the experiments of Trewhela et al. (2021) which

show that a single small intruder in a matrix of large grains performs larger

random walks than a single large intruder in a matrix of fine grains. In general,

however, the diffusivity could be multiplied by an arbitrary function of the other

non-dimensional quantities in (3.5).

Gravity driven percolation (kinetic sieving) and squeeze expulsion (Middleton

1970; Bridgwater et al. 1985; Savage & Lun 1988; Gray & Thornton 2005; Gray

2018) combine to create the dominant mechanism for segregation in dense sheared

granular flows. Assuming that the segregation is independent of the diffusion,

dimensional analysis suggests that the segregation velocity magnitude in a bidis-

perse mixture of large and small particles should scale as

fsl ∼ γ̇d̄G(µ, I, Φ, P,R, ϕs), (3.8)

where G is an arbitrary function. It has long been known that the segregation

velocity magnitude fsl is strongly dependent on the strain-rate and the particle

size ratio (see e.g. Bridgwater et al. 1985; Savage & Lun 1988). Gray & Thornton

(2005) also suggested that there should be a dependence on gravity. Evidence for

this is provided by the fact that granular segregation experiments, with a density

matched interstitial fluid, do not segregate (Vallance & Savage 2000; Thornton

et al. 2006), i.e. when gravity is effectively reduced, so is the rate of segregation.

Inclusion of the gravitational acceleration suggests that the segregation velocity

magnitude should also be pressure dependent, since g only appears in the non-

dimensional pressure P . This is supported by the experiments of Golick & Daniels

(2009), who observed a dramatic slowing in the segregation rate when they applied

a normal force on their ring shear cell. This pressure dependent suppression of

segregation has been investigated further in the DEM simulations of Fry et al.

(2018), who suggested a that the segregation velocity magnitude should scale with
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the reciprocal of the square root of the pressure. When this is combined with the

shear rate dependence this implies that fsl is linear in the inertial number.

In this paper, the segregation velocity magnitude is based on the refractive

index matched shear box experiments of Trewhela et al. (2021). They measured

the trajectories of (i) a single large and (ii) a single small intruder for a wide

range of shear rates γ̇ ∈ [0.26, 2.3] and size ratios R ∈ [1.17, 4.17]. Trewhela et al.

(2021) made four key observations (a-d below) that allowed them to collapse all

their data. (a) Both the large and small intruder data showed a linear dependence

of fsl on the shear rate γ̇. (b) Large intruders have a linear dependence on the

size ratio that shuts off when R equals unity, i.e. linear in (R− 1), while (c) small

intruders have the same linear dependence at small size ratios, but develop a

quadratic dependence on (R− 1) at larger size ratios. Finally, (d) both large and

small intruders do not move linearly through the depth of the cell, but describe

approximately quadratic curves as they rise up, or percolate down, through it.

Since the pressure is linear with depth, this suggests a 1/(C + P ) dependence,

where the non-dimensional constant C is introduced to prevent a singularity when

the pressure is equal to zero. Trewhela et al. (2021) therefore suggested that the

segregation velocity magnitude had the form

fsl =
Bρ∗gγ̇d̄2
Cρ∗gd̄+ p

[
(R− 1) + Eϕl(R− 1)2

]
, (3.9)

where B, C and E are universal constants. This expression encapsulates the key

processes of gravity, shear and pressure, which drive the dominant mechanism for

gravity driven segregation of particles of different sizes and size ratios in shear

flows. Moreover, as a consequence of the d̄2 dependence, equation (3.9) automat-

ically gives rise to asymmetric flux functions (Gajjar & Gray 2014; van der Vaart

et al. 2015), whose asymmetry is size ratio dependent (Trewhela et al. 2021). The

function (3.9) not only collapses all the single intruder experiments of Trewhela

et al. (2021), but it also quantitatively matches the time and spatial evolution of

van der Vaart et al.’s (2015) shear box experiments, with a 50:50 mix of 4 mm

and 8 mm glass beads, using the same values of B, C and E and the generalized

diffusion law (3.7). The values of all the non-dimensional parameters are given

in table 2. Note that, since the segregation velocity magnitude (3.9) is pressure
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A = 0.108, B = 0.3744, C = 0.2712, E = 2.0957,

Table 2. Non-dimensional constants A, B, C and E in the diffusion (3.7) and
segregation laws (3.9) of Trewhela et al. (2021).

dependent, but the generalized diffusivity (3.7) is not, Trewhela et al.’s (2021)

theory also exhibits the segregation suppression with increased pressure, observed

by Golick & Daniels (2009) and Fry et al. (2018). The formula (3.9) can not be

pushed too far, because, for size ratios greater than five, spontaneous percolation

is known to occur for low small particle concentrations (Cooke, Bridgwater &

Scott 1978), while isolated large intruders may exhibit intermediate or reverse

segregation (Thomas 2000; Thomas & D’Ortona 2018).

4. Numerical method

In order to solve the coupled system of equations the mass and momentum

equations (2.1)–(2.2) are written in conservative form

∇ · u = 0, (4.1)

∂

∂t
(ϱu) + ∇ · (ϱu⊗ u) = −∇p+ ∇ · (2ηD) + ϱg, (4.2)

where ϱ is now the mixture density and ⊗ is the dyadic product. This paper

focuses on solving fully coupled bidisperse segregation problems with an evolving

free-surface using a multiphase approach based on the segregation theory of §2.2.

The method assumes that there are three coexisting phases; large particles,

small particles and excess air, which occupy volume fractions φl, φs and φa per

unit mixture volume, respectively. In this representation the granular phases are

implicitly assumed to retain some air between the grains, so that the overall

solids volume fraction in a purely granular state is still Φ as before. Assuming

that there is no diffusion of the excess air phase with respect to the particles

(i.e Dal = Das = 0) the three conservation laws (2.11) for large particles, small

particles and excess air are

∂φl

∂t
+∇·

(
φlu

)
+∇·

(
−flsφlφs g

|g| − fagφ
lφae

)
= ∇·

(
Dls

(
φs∇φl − φl∇φs

))
,

(4.3)
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∂φs

∂t
+ ∇ · (φsu) + ∇ ·

(
fslφ

sφl g

|g| − fagφ
sφae

)
= ∇ ·

(
Dsl

(
φl∇φs − φs∇φl

))
,

(4.4)

∂φa

∂t
+ ∇ · (φau) + ∇ · (fagφ

aφg e) = 0, (4.5)

respectively, where the concentration of grains is defined as

φg = φl + φs = 1 − φa. (4.6)

When φa = 0, both the large and small particle segregation equations, (4.3) and

(4.4), reduce to the bidisperse segregation equation (2.19), and equation (4.5) is

trivially satisfied. As will be demonstrated in §5, this approach provides a simple

and effective way of segregating the large and small particles from one another,

while simultaneously expelling unwanted air bubbles and sharpening the free-

surface interface.

The excess air is assumed to segregate from the grains with constant segregation

velocity magnitude fag along the direction e. The excess air segregation velocity

magnitude has no physical significance and the approach should be thought of as

a convenient numerical interface sharpening method. The rate is chosen to expel

the excess air quickly enough to prevent bubble trapping. For the inclined plane

simulations in §§5 and 6, the direction e is chosen to be the upwards pointing

normal to the plane in order to avoid air being segregated through the advancing

front. This is not a concern in the rotating drum simulations in §7 and the direction

e is therefore chosen to point in the opposite direction to gravity g.

The system of equations (4.1)–(4.5) is solved numerically with OpenFOAM

assuming that the density and viscosity are given by the local volume fraction

weighted averaged values

ϱ =
∑

∀ν
φνϱν∗ , η =

∑

∀ν
φνην∗ . (4.7)

The intrinsic density of the air ϱa∗ is equal to a constant and the intrinsic densities

of the large and small particles are both constant and equal to one another,

i.e. ϱl∗ = ϱs∗ = Φρ∗ ≫ ϱa∗, where the solids volume fraction Φ accounts for the

interstitial air that is always present in the granular matrix. The intrinsic viscosity

of the air ηa∗ is also assumed to be constant, while the intrinsic viscosity of the

grains is calculated from the viscosity (2.3) of the µ(I)-rheology, with the friction
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fsl = 7× 10−3 m/s, fal = fas = 0.1 m/s,

Dsl = 1× 10−6 m2/s, Dal = Das = 0 m2/s, h = 5× 10−3 m,

Table 3. Constant segregation velocities and diffusivities between the different phases,
as well as the inflow thickness h for the inclined flow simulations presented in §5 and §6.

µ and inertial number I calculated using the couplings discussed in §3.2. The

parameters used in the simulations in §5 and §6 are summarized in tables 1 and

3.

Equations (4.1) and (4.2) are of the form of the incompressible Navier-Stokes

equations and the pressure-velocity coupling is solved by the PISO algorithm (Issa

1986). The MULES algorithm (multi-dimensionsal limiter for explicit solution,

Weller 2006) is used to solve the concentration equations (4.4)–(4.5). The first

two terms in equations (4.4)–(4.5) are the same as those in classic multiphase

flow problems, and the inclusion of segregation actually simplifies the problem,

as it provides a physical mechanism to counteract the inherent and unwanted

numerical diffusion. The numerical treatment of the segregation flux can yield

phase fractions outside the interval [0, 1]. Limiting of the respective fluxes (to

avoid this discrepancy) is accomplished with the MULES algorithm. The diffusive

flux in polydisperse flows is numerically unproblematic and is treated in a similar

way to the convective flux, but without a limiter. The coupling of phase fractions

with the bulk flow equations for the velocity and pressure is achieved with iterative

coupling (Picard iteration) through the respective calculation of local viscosity and

density in equations (4.7).

Numerical diffusion leads to a smearing of the free-surface interface, which has

to be suppressed by the numerical scheme. These issues are not limited to the

present problem but appear in similar form in many multiphase problems (e.g.

Marschall et al. 2012). In OpenFOAM, this effect is normally corrected with an

artificial flux, that compresses the interface (Rusche 2002; Weller 2008). For a

general multiphase mixture the interface sharpening equation for phase fraction

φν is

∂φν

∂t
+ ∇ · (φνu) +

∑

∀λ̸=ν

∇ ·
(
uνλφ

νφλ
)

= 0, (4.8)



Coupling rheology and segregation in granular flows 71

where uνλ is the relative velocity between phases ν and λ. This relative velocity

is specifically constructed to be similar in magnitude to the bulk velocity and

directed towards regions of higher concentration of phase ν, i.e.

uνλ = cνλ |u|
φλ ∇φν − φν ∇φλ

|φλ ∇φν − φν ∇φλ| . (4.9)

The parameter cνλ is usually chosen to be of order 1 and regulates the amount

of counter gradient transport between phases ν and λ. The counter gradient flux

sharpens the interface, but can lead to results that are outside the range [0, 1] and

the MULES algorithm is used again to keep all cell values within this interval.

For the case of a mixture of air and grains, equations (4.8) and (4.9) reduce to

∂φa

∂t
+ ∇ · (φau) + ∇ ·

(
cag |u|φaφg ∇φa

|∇φa|

)
= 0, (4.10)

which has the same ϕaϕg structure to the air concentration equation (4.5). The

key difference, is that (4.5) allows the user to choose the direction e and magnitude

fag of the air segregation, rather than being constrained to the counter-gradient

direction. Since many problems of practical interest involve dense granular free-

surface flows, with a region of air above them, choosing the direction to segregate

the air is not difficult, and completely avoids the unfortunate tendency of interface

shapening methods to create bubbles of air within the body of grains that may re-

main permanently stuck. The magnitude of the air segregation velocity magnitude

may also be chosen to parameterize the typical timescales over which excess air is

physically expelled from the body of grains. The polydisperse segregation theory,

developed in §2.2, provides a promising general method of interface sharpening

that can be applied to a wide range of problems.

Time stepping is conducted in the ordinary time marching manner. However,

special consideration is required due to the spatially varying and high viscosity.

In OpenFOAM, each velocity component is solved individually and coupling is

achieved explicitly (in a numerically segregated approach). The explicit terms

introduce a strict CFL criterion which incorporates the local viscosity (Moukalled,

Mangani & Darwish 2016). The CFL number is defined as

CFL =
|u|∆t
∆x

+
η ∆t

ρ∆x2
, (4.11)
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and should be limited to a value that is characteristic for the time integration

scheme (e.g. 1 for forward Euler). In most multiphase flows the first term (con-

vection) dominates and the second term (viscosity or diffusion) is neglected. In

granular flows with stationary zones, the opposite is the case, since the granular

viscosity tends towards infinity in the limit ||D|| → 0. To avoid infinitely small

time steps, the granular viscosity is therefore limited to a reasonably high value

(see e.g. Lagrée, Staron & Popinet 2011; Staron, Lagrée & Popinet 2012), i.e.

η = min(ηmax, η), (4.12)

so that ηmax is the maximum viscosity when the pressure is large and/or the

strain-rate is small. This is a purely numerical regularisation rather than a

physically motivated one (see e.g Barker & Gray 2017). The viscous part is still

the dominating contribution in the CFL number and granular flow simulations

require much smaller time steps than comparable simulations with low viscosity

liquids. Note that computations can be sped up considerably by giving the air

phase an artificially high viscosity. This reduces inertial effects in the air, whilst

still resulting in a negligible influence of the air on the grains.

The general multi-component segregation-diffusion equations have been im-

plemented into a custom solver based on the OpenFOAM solver multiphaseIn-

terFoam, and which makes extensive use of the MULES algorithm provided in

the OpenFOAM library. The original solver implements a system of multiple

immiscible phases. The system requires an additional diffusion term and replaces

the counter gradient transport term with the segregation fluxes. The granular

rheology is implemented in a separate library, making use of the respective

OpenFOAM programming interface. A similar interface has been created to allow

for different expressions for segregation and diffusion coefficients.

5. Segregation in an uncoupled bulk flow down an inclined

plane

The various couplings and feedbacks between segregation and the bulk flow,

discussed in §3, are now explored in more detail. In order to test the numerical

method against known steady-state and travelling wave solutions, §5 examines the
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one-way coupled model, in which the segregation velocity magnitudes and diffusiv-

ities are prescribed, and the bulk flow field is computed with a monodisperse model

(as described in §3.1). The parameters for the bulk flow are summarized in table 1

and are based on the monodisperse glass bead experiments of Barker & Gray

(2017). The segregation velocity magnitudes and diffusivities are given in table 3

and are chosen to rapidly segregate the air from the grains to produce a sharp

free-surface, whilst simultaneously allowing a diffuse inversely-graded steady-state

segregation profile to develop (see e.g. Wiederseiner et al. 2011).

5.1. Inflow conditions and boundary conditions

A rectangular Cartesian coordinate system is defined with the x-axis pointing

down the slope, which is inclined at ζ = 24◦ to the horizontal, and the z-axis being

the upward pointing slope normal. The unit vectors in each of these directions

are ex and ez, respectively. Numerical simulations are performed on a rectangular

grid in the region 0 ⩽ x ⩽ Lx, 0 ⩽ z ⩽ Lz, where Lx and Lz define the box size.

In order to represent an initially empty domain, a Newtonian air phase ν = a is

used, which initially fills the box and is stationary, so that φa = 1 and u = 0

everywhere at time t = 0. Granular material, composed of a bidisperse mixture

of large ν = l and small ν = s grains, is then injected at the left boundary using

Dirichlet conditions on the velocity

u|x=0 =




ua(z), for h < z ⩽ Lz,

ug(z), for 0 ⩽ z ⩽ h,

(5.1)

and on the constituent volume fractions

(φa, φs, φl)
∣∣
x=0

=





(1, 0, 0) for h < z ⩽ Lz,

(
0, 12 ,

1
2

)
for 0 ⩽ z ⩽ h,

(5.2)

where h is the height of the interface between air and grains at the inflow, and

ua and ug = us = ul are prescribed air and grain velocities. This corresponds to

a 50:50 mix by volume of large and small grains, with an air phase above. Along

the solid base of the chute (z = 0) the no slip and no penetration condition u = 0

is enforced, as well as the no normal flux condition (2.17) for all of the phases.

At the outlet wall at x = Lx a free outlet condition is applied. This means that
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there is free outflow (i.e. zero gradient) unless the velocity vector points into the

domain (inflow). If inflow is predicted, then the condition switches to Dirichlet

and (φa, φs, φl) = (1, 0, 0) i.e. there is only air inflow and not granular inflow. A

similar free-outflow condition applies for the concentration on the top boundary,

z = Lz. Here the normal velocity has zero gradient, but the pressure is prescribed

to be a small constant (Barker & Gray 2017). Simulations have been performed

with p(Lz) = 10−3 N/m2 and 10−6N/m2 and are insensitive to this change.

5.2. Steady-uniform bulk flow velocity

As this becomes an effectively monodisperse problem for the bulk flow u and

pressure p, fully developed steady uniform flow should correspond to the Bagnold

flow solution (see e.g. Silbert et al. 2001; GDR MiDi 2004; Gray & Edwards 2014;

Barker et al. 2015). Assuming a flow of thickness h, the exact solution to the

µ(I)-rheology implies that the pressure is lithostatic

p = ρ∗Φg (h− z) cos ζ, (5.3)

the downslope velocity is given by the Bagnold profile

uBagnold(z) =
2Iζ
3d

√
Φg cos ζ

(
h

3
2 − (h− z)

3
2

)
, (5.4)

and the inertial number I is equal to the constant

Iζ = µ−1(tan ζ). (5.5)

For the partially regularized form of the friction law (2.8) used in this paper, it

follows, that for µ∞ > 0 and I > IN1 , the inertial number is equal to

Iζ =
tan ζ − µd +

√
(µd − tan ζ)2 + 4(tan ζ − µs)µ∞I0

2µ∞
. (5.6)

The granular inflow velocity is therefore set to ug = uBagnold ex. The velocity in

the air phase above is set to the Newtonian flow solution ua = up(z) ex, where

the Poiseuille profile is

up(z) =
gρa∗ cos ζ

ηa
(
2Lz(z − h) + h2 − z2

)
+ uBagnold(h). (5.7)
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This implicitly assumes no slip at the lower free-surface interface with the moving

grains, i.e. up(h) = uBagnold(h).

5.3. Comparison between the different methods of interface tracking

For this simple case, it is instructive to compare the alternative interface

sharpening techniques that were discussed in §4. As shown in figure 2(a), when

there is no interface sharpening, numerical diffusion leads to a very wide diffuse

layer between the air and the grains, rather than a sharp free-surface. In addition,

a large vortex of dilute granular material is thrown into the air at the front and a

thin layer of air is trapped next to the basal solid wall. This trapping of air next

to the boundary is a serious problem, because it prevents direct contact of the

grains with the lower boundary and consequently affects the effective friction

experienced by the grains as they flow downslope. In reality, any air that is

trapped adjacent to the lower wall is free to percolate up through the pore space

between the particles and escapes. This unphysical air trapping is also observed

in the simulation with active counter gradient transport as shown in figure 2(b).

Although the free-surface is much shaper than before, there is a tendency for the

trapped air to form bubbles. This effect is especially strong in high viscosity flows

because the bubbles become stuck and are unable to escape. The results, both with

and without interface sharpening, are also found to be sensitive to the numerical

mesh and time step used in the calculation. Figure 2(c) shows the new method

of tracking the interface using equations (4.4)–(4.5) assuming that trapped air is

segregated upwards, i.e. e = ez. The segregation velocity magnitude and diffusion

coefficients (see table 3) are chosen to give diffuse segregation inside the granular

mixture, but also to generate a sharp interface between the granular phases and

the air above. It is clear from figure 2(c) that with this method there is no trapped

air next to the basal boundary, the free-surface interface is sharp and there is no

vortex shedding at the flow front. Moreover, the results are grid-converged. The

new method of treating the free-surface is therefore very promising, and provides

a simple way of parameterizing the physics that is actually taking place.
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Figure 2. The air fraction φa after t = 0.05 s of injection of granular material onto a
frictional plane inclined at ζ = 24◦. Case (a) uses no interface sharpening whereas case
(b) uses the usual counter gradient transport method often employed in OpenFOAM.
For the same initial and boundary conditions, the air segregation method proposed in
§4 gives the constituent distribution shown in panel (c), using the parameters in table 3.

5.4. Numerical simulation of the bulk flow and the segregation

Armed with this improved and reliable method of interface capture, the full

transient evolution of the travelling front can be explored. Figure 3 shows the

results of a calculation performed in a long aspect ratio domain with dimensions

(Lx, Lz) = (0.62, 6.2 × 10−3) m i.e. 100 : 1. As the front progresses into the

domain, there is dynamic evolution of both the front shape and the distribution

of the granular phases. In particular, a steadily travelling front forms with a well

defined shape (Pouliquen 1999a; Gray & Ancey 2009; Saingier, Deboeuf & Lagrée

2016). Behind the advancing front, the initially evenly mixed concentration of

large and small grains is swept downstream from the inflow and is gradually

eroded by a growing layer of large particles at the surface and a growing layer of
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fines adjacent to the base of the flow. By 20 cm downstream the homogeneously

mixed region completely disappears and further downstream there is a thin layer

with high concentrations of large grains at the surface and a thicker layer with

high concentrations of fine grains at the base. This is known as an inversely graded

particle-size distribution. The difference in thickness is due to the large particles

being concentrated in the faster moving region of the flow, so a much thinner layer

can transport the same mass flux as the thick, slow moving layer beneath, which

contains high concentrations of fines.

An immediate consequence of the large particles being segregated into the faster

moving near surface layers is that they are preferentially transported to the flow

front, as shown in figure 3(b,c,d). As large grains reach the front, they are over-

run, but can rise back towards the surface again by particle segregation, to form a

recirculating frontal cell of large particles that grows in size with increasing time

(Pierson 1986; Pouliquen et al. 1997; Iverson & Vallance 2001; Gray & Kokelaar

2010b,a; Johnson et al. 2012; Woodhouse et al. 2012; Baker et al. 2016b; Denissen

et al. 2019). The large particle rich flow front and the inversely graded body of

the flow are connected by what is known as a breaking size-segregation wave

(Thornton & Gray 2008; Johnson et al. 2012; Gajjar, van der Vaart, Thornton,

Johnson, Ancey & Gray 2016). This travels steadily downslope, but at a slower

speed than the front. It is this wave that segregates the large slow moving particles,

close to the base of the flow, up into faster moving regions allowing them to be

recirculated, and conversely, allows fast moving small grains to percolate down

into slower moving basal layers. The breaking wave shown here includes the effects

of diffusion as well as segregation for the first time. Eventually the flow front and

the breaking-size segregation wave propagate out of the domain, to leave the

approximately steady uniform flow shown in figure 3(e). For comparison, Gray &

Thornton’s (2005) concentration shock solution (see appendix A) is also plotted

in figure 3(e) using the Bagnold velocity profile (5.4). For an inflow small particle

concentration φs
0 = 0.5 this accurately predicts the position of the centre of the

final steady-state height of the inversely graded layer, with the large particles

occupying a thinner faster moving region than the fines. However, the solution

neglects diffusion in both the downslope and slope normal directions, and only
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Figure 3. Evolution of a granular flow front down a frictional plane inclined at
ζ = 24◦.The flow consists of a bidisperse mixture with both small and large particles
having identical rheological properties (listed in table 1) and no feedback from the local
particle size. Here the concentration of small particles φs is plotted inside the granular
material at 5 successive times. The plots are stretched vertically in order to provide
greater detail of the concentration distribution. Panel (e), which is the plot of a late
time at t = 10 s, is indicative of the long-time steady dynamics after which no further
evolution is observed in the simulations. The dashed lines in (e) show the corresponding
shock solutions of Gray & Thornton (2005), which assume that there is no diffusion
and resolve only the normal component of the segregation flux. The parameters are
summarized in tables 1 and 3. A video is available in the online supplementary material
showing the full dynamics of the flow front.

resolves the segregation flux in the slope normal direction, so it does not capture

the precise point at which the solution reaches steady state.

