4 research outputs found

    Application of the Gkm to Some Nonlinear Partial Equations

    Get PDF
    In this manuscript, the strain wave equation, which plays an important role in describing different types of wave propagation in microstructured solids and the (2+1) dimensional Bogoyavlensky Konopelchenko equation, is defined in fluid mechanics as the interaction of a Riemann wave propagating along the y-axis and a long wave propagating along the x-axis, were studied. The generalized Kudryashov method (GKM), which is one of the solution methods of partial differential equations, was applied to these equations for the first time. Thus, a series of solutions of these equations were obtained. These found solutions were compared with other solutions. It was seen that these solutions were not shown before and were presented for the first time in this study. The new solutions of these equations might have been useful in understanding the phenomena in which waves are governed by these equations. In addition, 2D and 3D graphs of these solutions were constructed by assigning certain values and ranges to them

    Separation Transformation and a Class of Exact Solutions to the Higher-Dimensional Klein-Gordon-Zakharov Equation

    Get PDF
    The separation transformation method is extended to the n+1-dimensional Klein-Gordon-Zakharov equation describing the interaction of the Langmuir wave and the ion acoustic wave in plasma. We first reduce the n+1-dimensional Klein-Gordon-Zakharov equation to a set of partial differential equations and two nonlinear ordinary differential equations of the separation variables. Then the general solutions of the set of partial differential equations are given and the two nonlinear ordinary differential equations are solved by extended F-expansion method. Finally, some new exact solutions of the n+1-dimensional Klein-Gordon-Zakharov equation are proposed explicitly by combining the separation transformation with the exact solutions of the separation variables. It is shown that, for the case of nβ‰₯2, there is an arbitrary function in every exact solution, which may reveal more nontrivial nonlinear structures in the high-dimensional Klein-Gordon-Zakharov equation

    Analytical solutions for nonlinear systems using Nucci's reduction approach and generalized projective Riccati equations

    Get PDF
    In this study, the Nucci's reduction approach and the method of generalized projective Riccati equations (GPREs) were utilized to derive novel analytical solutions for the (1+1)-dimensional classical Boussinesq equations, the generalized reaction Duffing model, and the nonlinear Pochhammer-Chree equation. The nonlinear systems mentioned earlier have been solved using analytical methods, which impose certain limitations on the interaction parameters and the coefficients of the guess solutions. However, in the case of the double sub-equation guess solution, analytic solutions were allowed. The soliton solutions that were obtained through this method display real positive values for the wave phase transformation, which is a novel result in the application of the generalized projective Riccati method. In previous applications of this method, the real positive properties of the solutions were not thoroughly investigated

    Exact spatiotemporal traveling and solitary wave solutions for the generalized nonlinear SchrΓΆdinger equation

