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On account of being governed by constructive logic,
intuitionistic theories T often enjoy various existence
properties. The most common is the numerical existence
property (NEP). It entails that an existential theorem
of T of the form (∃x ∈ N)A(x) can be witnessed by
a numeral n̄ such that T proves A(n̄). While NEP
holds almost universally for natural intuitionistic set
theories, the general existence property (EP), i.e. the
property of a theory that for every existential theorem,
a provably definable witness can be found, is known
to fail for some prominent intuitionistic set theories
such as Intuitionistic Zermelo–Fraenkel set theory
(IZF) and constructive Zermelo–Fraenkel set theory
(CZF). Both of these theories are formalized with
collection rather than replacement as the latter is often
difficult to apply in an intuitionistic context because
of the uniqueness requirement. In light of this, one is
clearly tempted to single out collection as the culprit
that stymies the EP in such theories. Beeson stated the
following open problem: ‘Does any reasonable set theory
with collection have the existence property? and added in
proof: The problem is still open for IZF with only bounded
separation.’ (Beeson. 1985 Foundations of constructive
mathematics, p. 203. Berlin, Germany: Springer.) In this
article, it is shown that IZF with bounded separation,
that is, separation for formulas in which only bounded
quantifiers of the forms (∀x ∈ a), (∃x ∈ a), (∀x ⊆ a), (∃x ⊆
a) are allowed, indeed has the EP. Moreover, it is
also shown that CZF with the exponentiation axiom
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in place of the subset collection axiom has the EP. Crucially, in both cases, the proof involves a
detour through ordinal analyses of infinitary systems of intuitionistic set theory, i.e. advanced
techniques from proof theory.

This article is part of the theme issue ‘Modern perspectives in Proof Theory’.

1. Introduction
Intuitionistic theories are renowned for very desirable meta-mathematical properties, most
prominently disjunction and existence properties. There are standard tools available to obtain
these properties for Heyting arithmetic and theories with quantification over sets of natural
numbers or the functions from Baire space (e.g. second-order arithmetic and function arithmetic),
whereas set theories with their transfinite hierarchies of sets can raise formidable technical
challenges.

Definition 1.1. We will consider theories T the language of which, L(T) comprises the language
of the set theory. Furthermore, to simplify matters, we shall assume that L(T) has a constant ω
naming the set of von Neumann natural numbers, and for each n, there is a constant n̄ denoting
the nth element of ω.

(i) T has the disjunction property (DP), if whenever T � A ∨ B holds for sentences A and B of
T, then T � A or T � B.

(ii) T has the numerical existence property (NEP), if whenever T � (∃x∈ω)A(x) holds for a
formula A(x) with at most the free variable x, then T � A(n̄) for some n.

(iii) T has the existence property (EP), if whenever T � ∃xA(x) holds for a formula A(x) having
at most the free variable x, then there is a formula C(x) with exactly x free, so that

T � ∃!x [C(x) ∧ A(x)].

While the DP and NEP hold for many intuitionistic set theories (even with choice principles)
(see [1,–6]), verifying the EP poses considerably more difficult technical problems, provided the
property holds at all. As Beeson wrote in his book [1, p. 202]:

‘It has turned out to be difficult to establish the existence property for constructive set theories,
and new techniques have been developed for the purpose. From this perspective, the methods of this
chapter [Chapter IX] [· · · .] represent the frontier of knowledge in the subject of constructive set
theory.’