5.5. Comparison with steady uniform solutions for the bulk flow and the

segregation

Figure 4(a) shows excellent agreement between the computed two-dimensional

steady uniform flow solution for the downslope velocity u and the Bagnold velocity
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Figure 4. Long-time downstream velocity and small particle concentration. Open circles
are from the numerical simulation, at the outflow boundary x = Lx at t = 10 s, and the
solid curve in (a) is the Bagnold velocity profile (5.4) and in (b) the solid line is the exact
solution (5.8)–(5.11) of Gray & Chugunov (2006). The parameters are summarized in
tables 1 and 3.

profile (5.4). The only slight difference occurs near the free-surface, where the

weight of the column of air above produces the largest relative change in the

pressure within the granular material. With the µ(I)-rheology, this changes the

balances in the inertial number and hence the computed velocity profile. For

steady uniform flows, Gray & Chugunov (2006) derived an exact solution for the

small particle concentration, assuming that the segregation and diffusion rates

were constant. This solution takes the form

φs =
1

1 +AGC exp(Pe ẑ)
, (5.8)

where AGC is a constant and Pe is the Peclet number for segregation. Note that

in this solution the z-coordinate has been non-dimensionalized using the scaling

z = hẑ, where h is the slope normal flow depth. In terms of the dimensional

segregation and diffusion rates, given in table 3, the Peclet number is defined as

Pe =
fsl h cos ζ

Dsl
, (5.9)

where the factor cos ζ arises from the fact that the segregation is inclined at an

angle ζ to the slope normal z-axis, i.e. ez ·g/|g| = − cos ζ. The constant AGC alters

the position of the transition between large and small particles in the solution. If

the depth averaged concentration is equal to

φs =
1

h

∫ h

0

φ(z) dz =

∫ 1

0

φ(ẑ) dẑ, (5.10)
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then

AGC =
exp(−Peφs) − exp(−Pe)

1 − exp(−Peφs)
. (5.11)

The depth-averaged flux of small particles is the same at all downstream positions

at steady state. It follows that the upstream inflow conditions can be used to

determine the constant AGC in the final steady-state (see e.g. Wiederseiner et al.

2011; van der Vaart et al. 2015). For the inflow concentration φs
0 = 0.5 and

Bagnold velocity (5.4), the depth-averaged concentration φs = 0.6744, which

is very close to the value of φs = 0.6746 for the computed solution shown in

figure 4(b). For the parameters chosen in table 3, the Peclet number Pe = 31.97,

so the particles are quite sharply segregated. The close match between the Bagnold

solution and Gray & Chugunov’s (2006) results provides a clear indication that the

numerical method and implementation are appropriate and precise. In particular,

the bulk flow requires a delicate balance of stresses over a relatively long distance

and any significant numerical diffusion would likely disrupt this.

5.6. Comparison of the frontal shape with depth-averaged solutions

The basal friction law of Pouliquen (1999b) predates the full tensorial µ(I)-

rheology and was designed to model the frictional source term in the shallow

avalanche equations of Savage & Hutter (1989) on chutes with rough bases. The

fully developed numerical front solution, shown in figure 3, is indeed very shallow,

so it is appropriate to compare it to solutions of these reduced equations. The

depth-averaged theory provides a very simple means of predicting the shape of

a steadily travelling granular flow front (Pouliquen 1999a; Gray & Ancey 2009;

Saingier et al. 2016). In a frame ξ = x− uF t moving with the front speed uF the

steady-state depth-averaged mass and momentum balances are

d

dξ
(h(u− uF )) = 0, (5.12)

d

dξ

(
χhu2 − huuF

)
+

d

dξ

(
1

2
gh2 cos ζ)

)
= hg cos ζ(tan ζ − µ), (5.13)

where h is the avalanche thickness, and the depth-averaged velocity u, the depth-

average of the velocity squared u2 and the shape factor χ are defined as

u =
1

h

∫ h

0

u dz, u2 =
1

h

∫ h

0

u2 dz, χ =
u2

u2
, (5.14)
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respectively. Many theories assume that the shape factor χ = 1, which corresponds

to plug flow, and which dramatically simplifies the characteristic structure of this

hyperbolic system of equations. For the Bagnold velocity profile (5.4), the shape

factor χ = 5/4. Saingier et al. (2016) showed that with Pouliquen & Forterre’s

(2002) effective basal friction law this led to the formation of a thin precursor

layer ahead of the main front that extended to infinity, which is unphysical.

The depth-averaged mass balance equation (5.12) can be integrated directly,

subject to the condition that the thickness is zero at the flow front, to show that

for non-trivial solutions the depth-averaged velocity is equal to the front speed,

i.e.

u = uF , (5.15)

everywhere in the flow. Far upstream the flow is steady and uniform. The front

speed can therefore be determined by integrating the Bagnold solution (5.4)

through the avalanche depth to show that

uF = u∞ =
2Iζ
5d

√
Φg cos ζ h3/2∞ , (5.16)

where h∞ and u∞ are the steady-uniform thickness and downslope velocity far

upstream. Expanding (5.13), dividing through by hg cos ζ and using (5.15) yields

an ordinary differential equation (ODE) for the flow thickness

[
(χ− 1)Fr2∞

h∞
h

+ 1

]
dh

dξ
= tan ζ − µ, (5.17)

where Fr∞ is the Froude number far upstream, i.e.

Fr∞ =
u∞√

gh∞ cos ζ
. (5.18)

In order to solve the ODE (5.17) it is necessary to convert the new friction law (2.8)

into an effective basal friction law. This is done by assuming that Bagnold flow

holds everywhere in the flow and hence the depth-averaged downslope velocity u

satisfies

u =
2I

5d

√
Φg cos ζ h3/2. (5.19)

Since, the depth-averaged velocity is the same as the front velocity (5.15) every-

where in the flow, equations (5.16) and (5.19) can be equated to determine the
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Figure 5. Comparison of the two-dimensional computed steady travelling free-surface
profile (red line), with solutions of the depth-averaged equations using the the regularised
effective basal friction law (5.21) with a plug-flow shape factor χ = 1 (black dashed line)
and Bagnold flow shape factor χ = 5/4 (blue dashed line). The free-surface from the full
two-dimensional numerics, after t = 10 s in a moving frame, is calculated by interpolating
the contour of φa = 0. The parameters are summarized in table 1.

inertial number

I(ξ) = Iζ

(
h∞
h(ξ)

)3/2

, (5.20)

at a general position ξ. Substituting this expression into the high-I branch of the

full µ(I) curve (2.8) gives the regularised depth-averaged basal friction

µ(h) =

µsI0h
3/2 + µdIζh

3/2
∞ + µ∞I2ζ

(
h∞√
h

)3

I0h3/2 + Iζh
3/2
∞

. (5.21)

The significance of this expression is made clear by taking the limit as h → 0.

Unlike for the previous expression for µ, in which µ∞ = 0, the friction now tends

to infinity for vanishingly thin layers. This means that the ODE (5.17) naturally

predicts an infinite slope and therefore the front always pins to the boundary and

this system is guaranteed to preclude infinite precursor layers.

The front shape predicted by this newly derived regularised depth-averaged

formulation is compared with the full two-dimensional numerics in figure 5. In

order to guarantee that the full solution does indeed correspond to a steady

travelling front, the simulation is continued from t = 4 s in a moving frame. This

change is applied simply by shifting all the velocities and the boundary conditions

by the depth-averaged velocity (5.16) i.e. unew = u(t = 4s)−uex everywhere. The

following analysis applies to the long-time solution in this moving frame, which

is found to be numerically invariant of time after another ∼ 5 s of simulation.

Upstream of the front (for low values of ξ) the flow is almost uniform, so the

Bagnold solution, which has a shape factor χ = 5/4, is observed as expected.
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Figure 6. Flow fields inside the granular flow front after 10 s in a moving frame. Panels
(a) and (b) show the velocity components and panel (c) is a selection of the corresponding
streamlines. The pressure and the base 10 logarithm of the inertial number I are shown
in (d) and (e) respectively. Note that the downstream velocity in panel (a) has been
shifted by the front velocity (5.16) in order to give values in the frame of the frictional
base. The parameters are summarized in table 1.

However, closer to the flow front the assumption of uniformity breaks down

and the two solutions differ. As shown in figure 5, the front computed with the

multiphase approach lies between the depth averaged solution with χ = 5/4 and

that with χ = 1, which corresponds to pure plug flow, where u no longer depends

on z. This comparison therefore highlights the expected discrepancies between full

two-dimensional theories and depth-averaged equivalents when dynamics vary in

a non-shallow manner.

5.7. The two-dimensional internal flow fields in the moving frame

Given that the two-dimensional transient flow front has developed into a steady

travelling state, the detailed flow fields inside the granular material are of par-

ticular interest. These are plotted in figure 6. Figure 6(a) shows the downstream

velocity, shifted back to the lab-frame by adding uex, which is monotonically
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increasing in z for all x in a similar manner to the Bagnold velocity profile. Only

at the tip of the front is the vertical velocity non-zero (figure 6b) and there is a

downwards motion. As these two velocity components define a steady travelling

front, the streamlines which result from them coincide with the particle paths.

However, these trajectories, which are plotted in figure 6(c), only correspond to

the paths of monodisperse particles. The large and small particle trajectories,

which couple to these flow fields, but not vice-versa, are not steady in this frame,

or any frame of reference as the large particle recirculation region at the head is

forever growing in size. Just like the similarity to the Bagnold velocity solution,

the pressure field in figure 6(d) is close to the lithostatic profile (5.3) except that

the flow thickness is not constant. Similarly, the inertial number (figure 6e) takes

its steady uniform value upstream, but gets larger as the front is approached, as

predicted by (5.20). It should be noted that any potential issues of ill-posedness

at high inertial numbers, close to the very tip of the flow, are suppressed by the

maximum viscosity cutoff (4.12) in the numerical method.

6. Segregation mobility feedback on the bulk flow

The one-way coupled simulations in §5 demonstrate the effectiveness of the

numerical method developed in §4, and also show qualitatively how large and

small particles are advected, segregated and diffused within the bulk flow field.

To produce quantitative results, it is necessary to couple the evolving particle size

distribution to the bulk flow dynamics, as discussed in §3.2. There are essentially

two ways of producing frictional feedback; namely (i) indirectly through the

evolving average local grain size, which changes the inertial number and hence

the friction, and (ii) directly through the modification of the frictional parameters

associated with each of the species. Both couplings are investigated in this section,

and the results of the inertial number coupling are compared directly to the DEM

simulations of Tripathi & Khakhar (2011).

6.1. Steady uniform flow down an inclined plane with segregation mobility

feedback

Consider once again a steady uniform flow down an inclined plane, but this

time incorporating feedback of the steady-state concentration distribution. If the
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segregation and diffusion rates are constant, then the volume fractions φν = φν(z)

can be solved for with the polydisperse theory in §2.2, completely independently of

the bulk flow. These concentrations will therefore be assumed to be known in what

follows. The normal component of the momentum balance then implies that the

pressure is lithostatic (5.3). The only difference to the classical Bagnold solution

(Silbert et al. 2001; GDR MiDi 2004; Gray & Edwards 2014) is that, with the

volume fraction weighted friction (3.3), the downslope momentum balance reduces

to

∑

∀ν
φνµν(I) = tan ζ, (6.1)

where µν is the friction law for constituent ν. For the purposes of illustration, let

us assume that each phase satisfies the classical µ(I) friction law, which is of the

form

µν = µν
s +

µν
d − µν

s

I0/I + 1
, (6.2)

where I0 is assumed to be the same for all the phases. Substituting (6.2) into (6.1)

and solving for the inertial number, it follows that

I = I0

(
tan ζ − µ̄s

µ̄d − tan ζ

)
, (6.3)

where µ̄s and µ̄d are now the volume fraction weighted averages that are depth

dependent

µ̄s(z) =
∑

∀ν
φν(z)µν

s , µ̄d(z) =
∑

∀ν
φν(z)µν

d. (6.4)

Importantly, equation (6.3) shows that, if there are frictional differences between

the particles, then the inertial number is dependent on the normal coordinate z

rather than being equal to the constant Iζ defined in (5.5). Using the definition

of the generalized inertial number for polydisperse systems (3.2) and assuming

steady uniform flow, it follows that the ODE for the velocity profile is

du

dz
=
I0
d̄

√
Φg cos ζ (h− z)

1
2

(
tan ζ − µ̄s

µ̄d − tan ζ

)
(6.5)

where d̄ is the local average particle size, which is also depth-dependent

d̄(z) =
∑

∀ν
φν(z)dν . (6.6)
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This averaged particle size-dependence is important, because even if the particles

have the same shape and the same effective frictional properties, the velocity

profile will no longer be the classical Bagnold solution (5.4), but will depend on

the local changes in particle size.

Figure 7 shows a specific example of the qualitative types of solution that are

generated for a bidisperse mixture of large and small particles. The solutions

assume Gray & Chugunov’s (2006) exact solution for the concentration profile

(5.8)–(5.11) using the same constant segregation velocity magnitude fsl, constant

diffusivity Dsl, flow depth h as in table 3, as well as the same slope angle ζ = 24◦.

The only difference is that the depth-averaged concentration φs is chosen to be

equal to 50% in order to produce flowing layers of large and small particles that

are the same depth. For consistency with the assumed friction law (6.2), µν
∞ = 0

for both the large and small particles. All the other parameters are the same for

both species, and identical to those given in table 1, except that µl
s = 1.2µs.

This small change is sufficient to make the inertial number (6.3) depth-dependent

as shown in figure 7(a). The increase in µl
s for the large particles decreases the

inertial number in the near surface regions, where the large particles are located.

Integrating the ODE (6.5) through the flow depth, subject to the no slip condition

at the base, gives the velocity profile in figure 7(b). The solution lies between the

velocity profiles for pure large and for pure small particles, and closely follows

the small particle velocity profile in the lower part of the flow, where the small

particles are concentrated. In the upper part of the flow it rapidly transitions onto

a curve that is parallel to that of the pure large particles, but they attain a much

higher speed than if there were no small particles in the flow. Or indeed, if the

particles were evenly mixed throughout the column with φs = 1/2 everywhere.

The small particles therefore provide an important lubricating mechanism that

can significantly increase flow speeds and the overall run-out (Kokelaar et al.

2014).

6.2. Formation of a large rich bulbous flow front on an inclined plane

Given the steady solution in §6.1, it is also interesting to consider the transient

behaviour of a granular flow front when the large particles are more frictional than

the fines. Analogously to the DEM study of Denissen et al. (2019), the solution
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Figure 7. Exact solutions for (a) the inertial number and (b) the downstream velocity
for a bidisperse mixture of large and small particles (black lines) on a slope inclined
at ζ = 24◦ to the horizontal. The solutions assume a small particle concentration
profile given by Gray & Chugunov’s (2006) exact solution in equations (5.8)–(5.11),
with φs = 0.5 and using the parameters in table 3. Here all bulk flow parameters are
identical to those in table 1 except that the large particles have µl

s = 1.2µs and µν
∞ = 0

for both phases. The dashed lines indicate uniform concentration solutions with red
corresponding to pure large, blue corresponding to pure small particles and green being
the solution for a mixture with φs = 0.5 everywhere.

detailed in figure 7 is used as the boundary condition at the inlet wall x = 0,

so that material entering the domain is already stratified and well-developed.

All parameters are the same as those in §6.1. As shown in figure 8(a), the two-

dimensional transient dynamics generates a bulbous head of large particles in front

of an approximately uniform thickness upstream flow. This bulging of the surface

differs from the monotonically decreasing free-surface shape, observed when there

is no feedback of the segregation on the bulk, as shown in §5 and figures 3–6.

The fundamental cause of this effect is that pure regions of large particles are

much less mobile than the inversely graded flows behind, which are lubricated

by the fine particles at the base. The preferential transport of large particles to

the front, where they recirculate and accumulate (by a combination of the bulk

flow field and particle segregation) causes the front to grow in size and become

increasingly resistive. This causes it to bulge upwards until it either (i) stops

and blocks the flow, (ii) permanently deposits some of the large grains on the

substrate and flows over them (Gray & Ancey 2009), (iii) pushes some of the

large particles to the side to form static levees (Pierson 1986; Pouliquen et al.

1997; Pouliquen & Vallance 1999; Iverson & Vallance 2001; Woodhouse et al. 2012;

Kokelaar et al. 2014; Baker, Barker & Gray 2016a) or (iv) becomes sufficiently

thick that a flow of large particles can form that moves slightly faster than the
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Figure 8. Contour plots of (a) the concentration of small particles and (b) the base 10
logarithm of the inertial number at t = 5.2 s for a flow in which the large particles are
more frictional than the fines. Here, as in figure 7, the parameters for each species are
identical to those in table 1 except that µl

s∗ = 1.2µs and µν
∞ = 0 for both species. The

inflow concentration is assumed to be a steady-uniform solution (5.8) of the segregation
equations assuming the parameters in table 3 and with φs = 0.5. A video of the full
dynamics is available in the online supplementary material.

thinner upstream inversely-graded layer behind, to accommodate the continued

supply of large particles to the front (Denissen et al. 2019).

This problem therefore has a very strong two-way coupling between the bulk

flow and the segregation. As shown in figure 8(b), the inertial number in the

flow front provides a clear demonstration of this coupling. Upstream of the head,

where the flow is uniform, I approximately matches the two-layer solution from

figure 7(a) and close to the flow head the fields are reminiscent of the monodisperse

case detailed in figure 6(e). A diffuse breaking size segregation wave (Thornton

& Gray 2008; Johnson et al. 2012; Gajjar et al. 2016) allows the two regions

to connect to one another. It is located at x ≃ 450 mm and is clearly evident in

both the small particle concentration distribution as well as in the inertial number

distribution. This is therefore the first fully coupled breaking size segregation wave

to be computed.

6.3. Comparison to the steady-state DEM solutions of Tripathi & Khakhar

(2011)

To provide a quantitative comparison for the steady-state behaviour, the theory

is now compared to the bidisperse DEM simulations of Tripathi & Khakhar
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(2011), using Trewhela et al.’s (2021) segregation velocity magnitude and the

generalization of Utter & Behringer’s (2004) diffusivity to bidisperse systems

(rather than prescribed rates). The results shown in Tripathi & Khakhar’s (2011)

figure 9 correspond to flow down a plane inclined at an angle ζ = 25◦, in which

the large particle diameter is one and a half times the small grain diameter, i.e.

dl = 1.5ds. The results are presented in non-dimensional form, where the length,

time and velocity scalings

z = dsẑ, h = dsĥ, t =
√
ds/g t̂, u =

√
gdsû, (6.7)

are based on the small particle diameter ds and gravity g. The layer depth h is

assumed to be 30ds. The simulations are performed in a three-dimensional cell

that is periodic in the down and cross slope directions, and has a fixed bed that is

made rough with particles of diameter 1.2ds. The down and cross slope dimensions

are 20ds × 20ds. Figure 9 shows Tripathi & Khakhar’s (2011) computed small

particle concentration and downslope velocity for five different depth-averaged

concentrations, ranging from pure small to pure large.

For comparison, the bidisperse small particle concentration equation (2.19)

is solved at steady-state, assuming the functional forms (3.7) and (3.9) for the

segregation velocity magnitude and diffusivity, i.e.

fsl =
2Bρ∗g||D||d̄2
Cρ∗gd̄+ p

[
(R− 1) + Eφl(R− 1)2

]
, Dsl = 2A||D||d̄2, (6.8)

where A, B, C and E are non-dimensional constants and γ̇ has been replaced

by its equivalent strain-rate invariant, i.e. 2||D||. Assuming that the downslope

velocity and the small particle concentration are purely functions of the slope

normal coordinate z, equation (2.19) can be integrated once with respect to z.

Applying the no flux boundary condition (2.17) at the surface and/or base of the

flow, the ||D||d̄2 dependence in the segregation and diffusive terms cancels out.

As a result the final steady-state ODE for the concentration is independent of the

shear rate, uncoupling it from the downslope momentum balance.

The non-dimensional parameter C is primarily introduced to remove the pres-

sure singularity at the free-surface, and its measured value of C = 0.2712 makes

very little difference to the shape of the concentration profile (Trewhela et al.
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Figure 9. Comparison of Tripathi & Khakhar’s (2011) DEM simulations (markers)
with theory (lines) for (a) the small particle concentration φs and (b) the downslope
velocity u at different depth-averaged small particle concentration φs = 0, 30, 50, 70
and 100%. The non-dimensional segregation constants are summarized in table 2 and the
velocity is calculated using Tripathi & Khakhar’s (2011) values of µs = tan(20.16◦) and
µd = tan(37.65◦), while I0 = 0.5106 is used to fit the steady-state 100% small particle
velocity profile.

2021). If instead C is assumed to be zero, and the pressure is lithostatic (5.3),

then the intrinsic grain density ρ∗, gravity g and the slope angle ζ cancel out,

leaving a non-dimensional steady-state ODE for the concentration

dφs

dẑ
= −B(R− 1)φsφl(1 + Eφl(R− 1))

ΦA(ĥ− ẑ)
, (6.9)

which is dependent purely on the grain-size ratio R. This is separable, and can



Coupling rheology and segregation in granular flows 91

be integrated (Trewhela et al. 2021) to give the exact solution

ẑ = ĥ−K(1 − φs)−λ1(1 + E(1 − φs)(R− 1))λ2(φs)λ3 , (6.10)

where K is a constant of integration and the coefficients λ1, λ2 and λ3 are

λ1 =
ΦA

B(R− 1)
, λ2 =

ΦAE
B(1 + E(R− 1))

, λ3 =
ΦA

B(R− 1)(1 + E(R− 1))
.

(6.11)

For a given depth-averaged small particle concentration φs the constant of integra-

tion K can be determined iteratively. Figure 9(a) shows the comparison between

these exact solutions and the DEM simulations of Tripathi & Khakhar (2011) for

depth-averaged concentrations φs = 0, 30, 50, 70 and 100%. The agreement in

the monodisperse limts of φs = 0 and 100% are guaranteed. There is also very

good agreement at φs = 50% and 70% using exactly the same non-dimensional

constants A, B and E determined experimentally by Trewhela et al. (2021) and

summarized in table 2. The theory therefore matches the stronger segregation at

the surface than the base of the flow, as well as the gradient of the concentration

profiles, without the need for any fitting parameters. This is strong evidence that

Trewhela et al.’s (2021) theory captures the essence of the segregation process.

It also contrasts with Gray & Chugunov’s (2006) solution, where the ratio of

segregation to diffusion is uniform with depth. The agreement between Trewhela

et al.’s (2021) theory and Tripathi & Khakhar’s (2011) DEM simulations is not

as good at φs = 30%. The DEM results at φs = 30% look slightly odd, with a

layer of almost pure small particles at the base of the cell and a much more diffuse

profile higher up. It is therefore possible that, in this particular case, Tripathi &

Khakhar’s (2011) DEM simulations have not fully reached steady-state.

Figure 17 of Tripathi & Khakhar (2011) suggests that the friction in both their

monodisperse and bidisperse systems was closely approximated by the classical

µ(I) law (2.7), using the generalized inertial number (3.2) with a local average

grain size d̄. To leading order, therefore, the macroscopic friction coefficients µs

and µd, as well at the non-dimensional constant I0 are the same for the large and

small particles. Tripathi & Khakhar (2011) suggested that a good overall fit to

the data was provided by µs = tan(20.16◦), µd = tan(37.65◦) and I0 = 0.434.

These values are, however, not good for the particular set of simulations shown in
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Tripathi & Khakhar’s (2011) figure 9, and reproduced here in figure 9. To select

a better fit, the Bagnold solution (5.4) has been non-dimensionalized using the

scalings (6.7) to give

ûBagnold =
2

3
Iζ
√
Φ cos ζ

(
ĥ

3
2 − (ĥ− ẑ)

3
2

)
(6.12)

and then fitted to the small particle velocity DEM data using a least squares fit.

This determines the value of Iζ , which for the classical friction law (2.7) of Jop

et al. (2006) is defined as

Iζ = I0

(
tan ζ − µs

µs − tan ζ

)
. (6.13)

The values of µs, µd and I0 can therefore be modified, while still fitting the

data, provided the same value of Iζ is obtained. There are an infinite number of

combinations that will do this. This paper therefore assumes that the values of

µs and µd are the same as Tripathi & Khakhar (2011), but that I0 = 0.5106.

To solve for the velocity profiles at other concentrations it is necessary solve the

ODE (6.5) in non-dimensional form, i.e.

dû

dẑ
=
Iζ
√
Φ cos ζ

(φs +Rφl)
(ĥ− ẑ)

1
2 , (6.14)

subject to a no-slip boundary condition at the base. In the ODE (6.14) the small

particle concentration φs = 1 − φl is given by Trewhela et al.’s (2021) exact

solution (6.10). The solutions are shown in figure 9(b). The 100% small particle

solution agrees extremely well with the Bagnold solution (6.12), which is not

too surprising as the parameters µs, µd and I0 have been chosen specifically to

match this curve. The monodisperse large particle solution also has a Bagnold like

velocity profile, but the magnitude of the velocities are slightly underpredicted.

In principle, the monodisperse small particle solution should be a factor R larger

than the large particle solution. The fact that they are not, is an indication

of either (i) the level of noise in Tripathi & Khakhar’s (2011) system, or (ii)

the basal roughness not scaling with the size of flowing particles (i.e. non-local

effects). Since the deviations of the intermediate solutions from the DEM data

are of a similar order of magnitude, it is probably unwise to read too much

into the precise comparisons. The predicted velocity profiles at intermediate
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concentrations monotonically decrease in magnitude as the small particle content

decreases. This is broadly speaking what the DEM data shows, however, the case

φs = 30% the DEM solution is again anomalous, being below the case of pure

large particles (Tripathi & Khakhar 2011). To be sure that this is real behaviour,

rather than an anomaly, more precise DEM solutions are required that average

over significantly more than the approximately 4,000-12,000 particles used by

Tripathi & Khakhar (2011).

7. Fully coupled rotating drum simulations

Particle segregation in non-circular rotating drums provides an ideal test case

for the two-way coupled model, as the particles strongly segregate and diffuse

in the near surface liquid-like avalanche, but not in the solid-like rotating body

beneath. Computing the bulk flow field in a rotating drum is still a significant

challenge. Indeed, recent segregation simulations in a circular rotating drum

(Schlick et al. 2015) have prescribed the steady-state incompressible bulk velocity

field based on fits to DEM simulations; a process that inherently relies on the

steady-state nature and simple geometry of the circular drum. More complex

models that do use a continuum approach to calculate the bulk flow in a circular

drum (e.g. Liu et al. 2018, 2019), do so with rate-independent elasto-plastic

constitutive laws which are prone to ill-posedness (Schaeffer 1987). This paper

goes considerably further, by using the partially regularized µ(I)-rheology and

the recent segregation model of Trewhela et al. (2021) to simultaneously compute

the fully two-way coupled bulk flow, segregation and diffusion in a square rotating

drum.

7.1. Modelling the bulk flow, segregation and diffusion in a square rotating drum

It is useful to have two coordinate systems to simulate the flow in the drum. The

first is a rectangular Cartesian coordinate system Oxz that is fixed and centred

at the axis of rotation of the drum, which lies at the centre of the square. The

z axis is aligned with the gravitational acceleration g, but points upwards in the

opposite sense. A second coordinate system OXZ is inclined at an angle θ to Oxz

and rotates with the drum. The axes are aligned with the drum walls, so the drum

lies in the region −L ⩽ X ⩽ L, −L ⩽ Z ⩽ L, where 2L is the length of the walls.
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Initially, the OXZ axes coincide with Oxz and the concentrations of excess air,

small particles and large particles are

(φa, φs, φl)
∣∣
t=0

=





(1, 0, 0), for H < Z ⩽ L,

(
0, 12 ,

1
2

)
, for − L ⩽ Z ⩽ H,

(7.1)

where L = 0.1 m and H = 0.04 m, implying a 70% fill fraction with a 50:50 mix of

large and small particles of diameters dl = 2 mm and ds = 1 mm, respectively. A

fill fraction above 50% is chosen so that an undisturbed core forms in the centre of

the drum, consisting of material which never enters the avalanche (see e.g. Gray

& Hutter 1997; Gray 2001). All the material is initially assumed to be in solid

body rotation

u0 = Ωrθ, (7.2)

where Ω is the rotation rate, the radial coordinate r =
√
x2 + z2 and θ is the

azimuthal unit vector. A constant rotation rate of Ω = −π/5 rad/s is specified,

with the negative sign denoting clockwise rotation. This corresponds to one full

revolution every 10 s, placing the flow at the upper end of rolling flow (Henein et al.

1983; Ding et al. 2002; Yang et al. 2008). This is also known as the continuous, or

the continuously avalanching, regime (Rajchenbach 1990; Gray 2001) as a quasi

steady-state avalanche forms, with continuous erosion and deposition occurring

with the solid-rotating body of grains beneath. The frictional parameters are the

same for the large and small particles, and the momentum coupling enters via the

evolving local average particle size d̄ in the generalized inertial number (3.2). The

values of µs, µd and I0 are the same as those used to fit the DEM simulations

of Tripathi & Khakhar (2011) (see fig. 9), and the theory is partially regularized

(Barker & Gray 2017) by introducing a creep state at low inertial numbers and

a linear friction regime at high inertial numbers. The values of all the frictional

parameters are summarized in table 4, together with the particle sizes, and the

air segregation and diffusion rates. The segregation of the particles is performed

using the same non-dimensional constants A, B, C and E suggested by Trewhela

et al. (2021) and summarized in table 2.

The velocity field û in the rotating frame is related to the velocity u in the
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µs = tan(20.16◦), µd = tan(37.65◦), µ∞ = 0.03,
I0 = 0.5106, α = 1.9, I1 = 0.01886
dl = 2 mm ds = 1 mm R = 2,

fal = fas = 1 m/s, Dal = Das = 0 m2/s, e = −g/|g| = k.

Table 4. The fully coupled rotating drum simulations are performed with Barker
& Gray’s (2017) partially regularized friction law with parameters that match the
steady-state DEM simulations of Tripathi & Khakhar (2011) shown in figure 9. The
value of µ∞ is chosen to insure that the equations remain well-posed up to a maximum
inertial number Imax = 16.20, while I1 is the minimum well-posed inertial number in
the unregularized law. To handle the evolving free-surface, the excess air segregates with
a constant rate fal = fas from the large and small particles and does not diffuse with
them. The air phase is assumed to segregate upwards in the direction of the unit vector
k along the z-axis, which this time is aligned with gravity.

fixed coordinate system by the relation

û = u−Ωrθ. (7.3)

As the drum rotates the no-slip and no-penetration (no flux) conditions are

enforced on the drum walls, which implies that

û = 0, on X = ±L, and Z = ±L. (7.4)

These conditions are mapped back to the fixed coordinate system and applied on

the moving mesh using OpenFOAM’s mesh-motion routines. The computations

are performed on a regular N × N mesh, with results presented for the finest

resolution studied of N = 200. The simulation runs for 8 full revolutions.

7.2. Bulk velocity, pressure and inertial number in the square drum

Initially the free-surface is flat and the material is in solid body rotation, see

equations (7.1) and (7.2). The entire body of grains is therefore quasi-static in

the moving frame, and the high viscosity cut-off (4.12) remains active until the

free-surface inclination nears the static angle of friction

ζs = tan−1(µs), (7.5)

at which point the material near the free-surface fails and avalanches downslope.

After the initial failure and slump, a continuously avalanching regime rapidly

establishes itself, as shown in figure 10 and the supplementary online videos. There

is a rapid liquid-like avalanche close to the free-surface and a solid-like quasi-static
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Figure 10. Periodic motion of the bulk flow shown at t = 78.75 s (left column) and
t = 80 s (right column), for (a) velocity magnitude in the rotating frame (i.e. minus the
solid body rotation), (b) pressure and (c) base 10 logarithm of the inertial number I. The
dashed lines in (c) indicate the height below which the high viscosity cut-off becomes
active. The parameters used to compute the bulk flow, segregation and diffusion are
summarized in tables 2 and 4. Supplementary videos showing the full periodic solution
are available in the online supplementary material.
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region beneath (fig. 10a). The angle of the free-surface remains close to the static

value ζs, but the position of the free-surface subtly rises and falls as the finite

volume of grains is incorporated into the constantly changing intersections with

the shape of the drum during each quarter turn. The flow therefore has a quasi

periodic pulsing behaviour, with peak surface velocities (at the centre and surface

of the flow) changing in time, e.g. the peak free-surface velocity is faster at t = 80 s

than at t = 78.75 s in figure 10(a). As shown in §6.3, the variations in velocity

with the flow composition are subtle, and do not provide a strong feedback on the

bulk flow at this fill height. However, the experiments of Zuriguel et al. (2006)

imply that for fill levels close to 50% these subtle composition dependent velocity

changes can cause the formation of petal-like structures in the deposit, and so can

be very important.

As the flow pulses, the surface avalanche becomes deeper directly beneath the

region where the peak velocities are attained. The avalanche depth also changes

along its length, reaching a peak near its centre. Typically the main flow is

confined to a layer with a maximum thickness of 1.6 cm, which gives the rapid free-

surface flow a shallow aspect ratio, consistent with the assumptions underpinning

theoretical models for avalanches (e.g. Savage & Hutter 1989; Gray 2001; Gray &

Edwards 2014). Close to the free-surface the pressure is approximately lithostatic

and is aligned with the free-surface (fig. 10b) as one might expect. However, lower

down the pressure rises to much higher values and pulses as the overall volume

of grains redistributes itself in the changing geometry of the walls that confine it.

The base ten logarithm of the inertial number is shown in figure 10(c) and also

identifies the near surface region where the failure occurs. The flow is in a creep

state for I < I1 = 0.01886. This region lies significantly higher in the flow than

the Newtonian viscous region, which is activated by the numerical regularization

(4.12) at high viscosities. The dominant rheology in the simulation is therefore

the granular rheology, which involves regions of both creep and dynamic motion.

For fill levels above approximately 55% a solid core develops (Mounty 2007),

within which particles are simply rotated around with the drum and undergo a

small amount of creep when they are closer to the free-surface. The remaining

grains pass through both the solid-like and fluid-like regions. These particles

are rotated around with the drum in the solid-body region, until they approach
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the near surface layers when they begin to creep downslope. As an individual

particle is rotated further towards the free-surface the creep becomes progressively

stronger, until finally it avalanches downslope in the liquid-like surface avalanche.

As more particles are entrained into this avalanche it becomes deeper and flows

faster, so peak velocities are reached midway down the slope, after which particles

are deposited from the base of the flow, and the avalanche thins and slows.

An individual particle therefore accelerates downslope in the first half of the

avalanche and decelerates after the midway point, before being deposited into the

slowly creeping body of rotating grains beneath. Unlike a circular drum, where

monodisperse particles form closed streamlines, the changing geometry of the

confining walls adds considerable complexity to the problem. This is because the

underlying particle trajectories become chaotic even for monodisperse flows (Hill

et al. 1999; Ottino & Khakhar 2000). Particle-size segregation, however, introduces

a strong organizational influence on the resulting patterns that form.

7.3. The particle size distribution in the square drum

The dynamics of the mixing and segregation process are shown in figure 11

and the supplementary online video. As the drum rotates up to the static angle

of friction there is no shear and hence no segregation or diffusion. However, as

soon as the initial failure occurs, and the avalanche flows downslope, the particles

begin to segregate with the large particles rising to the free-surface and the small

particles percolating downwards. The linear shear rate dependence in equations

(6.8) ensures that both the segregation and diffusion are confined to the thin

avalanching layer close to the free-surface, with the additional pressure dependence

ensuring that segregation shuts off more rapidly than the diffusion with increasing

depth (Golick & Daniels 2009; Fry et al. 2018; Trewhela et al. 2021). This effect

is compounded by the fact that particles near the free-surface travel the longest

distance through the liquid-like avalanche, while those that are entrained at lower

levels may move only a short distance before they are deposited back into the

solid-like rotating body of grains beneath. As a result, after the first full rotation

of the drum (at t = 10 s) the clearest segregation can be seen in the large particles

that are able to rise to the surface and collect at the top of the flow before being

deposited near the drum wall. The rest of the grains remain quite well mixed.
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φs
0 0.2 0.4 0.6 0.8 1

Figure 11. Fully coupled simulation of a bidisperse granular mixture in a square rotating
drum using the parameters in tables 2 and 4. The drum walls are of length 0.2 m. The
first panel plots φs at 10 s and subsequent panels correspond to a further 6.25 s of
rotation, or 5/8 of a full revolution, up to 78.75 s. A video is available in the online
supplementary material.



100 T. Barker, M. Rauter, E.S.F. Maguire, C.G. Johnson & J.M.N.T. Gray

φs
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Figure 12. Computed particle size distribution after 78.1 seconds (left) and a
comparable pattern formed in a rotating drum Mounty (2007) with small white particles
(75-150 µm) and the large red particles (400-500 µm).

After approximately 3/4 of a drum revolution all the material that is able

to pass through the surface avalanche has done so, and the material that is

subsequently entrained is no longer homogenously mixed. The large particles that

were deposited next to the drum wall are rotated around and re-entrained into

the avalanche right at the back of the flow, where the avalanche is thinnest. There

is therefore no need for them to segregate towards the surface again, as they are

naturally re-entrained on trajectories that pass through the surface layers of the

avalanche. The particles that lie closer to the drum core are naturally entrained

onto paths that take them through lower regions of the avalanche. They therefore

get another chance to segregate again each time they pass through the avalanche.

This process can be seen slowly sharpening the segregation in the successive panels

of figure 11. With increasing time, the large particle region adjacent to the drum

wall thickens up and regions with high concentrations of small particles start

to emerge, as the avalanche at the surface becomes progressively more inversely

graded. Complete separation of the large and small grains does not occur, however,

because of the diffusive remixing process in equation (2.19).

The combination of particle segregation and the rising and falling of the free-

surface height as the drum rotates leads to the spontaneous formation of three

lobes with high concentrations of small particles, that are oriented towards the
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corners of the drum. These lobes are interesting because they propagate around

the drum faster than the drum rotates, with a period of approximately 7.5 s. The

lobes are in qualitatively very good agreement with the experiments of Hill et al.

(1999), Ottino & Khakhar (2000) and Mounty (2007), as shown in figure 12.

The simulations also predict the formation of a central core within which the

concentration is almost unchanged from its initial value. This core forms a shape

that is almost square and lies at an angle of 45◦ to the square drum walls, which is

also qualitatively in agreement with the experiments of Hill et al. (1999), Ottino &

Khakhar (2000) and Mounty (2007). However, the simulated central core is about

half the diameter of that in experiment. The reason for this is that the surface

avalanche is much deeper in the simulations than in the experiments. This is not

necessarily a deficiency of the model. The experiments are performed in drums

with a narrow gap between the sidewalls; as a result the avalanche is thinner and

faster than in a drum with a wide cross section (Jop et al. 2005) and hence the

central core is larger.

One of the important consequences of the ||D||d̄2 dependence in the segregation

velocity magnitude and diffusivity in equations (6.8) is that the timescale for

segregation and diffusion to occur is proportional to h2/(γ̇d̄2). It therefore takes

longer to segregate in a deeper avalanche, or with smaller average grain sizes. This

makes direct comparison with the experiments difficult, as the depth and velocity

of the surface avalanche is strongly influenced by sidewall friction. In principle, it

is very easy to include the effect of sidewall friction in the simulations. However,

the numerical method requires sufficient grid points to be located in the surface

avalanche. For a regular grid this requires higher resolution throughout the drum,

which dramatically increases the time necessary to produce grid converged results,

and so this is not done here. Instead the grain sizes are made larger in order to get

the pattern to form in the rotating drum simulations in a comparable timescale

to that in the experiments.

The lobes do not appear to reach a quasi-periodic steady state, but have small

protuberances that continue to evolve when tracking a particular lobe. This is

also in accordance with experimental observation, as a non-homogeneous initial

distribution of particles can lead to lobes of different sizes, which appear to persist

indefinitely. Figure 11 also shows that over long periods of time the central core
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Figure 13. Integral I (t) of the small particle concentration difference between the
current state and the state of one full revolution earlier, as a function of time and for
four different mesh resolutions N to demonstrate grid convergence of the numerical
solution.

contracts towards the origin. This is due to the slow creep that occurs as the

material in the solid body region is rotated through the near surface creeping

zone, where both segregation and diffusion can act over very long timescales.

This creep can be minimized either by (i) introducing sidewall friction or (ii) by

using constitutive equations with a static yield stress. However, both of these

require additional physics to be included in the model.

7.4. Grid convergence

A grid convergence study was carried out for four different mesh refinements.

Figure 13 shows the evolution over time of the integral I (t), defined as

I (t) =
1

4L2

∫∫

N2

|φs(t,X,Z) − φs(t− T,X,Z)|dXdZ, (7.6)

where T = 10 s represents one full revolution of the drum and N2 is the

number of grid cells in the domain. The quantity I (t) measures the small particle

concentration difference between the current state and the state a full rotation

period earlier. The maximal value of I (t) is unity. Numerical diffusion means that

overall segregation is weaker when the flow is under resolved, and, at N = 50,

regions of high concentration fail to coalesce. The increasing proximity of the

curves with increasing grid resolution, and particularly the closeness of I (t) for

N = 150 and N = 200, demonstrate numerical grid convergence. This relatively
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high number of grid points is required to properly resolve the shallow avalanche

at the free-surface of the flow where the segregation and diffusion predominantly

occur. As noted earlier, higher grid resolutions will be necessary to resolve the

thinner surface avalanches that develop in experiments with sidewall friction (Hill

et al. 1999; Ottino & Khakhar 2000; Jop et al. 2005; Mounty 2007).

The integral I (t) implies that the square drum does not approach a periodic

quasi-steady solution, but settles down, after about four complete revolutions,

to a state where dI (t)/dt is small and I (t) is non-zero. This represents a fully

segregated mixture with time-dependent perturbations that propagate around the

system.

8. Conclusions and discussion

This paper develops a general framework for simultaneously solving for the

flow and segregation of polydisperse granular materials. At its heart lies the

partially regularized incompressible µ(I)-rheology of Barker & Gray (2017) and

the polydisperse segregation theory of Gray & Ancey (2015), which is generalized

here to allow for different diffusion rates and segregation directions between

the constituents. The coupling between the models is crucial and can be very

complex. Three primary coupling mechanisms are identified; (i) advection of

the particle concentrations by the bulk velocity, (ii) feedback of the particle-size

and/or frictional properties on the bulk flow field and (iii) influence of the shear

rate, pressure, gravity, particle size and particle-size ratio on the locally evolving

segregation (Trewhela et al. 2021) and diffusion rates (Utter & Behringer 2004).

A general numerical method is developed to solve the resulting system of

equations, which is implemented in OpenFOAM. In order to solve free-surface

flow problems that commonly arise in both geophysical and industrial contexts, a

new interface sharpening procedure is developed that uses the multi-component

segregation theory to segregate excess air out of the granular material. The new

method generates a sharp interface between the grains and the air and prevents

the formation of mesh-dependent trapped air bubbles or air layers, which form

with standard interface sharpening techniques (Rusche 2002; Weller 2008). In fluid

flows, bubbles may be realistic, but in granular flows they are not, because the
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air can usually escape easily through the pore space. Bubble trapping in solid-like

granular flows is a common problem, and the new segregation based approach

to interface sharpening solves many of the issues when combining multiphase

methods with granular flow theory and may be applicable to a wide range of

problems.

The numerical method is used to investigate one-way coupled problems in §5

and two-way coupled problems in §6 and §7. The advantage of investigating

one-way coupled problems is that it allows the numerical method to be exten-

sively tested against exact solutions for (i) concentration shock wave development

(fig. 3), (ii) steady-state Bagnold flow (fig. 4a), (iii) steady-state concentration

profiles (fig. 4b), and (iv) the formation of steadily travelling flow fronts (figs. 5

and 6). These simple one-way coupled simulations also qualitatively show how

large and small particles are advected in a spatially and temporally evolving bulk

flow field, allowing, for instance, the formation of a large rich flow front to develop

(fig. 3). When the large particles are more frictional than the fines (in §6) the large

rich flow front slows down, and a bulbous head develops (see fig. 8) that is relevant

for geophysical flows (Denissen et al. 2019).

To provide a quantitative test of the model, Trewhela et al.’s (2021) experimen-

tal scaling law for segregation is implemented together with a generalization of

Utter & Behringer’s (2004) diffusivity in §6.3. Figure 9(a) shows very good agree-

ment with Tripathi & Khakhar’s (2011) DEM simulation data for the steady-state

concentration profiles with depth, without the need for any fitting parameters. The

frictional feedback arises through the use of the generalized inertial number (3.2),

which is based on the average local grain size d̄ defined in (3.1). For an inclined

flow down a plane, this monotonically decreases the velocity at all heights as the

proportion of large particles increases. This general trend is also seen in Tripathi

& Khakhar’s (2011) DEM data (fig. 9b), although the fits are not precise. The fact

that Tripathi & Khakhar’s (2011) pure large and pure small simulations do not

obey the Bagnold scaling precisely, suggests that more accurate DEM simulations

are required to fully test the model, in particular, there may be an influence from

the basal roughness, which does not change as the mean grain size changes, and

their data at 30% small particle concentration appears anomalous.

As a demonstration of the potential of the model, the fully coupled flow in a
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square rotating drum is computed in §7. Such a configuration is a real challenge

for current models, because the flow field is not steady and can not easily be

prescribed or approximated from DEM simulations. The numerical simulations

(figs. 10–12) show that the fully coupled model is able to compute the spatially

evolving velocity, pressure and concentration fields as a function of time, and that

a petal-like concentration pattern spontaneously forms in the rotating deposit,

which is qualitatively very similar to that observed in the experiments of Hill

et al. (1999), Ottino & Khakhar (2000) and Mounty (2007). Precise experimental

comparison is not possible at this stage, however, because the experiments are

strongly influenced by wall friction, making the free-surface avalanche thinner

and faster than in the absence of sidewalls (Jop et al. 2005). Computations that

include sidewall friction are possible, but will require finer meshes to resolve the

segregation within the avalanche, and consequently will take much longer to run.

The examples investigated in this paper provide the briefest glimpse at what is

possible within this powerful new theoretical and computational framework. There

is still much work to be done to fully understand the feedbacks and how they can

affect real world problems of practical interest. In some situations the feedback

may be relatively subtle, i.e. the quantitative values for the velocity, pressure and

concentrations are changed, but they don’t have a big impact on the subsequent

flow (see e.g. figs. 10–12). However, in other situations these (sometimes small)

quantitative changes can induce fundamental qualitative change in the solutions.

A prime example of this is the formation of a bulbous large rich head (Gray &

Ancey 2009; Denissen et al. 2019), which is calculated in two-dimensions for the

first time in §6.2 and shown in detail in the supplementary video to figure 8. In

three-dimensions this solution can become unstable to span-wise perturbations

and instead generates a series of leveed flow fingers (Pouliquen et al. 1997;

Woodhouse et al. 2012; Baker et al. 2016b) that are directly relevant to the

self-channelization of snow avalanches, debris flows and volcanic pyroclastic flows

(Pierson 1986; Iverson & Vallance 2001; Johnson et al. 2012; Rocha et al. 2019).

Much less is known about the feedbacks between segregation and flow in industrial

problems, but they most definitely occur (see e.g. Zuriguel et al. 2006). It is hoped

that our new found understanding can also be exploited in future to improve, and
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control, the flowability of bulk solids as well as mitigate the worst effects of particle

segregation.
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Appendix A. Gray & Thornton’s (2005) concentration shock

solution

Gray & Thornton’s (2005) concentration shock solution assumes that there is

no diffusion (in any direction) and only resolves the slope normal component of

the segregation flux. In this case there are three concentration shocks that have

linear profiles when solved in streamfunction coordinates (Ψ, x). The lower shock

ψlower separates a pure region of small particles from the inflow small particle

concentration φs
0, the upper shock ψupper separates the inflow concentration from

a pure region of large grains and the final shock ψfinal separates a pure region of

large grains from a pure region of fines. Assuming that the flow is of thickness h

the equations for the three shocks are

ψlower = fslφ
s
0x cos ζ, x < ψ(h)/(fsl cos ζ), (A 1)

ψupper = ψ(h) − fsl(1 − φs
0)x cos ζ, x < ψ(h)/(fsl cos ζ), (A 2)
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ψfinal = φs
0ψ(h), x > ψ(h)/(fsl cos ζ), (A 3)

where the streamfunction ψ for the Bagnold velocity profile (5.4) is

ψ(z) =

∫ z

0

u(z′) dz′ =
2Iζ

√
Φg cos ζ

15d

(
2(h− z)

5
2 − 2h

5
2 + 5h

3
2 z
)
. (A 4)
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The tendency of polydisperse granular flows in rotating drums to segregate

efficiently by particle size into stunning geometrical patterns has been the subject

of extensive research, but continuum models have yet to grasp the full interplay

between the bulk flow and segregation in such flows. Recent theoretical and

numerical developments provide a powerful tool for tackling problems with com-

plex rheology-segregation feedback interactions within a continuum framework.

