278 research outputs found

    A Normalizing Intuitionistic Set Theory with Inaccessible Sets

    Full text link
    We propose a set theory strong enough to interpret powerful type theories underlying proof assistants such as LEGO and also possibly Coq, which at the same time enables program extraction from its constructive proofs. For this purpose, we axiomatize an impredicative constructive version of Zermelo-Fraenkel set theory IZF with Replacement and ω\omega-many inaccessibles, which we call \izfio. Our axiomatization utilizes set terms, an inductive definition of inaccessible sets and the mutually recursive nature of equality and membership relations. It allows us to define a weakly-normalizing typed lambda calculus corresponding to proofs in \izfio according to the Curry-Howard isomorphism principle. We use realizability to prove the normalization theorem, which provides a basis for program extraction capability.Comment: To be published in Logical Methods in Computer Scienc

    De Jongh’s Theorem for Intuitionistic Zermelo-Fraenkel Set Theory

    Get PDF

    Normalization of IZF with Replacement

    Full text link
    ZF is a well investigated impredicative constructive version of Zermelo-Fraenkel set theory. Using set terms, we axiomatize IZF with Replacement, which we call \izfr, along with its intensional counterpart \iizfr. We define a typed lambda calculus \li corresponding to proofs in \iizfr according to the Curry-Howard isomorphism principle. Using realizability for \iizfr, we show weak normalization of \li. We use normalization to prove the disjunction, numerical existence and term existence properties. An inner extensional model is used to show these properties, along with the set existence property, for full, extensional \izfr

    Ordinal analysis and the set existence property for intuitionistic set theories.

    Get PDF
    On account of being governed by constructive logic, intuitionistic theories T often enjoy various existence properties. The most common is the numerical existence property (NEP). It entails that an existential theorem of T of the form (∃x∈N)A(x) can be witnessed by a numeral n¯ such that T proves A(n¯). While NEP holds almost universally for natural intuitionistic set theories, the general existence property (EP), i.e. the property of a theory that for every existential theorem, a provably definable witness can be found, is known to fail for some prominent intuitionistic set theories such as Intuitionistic Zermelo–Fraenkel set theory (IZF) and constructive Zermelo–Fraenkel set theory (CZF). Both of these theories are formalized with collection rather than replacement as the latter is often difficult to apply in an intuitionistic context because of the uniqueness requirement. In light of this, one is clearly tempted to single out collection as the culprit that stymies the EP in such theories. Beeson stated the following open problem: ‘Does any reasonable set theory with collection have the existence property? and added in proof: The problem is still open for IZF with only bounded separation.’ (Beeson. 1985 Foundations of constructive mathematics, p. 203. Berlin, Germany: Springer.) In this article, it is shown that IZF with bounded separation, that is, separation for formulas in which only bounded quantifiers of the forms (∀x∈a),(∃x∈a),(∀x⊆a),(∃x⊆a) are allowed, indeed has the EP. Moreover, it is also shown that CZF with the exponentiation axiom in place of the subset collection axiom has the EP. Crucially, in both cases, the proof involves a detour through ordinal analyses of infinitary systems of intuitionistic set theory, i.e. advanced techniques from proof theory

    The scope of Feferman’s semi-intuitionistic set theories and his second conjecture

    Get PDF
    The paper is concerned with the scope of semi-intuitionistic set theories that relate to various foundational stances. It also provides a proof for a second conjecture of Feferman’s that relates the concepts for which the law of excluded middle obtains to those that are absolute with regard to the relevant test structures, or more precisely of ∆1 complexity. The latter is then used to show that a plethora of statements is indeterminate with respect to various semi-intuitionistic set theories

    CZF does not have the Existence Property

    Full text link
    Constructive theories usually have interesting metamathematical properties where explicit witnesses can be extracted from proofs of existential sentences. For relational theories, probably the most natural of these is the existence property, EP, sometimes referred to as the set existence property. This states that whenever (\exists x)\phi(x) is provable, there is a formula \chi(x) such that (\exists ! x)\phi(x) \wedge \chi(x) is provable. It has been known since the 80's that EP holds for some intuitionistic set theories and yet fails for IZF. Despite this, it has remained open until now whether EP holds for the most well known constructive set theory, CZF. In this paper we show that EP fails for CZF
    • …
    corecore