The history of the methods that Beeson is referring to has its roots in notions of realizability
developed by Kleene. Friedman [2] developed realizability notions reminiscent of Kleene’s slash
[7,8]. This tool was then extended and deployed to various intuitionistic set theories by Friedman
and Myhill [3,4]. Myhill [3] showed that intuitionistic ZF, when based on replacement rather than
collection (notated by IZFR from now on), has the EP. Myhill [4] did not answer the question
whether the full EP still holds when one adds relativized dependent choice (RDC). Friedman &
Ščedrov [9] subsequently showed this to be the case, i.e. IZFR+RDC also has the EP. Alas, none
of the foregoing methods seemed to provide a tool to settle the question for set theories with
collection. Then Friedman & Ščedrov [10] proved that Intuitionistic Zermelo–Fraenkel set theory
(IZF) actually does not have the EP, and much later, Swan [11] showed, via a method entirely
different from [10], that CZF also lacks the EP. Beeson in [1, p. 2003] stated the following open
problem:

‘Does any reasonable set theory with collection have the existence property?’ and added in proof: ‘The
problem is still open for IZF with only bounded separation.’ ([1, p. 203]).
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In this article, we describe a route that shows that Intuitionistic Zermelo–Fraenkel Set Theory with
strong collection but bounded separation, i.e. separation for formulas in which only bounded
quantifiers of the forms (∀x ∈ a), (∃x ∈ a), (∀x ⊆ a) and (∃x ⊆ a) are allowed, indeed has the EP. The
latter theory is dubbed CZFP in this article. Moreover, it is also shown that constructive Zermelo–
Fraenkel set theory with the exponentiation axiom in lieu of the subset collection axiom, CZFE ,
has the EP. The novel technical tool featuring in this article is the employment of ordinal analysis
from the proof theory that allows one, in conjunction with the reductions established in [12], to
overcome the difficulties posed by collection.

A little signposting as to the contents of the article is in order. Section 2 features the weak
existence property (wEP), which was researched in [12], and we review the main results of [12],
notably that CZFP and CZFE possess the wEP. Moreover, [12] showed that these theories are
partially conservative over their intuitionistic Kripke–Platek-like counterparts IKP(P) and IKP(E),
respectively, and, moreover, that if they possess the EP for certain syntactically restricted classes
of formulae, then the EP would hold for CZFP and CZFE tout court. This material will be
reviewed in §2. Section 3 is devoted to a sketch of the ordinal analyses of IKP(P) and IKP(E).
A crucial step in overcoming the problems with collection is the technique of collapsing infinite
derivations whereby all instances of collection in the derivation are removed. Section 4 looks at
the systems CZFP ,R and CZFE ,R that arise from CZFP and CZFE , respectively, by replacing the
strong collection scheme by the replacement scheme. With the help of the ordinal analyses from
§3, it is shown that CZFP and CZFE are conservative over their counterparts CZFP ,R and CZFE ,R
for ΣP and ΣE formulae, respectively. Section 5 is concerned with demonstrating that CZFP ,R
and CZFE ,R have the EP, using well-established technology. The final §6 then reaps the fruits of all
the hard work, ascertaining that CZFP and CZFE have the EP, too.

2. Preparations: from the weak to the strong existence property
When investigating the EP problem, one is naturally drawn to investigate a related but weaker
form, termed the weak existence property (wEP), defined in [12] by the relaxed requirement of
finding, for every existential theorem, an inhabited and provably definable set of witnesses.

Definition 2.1 ([12, Definition 1.2]). Let T be a theory whose language, L(T), comprises the
standard language of set theory.

(i) T is said to have the wEP if whenever

T � ∃xA(x),

holds for a formula A(x) having at most the free variable x, then there is a formula C(x)
with exactly x free, such that

T � ∃!x C(x),

T � ∀x [C(x) → ∃u u ∈ x]

and T � ∀x [C(x) → ∀u ∈ x A(u)].

(ii) A more general version of wEP allows for additional parameters. The uniform weak
existence property (uwEP) is the following property: if

T � ∀u ∃xA(u, x)

holds for a formula A(u, x) having at most the free variables u, x, then there is a formula
C(u, x) with exactly u, x free, such that

T � ∀u ∃!x C(u, x),

T � ∀u ∀x [C(u, x) → ∃z z ∈ x],

and T � ∀u ∀x [C(u, x) → ∀z ∈ x A(u, z)].
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Clearly, uwEP subsumes wEP. As already pointed out in [12, proposition 1.3], IZF does not
satisfy wEP either.