In particular, the partially regularised incompressible µ(I)-rheology has been

coupled with complex functional dependencies for the particle-size segregation

and diffusion rates. This method is fully coupled, in the sense that the bulk flow

fields depend on the evolving particle distribution and the frictional properties of

its constituents, while the segregation and diffusion rates depend upon the shear

rate, gravity, pressure, particle concentration, particle size and particle-size ratio.

In this paper, polydisperse triangular rotating drum flows are examined via a

series of original experiments and fully coupled numerical simulations computed

using OpenFOAM. Rotating drum flows are of practical relevance to industrial

mixing procedures, and also present a lens through which to investigate the

intricate relationship between rheology and segregation. They are confined within

a thin channel by lateral sidewalls which exert a frictional force on the grains,

and this is incorporated into a two-dimensional framework using width-averaged

Navier-Stokes type equations with a Coulomb slip condition on the sidewalls. As
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a test case for the numerical implementation, a simulation of an infinite shear-cell

with confining sidewalls is compared to an exact solution. Bidisperse triangular

rotating drum experiments and simulations are performed for a variety of drum fill

fractions and mean particle concentrations. Friction from the sidewalls induces a

very thin free-surface avalanche which acts as a boundary layer inside which all the

segregation occurs, and which must be adequately resolved by the numerical mesh

to predict the correct intensity of segregation. The bulk flow fields and particle

pattern formations are examined, and subtle interactions between the two are

discovered. A novel approach for processing images of the experimental results is

used to project a particle concentration field onto laboratory images, facilitating

quantitative comparison with the simulation data. Finally, a drum containing a

tridisperse mixture is considered, where the intermediate species is segregated in

opposite directions by the small and large particles, leading to a reduction in the

net segregation rate.
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1. Introduction

Polydisperse granular flows are ubiquitous throughout the natural world and

industrial processes. They may take the form of geophysical mass flows such

as rockfalls, debris flows, lahars, pyroclastic flows or snow avalanches, which all

naturally encompass a wide distribution of particle sizes and shapes, or industrial

procedures in which two or more distinct particle species are mixed together

with the aim of attaining a homogeneous mixture. Segregation - the internal

redistribution of polydisperse particle mixtures according to size, shape, density or

other distinguishing features - can therefore present a major obstacle to efficiency

in industrial processes. Research into the nature of segregation in industrial

processes is often concerned with filling and emptying of storage silos (Williams

1968; Drahun & Bridgwater 1983; Gray & Hutter 1997; Makse et al. 1997; Staron,

Lagrée & Popinet 2012; Staron, Lagrée & Popinet 2014), and rotating drums

partially filled with granular material (Hill et al. 1999; Ottino & Khakhar 2000a;

Gray 2001; Zuriguel et al. 2006; Gray & Chugunov 2006). Here, experiments are

conducted using triangular rotating drums to mix (or segregate) glass beads of

differing particle sizes, and the approach of Barker et al. (2021) and Trewhela,

Ancey & Gray (2021) is used to produce continuum simulations of triangular

rotating drums in which the rheology and the particle distribution are fully

coupled. The segregation rate is dependent upon the local flow properties, and the

frictional properties of the grains themselves in the evolving particle distribution

feedback onto the mobility of the flow (Pouliquen, Delour & Savage 1997; Iverson

& Vallance 2001; van der Vaart et al. 2018b; Barker et al. 2021). Friction from

confining lateral sidewalls is an important feature of rotating drum experiments

when the confined channel of granular material is narrow. Sidewall friction can

then drastically alter the flow properties and particle pattern formation (Hill et al.

1999; Ottino & Khakhar 2000a; Jop, Forterre & Pouliquen 2005; Mounty 2007),

and is introduced into the numerical model for the rotating drum simulations here

to accurately reproduce the particle pattern evolution and segregation intensity

observed in experiments.

Early attempts at continuum modelling of monodisperse granular flows were

characterised by Coulomb friction models with a Drucker-Prager type yield surface
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(Yu 2007), which were shown to be mathematically ill-posed in two dimensions by

Schaeffer (1987), because the growth rate of infinitesimally small perturbations

became unbounded in the small wavelength limit. Well-posed problems have a

unique solution with a continuous dependence on the initial conditions; when a

problem fails to meet these conditions, it is classified as ill-posed, or Hadamard

unstable (Joseph & Saut 1990). A significant milestone was reached with the

development of the incompressible µ(I)-rheology (GDR MiDi 2004; Jop et al.

2005; Jop, Forterre & Pouliquen 2006) which ties the effective friction µ to

the non-dimensional inertial number I, which in turn depends upon the strain-

rate, pressure, grain density and grain size. This formulation is well-posed for

intermediate values of the inertial number but remains ill-posed for sufficiently

small or large values (Barker et al. 2015). Barker & Gray (2017) developed a

modified, partially regularised µ(I) curve which greatly extends the region of

well-posedness to include all values below an extreme high value limit of the

inertial number, by forgoing a yield criterion and introducing a creep state for

low I. For values of the inertial number towards the upper end of the well-posed

parameter space, the partially regularised µ(I)-rheology provides an improved

match to experimental data and DEM (discrete element method) simulations

(Holyoake & McElwaine 2012; Kamrin & Koval 2012; Barker & Gray 2017) relative

to the original µ(I) curve. It is possible to formulate unconditionally well-posed

local continuum models with a yield stress by introducing compressibility (Barker

& Gray 2017; Schaeffer et al. 2019), but significantly the partially regularised

incompressible µ(I)-rheology is compatible with established segregation models

which share the assumption of incompressibility (Gray & Thornton 2005), and

also fits into the framework of incompressible Navier-Stokes solvers.

When polydisperse granular materials undergo shear, vacant void spaces open

up between particles which smaller particles are more likely to percolate through,

in a gravity-driven process known as kinetic sieving (Middleton 1970; Savage

& Lun 1988). A force imbalance in the lower, densely packed layer then leads

to particles being driven upwards, which is known as squeeze expulsion (Savage

& Lun 1988). The net impact of these combined effects, collectively known as

gravity-driven segregation, is an inversely graded layer in which larger particles

collect near the surface of the flow. There are many other mechanisms by which
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segregation may occur (Scott & Bridgwater 1975; Ehrichs et al. 1995; Jenkins &

Yoon 2002; Schröter et al. 2006; Schulze 2008; McCarthy 2009; Hill & Tan 2014;

Gray & Ancey 2015), but kinetic sieving and squeeze expulsion are the dominant

mechanisms in shallow granular avalanches (Gray 2018). Even for a relatively

simple inclined plane flow of bidisperse granular material, segregation can lead to

varied and complex phenomena. The shear profile through the flow depth in an

inversely graded layer can also lead to the transportation of less mobile (Iverson

2003) large particles towards the flow front. A feedback affect onto the bulk flow

due to frictional differences between the different particle species may result in the

formation of a bulbous head at the flow front (Denissen et al. 2019), static levees

(Pouliquen & Vallance 1999; Iverson 1997; Johnson et al. 2012), and fingering

instabilities (Pouliquen et al. 1997; Pouliquen & Vallance 1999; Vallance & Savage

2000; Woodhouse et al. 2012; Baker, Johnson & Gray 2016b), or deposition of the

particles from the front onto the underlying substrate (Gray & Ancey 2009).

Gray & Thornton (2005) proposed an advection-segregation equation which

models the mixing process between two species with differing particle sizes, which

was extended to include the effects of diffusive remixing by Gray & Chugunov

(2006) and generalised for multiple particle phases by Gray & Ancey (2011).

Fan & Hill (2011) found that segregation was not always orientated in the

direction of gravity but may be aligned with kinetic stress gradients (Hill &

Tan 2014), which inspired a generalised segregation-advection-diffusion equation

(Barker et al. 2021) in which the segregation direction may be arbitrarily specified.

The early shear box experiments of Scott & Bridgwater (1975) identified the

grain-size ratio as the most important parameter in controlling the segregation

rate, and it has long been suggested that the segregation rate should be an

increasing function of the strain-rate (Bridgwater, Foo & Stephens 1985; May et al.

2010; Schlick et al. 2015). Trewhela et al. (2021) used dimensional analysis and

refractive-index matched oscillatory shear box experiments to derive a pressure

and strain-rate dependent scaling law for the segregation velocity magnitude. This

provides a natural route towards coupling segregation and diffusive remixing to

the bulk flow properties (Barker et al. 2021) when used alongside a diffusivity

scaling law suggested by dimensional analysis and experimental observation (see

e.g. Utter & Behringer 2004), which scales with the second invariant of the strain-
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Figure 1. Image of a triangular rotating drum experiment 70% filled with particles
of three different sizes; small red particles (125 − 160 µm), medium white particles
(400− 500 µm), and large green particles (600− 800 µm). The drum rotates clockwise
with a rotation rate of Ω = −π/48 rad/s. Particles flowing down the thin free-surface
avalanche segregate into an inversely graded layer, which is deposited into the underlying
substrate and rotated back around the drum to be re-entrained into the avalanche,
producing a stunning pattern of small and medium particle arms surrounding an
undisturbed central core.

rate tensor and the grain size squared. Based upon the partially regularised

µ(I)-rheology, Barker et al. (2021) also established a method for determining

the rheological parameters of an evolving polydisperse mixture by taking volume

fraction weighted averages, resulting in a two-way coupled system capable of

capturing the complex feedback interactions in polydisperse granular flows.

Rotating drums, in which lateral sidewalls confine a quasi-two-dimensional

body of granular material inside a container, provide a simplified experimental

counterpart to industrial mixing processes in which two or more substances are

tumbled together in a rotating container with the aim of achieving either segre-

gated or homogeneous mixtures. These quasi-two-dimensional drum experiments

remove the additional complexity of axial segregation, which is observed in fully

three-dimensional rotating drum flows (see e.g. Cooke, Stephens & Bridgwater
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1976). Particle segregation presents an impediment to the attainment of uniform

mixtures, as demonstrated in an extensive literature dedicated to the experimental

study of spherical rotating drums (Metcalfe et al. 1995; Hill et al. 1999; Ottino &

Khakhar 2000a). Rajchenbach (1990) found that granular avalanches in rotating

drum flows take the form of intermittent or continuous avalanches, which Henein

et al. (1983) identified with corresponding regimes for slowly rotating drums

which are sometimes known as the slumping and rolling regimes respectively.

Mellmann (2001) identified additional regimes characterised by slipping, cascad-

ing, cataracting and centrifuging bodies of grains, where the regime depends on

the rotation speed, fill fraction and the frictional properties of the particulates

and the drum walls. The intermittent avalanching, continuously avalanching and

cascading regimes are the most relevant to industrial mixing procedures, because

producing any other flow regime requires either very weakly frictional walls

(slipping, when no mixing occurs) or extreme rotation rates (Mellmann 2001).

Intermittent avalanches comprise a repeatedly failing incline of granular material

which is brought to rest by a shockwave propagating upslope upon impact with the

downslope wall (Gray, Tai & Noelle 2003), which can create so-called Catherine

wheel patterns (Gray & Hutter 1997; Gray & Chugunov 2006). It may be that

frictional hysteresis (Edwards et al. 2019) and a yield stress are required to

reproduce this effect in physical models, and numerical modelling has therefore

mostly focused upon the continuous avalanches observed at faster rotation rates

(Schlick et al. 2015; Liu, Gonzalez & Wassgren 2018; Brandao et al. 2020), which

are also the focus here. While spherical rotating drum flows may reach a steady-

state, Hill et al. (1999) demonstrated the complex transient pattern formations

possible in square and elliptical geometries with mixtures of particles distinguished

by size or density; here triangular drums are considered.

Schlick et al. (2015) prescribed a steady-state bulk velocity field for a circular

drum based on fits to DEM data to derive strain-rate dependent segregation

velocities. Liu et al. (2018) calculated the bulk flow field using a rate-independent

constitutive law of a form prone to ill-posedness (Schaeffer 1987) and modelled

self-diffusion of grains using the scaling observed by Utter & Behringer (2004), but

did not consider segregation effects. Arseni et al. (2020) attempted to reproduce

the rolling, cascading, cataracting and centrifuging regimes using monodisperse



Particle-size segregation in rotating drums with sidewall friction 123

simulations based on the original µ(I)-rheology (Jop et al. 2005), although these

results appeared to encounter issues with air trapping in the granular mixture,

which is a common problem in computations utilising the volume-of-fluid method,

as identified by Barker et al. (2021). Barker et al. (2021) resolved this air trapping

issue and simulated square rotating drums containing a bidisperse granular mix-

ture within a fully coupled framework. Here, experiments of triangular rotating

drums are conducted for a range of fill fractions and mean particle concentrations,

and the same coupled approach with the segregation-reduction factor suggested by

Trewhela et al. (2021) is used to perform equivalent numerical simulations, with

no fitting parameters used. Confining sidewall friction is incorporated into the

model, resulting in very accurate numerical simulations of the experimental data.

Furthermore, a method of extracting concentration fields from the experimental

images shows that the segregation intensity of the simulations closely matches

that of the experiments. The evidence provided here strongly suggests that the

partially regularised incompressible µ(I)-rheology coupled with the segregation

scaling law of Trewhela et al. (2021) and the strain-rate dependent diffusivity

scaling law is capable of capturing the complex dynamics of triangular rotating

drum flows in the continuously avalanching regime.

2. Governing equations

2.1. Partially regularised µ(I)-rheology

Consider a body of granular material containing particles of differing sizes,

shapes and frictional properties but with an assumed constant intrinsic grain

density ρ∗. The solids volume fraction Φ is further assumed to be constant and

uniform throughout the grains, so that the bulk density ρ = Φρ∗ is also constant,

and mass balance then implies that the bulk flow field u is incompressible,

∇ · u = 0, (2.1)

where ∇ is the gradient operator and · is the dot product. Although gravity-driven

segregation relies on the formation of void spaces inside a flowing mixture, the bulk

solids volume fraction in granular avalanches has been shown to remain approx-

imately constant (Tripathi & Khakhar 2011) and incompressibility is therefore a
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reasonable assumption. The momentum balance is

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ∇ · τ + ρg, (2.2)

where p is the pressure, τ is the deviatoric stress tensor, and g is the gravita-

tional acceleration vector. Assuming alignment of the deviatoric stress and the

strain rate, the µ(I)-rheology (GDR MiDi 2004; Jop et al. 2005, 2006) gives the

expression τ = 2ηD for the deviatoric stress in terms of a granular viscosity η,

which is given by

η =
µ(I)p

2∥D∥ . (2.3)

Here µ is the internal friction coefficient, D = 1
2

(
∇u + (∇u)T

)
is the strain-rate

tensor, and the second invariant of the strain-rate tensor is defined as

∥D∥ =

√
1

2
tr(D2). (2.4)

The internal friction µ is a function only of the non-dimensional inertial number

I (GDR MiDi 2004), which is defined as

I =
2d∥D∥√
p/ρ∗

, (2.5)

where d is the grain diameter. The µ(I)-rheology is an empirical law which was

formulated using dimensional analysis alongside evidence from DEM simulations

and experiments across a range of steady-state, monodisperse flow geometries

(GDR MiDi 2004). A functional form for µ(I) was first proposed by Jop et al.

(2005), using a basal friction law (Pouliquen & Forterre 2002) to derive

µ(I) =
µsI0 + µdI

I0 + I
, (2.6)

where µs is the static friction coefficient, µd is the dynamic friction coefficient, and

I0 is a material constant. However, Barker et al. (2015) found that this formulation

led to unbounded growth of small perturbations in the high wavenumber limit for

values of the inertial number that are either too low or too high. In practice,

this has been shown to lead to grid-dependent numerical simulations (Barker

et al. 2015; Martin et al. 2017; Barker & Gray 2017), and offers an indication

that important physics are missing from the model. This problem of ill-posedness

can be resolved by the inclusion of compressibility (Barker et al. 2017; Schaeffer
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et al. 2019) but here a modified incompressible curve proposed by Barker & Gray

(2017) is used, which guarantees well-posedness of the governing equations below

an extreme high inertial number limit. This is known as the partially regularised

µ(I)-rheology, and is expressed as

µ(I) =





√
α

log
(

A−
I

) , for I ⩽ I1,

µsI0 + µdI + µ∞I2

I0 + I
, for I > I1,

(2.7)

where α ≲ 2 ensures well-posedness in the low I limit, µ∞ is a material constant,

and

A− = I1 exp

(
α(I0 + I1)2

(µsI0 + µdI1 + µ∞(I1)2)2

)
. (2.8)

This satisfies the condition that µ(I = 0) = 0, which is necessary but not

sufficient for a well-posed µ(I) curve. It introduces a creep state for I ⩽ I1, and

consequently the partially regularised rheology does not have a yield stress. For

the rheology to remain unconditionally well-posed posed while accommodating a

yield stress, an incompressible theory with higher velocity gradients (Goddard &

Lee 2017) or non-locality (Kamrin & Koval 2012; Kamrin 2019) may be used, or

alternatively compressible rheologies (Barker et al. 2017; Schaeffer et al. 2019),

but since these are relatively new theoretical developments it is sensible to use

the better understood incompressible models for complex transient flows such as

the rotating drum, particularly as they can also be coupled to incompressible

segregation theories. Furthermore, the omission of a yield stress makes little prac-

tical difference to numerical simulations which already necessitate high viscosity

regularisation, discussed in §3. Additionally, while for the original formulation

(2.6) µ → µd in the high inertial number limit (as I → ∞), for the partially

regularised rheology µ → µ∞I, as suggested by data from high speed chute flow

experiments (Holyoake & McElwaine 2012; Barker & Gray 2017).

2.2. Generalized polydisperse segregation theory

The granular material is assumed to consist of n discrete particle species ν with

respective grain diameters dν and an intrinsic grain density ρ∗ which is constant

across the entire granular material. Each species has a volume fraction per unit
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granular volume ϕν ∈ [0, 1] satisfying by definition the summation constraint

∑

∀ν
ϕν = 1. (2.9)

It is assumed that each species satisfies the standard form (Savage & Lun 1988;

Gray & Thornton 2005; Gray & Chugunov 2006; Gray & Ancey 2011; Fan & Hill

2011; Schlick et al. 2015) of an advection-segregation-diffusion equation,

∂ϕν

∂t
+ ∇ · (ϕνu) + ∇ · F ν = ∇ ·Dν , (2.10)

where F ν and Dν are the segregation and diffusive flux vectors respectively. By

summing (2.10) over each species and applying the summation constraint (2.9),

incompressibility (2.1) is satisfied for independent segregation and diffusive fluxes

provided

∑

∀ν
F ν = 0, and

∑

∀ν
Dν = 0. (2.11)

For a bidisperse mixture, the segregation flux function should satisfy the con-

straint that no segregation occurs when the volume fraction of either species of

the sub-mixture is zero (Bridgwater et al. 1985). The simplest form therefore

has a linear dependence on the species volume fractions, proposed for a bidisperse

mixture by Gray & Thornton (2005). This was later generalised for a polydisperse

mixture (Gray & Ancey 2011) which allows for variations in the segregation

direction across the bidisperse sub-mixtures (Barker et al. 2021), taking the form

F ν =
∑

∀λ ̸=ν

fνλϕ
νϕλeνλ, (2.12)

where fνλ is the segregation velocity magnitude and eνλ is the unit segregation di-

rection vector. This is simply the sum of the bidisperse segregation flux functions.

It satisfies the summation constraint (2.11) provided

fνλ = fλν , eνλ = −eλν . (2.13)

The diffusive flux vector is defined by analogy with the Maxwell-Stefan equations

(Maxwell 1867),

Dν =
∑

∀λ̸=ν

Dνλ

(
ϕλ∇ϕν − ϕν∇ϕλ

)
, (2.14)
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so that in general the diffusion rate Dνλ may vary between sub-mixtures while still

satisfying (2.11), provided Dνλ = Dλν . When the diffusion rate is the same across

all sub-mixtures, (2.14) reduces to the standard equation for Fickian diffusion.

2.3. Segregation induced feedback on the bulk flow

In polydisperse granular flows there is a complex interplay between the bulk

flow properties and the evolving particle-size distributions. Differences in particle

size between otherwise identical species are sufficient to induce frictional feedback

of the particle distribution on the bulk flow (see e.g. Baker et al. 2016b). The

coupled approach introduced by Barker et al. (2021) provides a theoretical and

numerical framework for simultaneously solving the mass (2.1) and momentum

balance equations (2.2), and the segregation-advection-diffusion equation (2.10),

for the bulk velocity field u and pressure p, and the particle concentrations ϕν .

Each distinct particle species may be uniquely identified by its constituent

particle size, shape and surface properties, which are quantified through the

rheological parameters of the species. The evolving particle distributions may

thus feedback onto the bulk flow through the granular viscosity, which captures

the evolving frictional properties of the mixture. However, the definitions for the

granular viscosity (2.3) and the inertial number (2.5) must first be extended for

polydisperse mixtures. A volume fraction weighted average grain size d̄ has been

proposed for bidisperse systems (Rognon et al. 2007; Tripathi & Khakhar 2011)

and this may be trivially extended to a generalised polydisperse form (Barker

et al. 2021),

d̄ =
∑

∀ν
ϕνdν . (2.15)

With this definition, the inertial number expression (2.5) can be re-defined for

generalised polydisperse flows as

I =
2d̄∥D∥√
p/ρ∗

, (2.16)

which increases as the volume fraction of larger particle species increases. This

means that a mixture of larger particles is more frictional than a mixture of

smaller particles, assuming that µ(I) is a monotonically increasing function of I.
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For monodisperse flows d̄ = d, and the original definition of I (2.5) is trivially

recovered.

In addition to differing particle sizes, each species ν may exhibit differing shape

and surface properties. These can be quantified by the rheological parameters µν
s ,

µν
d, µν

∞ and Iν0 to give a set of friction equations µν(I) of the form (2.7) where

I (2.16) is now dependent on the average grain diameter d̄. The local effective

friction of the mixture can then be defined as the volume fraction weighted average

of the constituent frictions,

µ̄(I) =
∑

∀ν
ϕνµν(I). (2.17)

This leads naturally to a new granular viscosity definition (2.3) when included in

place of the monodisperse friction law:

η̄ =
µ̄(I)p

2∥D∥ . (2.18)

If the non-dimensional rheological parameters are the same across each phase, as

is often true when mixing together species of the same substance (such as glass),

then the effective friction is also the same, i.e. µ̄(I) = µν(I) = µ(I). In this

case frictional feedback is introduced only through variations in the average grain

diameter d̄, and hence I.

2.4. Bulk flow feedback on the segregation rate and diffusivity

The particle distributions are advected by the bulk flow due to the velocity

transport term in (2.10). The segregation (2.12) and diffusion rates (2.14) are

also coupled to the bulk flow through the functional dependence of the segregation

velocity magnitude fνλ and diffusion rate Dνλ. This form of coupling is observed

physically in rotating drum flows (Metcalfe et al. 1995; Hill et al. 1999; Ottino &

Khakhar 2000a; Gray 2001; Zuriguel et al. 2006), in which segregation is confined

to an active layer of rapidly avalanching material above a substrate of quasi-static

material in which no segregation occurs.

Consider a bidisperse mixture of small and large particles with respective grain

diameters ds and dl undergoing a deviatoric (shear) stress τ , a pressure p with

gravity g, resulting in a shear rate γ̇ = 2∥D∥. The small particle concentration

ϕs = 1 − ϕl and the solids volume fraction is Φ. Trewhela et al. (2021) identified
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six independent non-dimensional quantities for this system,

µ =
τ

p
, I =

γ̇d̄√
p/ρ∗

, Φ, P =
p

ρ∗gd̄
, R =

dl

ds
, ϕs, (2.19a–f)

where P is the non-dimensional pressure and R is the particle-size ratio. Dimen-

sional analysis demands that the diffusion rate scales with the shear rate and

the particle size squared (Barker et al. 2021). This scaling was also implied by

the analysis of Scott & Bridgwater (1975) on the relationship between particle

percolation velocity and diffusion, and has been extensively confirmed by exper-

imental observations (Bridgwater 1980; Natarajan, Hunt & Taylor 1995; Utter

& Behringer 2004; Katsuragi, Abate & Durian 2010) and numerical simulations

(Tripathi & Khakhar 2013; Fan et al. 2014; Cai et al. 2019). The simplest model

for the diffusion rate is therefore

Dνλ = 2A∥D∥d̄2, (2.20)

where there is a factor of 2 since ∥D∥ is half the shear rate. Here A is a constant

specified in table 1. Campbell (1997) found that diffusion in granular shear flows

was anisotropic, and Utter & Behringer (2004) studied monodisperse Couette

flow experiments using flat disc-shaped particles, from which they measured a

radial diffusion coefficient of A = 0.108 and a tangential diffusion coefficient of

A = 0.223. However, there is strong evidence from bidisperse DEM shear cell

simulations performed using spherical particles that the anisotropy is only slight,

and that instead A ∈ (0.03, 0.05) (Tripathi & Khakhar 2013; Cai et al. 2019;

Bancroft & Johnson 2021; Artoni et al. 2021). Therefore isotropic diffusion can

be reasonably assumed, and A = 0.04 is used here.