    Get PDF
    НапрСдак Ρƒ Π½Π΅Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΎΡ˜ ΠΎΠΏΡ‚ΠΈΡ†ΠΈ ΡƒΠΌΠ½ΠΎΠ³ΠΎΠΌΠ΅ зависи ΠΎΠ΄ нашС способности Π΄Π° Π½Π°Ρ’Π΅ΠΌΠΎ Π½ΠΎΠ²Π° Ρ€Π΅ΡˆΠ΅ΡšΠ° Ρ€Π°Π·Π½ΠΈΡ… Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΈΡ… Ρ˜Π΅Π΄Π½Π°Ρ‡ΠΈΠ½Π° којС сС ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎ Ρ˜Π°Π²Ρ™Π°Ρ˜Ρƒ Ρƒ систСмима Π³Π΄Π΅ свСтлост ΠΈΠ½Ρ‚Π΅Ρ€Π°Π³ΡƒΡ˜Π΅ са Π½Π΅Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΎΠΌ срСдином. Иако су Ρ€Π΅ΠΊΡ€Π΅ΠΈΡ€Π°ΡšΠ΅ ΠΎΠ²ΠΈΡ… систСма ΠΊΡ€ΠΎΠ· СкспСримСнт ΠΈ ΠΊΠΎΠΌΠΏΡ˜ΡƒΡ‚Π΅Ρ€ΡΠΊΠ° ΡΠΈΠΌΡƒΠ»Π°Ρ†ΠΈΡ˜Π° систСма Π΄Π²Π° Π½Π°Ρ˜Ρ‡Π΅ΡˆΡ›Π° ΠΈ ΠΏΠ»ΠΎΠ΄ΠΎΡ‚Π²ΠΎΡ€Π½Π° приступа, ΠΊΡ€Π°Ρ˜ΡšΠΈ Ρ†ΠΈΡ™ ΠΎΡΡ‚Π°Ρ˜Π΅ Π΄Π° сС Π½Π°Ρ’Ρƒ Π΅Π³Π·Π°ΠΊΡ‚Π½Π° Ρ€Π΅ΡˆΠ΅ΡšΠ° ΠΎΠ²ΠΈΡ… систСма. Π¦ΠΈΡ™ ΠΎΠ²Π΅ Ρ‚Π΅Π·Π΅ јС Π΄Π° ΠΊΠΎΠΌΠ±ΠΈΠ½ΡƒΡ˜Π΅ Ρ€Π°Π½ΠΈΡ˜Π΅ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ налаТСња Π΅Π³Π·Π°ΠΊΡ‚Π½ΠΈΡ… Ρ€Π΅ΡˆΠ΅ΡšΠ° Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½ΠΈΡ… Ρ˜Π΅Π΄Π½Π°Ρ‡ΠΈΠ½Π° ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈ ΠΈΡ… Π½Π° Π½Π΅Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρƒ Π¨Ρ€Π΅Π΄ΠΈΠ½Π³Π΅Ρ€ΠΎΠ²Ρƒ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ˜Π°Π»Π½Ρƒ Ρ˜Π΅Π΄Π½Π°Ρ‡ΠΈΠ½Ρƒ (ΠΠ¨Π”Πˆ). ΠšΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎ, настао јС Π½Π΅Π΄Π°Π²Π½ΠΎ ΠΏΡ€ΠΎΠ±ΠΎΡ˜ Ρƒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π°ΠΌΠ° ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° СкспанзијС Ρƒ Π½Π°Π»Π°ΠΆΠ΅ΡšΡƒ ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈΡ… Π΅Π³Π·Π°ΠΊΡ‚Π½ΠΈΡ… Ρ€Π΅ΡˆΠ΅ΡšΠ° ΠΠ¨Π”Πˆ. Упркос ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅ΡšΡƒ Ρƒ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΎΠ²Π°ΡšΡƒ Ρ€Π΅ΡˆΠ΅ΡšΠ° Π·Π±ΠΎΠ³ нСлинСарности систСма ΠΈ Ρ‡ΠΈΡšΠ΅Π½ΠΈΡ†Π΅ Π΄Π° Π½Π΅ ΠΌΠΎΠ³Ρƒ ΠΎΠΏΡˆΡ‚Π° Ρ€Π΅ΡˆΠ΅ΡšΠ° Π΄Π° сС Π½Π°Ρ’Ρƒ, сама Ρ‡ΠΈΡšΠ΅Π½ΠΈΡ†Π° Π΄Π° ΠΌΠΎΠΆΠ΅ΠΌΠΎ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΠΊΠΎΠ²Π°Ρ‚ΠΈ Π½Π΅ΠΊΠ° Π΅Π³Π·Π°ΠΊΡ‚Π½Π° Ρ€Π΅ΡˆΠ΅ΡšΠ° јС ΠΎΠ΄ Π²Π΅Π»ΠΈΠΊΠΎΠ³ Π·Π½Π°Ρ‡Π°Ρ˜Π° Π·Π° област, посСбно ΠΊΠΎΠ΄ Π΅Π²Π°Π»ΡƒΠΈΡ€Π°ΡšΠ° ΠΊΠ°ΠΊΠ²Π΅ су појавС ΠΌΠΎΠ³ΡƒΡ›Π΅ Ρƒ Ρ‚Π°ΠΊΠ²ΠΈΠΌ систСмима. Ова Ρ‚Π΅Π·Π° Ρ›Π΅ сС фокусирати Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Π½Ρƒ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ Π€-СкспанзијС користСћи сС ЈакобијСвим Π΅Π»ΠΈΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π°ΠΌΠ° (ΠˆΠ•Π€) Π΄Π° Π±ΠΈ сС Ρ€Π΅ΡˆΠΈΠ»Π΅ Ρ€Π°Π·Π½Π΅ Ρ„ΠΎΡ€ΠΌΠ΅ ΠΠ¨Π”Πˆ са Π½Π΅Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΎΡˆΡ›Ρƒ Ρ‚Ρ€Π΅Ρ›Π΅Π³ стСпСна. ΠΠ¨Π”Πˆ са Π½Π΅Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΎΡˆΡ›Ρƒ Ρ‚Ρ€Π΅Ρ›Π΅Π³ стСпСна јС ΠΎΠ΄ Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»Π½Π΅ ваТности Π·Π° област Π½Π΅Π»ΠΈΠ½Π΅Π°Ρ€Π½Π΅ ΠΎΠΏΡ‚ΠΈΠΊΠ΅ Ρ˜Π΅Ρ€ ΠΎΠΏΠΈΡΡƒΡ˜Π΅ ΠΏΡƒΡ‚ΠΎΠ²Π°ΡšΠ΅ свСтлости ΠΊΡ€ΠΎΠ· ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΡ˜Π°Π» са ΠšΠ΅Ρ€ΠΎΠ²ΠΎΠΌ Π½Π΅Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΎΡˆΡ›Ρƒ. ΠžΠ΄Ρ€Π΅Ρ’Π΅Π½ΠΈΠΌ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡ˜Π°ΠΌΠ° Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ΅ Π€-СкспанзијС ΠΌΠΎΠΆΠ΅ΠΌΠΎ Π½Π°Ρ›ΠΈ Π΅Π³Π·Π°ΠΊΡ‚Π½Π° Ρ€Π΅ΡˆΠ΅ΡšΠ° Π·Π° ΡˆΠΈΡ€ΠΎΠΊΡƒ класу систСма. БистСми којС ја ΠΏΡ€Π΅Π·Π΅Π½Ρ‚ΡƒΡ˜Π΅ΠΌ Ρƒ Ρ‚Π΅Π·ΠΈ ΠΈΠΌΠ°Ρ˜Ρƒ ΠΎΠ΄Ρ€Π΅Ρ’Π΅Π½ скуп Π·Π°Ρ˜Π΅Π΄Π½ΠΈΡ‡ΠΊΠΈΡ… особина. Π‘Π²Π΅ Ρ˜Π΅Π΄Π½Π°Ρ‡ΠΈΠ½Π΅ ΠΈΠΌΠ°Ρ˜Ρƒ Ρ˜Π΅Π΄Π½Ρƒ Π»ΠΎΠ½Π³ΠΈΡ‚ΡƒΠ΄ΠΈΠ½Π°Π»Π½Ρƒ ΠΏΡ€ΠΎΠΌΠ΅ΡšΠΈΠ²Ρƒ, ΠΈΠ»ΠΈ просторну ΠΈΠ»ΠΈ врСмСнску, Π·Π±ΠΎΠ³ ΠΏΠ°Ρ€Π°ΠΊΡΠΈΡ˜Π°Π»Π½Π΅ Π°ΠΏΡ€ΠΎΠΊΡΠΈΠΌΠ°Ρ†ΠΈΡ˜Π΅, ΠΈ Π΄ΠΎ Ρ‚Ρ€ΠΈ трансфСрзалнС димСнзијС, Ρ‚Π°ΠΊΠΎΡ’Π΅ ΠΈΠ»ΠΈ просротнС ΠΈΠ»ΠΈ врСмСнскС понаособ. Ако су свС трансфСрзалнС Π²Π°Ρ€ΠΈΠ°Π±Π»Π΅ просторнС vii ΠΎΠ½Π΄Π° суму ΡšΠΈΡ…ΠΎΠ²ΠΈΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΈΠ·Π²ΠΎΠ΄Π° ΠΌΠ½ΠΎΠΆΠΈΠΌ са ΠΊΠΎΠ΅Ρ„ΠΈΡ†ΠΈΡ˜Π΅Π½Ρ‚ΠΎΠΌ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅ Ξ², Π° Π°ΠΊΠΎ јС Π½Π΅ΠΊΠ° ΠΎΠ΄ Π²Π°Ρ€ΠΈΡ˜Π°Π±Π»ΠΈ Ρ‚Π΅ΠΌΠΏΠΎΡ€Π°Π»Π½Π°, ΠΎΠ½Π΄Π° Π³ΠΎΠ²ΠΎΡ€ΠΈΠΌ ΠΎ ΠΊΠΎΠ΅Ρ„ΠΈΡ†ΠΈΡ˜Π΅Π½Ρ‚Ρƒ Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅/Π΄ΠΈΡΠΏΠ΅Ρ€Π·ΠΈΡ˜Π΅. Π’Π° Π΄Π²Π° ΠΊΠΎΠ΅Ρ„ΠΈΡ†ΠΈΡ˜Π΅Π½Ρ‚Π° (Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° ΠΈ Π΄ΠΈΡΠΏΠ΅Ρ€Π·ΠΈΡ˜Π°) ΠΌΠΎΠ³Ρƒ Π΄Π° сС Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΡƒΡ˜Ρƒ Ρƒ јСдан Π΄ΠΎ Π½Π° Π·Π½Π°ΠΊ. Π£ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Π°Π½ΠΎΠΌΠ°Π»Π½Π΅ Π΄ΠΈΡΠΏΠ΅Ρ€Π·ΠΈΡ˜Π΅ ΠΊΠΎΠ΅Ρ„ΠΈΡ†ΠΈΡ˜Π΅Π½Ρ‚ΠΈ ΠΈΠΌΠ°Ρ˜Ρƒ исти Π·Π½Π°ΠΊ, Π° Ρƒ ΡΠ»ΡƒΡ‡Π°Ρ˜Ρƒ Π½ΠΎΡ€ΠΌΠ°Π»Π½Π΅ Π΄ΠΈΡΠΏΠ΅Ρ€Π·ΠΈΡ˜Π΅ супротан Π·Π½Π°ΠΊ. Осим ΠΎΠ²Π° Π΄Π²Π° ΠΊΠΎΠ΅Ρ„ΠΈΡ†ΠΈΡ˜Π΅Π½Ρ‚Π° Ρ€Π΅Π΄ΡƒΠΊΠΎΠ²Π°Π½Π° Ρƒ јСдан, ΠΈΠΌΠ°ΠΌΠΎ Ρ‚Π°ΠΊΠΎΡ’Π΅ ΠΈ ΠΊΠΎΠ΅Ρ„ΠΈΡ†ΠΈΡ˜Π΅Π½Ρ‚ Ο‡ који ΠΎΠ΄Ρ€Π΅Ρ’ΡƒΡ˜Π΅ Ρ˜Π°Ρ‡ΠΈΠ½Ρƒ нСлинСарности Ρ‚Ρ€Π΅Ρ›Π΅Π³ стСпСна, ΠΈ ΠΊΠΎΠ΅Ρ„ΠΈΡ†ΠΈΡ˜Π΅Π½Ρ‚ Ξ³ који ΠΎΠ΄Ρ€Π΅Ρ’ΡƒΡ˜Π΅ Π΄ΠΎΠ±ΠΈΡ‚Π°ΠΊ (Π·Π° ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎ Ξ³) ΠΈΠ»ΠΈ Π³ΡƒΠ±ΠΈΡ‚Π°ΠΊ сигнала Ρƒ нашСм систСму...The progress of the field of non-linear optics greatly depends on our ability to find solutions of various differential equations that naturally