Proposition 2.2. IZF does not have the weak existence property.

Proof. According to ([10], theorem 1.1), IZF does not have the EP for some sentences of the form

∃x [∃y D(y) → ∃y ∈ x D(y)]. (2.1)

Let E(x) be the part in square brackets of the previous formula. If wEP held for IZF, then one could
find a formula C(u) such that IZF � ∃!uC(u) ∧ ∀u [C(u) → u inhabited] and IZF � ∀u [C(u) → ∀x ∈
u E(x)]. But then IZF � ∃!u[C(u) ∧ E(

⋃
u)], contradicting the aforementioned theorem from [10].

�

Note that formulae of the form (2.1) are readily deducible in IZF, using Collection and
Separation. Thus, in light of Myhill’s result that IZFR has the EP, clearly collection is implicated in
the failure of EP for IZF. It will turn out, however, that separation for formulae with unrestricted
quantifiers is also responsible for this failure.

There is another important intuitionistic set theory for which EP fails. Constructive Zermelo–
Fraenkel set theory (CZF) was singled out by Aczel as a theory distinguished by the fact that
it has canonical interpretation in Martin–Löf type theory (cf. [13]). While Myhill isolated the
Exponentiation Axiom as the ‘correct’ constructive counterpart of the Power Set Axiom, CZF has
an axiom scheme called Subset Collection (cf. [13–15]), which is stronger than exponentiation.1

Subset collection implies exponentiation and is a consequence of powerset. In the presence of the
other axioms of CZF, subset collection is equivalent to the fullness axiom (cf. [15, 5.1.2]). The latter
stipulates that given any sets A and B, there exists a set C (called full) of multi-valued functions
from A to B such that for every multi-valued function R from A to B, there exists S ⊆ R with S ∈ C.2

Strength-wise, an enormous hiatus separates Exponentiation from Powerset. The fullness axiom
simply decrees the existence of a full set. As there does not appear to exist a method to define a
full set of multi-valued functions without invoking Powerset or choice (e.g. from N

N to N), the
current author conjectured that CZF is another example of a set theory lacking the wEP. This was
later ascertained by Andrew Swan via an ingenious combination of three realizability models.

Theorem 2.3 (Swan). CZF does not have the weak existence property.

Proof. Swan, in [11], proves that CZF fails to have the EP. His counter-example is provided
by the statement that there exists a full set of multi-valued functions from N to N. However, if
CZF could prove that there exists a definable inhabited set D consisting entirely of full sets of
multi-valued functions from N to N, then

⋃
D would furnish a provably definable set of such

multi-valued functions. Accordingly, CZF lacks the wEP, too. �

Clearly, wEP is an interesting property. The article [12] established that, as far as CZF is
concerned, subset collection is the sole culprit for the failure of wEP. In it, several other important
intuitionistic set theories with collection were shown to have the wEP, notably CZF based on
exponentiation (rather than subset collection) as well as the strengthening of CZF with the
powerset axiom.3 These theories will be delineated in detail in the next subsection.

(a) The systems CZFE and CZFP
CZF formulated with exponentiation, CZFE , has the same language as that of the classical
Zermelo–Fraenkel set theory, the only non-logical symbol being ∈. Its logic is intuitionistic

1If one assumes a choice principle, called the presentation axiom, exponentiation yields subset collection (cf. [15], 10.3.3).

2The statement that for any two sets the class of multi-valued functions between them is a set is too strong as it is equivalent
to powerset (cf. [15], 5.1.6).
3Burr ([16], corollary 5.12) and Diller ([17], proposition 4.4) showed that higher type versions of constructive set theory, but
without subset collection and exponentiation, enjoy weak forms of the term existence property.
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first-order logic with equality. Its non-logical axioms include extensionality, pairing and union in
their usual forms. The other axioms are the following.