Dimensional analysis (Barker et al. 2021; Trewhela et al. 2021) furthermore

suggests that the segregation velocity magnitude for a bidisperse mixture of large

and small particles may scale as

fsl ∼ γ̇d̄G(µ, I, Φ, P,R, ϕs). (2.21)

Trewhela et al. (2021) performed single intruder shear box experiments to derive
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the segregation velocity scaling law

fsl =
2Bρ∗g∥D∥d̄2
Cρ∗gd̄+ p

F(R,ϕs), (2.22)

where B and C are universal constants and F(R,ϕs) is some function of the grain

size ratio and the small particle concentration. Based upon their single intruder

experiments, Trewhela et al. (2021) initially suggested the form

F(R,ϕs) = (R− 1) + E(1 − ϕs)(R− 1)2. (2.23)

where E is a universal constant. This encapsulates the observation of Trewhela

et al. (2021) that in single intruder experiments, the large intruder velocity

depended linearly on the size ratio R, whereas smaller intruders developed a

quadratic dependence for larger size ratios. However, there is evidence from

experiments and DEM simulations suggesting that for 50:50 mixtures of large and

small particles in geometries for which the velocity and shear rate are functions

of space and time, the segregation intensity is maximal near a grain-size ratio of

R = 2 (Golick & Daniels 2009; Thornton et al. 2012), whereas the formulation

(2.23) is monotonically increasing with the size ratio. In DEM simulations of

rotating drums (He et al. 2019; Zhang et al. 2017), it has been observed that

while the final segregation intensity initially increases with the particle-size ratio

R, drums containing a mixture with R = 3 segregated less strongly than mixtures

with R = 2, suggesting that the observations of Golick & Daniels (2009); Thornton

et al. (2012) also hold for rotating drum geometries. Although the origins of this

phenomenon are not yet fully understood, it is known that grains in a bidisperse

mixture are able to pack more efficiently than those in monodisperse mixtures

(Golick & Daniels 2009; Thornton et al. 2012), and increased packing efficiency

impedes segregation since the probability of void spaces forming through which

grains can percolate is reduced. A maximum segregation intensity near R = 2

could therefore be related to the packing efficiency increasing with the grain-size

ratio. Trewhela et al. (2021) suggested an alternative size-ratio dependency which

captures this effect within the framework of incompressible segregation theory:

F(R,ϕs) =
(R− 1) + EΛ(ϕs)(R− 1)2

1 + a(R− 1)2ϕs(1 − ϕs)
, (2.24)
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A = 0.108, B = 0.7125, C = 0.2712,
E = 2.0957, a = 9 ϕs

c = 0.2.

Table 1. Non-dimensional, universal constants A, B, C, E in the diffusivity (2.20) and
segregation scaling laws of Trewhela et al. (2021), as well the constants a and ϕs

c, also
suggested by the single intruder experiments of Trewhela et al. (2021). The constant B
is corrected for the interstitial fluid present in the experiments of Trewhela et al. (2021).

where a is a constant and the function Λ(ϕs) is defined as

Λ(ϕs) =





1 − ϕs

ϕsc
, for ϕs ⩽ ϕsc,

0, for ϕs > ϕsc.

(2.25)

This definition for Λ(ϕs) means that increased segregation with a quadratic depen-

dence on the grain-size ratio is now restricted to low small particle concentrations,

where ϕsc is a constant which determines the point of transition between linear

and quadratic dependencies. The denominator of the formulation (2.24) captures

the idea that the packing efficiency becomes stronger with increasing grain-size

ratio, and is only important for grains which are mixed together. The results

from the single intruder experiments of (Trewhela et al. 2021) are still accurately

reproduced by this function since (2.23) and (2.24) are equivalent when ϕs = 0 or

1. The segregation Péclet number Pe = fsl/Dsl (Wiederseiner et al. 2011) is now

predicted to peak at R ≃ 1.66, which is very close to the maximum at R = 1.7

observed in the DEM simulations of Thornton et al. (2012).

The bidisperse segregation velocity scaling law to be used in this paper can

then be expressed in full as

fsl =

[
2Bρ∗g∥D∥d̄2
Cρ∗gd̄+ p

] [
(R− 1) + EΛ(ϕs)(R− 1)2

1 + a(R− 1)2ϕs(1 − ϕs)

]
, (2.26)

where the universal constants B, C and E , as well as a and ϕsc, are given in

table 1. This can be trivially extended to pairwise segregation velocity magnitudes

fνλ for general polydisperse mixtures if ϕs is replaced in the definition of Λ(ϕs)

(2.25) by the volume fraction of the species with smaller particle size from any

given pair. The expression (2.26) is able to capture a variety of phenomena

observed in bidisperse, sheared granular flows. The dominant mechanisms driving

segregation in such flows are squeeze expulsion and kinetic sieving (Middleton
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1970; Bridgwater et al. 1985; Savage & Lun 1988), a gravity driven process

through which smaller grains percolate down through the mixture, and it has

also been observed that segregation shuts off when gravity is effectively reduced

through a density matched interstitial fluid (Vallance & Savage 2000; Thornton,

Gray & Hogg 2006). The inclusion of the non-dimensional pressure P is therefore

necessary since this is the only non-dimensional parameter from the set (2.19)

which includes a dependence on gravity. Furthermore, Golick & Daniels (2009)

observed a reduction in the segregation rate under increased pressure in a shear

cell. The dependence on the average grain diameter also naturally gives rise to

asymmetric flux functions, as suggested by annular shear cell experiments (Golick

& Daniels 2009; Gajjar & Gray 2014) and oscillatory shear box DEM simulations

(van der Vaart et al. 2015).

The segregation theory of Trewhela et al. (2021) used here in the form (2.26)

is phenomenological, gravity-driven and derives from experiments focused upon

determining the rise rate of large particles in the direction opposite gravity, but

there is evidence that segregation induced by shear rate gradients can occur in

other directions, even normal to gravity (Fan & Hill 2011), with large particles

segregated towards regions of higher shear rate in dense flow regimes. However,

gravity-induced avalanche experiments including rotating drum flows consistently

demonstrate the segregation of large particles towards the free-surface, where the

shear rate is lowest for Bagnold-like profiles. This is likely because the gravity-

induced shear rate gradient drives segregation directly opposing but overwhelmed

by the usual gravity-driven segregation, and which therefore goes undetected. The

opposing influence of shear rate-induced segregation can therefore be considered to

have been implicitly incorporated into measurements of the segregation parameter

B as a dampening effect in the experiments of Trewhela et al. (2021). For geome-

tries in which the shear rate gradient and gravity diverge, the coupling theory

makes use of arbitrary segregation directions (2.12) to allow for straightforward

alteration within the same theoretical structure. In such cases the segregation

scaling (2.26) would no longer hold, but it is suitable for the present study of

rotating drum flows.
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2.5. Sidewall friction

It has long been known that confining lateral sidewalls play an important role

in granular flow experiments (Greve & Hutter 1993; Taberlet et al. 2003; Jop et al.

2005; Baker, Barker & Gray 2016a). In rotating drum flows the additional friction

introduced by sidewalls results in avalanches which are significantly thinner and

faster (Hill et al. 1999; Ottino & Khakhar 2000a; Jop et al. 2005; Mounty 2007)

than those captured in the strictly two-dimensional drum simulations of Barker

et al. (2021). Indeed, Mounty (2007) successfully reproduced patterns in square

and triangular drum flows by collapsing the avalanche into an infinitesimal layer.

The influence of sidewall friction may be incorporated into the governing equations

through a simple modification of the momentum balance equation (2.2). Consider

a three-dimensional granular flow confined within a narrow channel between y = 0

and y = W , where zero velocity and velocity gradients are assumed in the y-

direction. Proceeding in a similar manner to Jop et al. (2005), the boundary

conditions at the lateral sidewalls are

τ · n = −µW p
u

|u| at y = 0,W, (2.27)

where n is an outward pointing normal to the sidewall, the term −u/|u| ensures

the wall friction acts against the flow, and µW is a constant friction coefficient

which models the wall friction effects using the assumption of Coulomb slip on the

sidewalls. For rough sidewalls a no-slip condition may be more appropriate (Baker

et al. 2016b) but the rotating drums used here have smooth acrylic sidewalls which

allow slip. Three-dimensional mass and momentum balance equations, defined

analogously with (2.1) and (2.2), may be integrated through the channel width

in a similar fashion to the depth-averaged approach for a shallow system (Gray

2001; Gray & Edwards 2014). The resulting width-averaged system of equations,

after applying the boundary conditions (2.27), may be stated as

∇ · u = 0, (2.28)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ∇ · (2ηD) + ρg − 2

W
µW p

u

|u| , (2.29)

where ∇ = (∂/∂x, ∂/∂z), the two-dimensional gradient operator, and the variables

(u, p, η,D) from this point onwards refer to width-integrated quantities. For a
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more detailed derivation of these width-averaged equations, see appendix A. The

final term in the momentum balance equation (2.29) models the influence of

wall friction on the bulk flow. This alteration gives a straightforward method of

capturing three-dimensional wall friction effects within a two-dimensional frame-

work, and provides the necessary tools for computing numerical simulations of

experimental configurations which utilise confining sidewalls.

3. Numerical method

The mass (2.28) and momentum balances (2.29) are solved in conservative form,

∇ · u = 0, (3.1)

∂

∂t
(ϱu) + ∇ · (ϱu⊗ u) = −∇p+ ∇ · (2ηD) + ϱg − 2

W
µW p

u

|u| , (3.2)

where ϱ is the mixture density and ⊗ is the dyadic product. In addition to the

granular mixture, it is also useful to include a Newtonian air phase for numerical

simulations, and therefore the mixture density ϱ and the mixture viscosity η are

now volume fraction weighted averages which include air,

ϱ =
∑

∀ν
φνϱν , η =

∑

∀ν
φνην . (3.3)

The density of air ϱa is a constant, and ϱg = Φρ∗ ≫ ϱa, where the superscript

g denotes the granular phase. The granular viscosities ηg are derived from (2.18)

and the viscosity of air ηa is assumed to be constant. All the relevant numerical

parameters are specified in table 2.

The solids volume fraction Φ remains unchanged throughout the mixture, with

the excess air phase considered separately to the background, interstitial fluid of

volume fraction 1−Φ per unit mixture volume. For a bidisperse granular mixture

of small and large particles with excess air there are volume fractions φs, φl

and φa respectively. The granular segregation aligns with gravity, as does the

air-granular segregation. Zero diffusion between air and grains is assumed, and

so the advection-segregation-diffusion equation (2.10) produces a system of three



Particle-size segregation in rotating drums with sidewall friction 135

µs = tan(22◦) µd = tan(34◦) I0 = 0.249 µ∞ = 0.04
α = 1.9 I1 = 0.02048 ρ∗ = 2500 kg/m3 Φ = 0.6

ds = 0.35× 10−3 m dl = 0.7× 10−3 m R = 2 e = −g/|g|
ϱa = 1 kg/m3 ηa = 10−3 kg/(ms) fag = 5 m/s

Dal = Dal = 0 m2/s µW = tan(15.5◦) W = 3× 10−3 m

Table 2. Parameters for small and large glass beads, the air phase and the triangular
drum. The physical parameters for glass beads are those adapted by Rocha et al. (2019)
from the parameters used by Mangeney et al. (2007) to model the experiments of Félix
& Thomas (2004). These parameters are used to determine I0 using the definition given
by Jop et al. (2005), and µ∞ is chosen to ensure a well-posed partially-regularised µ(I)
curve up to I = 17.0189.

conservation laws

∂φl

∂t
+∇·

(
φlu

)
+∇·

(
−flsφlφs g

|g| + fagφ
lφa g

|g|

)
= ∇·

(
Dls

(
φs∇φl − φl∇φs

))
,

(3.4)

∂φs

∂t
+∇·(φsu)+∇·

(
fslφ

sφl g

|g| + fagφ
sφa g

|g|

)
= ∇·

(
Dsl

(
φl∇φs − φs∇φl

))
,

(3.5)

∂φa

∂t
+ ∇ · (φau) + ∇ ·

(
−fagφaφg g

|g|

)
= 0, (3.6)

where the overall concentration of grains is

φg = φs + φl = 1 − φa. (3.7)

The granular segregation velocity magnitude fsl is defined by the scaling law

(2.26) and fag = fas = fal is a constant specified in table 2. The system of

equations (3.4)-(3.7) may be arbitrarily extended for n granular phases.

The system (3.1)–(3.6) is solved using the open source computational fluid dy-

namics package OpenFOAM, with the concentration equations (3.4)–(3.6) solved

using the Multidimensional Universal Limiter for Explicit Solution (MULES)

algorithm (Weller 2006). Numerical diffusion leads to diffuse interfaces in mul-

tiphase problems, which is usually counteracted in OpenFOAM using the in-

built counter-gradient transport method (Rusche 2002; Weller 2008), but here

the air segregation equation (3.6) is used instead. Barker et al. (2021) showed

that whereas the standard, built-in method of OpenFOAM can frequently lead

to the cumulative trapping of grid-dependent air bubbles inside the granular

mixture, the air segregation equation avoids this potentially catastrophic issue by
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having the excess air rapidly evacuate the mixture while maintaining sharp, grid

resolved interfaces between phases. The air-grains segregation velocity magnitude

is therefore physically unimportant and only needs to be sufficiently large to

rapidly expel trapped air bubbles from the granular mixture (Barker et al. 2021).

The velocity solution and coupling to the mixture composition are calculated

explicitly, leading to a Courant–Friedrichs–Lewy (CFL) criterion incorporating

the local viscosity (Moukalled, Mangani & Darwish 2016), where the CFL number

is defined as

CFL =
|u|∆t
∆x

+
η ∆t

ρ∆x2
. (3.8)

This should be limited to a characteristic value for the time integration scheme

(such as 1 for forward Euler). In most multiphase flows the convective term

dominates and the second, viscous term is neglected. The reverse is true for static

granular material as the strain-rate tends to zero and the viscosity thus becomes

infinite, with the resulting requirement that time steps become infinitesimally

small. To avoid infinitesimal time steps, a high, constant cut-off value ηmax is

used for the viscosity (see e.g. Lagrée, Staron & Popinet 2011; Staron et al. 2012),

which is redefined as

η = min(ηmax, η). (3.9)

This means that a Newtonian viscosity is activated as ∥D∥ → 0 or p → ∞.

Smaller time steps are nevertheless required relative to low viscosity simulations

as the viscosity continues to dominate the CFL number. Finally, since the partially

regularised µ(I)-rheology (2.7) does not have a yield stress and instead enters a

creep regime for small values of the inertial number to maintain well-posedness

(Barker & Gray 2017), it is not able to model static material, as detailed in §2.1.

It is important to note here that although the µ(I)-rheology of Jop et al. (2005)

has a minimum yield stress of µs, the granular viscosity definition (2.3) means

that a creep regime would still be introduced numerically by the high viscosity

regularisation (3.9) and so the partially regularised form is strongly preferable

due its vastly extended region of well-posedness.
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4. Shear cell with sidewall friction

Before examining the influence of sidewall friction in rotating drums, an infinite

shear cell is used as a validation case for the numerical implementation of the

bulk mass and momentum with lateral sidewall friction, given by (3.1) and

(3.2). Consider a monodisperse body of grains, in a Cartesian coordinate system

Oxz, which is uniform and infinite in the x-direction, enclosed between confining

sidewalls and driven by a top plate moving with velocity (V0, 0) at z = 0. The top

plate drives a velocity (u, 0) and the flow is assumed to be steady and gravity-free.

The only non-zero component of the strain-rate tensor is Dxz = (1/2)du/dz, and

since the velocity decreases away from the top plate the strain-rate magnitude

∥D∥ = Dxz. Therefore the z momentum balance equation is satisfied if the

pressure is equal to a constant, p = p0. Since u/|u| = (1, 0) the x momentum

balance then reduces to

∂µ

∂z
=

2

W
µW , (4.1)

where W is the channel width and µW is the sidewall friction. Using the chain

rule and the definition of the inertial number I (2.5), this can be transformed into

an ordinary differential equation (ODE) for the velocity,

d2u

dz2
=

1

µ′(I)

2µW

Wd

√
p0
ρ∗
, (4.2)

where d is the grain diameter, ρ∗ is the intrinsic grain density and µ′(I) is

the derivative of µ with respect to I. It is possible to obtain an exact solution

by invoking the earlier µ(I) curve (2.6) of Jop et al. (2005), and so here the

partially-regularised µ(I) curve (2.7) is temporarily neglected. In this case µ can

be differentiated to give

µ′(I) =
(µd − µs)I0

(I0 + I)2
, (4.3)

and so after again using the definition of the inertial number (2.5), equation (4.2)

becomes the second-order nonlinear ODE

d2u

dz2
= β

(
1 + γ

∂u

∂z

)2

, (4.4)
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where β and γ are constants related to the parameters in (4.2), defined by

β =
2µW

Wd

I0
µd − µs

√
p0
ρ∗

and γ =
d

I0

√
ρ∗
p0
. (4.5)

The equation (4.4) has the solution

u(z) =
− log (1 − βγ(z + h))

βγ2
− z + h

γ
, (4.6)

where h is the flow depth with u(z ⩽ −h) = 0. The flow depth can be located

exactly using the boundary condition u(z = 0) = V0, implying

log(1 − βγh) + βγh = −βγ2V0. (4.7)

This equation has a solution in the form of a Lambert W function, and the flow

depth is therefore

h =
W
(
e−βγ2V0−1

)
+ 1

βγ
. (4.8)

A numerical solution is computed in OpenFOAM using the modified conservative

momentum balance equation (3.2), with a no-slip boundary condition at the

base of the domain and periodic conditions on the left and right boundaries. A

comparison between the numerical and analytic solutions is plotted in figure 2, and

any new parameters used are specified in the caption. The remaining parameters

are taken from table 2. The numerical solution matches very closely with the

analytic solution, and significantly the numerical simulation is able to locate the

avalanche depth very accurately regardless of the extent of the domain in the z

direction, i.e. if the domain extends below the position z = −h, the velocity u

will still reduce to approximately zero at the same position. It may also be noted

that the influence of sidewall friction means that the velocity rapidly decays to

zero below the driving top plate, and it is therefore important for the numerical

method to reproduce this decay. These results strongly suggest that the numerical

implementation of the sidewall friction is correct, and computations of rotating

drum flows may now be considered.



Particle-size segregation in rotating drums with sidewall friction 139

u (m/s)

z (m)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
×10−3

Figure 2. Comparison of the numerical solution computed in OpenFOAM by solving
equations (3.1) and (3.2) (red open circles) to the exact solution (black curve) given by
(4.6). The channel width W = 3 mm and the wall friction coefficient µW = tan(15.5◦).
The constant pressure p0 = 50 N/m2 and the top plate velocity V0 = 0.1 m/s. A particle
diameter of d = ds = 0.35× 10−3 m was used.

5. Bidisperse triangular rotating drum

Recent attempts at continuum modelling of rotating drum flows have used

prescribed velocity fields obtained from DEM simulations (Schlick et al. 2015) or

rate-independent rheologies (Liu et al. 2018) prone to ill-posedness. Elsewhere,

DEM approaches to modelling circular drums (Yang, Sun & Chew 2018; Brandao

et al. 2020; Yari et al. 2020) have achieved some success and provide useful

evidence when considering the influence of parameters such as the grain-size

ratio, fill fraction, rotation speed and particle shape. However, such methods

are limited by the computational expense incurred when including many smaller

sized particles, and so very large particles and/or low fill-fractions are typically

needed. Zheng et al. (2019) coupled the µ(I)-rheology (Jop et al. 2005) to a

convection-diffusion equation to capture the mixing process in a monodisperse

mixture with two colours of particles in a circular drum, building upon the work

of Gray (2001). While studies which are restricted in focus to circular drums

in the continuously avalanching (or rolling) regime may reveal useful parametric

information, myriad unique particle pattern formations observed in other drum

shapes or flow regimes (Hill et al. 1999; Mounty 2007) are excluded. Barker
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et al. (2021) went significantly further by using the fully coupled system (3.1)–

(3.6) to simulate a square rotating drum, although this model lacked a sidewall

friction term. The importance of including confining sidewalls for modelling

continuously avalanching rotating drum flows can be best understood through the

study of polygonal drums. In contrast, the quasi-steady flow field produced by a

continuously avalanching circular drum flow gives rise to radial segregation, where

predominantly large or small particle annuli form around a central mixed region.

In this case, feedback induced by changes to the avalanche depth and velocity only

alters the radii of the distinct mixture regions and their segregation intensity,

without affecting the geometrical structure of the overall particle distribution,

unless another flow regime (Mellmann 2001) can be captured. However, the

geometry of polygonal drums leads to continuous variation in the height, length

and depth of the free-surface avalanche as the drum rotates, resulting in quasi-

periodic, highly transient flow fields which can produce stunning patterns that

are very sensitive to fill fraction, mixture composition and rotation rate, as well

as the frictional properties of the grains and sidewalls. This means that numerical

modelling attempts are naturally more sensitive to parameter changes which

affect the bulk flow field. Square drums have been the focus of experimental

observations (Hill et al. 1999; Ottino & Khakhar 2000a; Mounty 2007), and

Mounty (2007) used a phenomenological affine mapping approach to accurately

reproduce triangular and square drum patterns in the continuously avalanching

regime. Here, experiments of bidisperse flow in an equilateral triangular rotating

drum are undertaken with a range of volume fill fractions and mean particle

concentrations. Furthermore, the coupled method of Barker et al. (2021) is used

with the segregation reduction factor (2.24) and the modification (2.29) for

lateral sidewall friction, represented in full by the system (3.1)–(3.6), to simulate

triangular rotating drum flows which, due to the inclusion of sidewall friction

effects, demonstrate an impressively strong qualitative and quantitative match to

the experiments.

The drum flow is simulated in a fixed Cartesian coordinate system Oxz with the

origin on the axis of rotation at the centre of the drum, where z is aligned opposite

to gravity, as shown in figure 3. The drum frame is an equilateral triangle with side

lengths L = 0.257 m, and to begin with is filled to 70% of its total cavity volume
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Figure 3. Schematic diagram of a rotating triangular drum. A fixed Cartesian
co-ordinate system Oxz is defined, where the origin and centre of rotation O is at the
centre of the equilateral triangle, and the z axis is orientated in the opposite direction to
gravity g. The height of the triangle, represented by the dashed line, is initially aligned
with the z-axis before it rotates away from the vertical position. For some arbitrary
point of distance r from the origin, θ is the angle it forms with the horizontal axis in the
anticlockwise direction. A black dot is plotted on one corner of the drum frame so that
the changing orientation may be easily tracked. The drum has rotated by an angle Ωt
from the starting position, with a clockwise rotation rate of Ω = −π/12 rad/s for every
computation and experiment in §5, and a rotation rate of Ω = −π/48 rad/s for those in
§9.

with an initially uniform granular mixture of 50:50 small and large particles, i.e.

a mixture with mean small particle concentration φ̄s = 0.5, where φ̄s = φ̄l. All

the material is initially assumed to perform solid body rotation

u(t = 0) = Ωrθ, (5.1)

where Ω is the rotation rate, the radial coordinate r =
√
x2 + z2 and θ =

(− sin θ, cos θ) is the azimuthal unit vector with θ defined as in figure 3. A constant

rotation rate of Ω = −π/12 rad/s is specified for each case discussed in this

section, corresponding to one full revolution in the clockwise direction every 24 s.

This places the drum flow in the the continuously avalanching regime (Henein

et al. 1983; Rajchenbach 1990; Gray 2001; Mellmann 2001; Ding et al. 2002; Yang

et al. 2008) in which a free-surface avalanche forms with continuous erosion and

deposition between the solid body of grains underneath.
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It is useful to define a relative velocity field with the velocity of the rotating

drum walls subtracted, defined as

û = u−Ωrθ. (5.2)

No-slip and no-penetration conditions are imposed on the triangular walls which,

using the relative velocity field, can be expressed as û = 0 on the drum walls.

