37,860 research outputs found

    Modeling human dynamics of face-to-face interaction networks

    Get PDF
    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of interconversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here we present a simple model that reproduces quantitatively most of the relevant features of empirical face-to-face interaction networks. The model describes agents that perform a random walk in a two-dimensional space and are characterized by an attractiveness whose effect is to slow down the motion of people around them. The proposed framework sheds light on the dynamics of human interactions and can improve the modeling of dynamical processes taking place on the ensuing dynamical social networks

    Gossip on Weighted Networks

    Full text link
    We investigate how suitable a weighted network is for gossip spreading. The proposed model is based on the gossip spreading model introduced by Lind et.al. on unweighted networks. Weight represents "friendship." Potential spreader prefers not to spread if the victim of gossip is a "close friend". Gossip spreading is related to the triangles and cascades of triangles. It gives more insight about the structure of a network. We analyze gossip spreading on real weighted networks of human interactions. 6 co-occurrence and 7 social pattern networks are investigated. Gossip propagation is found to be a good parameter to distinguish co-occurrence and social pattern networks. As a comparison some miscellaneous networks and computer generated networks based on ER, BA, WS models are also investigated. They are found to be quite different than the human interaction networks.Comment: 8 pages, 4 figures, 1 tabl

    Spreading gossip in social networks

    Get PDF
    We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal fraction of neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.Comment: 10 pages, 16 figures, Revtex; Virt.J. of Biol. Phys., Oct.1 200

    Highly intensive data dissemination in complex networks

    Full text link
    This paper presents a study on data dissemination in unstructured Peer-to-Peer (P2P) network overlays. The absence of a structure in unstructured overlays eases the network management, at the cost of non-optimal mechanisms to spread messages in the network. Thus, dissemination schemes must be employed that allow covering a large portion of the network with a high probability (e.g.~gossip based approaches). We identify principal metrics, provide a theoretical model and perform the assessment evaluation using a high performance simulator that is based on a parallel and distributed architecture. A main point of this study is that our simulation model considers implementation technical details, such as the use of caching and Time To Live (TTL) in message dissemination, that are usually neglected in simulations, due to the additional overhead they cause. Outcomes confirm that these technical details have an important influence on the performance of dissemination schemes and that the studied schemes are quite effective to spread information in P2P overlay networks, whatever their topology. Moreover, the practical usage of such dissemination mechanisms requires a fine tuning of many parameters, the choice between different network topologies and the assessment of behaviors such as free riding. All this can be done only using efficient simulation tools to support both the network design phase and, in some cases, at runtime

    New approaches to model and study social networks

    Full text link
    We describe and develop three recent novelties in network research which are particularly useful for studying social systems. The first one concerns the discovery of some basic dynamical laws that enable the emergence of the fundamental features observed in social networks, namely the nontrivial clustering properties, the existence of positive degree correlations and the subdivision into communities. To reproduce all these features we describe a simple model of mobile colliding agents, whose collisions define the connections between the agents which are the nodes in the underlying network, and develop some analytical considerations. The second point addresses the particular feature of clustering and its relationship with global network measures, namely with the distribution of the size of cycles in the network. Since in social bipartite networks it is not possible to measure the clustering from standard procedures, we propose an alternative clustering coefficient that can be used to extract an improved normalized cycle distribution in any network. Finally, the third point addresses dynamical processes occurring on networks, namely when studying the propagation of information in them. In particular, we focus on the particular features of gossip propagation which impose some restrictions in the propagation rules. To this end we introduce a quantity, the spread factor, which measures the average maximal fraction of nearest neighbors which get in contact with the gossip, and find the striking result that there is an optimal non-trivial number of friends for which the spread factor is minimized, decreasing the danger of being gossiped.Comment: 16 Pages, 9 figure

    Visibility, Gossip and Intimate Neighbourly Knowledges (Findings paper no. 7)

    Get PDF
    Findings papers associated with ESRC-funded research project, 'Social Geographies of Rural Mental Health' (R000 23 8453)
    • …
    corecore