Infinity: ∃x∀u[u ∈ x ↔ (∅ = u ∨ ∃v ∈ x u = v + 1)] where v + 1 = v ∪ {v}.
Set induction: ∀x[∀y ∈ xC(y) → C(x)] → ∀xC(x)
Bounded separation: ∀a∃b∀x[x ∈ b ↔ x ∈ a ∧ C(x)]

for all bounded formulae C. A set-theoretic formula is called bounded or restricted or �0 if its build-
up from prime formulae uses only ¬, ∧, ∨, →, ∀x ∈ y and ∃x ∈ y.

Strong collection: for all formulae C,

∀a
[∀x ∈ a∃yC(x, y) → ∃b [∀x ∈ a ∃y ∈ b C(x, y) ∧ ∀y ∈ b ∃x ∈ a C(x, y)]

]
.

Exponentiation: letting Fun(f , a, b) be short for the formula saying that f is a function from the set a
to the set b, this is

∀a∀b∃c ∀f (Fun(f , a, b) → f ∈ c).

For the much stronger system with the powerset axiom (Pow), added, i.e.

∀x ∃y ∀z (z ⊆ y → z ∈ y),

we use the acronym CZFP . Observe that both exponentiation and subset collection are implied
by Pow (cf. [14, proposition 7.2]).

(b) Intuitionistic Kripke–Platek-like set theories
The proof theory of intuitionistic Kripke–Platek set theory (KP) and its beefed up versions via
exponentiation and powerset, respectively, are a central tool for proving the results of this article.
Recall (cf. [18]) that the axioms of the classical KP consist of extensionality, pair, union, infinity and
bounded separation ∃x ∀u[u ∈ x ↔ (u ∈ a ∧ A(u))] for all bounded formulae A(u), bounded collection
∀x ∈ a ∃y B(x, y) → ∃z ∀x ∈ a ∃y ∈ z B(x, y) for all bounded formulae B(x, y) and set induction ∀x [(∀y ∈
x C(y)) → C(x)] → ∀x C(x) for all formulae C(x).

By IKP, we notate the intuitionistic version of KP. It will be important later to consider a
version of IKP that uses Σ replacement in lieu of �0 collection. Σ replacement is the schema

∀x ∈ a ∃!y C(x, y) → ∃b∀y [y ∈ b ↔ ∃x ∈ a C(x, y)], (2.2)

where C(x, y) is a Σ formula, i.e. a formula belonging to the smallest class of formulae containing
the �0-formulae closed under ∧, ∨ and the quantifiers ∀u ∈ c, ∃u ∈ c, ∃v. By IKPR, we denote the
variant of IKP based on Σ replacement instead of �0 collection. Since Σ replacement is provable
in IKP (e.g. [14], theorem 11.7), IKPR is a subtheory of IKP.

(i) Power and exponentiation Kripke–Platek set theory

These theories come with a germane notion of bounded quantifier. Subset bounded quantifiers
∃x ⊆ y . . . and ∀x ⊆ y . . . are abbreviations for ∃x(x ⊆ y ∧ . . .) and ∀x(x ⊆ y → . . .), respectively.

A formula is said to be in �P
0 if all its quantifiers are of the form Q x ⊆ y or Q x∈y, where Q is

∀ or ∃ and x and y are distinct variables.
Let Fun(f , x, y) be an acronym for the bounded formula expressing that f is a function with

domain x and co-domain y. Exponentiation bounded quantifiers ∃f ∈ xy . . . and ∀f ∈ xy . . . serve
as abbreviations for ∃f (Fun(f , x, y) ∧ . . .) and ∀x(Fun(f , x, y) → . . .), respectively.

Definition 2.4. The class of �P
0 contains the atomic formulae and is closed under ∧, ∨, →, ¬

and the quantifiers
∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a.