These conditions are applied on the rotating mesh using OpenFOAM’s mesh-

motion routines, with a structured tetrahedral triangular mesh containing N2 =

6002 cells. The frictional parameters for the large and small particles used through-

out this section are specified in table 2, with the large grains twice the size of

the small grains. Otherwise the rheological parameters are identical across each

granular phase. Since the parameters for segregation (Trewhela et al. 2021) and

diffusion (Tripathi & Khakhar 2013; Cai et al. 2019; Bancroft & Johnson 2021) are

universal constants determined from experimental and DEM data, the rheological

parameters for the granular phases correspond to those for glass beads used by

(Rocha et al. 2019), and the parameters related to lateral sidewall friction are

determined empirically as outlined below in §5.1, there are no fitting parameters

used in the simulations. The simulations and experiments in this section run for

two full revolutions, or 48 s.

5.1. Experimental set-up

The drum used for experiments can be seen in figure 4, rotating over two

revolutions. It has a metal outer frame with three internal sides of lengths

L = 0.257 m, the same as the numerical simulations, and two lateral, transparent

plates which confine the flow, made from Polymethyl Methacrylate (PMMA), an

acrylic polymer. The transparent plates are screwed together with the metal frame

lying between them, also screwed in place, so that they are separated by a cavity

width measuring 3 × 10−3 m. The cavity is maintained and bounded along the

edges of the equilateral triangle by the metal frame. Before assembly, the PMMA

walls must be cleaned with anti-static spray and dried to prevent clinging of the

smaller particles to the lateral walls. Glass beads sourced from Sigmund Lindner

GmbH, coloured red and green, are sieved to diameters between approximately

ds = 300 − 400 µm and dl = 600 − 800 µm respectively. They are poured into
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the drum through a single gap in the metal frame, which is then plugged by

a metal stopper and fixed firmly into the frame to prevent grains escaping. To

ensure the correct volume of bidisperse granular material is used, the constituent

large and small particle volumes are measured separately and then combined and

mixed to account for small adjustments to the solids volume fraction, which will

increase slightly upon mixing (Golick & Daniels 2009; Thornton et al. 2012) so

that the total volume of the grains decreases. If necessary, additional grains are

then added in the appropriately portioned quantities until the desired volume of

mixed material is obtained.

The PMMA plates exert a Coulomb frictional force on the granular medium,

and the wall friction parameter µW = tan(15.5◦) is a material property of both

the glass beads and the PMMA, measured empirically as the angle of failure for

static grains on a gradually inclined PMMA surface. A bidisperse mixture of the

small and large grains is used to measure the wall friction. The parameters used

in the numerical simulations are taken directly from these measurements, given in

table 2. Since the beads used for experiments are sieved to encompass a specified

range of grain diameters, in the simulations the median diameters are used. The

back of the drum is then attached to a rotation mechanism, consisting of an

ElectroCraft S642-1B/T stepper motor and a modulation speed control unit so

that the rotation rate may be precisely calibrated between the experiments and

simulations.

Finally, an initially homogeneous mixture must be approximated as closely as

possible before the drum rotation begins. This initial condition is easily specified

in a numerical simulation, but the natural propensity of grains to segregate based

on particle size makes strictly controlling the experimental conditions challenging.

This obstacle is overcome by orientating the drum horizontally, and shaking to

induce segregation in the direction normal to the lateral transparent sidewalls.

The large green beads can then be segregated to the front (observable) wall, with

the small red beads concealed behind them against the rear wall. Any given cross

section of the drum will thus contain an approximately 50:50 mixture of large and

small particles. The particle size gradient in the direction normal to the sidewalls

becomes approximately zero (dφs/dy ≈ 0) once material is entrained through

the avalanche, and so the final pattern formation is approximately uniform in



144 E.S.F. Maguire, T. Barker, M. Rauter, C.G. Johnson & J.M.N.T. Gray

Figure 4. Images of a 70% filled triangular rotating drum experiment over two
revolutions, beginning at t = 2 s and progressing in increments of 2 s, from left to right,
top to bottom, up to t = 48 s. The drum is filled with an approximately homogeneous
50:50 mixture of small red and large green particles, and the free-surface is initially
horizontal. Only solid body rotation occurs in the first 2 seconds and so the t = 0 frame
is omitted. Once the avalanche failure occurs between t = 2 s and t = 4 s, the mixture
gradually segregates into a structure of small particle arms. The experimental procedure
is described in §5.1. The protruding stopper, which plugs the cavity through which the
drum is filled, provides a reference point for the rotation. A video is available in the
online supplementary material.
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this direction, excepting the central core, if present. There is also the additional

advantage that the undisturbed core will appear to the observer from the front

as a uniform region of green particles, providing a strong contrast with the

predominantly small red particles which are deposited adjacent to the core.

To capture the images a light-emitting diode panel, a halogen lamp and an

optical diffuser are positioned around the drum, with a black velvet sheet attached

between the drum and the motor mechanism to provide a clean background, and

another in front of the drum through which the camera protrudes to prevent

reflections. A slotted circular wheel is affixed to the back of the drum with slots

positioned in fixed increments around the perimeter of the wheel, with a light

emitting diode and a sensor on opposite sides. In this way the sensor detects

the light through the slots at periodic time intervals and hence signals to the

camera to capture images at regular drum rotation intervals, and the rotation

rate of the drum can be calibrated exactly with reference to the timestamps of

the photographs. The slotted wheel or disc has twelve incisions, corresponding to

twelve images per revolution. A Canon EOS 7D Mark II camera with a Canon EF

50mm f/2.5 Compact Macro lens is used. The camera shutter speed was chosen

so as to produce some motion blur on the avalanching region of the flow, and it

is therefore easily distinguishable from the region performing solid body rotation

which remains in focus throughout. A full discussion of the experimental results is

deferred until the particle distribution of the numerical simulation is introduced

in §5.3.

5.2. Bulk flow fields

Initially the granular material is static and the free-surface is horizontally

inclined, and as the drum begins to rotate the entire granular mixture performs

solid body rotation. Due to the presence of sidewall friction the material forms

a super-stable heap (Taberlet et al. 2003) with a free-surface inclination angle

significantly exceeding the value of the static friction coefficient ζs = tan−1(µs),

which is the approximate angle of failure without sidewall friction (Barker et al.

2021). Once the material near the free-surface fails, a flowing layer is established

as material avalanches downslope. After this the free-surface inclination remains

relatively constant with only subtle periodic variations due to the continuously
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Figure 5. Approximately periodic motion of the bulk flow at four different orientations,
for a triangular drum flow computed using the parameters from tables 1 and 2, for (a)
the modulus of the relative velocity field, (b) pressure, and (c) the base 10 logarithm
of the inertial number. Each field is plotted at t = 42 s, 44 s, 46 s and 48 s, from
left to right, corresponding to one third of a revolution. The white dashed line in (c)
represents the position below which the high viscosity cut-off (3.9) becomes active. The
granular mixture occupies 70% of the total area of the drum. The fields pulsate with
the rotation of the drum as the free-surface periodically shortens and lengthens, rises
and falls, altering the geometry of the region occupied by the granular mixture. The
avalanche velocity is strongly dependent on the downslope length, flowing fastest when
the free-surface is longest. Due to the presence of sidewall friction the avalanche is thin
and rapid. Videos of the full evolution are available in the online supplementary material.
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shifting geometry. For the numerical simulation, the free-surface is identified by

plotting the contour φa = 1 and then colouring the air region above the granular

material white, as shown in figure 5. The simulation reproduces very closely

the free-surface inclination observed experimentally and presented in figure 4,

including the slight S-shape which becomes more pronounced when the free-

surface is longest, and the subtle dip at t = 42 s which occurs just past the halfway

point of the avalanche. The entire flow then exhibits a quasi-periodic pulsating

behaviour due to the rotation of the drum, as the free-surface intersection of

the triangle produces a varying cross section occupied by the granular material.

Figure 5 shows (a) the relative velocity field û defined by (5.2), (b) the pressure

p and (c) the base 10 logarithm of the inertial number I. The period of the

drum flow is 8 s, equivalent to a third of a revolution. Each field is therefore

plotted through the final third of a rotation at t = 42 s, 44 s, 46 s and 48 s,

but once the flowing layer is established within the first third of a rotation the

periodicity of the simulation means that any subsequent period would give very

similar results, with the qualification that the feedback from the evolving mixture

composition leads to subtle adjustments in the bulk flow. Videos showing the

full evolution of the bulk flow fields in the numerical simulation are available

in the online supplementary material. Feedback between the bulk flow and the

mixture composition plays a more pivotal role at fill levels near 50%, when the

strongly composition-dependent velocity field can lead to the formation of petal-

like patterns in the particle distribution (Zuriguel et al. 2006) for circular drums,

and more complex patterns in triangular and square drums (Mounty 2007) which

have been linked to chaotic advection (Hill et al. 1999; Khakhar et al. 1999; Ottino

& Khakhar 2000b).

The length of the avalanche depends on the orientation of the drum, and the

longest avalanches at t = 46 and 48 s, which occur when the free-surface is

most closely aligned with the opposite, upper drum wall, are also the fastest

flowing (see figure 5a) since the grains have a longer distance over which to

accelerate. The acceleration of granular material in the free-surface occurs while

the avalanche becomes deeper as more particles are entrained into the flowing

region from the solid body below, resulting in peak velocities around halfway down

the avalanche, after which particles are deposited back into the solid body and
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the avalanche thins and decelerates. Due to the presence of sidewall friction this

active avalanching layer is very thin in comparison with the simulations of Barker

et al. (2021), and presents a good match with the blurred flowing region in the

experiments of figure 4. Below the avalanching layer the velocity in the rotating

frame rapidly decays into a quasi-static creep state. The pressure (figure 5b)

has a lithostatic component, but with increasing depth the initially lithostatic

pressure gradient becomes increasingly gravity-aligned as the pressure contours

begin to divert towards the lower corner of the drum where the overburden

is felt most strongly. Since both the segregation velocity magnitude and the

inertial number are strain-rate dependent, the inertial number (figure 5c) gives

an accurate identification of the active layer in which segregation takes place in

the simulations. It appears slightly deeper than that implied by figure 5a since

log10(I) is plotted, and also exhibits less variation in magnitude with changing

orientation, in part due to the chosen logarithmic scale but also because the

strain-rate dependent inertial number is tied to velocity gradients rather than

velocity. The solid core of homogeneously mixed material develops below this

zone. The flow is governed by the creep regime of the partially regularised µ(I)-

rheology (2.7) for I ⩽ I1 = 0.0205, and I = I1 is attained above the white

dashed line representing the point below which the numerical regularisation for

high viscosities (3.9) is activated. Since the inertial number decreases with depth,

this means that all of the granular material in the dynamic regime and some of

the creeping material is modelled using the full granular rheology. The Newtonian

viscosity is only applied in the quasi-static creeping region and therefore has little

influence on the overall flow dynamics. It is notable that the inertial number very

rapidly decays by orders of magnitude, from the free-surface avalanche to the

peak viscosity region, which is due to the wall friction induced super-stable heap

(Taberlet et al. 2003).

5.3. Particle-size distribution

Figure 4 shows the developing mixture composition over the entire process

of segregation and diffusion in a 70% filled drum experiment using a 50:50

mix of small red grains and large green grains, and figure 6 shows the small

particle concentration in the equivalent numerical simulation computed with the
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Figure 6. Small particle concentration in a 70% filled triangular rotating drum
simulation with a 50:50 mixture of small and large particles, computed using the
segregation, diffusion and rheological parameters specified tables 1 and 2. The simulation
is shown over two full revolutions, beginning at t = 2 s and progressing in increments
of 2 s, or 1/12 of a revolution, from left to right, top to bottom, for comparison with
the experiment presented in figure 4. A black dot is fixed to one corner of the triangle
to provide a reference point for the progression of clockwise rotation. A video of the full
numerical solution is available in the online supplementary material.
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parameters from tables 1 and 2, with the frames moving in increments of two

seconds or equivalently 1/12 of a revolution in both cases, beginning at t = 2 s.

Videos showing the full particle pattern evolution in the experiment and numerical

simulation are available in the online supplementary material. The avalanche

failure occurs between 2 s and 4 s. Before this failure, the grains are static and

so cannot redistribute; this is captured by the numerical simulations since there

is no shear on the particles and hence no segregation or diffusion occurs due to

the strain-rate dependence in the segregation velocity magnitude (2.26) and the

diffusion rate (2.20). The particle size distribution can therefore be seen evolving

from the second frames. As the mixture flows down the avalanche, small particles

can percolate down through void spaces opening throughout the mixture in a

process known as kinetic sieving, and particles of both sizes are squeezed upwards

towards the surface of the flow as a consequence of force imbalance, resulting in

an inversely graded layer of large and small grains (Middleton 1970; Savage & Lun

1988). The functional form of the segregation velocity magnitude (2.26) means

that segregation in the numerical simulation is confined to the sheared flowing

region while material in the solid body remains in a mixed state, as observed

experimentally here and elsewhere (Gray & Hutter 1997; Khakhar, McCarthy &

Ottino 1997). The pressure dependence in (2.26) further acts to shut down the

segregation process deeper into the drum (Golick & Daniels 2009; Fry et al. 2018;

Trewhela et al. 2021). Segregation is therefore strongest at the free-surface, with

the consequence that the large particle region is slightly more strongly segregated

than the small particle region, although this is less obvious in the experiment. The

effect is intensified by the fact that particles nearer the free-surface have longer

trajectories through the avalanche before being deposited and hence spend longer

in the active layer.

Since the fill level of the drum exceeds 50% there is a central core of homoge-

neously mixed material which is never entrained into the avalanche (Gray 2001;

Mounty 2007), taking the approximate shape of a Reuleaux triangle, a three

sided shape formed by the intersection of three circles. The presence of sidewall

friction in the numerical simulations leads to a thin avalanche, and a central core

is produced which matches very closely in both size and shape to that observed

experimentally. This requires that (i) the partially regularised µ(I)-rheology (2.7)
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with lateral sidewall friction produces a free-surface avalanche with the correct

flowing depth, and (ii) the segregation (2.26) and diffusion (2.20) formulations

confine the particle-redistribution process to this avalanching region. In contrast,

previous attempts at numerical simulation (Barker et al. 2021) which neglected

sidewall friction possessed very deep, slow moving avalanches, and subsequently

severely underestimated the core size and the segregation velocity magnitude

relative to experimental observations (Hill et al. 1999; Ottino & Khakhar 2000a;

Mounty 2007). For such computations it is necessary to scale the grain diameter

with the flowing depth to achieve a greater intensity of segregation, whereas here

no fitting parameters are required. The slightly S-shaped free-surface inclination

of the experiments is also captured accurately by the numerical simulation,

demonstrated by the strong qualitative match between each frame in figures 4 and

6. This represents a further validation of the partially regularised µ(I)-rheology

and the approach described in §2.5 to model the influence of sidewall friction.

The quasi-periodic pulsating avalanche leads to the formation of two small

particle arms orientated towards the three corners of the drum which rotate in an

impressive triskelion pattern, and strengthen in definition each time they are re-

entrained into and then deposited from the avalanche. A triskelion is a shape

with protruding arms exhibiting three-fold rotational symmetry. The particle

composition deposited downslope by the avalanche is advected by the rotation

of the drum back into the upslope position to be re-entrained into the avalanche,

where there is another opportunity to segregate. Every time an arm is advected

through the avalanche it is re-orientated towards the next drum corner in the

clockwise direction, or by −2π/3, with the result that each of the two arms take

16 s to fully rotate around the drum, which is 2/3 of the time taken for a full

revolution of the drum.

Over the first full rotation, the material separates out around the homogeneous

core into distinct regions of predominantly large or small particles with a diffuse

region separating them, in a triangular shape in which the partially-formed small

particle arms are vaguely discernible. Over the second rotation, the pattern

morphs into the full triskelion structure of small particle arms, and this pattern

remains stable over subsequent revolutions omitted here. The timescale of this

entire gradual formation is captured by the numerical simulation, as shown by the
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excellent frame-by-frame match between figures 4 and 6. The arms exhibit a strong

three-fold rotational symmetry, which is however incomplete since the pattern is

interrupted by the free-surface. The pattern is necessarily incomplete since an

avalanche will only form for a partially filled drum. The symmetry is particularly

strong in the numerical simulation, which is demonstrated in figure 7 by plotting

the contour for φs = 0.5 around the two small particle arms, and rotating the

original contour twice, by ±2π/3, to form a complete triskelion structure in which

the two arms are overlaid. At t = 36 s, the main body of the arms have almost

perfect rotational symmetry, and only the free-surface interrupts the symmetry

of the entire structure. This is because the arms have been entrained through

the avalanche the same number of times. Interestingly, the lingering effects of

the initial avalanche failure, which is not periodically repeated, do not appear

to significantly affect the rotational symmetry. At t = 44 s, one arm has had

an additional opportunity to segregate, leading to a clearly defined crevice near

the central core, while the arm itself is slightly different in shape. This weakens

the rotational symmetry, as the other arm is unchanged in shape from t = 36 s,

since it has only performed solid body rotation during this time. The difficulty

in obtaining a perfectly homogeneous initial mixture means that the rotational

symmetry is inevitably weaker in the experiments, though still clearly evident.

The arms emanate not from the undisturbed core as in the square rotating drum

simulations of Barker et al. (2021) but from a position adjacent to the core, and

individually form an asymmetrical structure in which the outer length of the arm

is roughly parallel to the adjacent wall of the triangle, culminating in a flattened

top. Furthermore, after the pattern formation has reached a certain stage, a small

inner triangle can be distinguished above the undisturbed core as the upper arm

is partially entrained through the avalanche, visible at t = 40 s and 48 s. The

small particle regions immediately adjacent to the core and in the avalanching

arm encase a small triangular shaped zone with a higher concentration of large

particles. This feature is also subtly present in the experimental images, and

occurs once the small particle arms have achieved sufficient definition for a large

particle-rich region to coalesce in a crevice near the core. This means that the

numerical simulation successfully captures all of the key characteristics of the

triangular drum experiment. Indeed, as will be demonstrated below, the arms do
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Figure 7. Contour for φs = 0.5 around the small particle arms in the numerical
simulations of a 70% filled triangular rotating drum containing a 50:50 bidisperse mixture
(i.e. with φ̄s = 0.5), demonstrating the rotational symmetry of the arms, at t = 36 s
on the left, and t = 44 s on the right. In both cases, the original contour is plotted in
black, the same contour rotated by −2π/3 rad (i.e. rotation in the clockwise direction)
in red, and the contour rotated 2π/3 rad (anticlockwise) in blue. At t = 44 s, one arm
has been entrained through the avalanche an additional time, leading to a crevice in this
arm near the central core.

not form at all in numerical simulations without the presence of sidewall friction,

when instead weak small and large particle regions coalesce in a triangular shape

orientated with the outline of the drum walls, somewhat similar to the pattern

which forms over the initial revolution here.

5.4. Quantitative analysis and numerical convergence

As demonstrated above, the geometrical structure of small particle arms sur-

rounding an undisturbed central core of homogeneous material is very accurately

reproduced by the numerical simulation, as is the free-surface inclination and

shape, but a quantitative method must be devised to precisely test the theoretical

predictions and the accuracy of the numerical method.

Typically, quantitative comparisons for continuum simulations in recent years

have been drawn with data from DEM simulations (Yang et al. 2018; Schlick

et al. 2015), which accurately capture particle-level dynamics and therefore readily

provide a data set against which continuum theory can be judged. However, there

are disadvantages to this approach. The heavy computational expense incurred

by DEM simulations, which must track each particle and compute each inter-

particle interaction, can be severely limiting. As a consequence, particle numbers

for rotating drums must be restricted to a practical order of magnitude by using
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very large particle sizes or lower fill levels (Zhang et al. 2017; He et al. 2019; Yari

et al. 2020; Brandao et al. 2020). The experiments presented in this paper are

composed of many hundreds of thousands of tiny particles, up to approximately

1.2 million, and are therefore unsuitable for DEM simulations. This means that

an alternative method of quantitative analysis must be established. Extracting

quantitative data on particle-size distribution from granular flow experiments

is notoriously difficult (Scott & Bridgwater 1975), particularly for the sealed

containers handled here, where extractive sampling is laborious and possibly

subject to systematic inaccuracies (Scott & Bridgwater 1975). Instead, a non-

intrusive method of careful data extraction will be used.

The primary field of interest is the particle concentration field, which can be

determined approximately from experimental images using the following method.

First, the drum is filled with a mixture of known small particle concentration,

shaken to achieve approximate uniformity and then photographed. The drum,

containing this same mixture, is repeatedly shaken and photographed to improve

reliability. This process is then repeated for a variety of mean small particle

concentrations across the range φ̄s ∈ [0, 1]. All the images are cropped to remove

the non-granular regions, and the colour profiles of the resulting raster images are

processed in MATLAB to return a matrix giving the RGB (red-green-blue) inten-

sities for each individual pixel. The ratio of the red intensity to the green intensity

is determined for each pixel, and averaged over the entire domain. The red and

green intensities exhibit a strong correlation with the small particle concentration

since they correspond to the colours of the small and large particles respectively.

This process returns a mean red to green pixel intensity ratio corresponding to

each measured mean small particle concentration φ̄s, and the results for a given

concentration can be reliably reproduced experimentally. The ratio can then be

plotted against φs ∈ [0, 1] and a best fit curve drawn to give a complete set of

unique expected intensity ratios for every possible concentration. In fact, here a

strongly linear relationship was discovered between the intensity ratio and the

particle concentration, and consequently the mapping can be further improved.

Once the relationship between the intensity ratio and the concentration is

assumed to be linear, the appropriate linear fit can be determined using data

taken from only two concentrations. When the mean small particle concentration
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φ̄s = 0 or 1, it follows that φs = φ̄s at every point in the granular mixture.

Therefore, the images with these two mean particle concentrations can be divided

into 8 × 8 pixel cells, where the cell size is chosen to ensure a reasonable number

of particles per cell, and the concentration in every cell is known a priori. The

mean colour intensity ratio in each individual cell is then calculated, and the

mean cell intensities when φs = 0 and 1 can be used to produce the linear fit

between intensity ratio and small particle concentration. This method has three

major advantages over using a greater number of points for φ̄s and taking the

mean pixel intensity ratio over the entire drum. First, since it uses data from

8×8 pixel cells, it can be used to derive the concentration in cells of the same size

from other drum images, without any additional assumption of validity. Second,

since the concentration in every cell is known when φ̄s = 0 or 1, the standard

deviation of the cell intensity ratio can be trivially calculated and used to plot

a set of worst fit lines which facilitate accurate error estimation. Error is due

to particle shadows and uneven light reflections (Hill et al. 1999), which may be

reduced but not eradicated by an appropriately positioned lighting set-up. Finally,

when the drums are filled with pure phases of small or large particles, attempts

at attaining a relatively homogeneous mixture are not subject to inadvertent

segregation and so the colour intensity data is more reliable than for intermediate

particle concentrations.

Using the calculated mapping from colour intensity to concentration, images

of the developing rotating drum patterns from figure 4 are divided into 8 × 8

pixel cells, so that the mean red to green intensity ratio can be determined for

the individual cell and a small particle concentration value assigned using the set

of expected intensity ratios. To account for the undisturbed core, which appears

to have φs = 0 but in reality has φs = 0.5 due to the method of attaining the

initial mixture composition (see §5.1), this region is filled with black pixels for

which an exception is made so that they are assigned the correct concentration

value. Note that although some pixels elsewhere in the drum appear very dark

due to gaps between particles adjacent to the clear walls, over the 8×8 pixel cells

there is sufficient saturation of colour to avoid confusion with the central core

region. This results in a projected small particle concentration field for the entire

drum. Using this method, the mean particle concentration of the experiments
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using an approximately 50:50 mixture of small and large particles is calculated

to be φ̄s = 0.49 ± 0.03, matching very closely with the approximate true value of

φ̄s = 0.5.

The concentration field for the 70% filled rotating drum after t=48 s is shown

in figure 8. The number of pixels per cell is chosen to give a detailed concentration

field with strong image definition where each cell contains many particles. The

subtle region of weaker small particle concentration above the core in the crevice

of the arm being entrained into the avalanche is more clearly visible in this image

than in the pre-processed image, which is shown in the final panel of figure 4.