occur in the systems where light interacts with nonlinear media. Though re-creating the systems through experiment and performing computer simulations are the two most common and fruitful approaches, the ultimate goal remains to find exact solutions of these systems. The goal of this Thesis is to combine the work done in the field of finding exact solutions to certain classes of non-linear differential SchrΓΆdinger equations (NLSE). Most notably, there has been a breakthrough as of late in applying various expansion techniques in finding certain exact solutions to various NLSE. Despite the limitations of combining said solutions due to the non-linear nature of the solutions and the fact that not all solutions can be found using these techniques, the very fact that we can identify certain exact solutions is of tremendous importance to the field, especially when it comes to evaluating the kinds of functions and behavior that are possible within such systems. This Thesis will focus primarily on applying the F-expansion technique using the Jacobi elliptic functions (JEFs) to solve various forms of the NLSE with the cubic nonlinearity. The NLSE with a cubic nonlinearity is one of fundamental importance in the field of nonlinear optics because it describes the travelling of a light wave through a medium with a Kerr-like nonlinearity. Through certain modification of the technique we can find exact solutions in a very large class of systems. The systems I present in this Thesis will share a certain set of common properties. All of the equations I will tackle have a single longitudinal variable, either temporal or spatial, due to the application of the paraxial wave approximation, and up to three transverse dimensions, again both temporal and spatial. If all the transverse variables are spatial I x assign to the sum of their second derivatives a diffraction coefficient Ξ² whereas if one of them is temporal, I speak of the diffraction/dispersion coefficient. The two coefficients can be normalized into one, up to their sign. In the case of anomalous dispersion, the two coefficients have the same sign. In the case of normal dispersion, the two coefficients have the opposite signs. Apart from these terms which are present in the ordinary wave equation of linear optics, we also have the third order nonlinearity whose strength is determined by a parameter Ο‡ and we also have the term Ξ³ which describes the gain of loss of the signal inside our system..
    corecore