The class of �E
0 formulae contains the atomic formulae and is closed under ∧, ∨, →, ¬ and the

quantifiers
∀x ∈ a, ∃x ∈ a, ∀f ∈ ab, ∃f ∈ ab.
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Definition 2.5. IKP(E) has the same language and logic as IKP. Its axioms are extensionality,
pairing, union, infinity, exponentiation, �E

0 -separation and �E
0 -collection.

IKP(P) has the same language and logic as IKP. Its axioms are extensionality, pairing, union,
infinity, powerset, �P

0 -separation and �P
0 -collection.

The transitive classical models of IKP(P) are called power admissible sets in [19].

An alternative way of axiomatizing IKP(P) proceeds by adding a function symbol P for the
powerset function as a primitive symbol to the language and the axiom

∀y [y ∈P(x) ↔ y ⊆ x],

and allowing the new symbol to occur in the schemes of �0 separation and collection to the �0
formulae of this new language. Similarly, IKP(E) can be formulated by adding a primitive function
symbol E for the exponentiation function.

Lemma 2.6 ([12, lemma 2.4]). Let CZF− be CZF without subset collection. The following hold:

(i) IKP is a subtheory of CZF−;
(ii) IKP(E) is a subtheory of CZFE ;

(iii) IKP(P) is a subtheory of CZFP .

Note that the foregoing Lemma implies that, despite having just�0-separation at the axiomatic
level, CZFE proves �E

0 -separation and CZFP proves �P
0 -separation.

(c) Conservativity over intuitionistic Kripke–Platek set theories
As shown in [12], CZF−, CZFE and CZFP are conservative over their intuitionistic Kripke–Platek
counterparts for syntactically restricted forms of formulae. These results will be of relevance later.

The Σ formulae constitute an important syntactic class in the KP (cf. [18]). Their extensions to
the contexts of IKP(E) and IKP(P) (singled out in [12], definition 2.5) are equally important.

Definition 2.7. The Σ formulae are the smallest class of formulae containing the �0-formulae
closed under ∧, ∨ and the quantifiers ∀x ∈ a, ∃x ∈ a, ∃x.

The ΣE formulae are the smallest class of formulae containing the �E
0 -formulae closed under

∧, ∨ and the quantifiers ∀x ∈ a, ∃x ∈ a, ∀f ∈ ab, ∃f ∈ ab, ∃x.
The ΣP formulae are the smallest class of formulae containing the �P

0 -formulae closed under
∧, ∨ and the quantifiers ∀x ∈ a, ∃x ∈ a, ∀x ⊆ a, ∃x ⊆ a, ∃x.

Definition 2.8. We say that a formula D is Π2, ΠE
2 or ΠP

2 if it is of the form ∀x ∃y A(x, y) with
A(x, y) being, respectively, �0, �E

0 and �P
0 .

Theorem 2.9 ([12, theorem 4.8]).

(i) CZF− is conservative over IKP for Π2 sentences.
(ii) CZFE is conservative over IKP(E) for ΠE

2 sentences.
(iii) CZFP is conservative over IKP(P) for ΠP

2 sentences.

(d) Towards the existence property
As it will turn out, a first crucial step towards establishing the EP was already achieved in [12].
To see this, though, it is fruitful to scour the details of the proofs leading to the following result.

Theorem 2.10 ([12, theorem 3.10]). IKP, IKP(E), IKP(P), CZF−, CZFE and CZFP have the wEP.
Indeed, they satisfy the stronger property uwEP.4

4([12], theorem 3.10) does not state this for IKP, IKP(E) and IKP(P), but it is easily checked that theorems 3.7–3.9 of [12] also
work for IKP, IKP(E) and IKP(P), respectively, from which this follows.
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A few comments as to the technology deployed in [12] are in order. The main tool consists of a
notion of realizability where realizers are programs for various notions of set recursive functions
(such functions were e.g. studied in [20–23]), especially power and exponentiation recursive
functions. Moreover, realizers for existential formulas consist of inhabited sets of realizers, and
the notion of realizability is paired with that of truth. This notion is completely different from the
generic realizability used by Beeson ([1], VIII.6) and McCarty [24] that has its roots in a notion
of realizability for intuitionistic second-order arithmetic due to Kreisel & Troelstra [25]. The idea
of using sets of realizers rather than single ones is akin to the Diller & Nahm [26,27] variant of
Gödel’s functional interpretation.