As predicted by the theory, the predominantly large particle regions adjacent

to the drum walls are more strongly segregated than the small particle regions

adjacent to the central core, since segregation is strongest at the free-surface,

towards which the large particles are segregated. This was not evident in the pre-

processed images, but has been verified by examining the field (φs − φ̄s)2, which

confirms that the predominantly large particle regions deviate further from the

mean particle concentration than the predominantly small regions. The influence

of particle size and mixture composition on segregation intensity will be examined

further in §8.

To test the strength of the segregation and compare it directly to the simulation

data, the segregation intensity is defined, analogously with Danckwerts (1952), as

the standard deviation of φs normalised by the mean small and large particle

concentrations, φ̄s(1 − φ̄s),

S =

√ ∫
ω

(φs − φ̄s)2dXdZ

φ̄s(1 − φ̄s)
∫
ω

dXdZ
, (5.3)

where ω is the part of the domain occupied by granular material. This definition

for the segregation intensity means that S = 0 for an unsegregated mixture, and

S = 1 for a fully segregated mixture.

The resulting data on the segregation intensity is presented in figure 9, over

the full time for the simulation and after every third of a revolution, or 8 s, for

the experiments. The intensity derived from the experiments is not dependent

upon the number of pixels per cell because the map from intensity ratio to

concentration is derived using cells of the same size, unless the cells used are
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Figure 8. Approximated small particle concentration field at t = 48 s for the experiment
using a triangular drum 70% filled with an approximately 50:50 mixture of small and
large particles. The small particle concentration is obtained using the projection method
described in §5.4.
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Figure 9. Comparison of the developing segregation intensity (5.3) over time in a 70%
filled drum with a 50:50 mix of small and large particles, between the experiment (red
circles with error bars) and the simulation data (solid colour lines) using a variety of
grid resolutions, where the total number of cells is N2. In the inset, the segregation
intensity of the simulations at t = 48 s is plotted against the grid resolution, with the
segregation intensity calculated for the experiment represented by the dashed blue line
for comparison, while the dot-dashed red lines represent the experimental error of the
intensity.
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excessively small (i.e. an order of magnitude similar to the grain size) or excessively

large. The segregation intensity is plotted for numerical simulations computed

at four different grid resolutions. Friction from the lateral sidewalls results in a

very thin free-surface avalanche, which acts as a boundary layer within which

all the segregation occurs. Therefore, to correctly predict the segregation and

hence the overall pattern formation, this boundary layer must be adequately

resolved, requiring a very fine mesh. For coarser meshes, the avalanche is under-

resolved and numerical diffusion therefore leads to an underestimation of the

segregation intensity. Although the finest resolution, which uses 6002 tetrahedral

cells, is not perfectly resolved, the two finest meshes yield similar results, and

the time-evolution of the segregation intensities and the inset in figure 9 clearly

demonstrate convergence of the solution with increasing refinement. Furthermore,

the simulations appear to be converging on a solution close to the intensities

derived from the experiments using the concentration field projection method, and

are clearly converging on a solution within the estimated error. The comparison

also confirms the earlier observation that the segregation takes place over a

similar timescale in simulations and experiments, even when the avalanche is

severely under-resolved. This means that the numerical simulations provide a

strong qualitative and quantitative match with experimental data without the

need for any fitting parameters.

Additionally, the simulation data shows periodic peaks and troughs in segre-

gation intensity with a period of one third of a revolution, as expected given

the variation in the avalanche dynamics with the shifting geometry (see §5.2,

figure 5), producing higher strain-rates, longer particle trajectories and hence

stronger segregation when the avalanche is at its longest. The intensity actually

declines slightly after these peaks in the second rotation, while the arms are

entrained through the avalanche. For the experiment and simulations the segre-

gation intensity is stabilising by the end of the second revolution, with a final

segregation intensity in the highest resolution simulation of S(t = 48 s) = 0.77,

although it may continue to plateau over many revolutions and will never become

fully periodic (Mounty 2007).
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6. The importance of lateral sidewall friction

The theoretical and numerical framework used to compute the rotating drum

simulation in §5 uses width-averaged, two-dimensional mass and momentum

equations with Coulomb slip assumed on the clear confining lateral sidewalls

through which the evolving particle pattern is observed in the experiments (see

§2.5). Jop et al. (2005) observed that sidewall friction effects control the dynam-

ics of confined steady uniform granular flows on a pile, with narrower channel

widths inducing faster and thinner free-surface avalanches, while Taberlet et al.

(2003) demonstrated how flows atop a quasi-static heap can be stabilised at high

inclination angles by confining sidewalls. The experimental and numerical results

obtained in §5 demonstrate these same phenomena for a complex, transient non-

uniform flow, and further insight may be gained by examining the effects of

excluding lateral sidewall friction from the numerical computation.

Setting up the simulation is simple given the work described in the preceding

sections. All the parameters used to compute the rotating drum simulation in §5

from tables 1 and 2 are retained, with the exception that sidewall friction effects

are discarded by setting µW = 0. The dimensions of the triangular drum walls

are matched with the experimental values given in §5.1, and the drum rotation

rate is again Ω = −π/12 rad/s.

A comparison between the particle distribution patterns in the experiment

in figure 4 and the numerical simulations with and without sidewall friction

effects is presented in figure 10a, at the end of two full revolutions. As discussed

above, the simulation computed with sidewall friction matches excellently to the

experimental results. However, without sidewall friction, almost no segregation

has occurred. The segregation intensity at the end of two revolutions confirms

this, with S(t = 48 s) = 0.0663 indicating little deviation from the initial mixed

state. A very thin region of large particles and a weaker region of small particles

are discernible close to the drum walls, but in place of the complex geometrical

structure which forms in the presence of sidewall friction there is a simple triangu-

lar shape. This indicates that sidewall friction is not only a necessary consideration

for accurate modelling of rotating drum experiments, but is one of the dominant

physical mechanisms determining the nature and extent of particle segregation in
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Figure 10. Particle-size distributions in bidisperse triangular rotating drum flows at
t = 48 s after two revolutions (a), for an experiment (left), the simulation incorporating
lateral sidewall friction discussed in §5 (middle), and an otherwise identical simulation
without sidewall friction (right), followed by the bulk flow fields for the triangular
rotating drum simulation with sidewall friction (b) and without sidewall friction (c)
at t = 48 s. The fields plotted are the modulus of the relative velocity field (left),
the pressure (middle) and the base 10 logarithm of the inertial number, where the
black dashed line indicates the position below which the high viscosity cut-off (3.9)
becomes active (right). The particle segregation is extremely weak and the free-surface
inclination angle drastically reduced without sidewall friction, due to the slower and
thicker free-surface avalanche.

narrow rotating drum flows. The particle distribution pattern aligned with the

drum walls continues to intensify over subsequent revolutions, but even after 20

revolutions S(t = 480 s) = 0.3007 and the segregation intensity has not reached

a plateau, indicating an extreme overestimation of the segregation timescale. The
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free-surface inclination is now straight rather than S-shaped, and the inclination

angle is also severely reduced to a value close to the static friction angle of

ζs = tan−1(µs) = 22◦, as observed in the rotating drum simulation of Barker

et al. (2021). Therefore, the super stable heap phenomenon studied by Taberlet

et al. (2003) is indeed produced by confined rotating drum flows.

The bulk flow fields with and without sidewall friction are plotted in figures 10b

and c respectively, demonstrating the dynamics underpinning this weak segrega-

tion. The modulus of the relative velocity field in the free-surface avalanche is

around an order of magnitude smaller without sidewall friction. The peak velocity

magnitude, attained when the avalanche is parallel to the upper drum wall and

hence at its longest, is |û| ≈ 0.14, a fivefold reduction relative to the simulation

computed with sidewall friction, for which the velocity peaks at |û| ≈ 0.7. The

avalanche is also much thicker, as predicted by the observations of Jop et al.

(2005), and the velocity decays only gradually. The pressure field is similar, but

the inertial number never approaches the high values with I ≈ 1 observed in

the presence of sidewall friction. As an aside, a relationship between the inertial

number and the particle distribution can also be discerned in figure 10b, since

by definition I (2.16) depends on the concentration weighted particle diameter.

The high viscosity cut-off is activated much deeper into the flow without sidewall

friction, although still below the flowing layer, in part because sidewall friction

induces a rapid decay below the flowing layer towards a quasi-static state. This

reveals why the mixture segregates so weakly; the reduced strain-rate magnitude,

owing to the thicker, slower flow, feeds back into the segregation scaling law (2.26)

and inhibits the particle redistribution process. This issue can be circumvented by

using particle sizes of a comparable order of magnitude to the avalanche depth,

which compensates for the reduced strain-rate magnitude via the dependency of

the segregation scaling law on the concentration weighted grain diameter (Barker

et al. 2021). This results in a more strongly segregated mixture which nevertheless

fails to predict the observed pattern formation of experiments with the accuracy

of the computations presented in §5. Evidently, for rotating drum flows confined

within a thin channel, it is essential that lateral sidewall friction be incorporated

into continuum models for a realistic approximation of the dominant physics,

which is demonstrated for the first time here.
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7. Varying fill fractions

Here triangular drums are considered with varying fill fractions in relation to

the 70% filled case discussed above, again with initially homogeneous 50:50 small

and large particle mixtures in each case. The results from the experiments and

the particle distribution from the numerical simulations are shown in figure 11,

for (a) 30%, (b) 50%, (c) 70% and (d) 80% filled, after two full revolutions. The

reader is referred to the supplementary material for videos showing the full particle

pattern evolution in the experiments and numerical simulations at each fill level.

In comparison with the 70% filled drum, the homogeneous central core for the

80% filled drum is much larger due to the relatively elevated position of the free-

surface avalanche, whereas for the 30% and 50% filled drums no core forms as all

the granular material is eventually entrained through the avalanche. In each case

there is a region of the drum itself which never intersects with the free-surface,

but this region is always outside the body of granular material when the fill level

is at 50% and below.

Structurally, a similar pattern emerges for the 70% and 80% filled drums,

although interestingly the homogeneous central cores appear to have opposite

orientations. In fact, the corners of the central core in both drums are formed

when the free-surface avalanche is longest, and therefore fastest and thickest,

and the corners in the 80% filled drum are simply more subtle because the core

region bulges outwards between corners. This is evident in the experiment and

particularly in the numerical simulation shown in figure 11d, which successfully

captures the broad features observed experimentally. The undisturbed core is

slightly larger in the simulation, suggesting the free-surface avalanche thickness

is underestimated, but it accurately reproduces the shape which develops in the

experiment. Unlike the 70% filled drum, the core does not approximate a Reuleaux

triangle as the curvature of the sides is not approximately constant - instead, the

core is better described as the intersection of three ovals. The small particle lobes

are less pronounced than for the 70% filled drum in figure 11c, and do not exhibit

the flattened tip observed at 70% filled in either simulation or experiment, instead

producing a pointed tip. As shown in the supplementary videos, the simulation

at 80% filled correctly captures the time-evolution of the small particle arms,
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Figure 11. Comparison of triangular rotating drums at multiple fill fractions with
φ̄s = 0.5, for experiments (left) and the small particle concentration in numerical
simulations (right). The drums rotate over two full revolutions, with the final particle
composition at t = 48 s presented here. The drums are (a) 30% filled, (b) 50% filled, (c)
70% filled, and (d) 80% filled. Videos of the full pattern evolution in the experiments
and simulations are available in the online supplementary material.
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which form over the first drum revolution and become slightly shorter after

subsequent re-entrainment in the second revolution. The S-shaped free-surface

inclination angle is reproduced very accurately by the numerical simulation, with

the curvature particularly pronounced around the downslope avalanche position.

The particle distributions in the 30% and 50% filled drums are qualitatively very

different to those discussed so far. Both cases are apparently reduced to a single

small particle lobe, with no central core, which is repeatedly entrained through the

free-surface avalanche and re-orientated towards the second corner of the drum

frame in the clockwise direction, or by −4π/3. Furthermore, the arms have a

slight arc in the anti-clockwise direction, unlike the 70% and 80% filled drums for

which the arms have a clockwise arc, which is also predicted by both numerical

simulations. At both 30% and 50% filled, the numerical simulation accurately

captures the structure of the particle distribution observed in the experiment,

although the S-shape of the free-surface is weaker in the former simulation. At

the 30% fill level, the small particle concentration is very strong on the outer,

curved edge of the small particle arm and becomes relatively diffuse on the inner,

right side. At the orientation presented in figure 11a, the arm is beginning to

be re-entrained through the avalanche, and there is a crevice of large particles

between the section of the arm which is either avalanching or has been deposited

downslope, and the section yet to be re-entrained, similar to the subtle large

particles regions enclosed above the core for fill fractions of 70% and 80%.

For the 50% filled drum, there are regions of high small particle concentration

either side of the arm near the free-surface, which would eventually coalesce into

a more obvious second arm if the fill level were increased. In fact, the particle

distribution structure at 50% filled is a transitional stage between the structures

observed at lower and higher fill fractions, and may be said to consist of two small

particle arms. At orientations when the free-surface is approximately parallel to

the lower drum wall, for example at t = 42 s, plotted in figure 12, there are

small particle regions orientated towards both the corners of the drum occupied

by granular material. These regions may be interpreted as a single arm, partially

deposited downslope and partially in the upslope position, re-orientated by −4π/3

each time it passes through the avalanche. However, they should instead be

identified as two genuinely distinct small particle arms re-orientated by −2π/3
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Figure 12. Particle distribution for the experiment (left) and the small particle
concentration of the numerical simulation (right) of a 50% filled drum at t = 42 s
containing a mixture of large and small particles with φ̄s = 0.5. Two small particle arms
are distinguishable when the free-surface is approximately parallel to the lower drum
wall.

after each entrainment. In figure 11b, the second arm is undergoing entrainment

through the avalanche, separated from the other by a more diffuse region.

A quantitative comparison between the segregation intensity (5.3) of the nu-

merical simulations and the experiments is shown in figure 13. In each case, the

timescale and intensity of segregation in the simulations matches very closely with

the experimental data. For both experiments and simulations, the final segregation

is weakest at 80% filled (where S(t = 48 s) = 0.69, taken from the simulation data)

and strongest at 50% filled (S(t = 48 s) = 0.81), while the 30% filled drum takes

an intermediate value (S(t = 48 s) = 0.73). The segregation is weakest at 80%

filled partly due the enlarged undisturbed central core, and may be highest at 50%

filled due to the relatively small variation in the avalanche length, as can be seen

in the supplementary videos. The intensity in the experiments is initially slightly

stronger at 30% filled than 50% filled, before the latter case becomes significantly

stronger in the second revolution of the drum, and this behaviour is also predicted

in the simulations, where the curves intersect near t = 16 s before diverging. While

the 80% filled drum exhibits a relatively smooth increase with only small peaks

and troughs of the segregation intensity, which very gradually plateaus, at 50%
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Figure 13. Comparison of the developing segregation intensity (5.3) over time, between
experiments (symbols with error bars) and numerical simulations (curves), for 80%, 50%,
and 30% filled drums. The mean small particle concentration φ̄s = 0.5 in each case, and
each simulation is performed with N2 = 6002 grid points.

and particularly 30% filled the intensity fluctuates more erratically. At 30% filled

each peak represents a brief plateau, which actually decrease in intensity before

again increasing, and the estimated intensity of the experiments broadly confirms

this phenomenon since the intensity is higher at t = 24 s than t = 32 s. The

peak and trough shapes of the simulation curves are heavily dependent on the fill

fraction, and they also become more pronounced at a 30% fill fraction because

the rotation of the drum walls dramatically alters the geometry of the enclosed

granular region.

8. Varying mean particle concentrations

Attention is now turned to the dependence of the particle-size distribution

and bulk flow fields on the mixture composition. Initially two further cases are

examined, both at fill levels of 70%, in addition to the original case of a bidisperse

mixture with mean small particle concentration φ̄s = 0.5; one with φ̄s = 0.3,

and another with φ̄s = 0.7. The same technique described earlier of inducing

segregation in the direction normal to the lateral sidewalls is used to produce

an approximately homogeneous initial mixture, although in these two cases the
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inversely graded layers of large and small particles are of differing thicknesses due

to the uneven fill ratios.

Results from the experiments and numerical simulations are displayed for

φ̄s = 0.3 in figure 14a and φ̄s = 0.7 in figure 14c, while the original φ̄s = 0.5

case is shown in figure 14b. For videos of the developing particle concentration

in the experiments and numerical simulations, see the supplementary material.

Structurally the small particle arm patterns are similar, and develop over the

same timescale for each of the three mean particle concentrations. The particle

species separate out into somewhat diffuse regions over the first revolution, and

then over the second revolution form a clear triskelion structure of small particle

arms surrounding an undisturbed core. The different core colours in each of the

numerical simulations represent the varying mean particle concentration. The

small particle lobes, as one would expect, are larger when the small particle

content is higher. Furthermore, the flattened top which is nearly parallel to the

adjacent drum wall can be seen very clearly in figure 14c, while in figure 14a

it is not obviously present at all. The small particle arms occupy a very wide

region when φ̄s = 0.7, and then are much thinner for φ̄s = 0.3. Because of the

thin particle arms in the latter case, the inner triangular region of high large

particle concentration enclosed by the core and partially entrained arm can be

seen more clearly than in the other drums, for both experiment and simulation.

In both cases the numerical implementation of the coupling framework used here

again produces simulations which not only accurately capture the final particle-

size structures and free-surface inclination angles, but also the entire temporal

evolution of these patterns.

As discussed above, the theoretical framework leads to greater segregation

intensities in large particle-rich regions for the numerical simulations (due to

the functional form of the segregation scaling law (2.26) and the longer particle

trajectories towards the surface of the avalanche), and examining the projected

concentration field of the experiment (see §5.4) indicated that this is a gen-

uine physical phenomenon. Varying the mean particle concentration provides

another perspective from which to consider this phenomenon. Figure 15a plots

the segregation intensities at t = 48 s for the experiments and simulations

with φ̄s = 0.3, 0.5 and 0.7, as well as for two further extreme cases with
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Figure 14. Comparison of 70% filled triangular rotating drums for experiments (left)
and the small particle concentration in numerical simulations (right). The drums have
mean small particle concentrations of (a) φ̄s = 0.3, (b) φ̄s = 0.5, and (c) φ̄s = 0.7. They
rotate for two revolutions, with the final particle compositions at t = 48 s presented here.
Videos of the full pattern evolution in the experiments and simulations are available in
the online supplementary material.
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Figure 15. Variation of (a) the segregation intensity S, and (b) the total area of the
homogeneous central core A with the mean small particle concentration, for 70% filled
rotating drums with φ̄s = 0.1, 0.3, 0.5, 0.7 and 0.9, at t = 48 s. The segregation intensity
is plotted for the numerical simulations (solid red circles and lines) and experiments
(blue circles). The mixture with φ̄s = 0.5 segregates most strongly. The area of the
homogeneous central core is plotted for the numerical simulations, and is generally
smaller for flows with a higher mean concentration of large particles due to their lesser
mobility, as implied by the experimental observations of Hill et al. (1999).

φ̄s = 0.1 and φ̄s = 0.9. As the mean small particle concentration increases,

it may reasonably be expected that the reduced large particle content induces

weaker segregation, but the observed behaviour is significantly more complex than

this prediction. The segregation intensity initially increases with the mean small

particle concentration, up to a maximal value at φ̄s = 0.5, before a severe decrease

for φ̄s = 0.9. The segregation intensities derived from the simulation data also

match closely with the experiments, confirming this general trend. The agreement

between the simulations and experiments when φ̄s = 0.1 and 0.3 suggests that

the value ϕsc = 0.2, which determines the point below which the segregation

velocity magnitude transitions to a quadratic dependence on the grain-size ratio, is

accurate. The intensity is weaker for φ̄s = 0.9 than φ̄s = 0.1, as predicted based on

the respective large particle concentrations, but conversely is stronger for φ̄s = 0.7

than φ̄s = 0.3. To discern the reasons for these seemingly counter-intuitive results,

we must look beyond the functional dependence of the segregation scaling law and

consider the more intricate nature of segregation-mobility feedback interactions.

According to the literature, the changing particle compositions through the

free-surface avalanche should produce a feedback effect onto the bulk flow (Gray

& Kokelaar 2010; van der Vaart et al. 2018a; Barker et al. 2021). Hill et al. (1999)

performed experiments for different rotating drum geometries and observed that

the avalanching layer was slower and deeper for flows with larger particles, which is
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due to the lesser mobility of larger grains when other frictional properties remain

unchanged. This effect can be captured by the framework used here since the

effective friction µ(I) (2.7) is monotonically increasing in the inertial number I

(2.16) which depends linearly on the average particle size d̄ (2.15). This means

that larger particles are more frictional than smaller particles, leading to a slightly

slower-moving and deeper avalanche for an increased large particle presence

(necessarily deeper so that the same mass of material can be advected through

the slower avalanche). However, the variation away from the fields depicted in

figure 5 is very slight and so a visualisation of the full bulk flow fields is omitted

for the other mean particle concentrations.

Instead, because a deeper avalanche will result in a smaller homogeneous central

core, comparing the core sizes of the numerical simulations provides another

method of studying the feedback between the particle-size distribution and the

bulk flow. Since the particle distribution in the core is approximately unchanged

from the initial conditions, the small particle concentration in the core should be

φs = φ̄s. The core region can then be identified as the region surrounding the

origin with concentration lying within the range φs ∈ [φ̄s, φ̄s + ε), where the one-

sided limit reflects the fact that the core is surrounded by predominantly small

particles, using

ε =
φ̄s(1 − φ̄s)

20
. (8.1)

This is chosen to ensure that the core is accurately located for different mean

particle concentrations, and to allow for a very small amount of segregation

since quasi-static material is modelled by the high Newtonian viscosity cut-off

(3.9). Once the core is located, its total area A can be calculated, and is plotted

for the different mean particle concentrations in figure 15b. The core becomes

larger for higher concentrations of small particles, successfully reproducing the

experimental observations of Hill et al. (1999) and confirming predictions based

on the functional dependence of the inertial number (2.16), until the core size

decreases when φ̄s = 0.9. This latter result is likely related to the method by

which the core is located, but the core is clearly larger when φ̄s = 0.9 than

when φ̄s = 0.1, which have equal values of ε. Nevertheless, the variation in

core size is very slight (under 5%), and so a quantitative comparison to the
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core size in the experiments is not undertaken due to the innate imprecision

of, and sensitivity to, the initial conditions. This explains why the segregation

intensity initially increases with φ̄s, as demonstrated in figure 15a. The increased

concentration of small particles means that the free-surface avalanche is thinner

and faster, which induces stronger segregation since the strain-rate is higher. This

can clearly be seen via comparison with the rotating drum simulations of Barker

et al. (2021), where despite very large grain diameters the segregation intensities

are far weaker than in the simulations presented here, due to the very thick

avalanching layer. The subsequent decrease in segregation intensity after φ̄s = 0.5

is due to the interplay of competing effects related to the particle-size composition.

The avalanche becomes increasingly thin up to φ̄s = 0.7, but since the rate

of increase slows and the reduced large particle content simultaneously hinders

segregation, the segregation intensity falls slightly between φ̄s = 0.5 and φ̄s = 0.7.

At φ̄s = 0.9 the avalanche apparently becomes thicker, producing a more drastic

fall in segregation intensity. The balance between avalanche thickness and particle

composition in the 50:50 small and large particle mixture produces the strongest

segregation. The magnitude of the relative velocity field at each mean particle

concentration, plotted in figure 16, shows how higher large particle concentrations

lead to slightly slower avalanches. Larger particles produce a slightly steeper free-

surface inclination due to their reduced mobility, and so the free-surface position

is not constant across different mean particle concentrations. Subsequently, the

relative avalanche depths cannot be inferred directly from the velocity profile,

justifying the use of the core size for this purpose. Nevertheless, it is notable that

the velocity profiles are very similar for φ̄s = 0.7 and φ̄s = 0.9, suggesting that

the avalanche depth has altered very little.

The sensitivity of the core size to the initial particle-size composition in the

numerical simulations is an example of two-way coupled feedback (Barker et al.