Let T be any of the theories CZF−, CZFE or CZFP . According to [12], the goal of settling
the EP for T can be achieved by tackling the perhaps more manageable question of whether the
Kripke–Platek counterpart of T has the EP for Σ , ΣP and ΣE existential theorems, respectively.

Definition 2.11. LetΞ be a set of formulae. T is said to have the EP forΞ if whenever T � ∃xA(x)
for a sentence ∃xA(x) with A(x) in Ξ , then one finds a formula C(x) (with at most x free) such that

T � ∃!x [C(x) ∧ A(x)].

In [12, definition 5.1], it was also required that C(x) belongs to Ξ . But this is not really necessary
for the applications made in [12, theorems 5.2 and 5.3], and hence, we use the relaxed notion.

Theorem 2.12 ([12, theorems 5.2, 5.3]).

(i) If IKP has the EP for Σ formulae, then IKP and CZF− have the EP.
(ii) If IKP(E) has the EP for ΣE formulae, then IKP(E) and CZFE have the EP.

(iii) If IKP(P) has the EP for ΣP formulae, then IKP(P) and CZFP have the EP.

In the cases of IKP and CZF−, it has already been shown that the strategy suggested by theorem
2.12 can be successful. Theorem 6.1 will furnish yet another proof.

Corollary 2.13. IKP and CZF− have the EP.

Proof. This result is stated as Corollary 6.1 in [12]. There is a sketch of a proof in [12], anticipating
the ordinal analysis of IKP from [28]. More details are provided in the proofs of [28, theorem 2.35
and remark 2.36]. There it is shown that if IKP � ∃x C(x) for a Σ-sentence, then there is a cut-free
proof of it in the infinitary proof system IRSΩ , which can then be milked to extract a term s̄ of IRSΩ
and an ordinal representation ᾱ <Ω in BΩ (εΩ+1) such that IRSΩ proves C(s̄)Lᾱ . The entire ordinal
analysis of the infinitary proof can already be formalized in IKP. As a consequence, IKP proves
that there is an ordinal α denoted by ᾱ and a set s denoted by s̄ such that Lα | C(s). This is then
also a fact provable in CZF−, and thus, since CZF− has the numerical EP by the proof of theorem
6.1 in [5] (just ignore the subset collection part), there are concrete such terms ᾱ, s̄ (note that terms
of IRSΩ can be assumed to be coded as naturals), which can be described by Σ formulae, say
B1(x) and B2(x). As a result, we have CZF− � ∃!α ∃!s [B1(α) ∧ B2(s) ∧ Lα | C(s)]. The latter being
a Σ formula, it is also provable in IKP by theorem 2.9 (i). Hence, IKP has the EP for Σ formulae.
In the light of theorem 2.12 (i), it follows that IKP and CZF− have the EP. �

3. Ordinal analyses of Kripke–Platek-like intuitionistic set theories
According to theorem 2.12, one could ascertain the EP for CZFE and CZFP , respectively, if one
succeeded in establishing the EP for ΣE formulae for IKP(E) and the EP for ΣP formulae for
IKP(P), respectively. The usual techniques for showing the EP (cf. [1], chapter IX), however, do
not work for theories with collection. The ordinal-theoretic proof theory, though, has developed
tools for eliminating collection axioms from proofs in infinitary proof systems, using intricate
techniques for collapsing derivations. Originally, these techniques were developed for classical
theories much weaker than IKP(P) [29,30]. An important step towards an ordinal analysis of the
classical Power Kripke–Platek set theory was taken in [31]. A further important step was taken
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by Cook & Rathjen in [28], furnishing ordinal analyses of intuitionistic power and exponentiation
Kripke–Platek set theory. Especially the treatment of the latter theory turned out to be wickedly
complex. In the case of intuitionistic power Kripke–Platek set theory, one can base the infinitary
proof system on a term structure where one can directly read off a term’s level in the power
hierarchy. This is not possible in the pertinent ‘exponentiation hierarchy’. Instead, a term’s level
is viewed as a changeable property within the infinitary system.