2021). First, because larger particles are less mobile, their increased presence

results in a thicker, slower free-surface avalanche. This is feedback of the particle-

size distribution onto the bulk flow, modelled through the inertial number defini-

tion (2.16). Once the thicker avalanche has formed, segregation is induced deeper

into the flow, meaning that the undisturbed granular region is smaller. This is

feedback of the bulk flow dynamics on the evolving particle mixture, and occurs
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Figure 16. Magnitude of the relative velocity field (5.2) for 70% filled rotating drums
with different mean particle concentrations. The velocity profiles are plotted up to the
free-surface position, which is identified by examining the concentration of air, φa.

because of the segregation scaling law (2.24), which confines segregation to regions

of high strain-rate. Simultaneously, higher values of the concentration weighted

grain diameter d̄ (2.15) when the large particle content is higher induce stronger

segregation since the segregation rate is an increasing function of d̄. Within a

continuum framework, the subtle interplay between distinct but related feedback

effects demonstrated here can only be captured using a fully coupled model.

9. Tri-disperse triangular rotating drum

As discussed in §2, the theoretical framework throughout this paper is gener-

alised for an arbitrary number of components, and this will now be demonstrated

using a tri-disperse mixture, i.e. one with three distinct granular phases. The

numerical method in OpenFOAM (see §3) is implemented for an arbitrary multi-

component mixture and hence requires only the specification of an additional

granular phase. Rather than describing the full set of equations, which are anal-

ogous to the system of equations (3.4)-(3.7), for brevity only the segregation and

diffusive fluxes only will be specified. For small, medium and large granular phases
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and an air phase, denoted by s, m, l and a respectively, the segregation fluxes are

F l =
(
−flsφlφs − flmφ

lφm + fagφ
lφa
) g

|g| , (9.1)

Fm =
(
−fmsφ

mφs + fmlφ
mφl + fagφ

mφa
) g

|g| , (9.2)

F s =
(
fsmφ

sφm + fslφ
sφl + fagφ

sφa
) g

|g| , (9.3)

F a = −fagφaφg g

|g| , (9.4)

and the diffusive fluxes are

Dl = Dls

(
φs∇φl − φl∇φs

)
+ Dlm

(
φm∇φl − φl∇φm

)
, (9.5)

Dm = Dms (φs∇φm − φm∇φs) + Dml

(
φl∇φm − φm∇φl

)
, (9.6)

Ds = Dsm (φm∇φs − φs∇φm) + Dsl

(
φl∇φs − φs∇φl

)
, (9.7)

Da = 0, (9.8)

where the overall concentration of grains is now

φg = φs + φm + φl = 1 − φa. (9.9)

In the experiment, the green large particle species is identical to the large

particle species used in §5, the medium particles are white, and the small particles

species are again red, but much smaller than the small particles used in §5. The

grain diameter for each phase in the numerical simulation is specified in table 3.

The segregation and diffusion is again modelled using the parameters in table 1,

and all other rheological parameters are carried over from table 2. The grains

used for the experiment, again sourced from Sigmund Lindner GmbH, are sieved

to diameters in the ranges ds = 120 − 180 µm, dm = 400 − 500 µm, and dl =

600−800 µm. The drum is 70% filled with granular material in a 30:40:30 ratio of

small:medium:large particles, and the rotation rate is reduced to Ω = −π/48 rad/s

as the grains coalesce into clearly distinguishable regions at this speed, but the

medium grains do not when Ω = −π/12 rad/s, for reasons discussed below. The

final segregation intensity tends to decrease as the rotation rate increases, because

faster rotation creates thicker free-surface avalanches where the strain-rates are

weaker (He et al. 2019).

The simulation runs for two full revolutions, and the results from the experiment
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Figure 17. Comparison of the particle distribution in a 70% filled triangular rotating
drum containing a tri-disperse mixture with a small:medium:large particle ratio of
30:40:30, for an experiment (left) and numerical simulation (right), at (a) t = 64 s, (b)
t = 128 s, and (c) t = 192 s. Each 64 s increment represents two thirds of a revolution.
The numerical particle concentrations are represented by a three-way contour scale,
where the phases go from φν = 0 to 1 along their respective sides, and as a demonstrative
example the concentration at the plotted point is determined by projecting along the
lines towards each side, giving φs = 0.2, φm = 0.3 and φl = 0.5. The drums rotate over
two full revolutions at a rotation rate of Ω = −π/48 rad/s. Videos of the full pattern
evolution in the experiment and simulation are available in the online supplementary
material.
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ds = 0.15× 10−3 m, dm = 0.45× 10−3 m, dl = 0.7× 10−3 m.

Table 3. Grain diameters for the small, medium and large particle species used in the
numerical simulations in §9.

and numerical simulation are presented in figure 17, with videos showing the full

particle pattern evolution in the experiment and numerical simulation available in

the online supplementary material. Initially, no region of predominantly medium

sized particles is clearly discernible, although small and large particle regions begin

to coalesce quickly. This is because the medium sized particles are in effect being

simultaneously segregated in opposite directions by the other two species, due

to their intermediate grain size. When interacting with large particles, medium

particles segregate in the direction of gravity, but when interacting with small

particles they segregate in the opposite direction to gravity. In practice they are

regularly encountering grains of both other sizes, and so are subject to some

reversal of the segregation direction. This is particularly true of the simulation

since each point on the numerical grid has calculated concentration values which

never reach perfectly pure phases (i.e. when φν = 1 for some species) and so the

medium mixture is genuinely being segregated in both directions simultaneously,

and the net direction of segregation is determined by the respective grain-size

ratios and concentrations. As a result, the medium particle regions, once formed,

are smaller in the simulations than in the experiments. This effect is exacerbated

by the different grain-size ratios, since Rsl = dl/ds = 4.6, whereas Rsm = dm/ds =

3 and Rml = dl/dm = 1.5, meaning that the small and large particles segregate

more strongly relative to each other than to the medium sized particles, with

which they remain in more diffuse mixtures. In the second revolution, regions of

predominantly medium particles form, and the numerical simulations correctly

predict that they are strongest adjacent to the inner length of the small particle

arms, with weaker medium regions down the outer length. Overall, the simulations

provide a good qualitative match to the experiments, but the small and medium

particle arms are larger and less pointed than those in the experiments.

The slower rotation rate than the drums studied in §5 leads to a thinner

avalanche and hence a larger undisturbed central core due to feedback of the



176 E.S.F. Maguire, T. Barker, M. Rauter, C.G. Johnson & J.M.N.T. Gray

bulk flow onto the segregation, which is well approximated by the numerical sim-

ulation. The free-surface inclination is also accurately predicted by the simulation,

although the small triangular region of predominantly medium particles above the

central core, visible at t = 192 s, is slightly weaker in the simulation. There is a

reduction by a factor of four in the rotation rate relative to the drums studied in §5,

and subsequently the free-surface inclination in the experiments and simulations

is lower. This is expected since evidence from experiments and DEM simulations

suggests that the inclination increases approximately linearly with the rotation

rate (Yamane et al. 1998). The S-shaped free-surface present in the more rapidly

rotating drums is also less pronounced in the experiment and simulation here.

10. Conclusions and discussion

In this paper, continuum simulations computed using the coupling framework

developed by Barker et al. (2021) are used alongside experiments to investigate the

flow of polydisperse granular material in triangular rotating drums. The mixing

of distinct particle species which differ in grain size is captured by using the

segregation scaling law derived by Trewhela et al. (2021), with a reduction factor

(2.24) included so that the segregation Péclet number Pe = fsl/Dsl is maximal

near grain-size ratios close to 2, in line with observations from rotating drum DEM

simulations (He et al. 2019; Zhang et al. 2017), as well as experimental and DEM

data obtained from other geometries (Golick & Daniels 2009; Thornton et al.

2012). For the diffusion, the well-established result (see e.g. Utter & Behringer

2004) that the diffusion rate scales with the shear rate and the grain diameter

squared is used. The bulk flow is modelled using the partially regularised incom-

pressible µ(I)-rheology (Barker & Gray 2017) which guarantees well-posed Navier-

Stokes type equations below an extreme value of I, using a granular viscosity (2.3)

dependent on the local concentration weighted grain-diameter, and hence on the

evolving particle-size distribution. The rotating drum experiments conducted here

as elsewhere (see e.g. Hill et al. 1999) rely on clear lateral sidewalls confining a

thin channel of granular material, which exert a frictional force on the flow. This

effect is incorporated into the bulk flow model by assuming a Coulomb slip on the

sidewalls and then integrating the three-dimensional mass and momentum balance
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equations through the channel width so that sidewall friction is represented by a

single term in a two-dimensional momentum balance equation (2.29).

The numerical method developed in OpenFOAM by Barker et al. (2021) for

solving fully coupled, polydisperse granular flow simulations is adapted here to

include lateral sidewall friction. This implementation is tested in §4 using a two-

dimensional infinite shear-cell with confining sidewalls. An exact steady-state

solution is derived from the original µ(I)-rheology (Jop et al. 2005), and the

numerical solution gives an extremely close match to both the velocity profile and

the precise depth of the flowing layer, shown in figure 2. It is important that the

flowing layer depth is accurately predicted by the theoretical framework because

one of the crucial effects of sidewall friction is that avalanches become thinner

and faster (Jop et al. 2005).

The numerical method is then used to produce bidisperse triangular rotating

drum simulations, which exhibit very thin free-surface avalanches within which

the particle-size segregation is very strong (see figure 5). For a 70% filled drum

containing a mixture with mean small particle concentration φ̄s = 0.5, the

evolving particle-size distribution results in a triskelion pattern of small particle

arms surrounding an undisturbed central core of granular material which is never

entrained into the avalanche. The rotational symmetry of the small particle arms

is assessed and presented in figure 7, and the symmetry is close to perfect when

the arms have each been entrained through the avalanche an equal number

of times. Laboratory experiments are performed, and an excellent qualitative

match is found between experiment (figure 4) and computation (figure 6). All the

parameters used for the simulations are obtained from empirical measurements

of the parameters used for the drum experiments, or from independent studies,

with no fitting parameters. A method of extracting quantitative data from the

experiments is then devised, so that small particle concentration fields can be

projected onto the laboratory images. This is used to measure the segregation

intensity (5.3) of the experiments over time, and the timescale and magnitude

match well with the simulation data, shown in figure 9. Grid convergence of the

numerical solution is also demonstrated, although it should be noted that a very

fine mesh is required to resolve the thin boundary layer avalanche where all the

segregation occurs. This boundary layer must be resolved to correctly predict
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the overall pattern formation and hence produce the converged solution. For this

reason the simulations performed here incur considerable computational expense.

A simulation with otherwise identical parameters but excluding sidewall friction

effects is computed, producing a thick, slow moving avalanche which induces very

little segregation. This shows that lateral sidewall friction is one of the dominant

physical mechanisms on which particle redistribution in narrow rotating drums

depends.

Triangular rotating drums at different fill levels are then examined, for 30%,

50%, 70% and 80% filled drums, and in each case the agreement between simula-

tions and experiments is strong (see figure 11). The segregation intensity is again

computed and demonstrates a close match between simulations and experiments,

and the simulations reveal that peaks and troughs in the intensity are more

pronounced at lower fill levels (see figure 13). Drums with fill fractions of 70%

and mean small particle concentrations of φ̄s = 0.3 and φ̄s = 0.7 are considered

against the original case with φ̄s = 0.5, shown in figure 14. The numerical

simulations reveal a complex rheology-segregation coupling in which increasing

the mean small particle concentration simultaneously inhibits and enhances the

segregation rate via distinct physical mechanisms, by altering both the mixture

composition and the bulk flow dynamics. While the segregation rate is higher for

larger particles (2.26), Hill et al. (1999) observed that feedback from less mobile

larger particles results in a thicker free-surface avalanche, and this phenomenon

is reproduced by the numerical simulations, measured by assessing the size of

the undisturbed central core (see figure 15). This is only possible because the

coupling framework models mobility feedback onto the bulk flow from the evolving

particle distribution. There is then feedback in the opposite direction, from the

bulk flow onto the particle mixing process, as the segregation is weaker in the

thicker avalanche, while the mixture segregates deeper into the flow and hence

produces a smaller central core. A similar phenomenon can be expected in other

industrially relevant polydisperse flows such as filling and emptying of storage

silos, and this paper provides promising indications that they could be tackled

using the fully coupled theory.

Finally, a 70% filled triangular drum containing a tridisperse mixture is con-

sidered. The presence of medium sized grains in the mixture reveals a different
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type of particle interaction to those occurring within a bidisperse mixture, since

they are simultaneously segregated in opposite directions by the small and large

particles. This leads to a weakened net segregation rate for medium sized particles,

observed in the experiments and predicted by the numerical simulations. This is

likely to occur in other polydisperse granular flows, including geophysical flows

where the wide distribution of particle sizes may inhibit segregation of those with

intermediate sizes. Consequently, a slower rotation rate is chosen for the drum

to induce a stronger final segregation intensity. A slower rotation rate leads to a

reduction in the free-surface inclination angle, predicted by the numerical simu-

lation and confirmed experimentally. More consideration is nevertheless needed

to understand the relationship between free-surface inclination and rotation rate,

which is expected to be linear (Yamane et al. 1998), but that is beyond the scope

of this paper.

The results presented here demonstrate the power of the coupling method

developed by Barker et al. (2021) and represent a strong validation of the partially

regularised µ(I)-rheology and the segregation scaling law of Trewhela et al.

(2021). The original incompressible µ(I)-rheology was derived from observations

of steady-state DEM simulations and experiments, including a circular rotating

drum (GDR MiDi 2004), combined with a basal friction law (Pouliquen & Forterre

2002; Jop et al. 2005), and although it has been successfully applied to more

complex geometries (Lacaze & Kerswell 2009; Staron et al. 2014) it is perhaps

surprising that the partially regularised modification (Barker & Gray 2017) is

able to predict the bulk flow dynamics in a highly transient triangular rotating

drum with such accuracy. Both the avalanche depth and the free-surface shape

and inclination in the experiments are reproduced very closely by this rheology.

Furthermore, although the segregation scaling law of Trewhela et al. (2021) was

determined using data from refractive-index matched oscillatory shear box exper-

iments with a single small or large particle intruder, the results presented here are

only the latest successful application of this law to more complex geometries with

less extreme particle concentrations (Trewhela et al. 2021; Barker et al. 2021).

These results therefore suggest that the fully coupled theory used here provides a

sufficient approximation of the real physics for accurate modelling of polydisperse

rotating drums in the continuously avalanching or rolling regime (Rajchenbach
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1990) in general, representing a major breakthrough for continuum modelling of

rotating drums. This could prove extremely useful in industrial settings where,

for example, mixers fitted with segregation-inhibiting baffles (McCarthy 2009)

could be tested numerically using continuum simulations before prototypes are

produced.

Future work on rotating drums could use DEM simulations as a validation case

for the continuum theory used here. This paper considers variations in the drum

fill fraction, mean particle concentration and, to a minor extent, the rotation

rate only, and further study is therefore required to examine the full parameter

space over which this theory may be successfully applied. Such studies may take

into account a wider range of drum rotation rates, cases where particle species

have differing frictional properties (in addition to differing sizes), and a wider

variety of drum geometries including baffled drums. Furthermore, attempts at

continuum modelling of other flow regimes such as the intermittent avalanching

or slumping regime (Rajchenbach 1990), which produces the Catherine wheel

patterns observed by Gray & Hutter (1997), have so far been limited (Arseni

et al. 2020). It is likely that some combination of frictional hysteresis (Edwards

et al. 2019), compressibility (Schaeffer et al. 2019) and non-locality (Pouliquen &

Forterre 2009; Kamrin 2019) is required to model intermittent avalanches within

a continuum framework.
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Appendix A. Derivation of the width-averaged equations for

flow in a confined channel

Consider a velocity field u = (u, 0, w) in the co-ordinate system (x, y, z) confined

within a narrow channel by sidewalls at y = 0 and y = W . In full component form,

the three-dimensional mass and momentum balance equations are

∂u

∂x
+
∂w

∂z
= 0, (A 1)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −∂p

∂x
+
∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

, (A 2)

0 = −∂p
∂y

+
∂τyx
∂x

+
∂τyz
∂z

, (A 3)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −∂p

∂z
+
∂τzx
∂x

+
∂τzy
∂y

+
∂τzz
∂z

− ρg. (A 4)

Assuming Coulomb friction on the sidewalls acting against the direction of flow,

the stress on the boundary can be expressed as

(τxy, 0, τzy) = µW p
(u, 0, w)

|u| at y = 0, (A 5)

(τxy, 0, τzy) = −µW p
(u, 0, w)

|u| at y = W, (A 6)

where µW is the constant wall friction coefficient. Consider some arbitrary variable

f . Width-averaged variables are defined as

f̄ =
1

W

∫ W

0

fdy, (A 7)

for any f . If ∂f/∂y = 0, then trivially fg = f̄ ḡ for any second variable g. Jop

et al. (2005) showed that confined flows approach uniformity in the y-direction

as the channel becomes narrower, while Taberlet et al.’s (2003) investigations

into confined heap flow suggest that flows of a few grain diameters in width are

sufficiently narrow to be well approximated by the assumption of uniformity in the

y-direction. For the rotating drum experiments in this paper, the channel width is

W = 3 mm, while the bidisperse granular mixtures contain particles of size ds =

0.35 mm and dl = 0.7 mm. Bidisperse flows can therefore be expected to occupy
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between 4 and 8 grain diameters in width, and so uniform flow in the y-direction is

assumed. The integrated mass and momentum balance equations are then, after

utilising the Leibniz integral rule to exchange the order of differentiation and

integration and applying the boundary conditions (A 5) and (A 6),

∂ū

∂x
+
∂w̄

∂z
= 0, (A 8)

ρ

(
∂ū

∂t
+ ū

∂ū

∂x
+ w̄

∂ū

∂z

)
= −∂p̄

∂x
+
∂τ̄xx
∂x

− 2µW p
u

|u| +
∂τ̄xz
∂z

, (A 9)

ρ

(
∂w̄

∂t
+ ū

∂w̄

∂x
+ w̄

∂w̄

∂z

)
= −∂p̄

∂z
+
∂τ̄zx
∂x

− 2µW p
w

|u| +
∂τ̄zz
∂z

− ρg. (A 10)

Finally, the assumption ∂u/∂y = 0 implies that u/|u| = ū/|ū| and τ̄ = 2η̄D̄.

After dropping the f̄ notation, the full width-averaged mass and momentum

balances can thus be expressed in two-dimensional vector form as

∇ · u = 0, (A 11)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ∇ · τ + ρg − 2µW p

u

|u| . (A 12)
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Chapter 4

Conclusions

This thesis has developed a method for coupling rheology and segregation in polydis-

perse granular flows, and investigated rotating drum flows in which rheology-segregation

feedback interactions are particularly important. In chapter 2, the partially regularised

incompressible µ(I)-rheology in a Navier-Stokes framework is coupled with segregation

and diffusion rates dependent on the strain-rate, pressure, particle size and particle-

size ratio for flows containing an arbitrary number of particle species. A numerical

method for handling air-grain interfaces in volume-of-fluid solvers is also developed,

giving superior results to the default counter-gradient transport method of interface

sharpening used by OpenFOAM. The numerical method accurately reproduces exact

solutions for bidisperse inclined plane flows, and is able to predict the formation of

a large particle-rich bulbous head at the flow front due to frictional feedback of the

particle distribution onto the bulk flow. The numerical implementation is also tested

against the DEM simulations of Tripathi & Khakhar (2011). It is then used to com-

pute a bidisperse square rotating drum flow, and successfully predicts the formation

of small particle lobes surrounding an undisturbed central core of mixed material,

because the segregation and diffusion rates limit particle redistribution to the free-

surface avalanche where the strain-rates are high and the pressure low. However, the

segregation is underestimated and the avalanche is too thick relative to experiments

since lateral sidewall friction is not included in the theoretical model.

Chapter 3 is dedicated to a rigorous application of the coupling approach to tri-

angular rotating drum flows. For certain transient flows, including those in rotating

drums, experimental and DEM data shows that the segregation intensity is maximal
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near a grain-size ratio of R = 2, and the segregation rate is adapted to reflect this using

the reduction factor suggested by Trewhela et al. (2021). Rotating drum experiments

are performed for bidisperse mixtures at different fill fractions and mean particle con-

centrations, where the granular material is confined in a very thin channel by clear

lateral sidewalls which exert a frictional force on the flow. To incorporate this into the

theoretical and numerical method, three-dimensional mass and momentum balance

equations are width-averaged with Coulomb slip assumed on the sidewalls, returning

a two-dimensional system containing an additional momentum term representing side-

wall friction. The adapted numerical method is tested against an exact solution for

an infinite shear cell with sidewall friction, showing very precise agreement.

Rotating drum flows are then computed, with all appropriate parameters matched

to the experiments and no fitting parameters used. The timescale and pattern for-

mation of the experiments is predicted by the numerical simulations with excellent

accuracy. A method for quantitative analysis of the experiments is developed, in

which pixel intensity data is used to project a concentration field onto laboratory

images. This data can then be used to compute segregation intensities, and strong

quantitative agreement is observed between the simulations and experiments. This

is only possible because of the inclusion of lateral sidewall friction in the theoretical

model. Sidewall friction leads to a very thin, rapidly flowing boundary layer avalanche

at the free-surface where all the segregation occurs, in which the strain-rates and hence

segregation intensity are very high. This also means that a very fine mesh is required

to fully resolve the boundary layer, and so the computational expense is significant.

Changes in the particle distribution structure are observed as the fill fraction of

the drum varies, and competing feedback interactions between rheology and segrega-

tion lead to subtle and surprising variations in the segregation intensity as the mean

small particle concentration increases. The latter is clarified by careful examination

of the simulation data, which shows that increased large particle concentrations en-

hance the segregation rate but also induce thicker, slower avalanches and so simultane-

ously inhibit segregation. Finally, a tridisperse triangular drum flow is analysed. The

timescale and pattern formation gives good qualitative agreement with an experiment,

and demonstrates successful application of the coupling method to mixtures of more

than two particles species.
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All the important features of rotating drum flows in the continuously avalanching

regime are captured here using a fully coupled, incompressible continuum framework,

but intermittent avalanche flows are also commonly observed at slower drum rotation

rates. The periodic collapse of the rotating free-surface has not yet been captured using

continuum modelling, and may be due to frictional hysteresis (see e.g. Edwards et al.,

2019). Hysteresis has been studied using depth-averaged models, but in a non-depth

averaged, local incompressible framework this may require non-monotonic µ(I) curves,

which Barker et al. (2015) showed to be ill-posed. Compressible or non-local models,

which can incorporate a yield stress and non-monotonicity while remaining well-posed

(Kamrin & Koval, 2012; Bouzid et al., 2013; Schaeffer et al., 2019), engender exciting

possibilities as they continue to develop. Nevertheless, it is significant that hystere-

sis, compressibility, non-locality and other physics excluded from the incompressible

µ(I)-rheology are apparently unnecessary for a satisfactory physical description of the

phenomena observed in chapter 3.

For mixtures containing a great number of particles, the coupling approach saves

computational expense relative to DEM simulations, but computing time remains an

issue. For rotating drums flows in which a very fine mesh is required to resolve the

boundary layer avalanche, adaptive meshing techniques which reduce the cell size in

regions requiring greater resolution may drastically reduce the computational expense,

as could computations performed using the material point method (MPM) which forgo

a mesh altogether and also provide advantages for modelling solid-like granular ma-

terial (Dunatunga & Kamrin, 2015). Another limitation to the current numerical

implementation of the coupling theory is presented by the air segregation method of

interface sharpening, which is very useful for the flows investigated here but becomes

problematic when studying free-falling grains due to interference from the air phase.

The air bubble trapping observed with the default counter-gradient transport method

used in OpenFOAM becomes very severe in free-falling flows and in such cases a new

interface handling method is therefore needed.

It is hoped that the rheology-segregation coupling developed here provides a useful

theoretical and numerical tool for polydisperse granular flow modelling in multiple

contexts. Fully coupled computations may provide new insights into geophysical phe-

nomena such as the inter-relatedness of bulbous head formation (Denissen et al., 2019),
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levee formation (Johnson et al., 2012; Edwards et al., 2017; Rocha et al., 2019), and

fingering instabilities (Woodhouse et al., 2012; Baker et al., 2016). For industries

handling polydisperse granular materials, whether the aim is mixing, segregation or

transportation, the coupling method detailed here can be expected to provide insight

into a number of different geometries. For example, a similar approach to that de-

scribed in chapter 3 may be applied to filling and draining silo flows (Staron et al.,

2012, 2014), where segregation is also potentially problematic and difficult to control.

Furthermore, segregation minimisation methods for rotating drums (see chapter 1.3.3)

could in future be developed and tested using fully coupled simulations.
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