The technical source for this chapter is the long article [28] (93 pages) by Cook & Rathjen. We
will adumbrate its contents, not only for the reader’s sake but also in order to extract some of its
hidden implications.

(a) Ordinal analysis of IKP(P )
We first turn to IKP(P) because it is much simpler to deal with. In what follows, the proof system
for IKP(P) will be the usual Gentzen sequent calculus for intuitionistic logic, which derives
intuitionistic sequents of the form Γ ⇒�, where Γ and � are finite sets of formulae and �

contains at most one formula.

Definition 3.1. One formal point is that while previously subset bounded quantifiers

(∀x ⊆ a)A(x) and (∃x ⊆ a)A(x)

were viewed as abbreviations, here they are treated as quantifiers in their own right, not
abbreviations. Accordingly, these quantifiers require their own logical rules.

Γ, a ⊆ b ∧ F(a) ⇒�
(pb∃L)

Γ, (∃x ⊆ b)F(x) ⇒�

Γ ⇒ a ⊆ b ∧ F(a)
(pb∃R)

Γ ⇒ (∃x ⊆ b)F(x)

Γ, a ⊆ b → F(a) ⇒�
(pb∀L)

Γ, (∀x ⊆ b)F(x) ⇒�

Γ ⇒ a ⊆ b → F(a)
(pb∀R)

Γ ⇒ (∀x ⊆ b)F(x)

of course, where a is not to occur in the conclusion of the rules (pb∃L) and (pb∀R).

(i) An ordinal representation system

Following [28, definition 2.2], we provide a very brief description of a primitive recursive ordinal
notation system for the Bachmann–Howard ordinal.

Definition 3.2. Let Ω be a ‘big’ ordinal (in fact we could have chosen ωCK
1 , see [32]). We define

the sets BΩ (α) and ordinals ψΩ (α) by transfinite recursion on α as follows:

BΩ (α) =

⎧⎪⎨
⎪⎩

closure of {0,Ω} under :
+, ξ �→ωξ

(ξ �−→ψΩ (ξ ))ξ<α
(3.1)

and

ψΩ (α) = min{ρ <Ω : ρ /∈ BΩ (α)}. (3.2)

As it turns out, ψΩ (α) is always defined, and therefore, ψΩ (α)<Ω . Furthermore, it is the case
that letting BΩ (α) ∩Ω := {α ∈ BΩ (α) | α <Ω}, we have BΩ (α) ∩Ω = {β | β <ψΩ (α)}.

Let εΩ+1 be the least ordinal η >Ω such that ωη = η. The set BΩ (εΩ+1) engenders a primitive
recursive ordinal representation system [33,34]. The ubiquitous ordinal ψΩ (εΩ+1) is known as
the Bachmann–Howard ordinal. In the literature, one finds several equivalent variants of the
representation system for this ordinal.
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(ii) The infinitary system IRSPΩ
Next, we introduce the infinitary proof system IRSPΩ from [28].

Definition 3.3 ([28, Definition 2.3]). All ordinals are assumed to be members of BΩ (εΩ+1).
When defining the IRSPΩ terms, we also assign an ordinal level, | t |.

1. For each α <Ω , Vα is an IRSPΩ term with | Vα | = α.
2. For each α <Ω , we have infinitely many free variables aα0 , aα1 , aα2 , . . . ., with | aαi | = α.
3. If F(x, ȳ ) is a�P

0 -formula of IKP(P) (whose free variables are exactly those indicated) and
s̄ ≡ s1, . . . , sn are IRSPΩ terms, then the formal expression [x ∈ Vα | F(x, s̄ )] is an IRSPΩ term
with | [x ∈ Vα | F(x, s̄ )] | := α.

Note that IRSPΩ -terms can contain subterms of a higher level, or from higher up the von Neumann
hierarchy in the intended interpretation. This reflects the impredicativity of the power set
operation. The IRSPΩ formulae are of the form A(s1, . . . , sn), where A(a1, . . . , an) is a formula of
IKP(P) with all free variables indicated and s1, . . . , sn are IRSPΩ terms. A formula A(s1, . . . , sn) of
IRSPΩ is �P

0 if A(a1, . . . , an) is a �P
0 formula of IKP(P).

The Σ̇P formulae of IRSPΩ are the smallest collection containing the �P
0 -formulae and

containing A ∨ B, A ∧ B, (∀x ∈ s)A, (∃x ∈ s)A, (∀x ⊆ s)A, (∃x ⊆ s)A, ∃xA, ¬C and C → A whenever it
contains A and B and C is a Π̇P -formula. The Π̇P -formulae are the smallest collection containing
the �P

0 formulae and containing A ∨ B, A ∧ B, (∀x ∈ s)A, (∃x ∈ s)A, (∀x ⊆ s)A, (∃x ⊆ s)A, ∀xA, ¬D
and D → A whenever it contains A and B and D is a Σ̇P -formula.5

Following ([28], definition 3.2), the axioms of IRSPΩ are as follows:

(A1) Γ, A ⇒ A for A in �P
0 .

(A2) Γ ⇒ t = t.
(A3) Γ, s1 = t1, . . . , sn = tn, A(s1, . . . , sn) ⇒ A(t1, . . . , tn) for A(s1, . . . , sn) in �P

0 .
(A4) Γ ⇒ s ∈ Vα if | s |<α.
(A5) Γ ⇒ s ⊆ Vα if | s | ≤ α.
(A6) Γ, t ∈ [x ∈ Vα | F(x, s̄)] ⇒ F(t, s̄) for F(t, s̄) is �P

0 and | t |<α.
(A7) Γ, F(t, s̄) ⇒ t ∈ [x ∈ Vα | F(x, s̄)] for F(t, s̄) is �P

0 and | t |<α.

The inference rules of IRSPΩ are as follows:

(b∀L)
Γ, s ∈ t → F(s) ⇒�

Γ, (∀x∈t)F(x) ⇒�
if | s |< | t |

(b∀R)∞
Γ ⇒ s ∈ t → F(s) for all | s |< | t |

Γ ⇒ (∀x∈t)F(x)

(b∃L)∞
Γ, s ∈ t ∧ F(s) ⇒� for all | s |< | t |

Γ, (∃x∈t)F(x) ⇒�

5Note that the Σ̇P -formulae comprise the ΣP -formulae of definition 2.7. In the terminology of [28], however, the ΣP -
formulae are identical to the Σ̇P -formulae, but this clashes with the terminology of [12], hence the dot.
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(b∃R)
Γ ⇒ s ∈ t ∧ F(s)

Γ ⇒ (∃x∈t)F(x)
if | s |< | t |

(pb∀L)
Γ, s ⊆ t → F(s) ⇒�

Γ, (∀x ⊆ t)F(x) ⇒�
if | s | ≤ | t |

(pb∀R)∞
Γ ⇒ s ⊆ t → F(s) for all | s | ≤ | t |

Γ ⇒ (∀x ⊆ t)F(x)

(pb∃L)∞
Γ, s ⊆ t ∧ F(s) ⇒� for all | s | ≤ | t |

Γ, (∃x ⊆ t)F(x) ⇒�

(pb∃R)
Γ ⇒ s ⊆ t ∧ F(s)

Γ ⇒ (∃x ⊆ t)F(x)
if | s | ≤ | t |

(∀L)
Γ, F(s) ⇒�

Γ, ∀x F(x) ⇒�

(∀R)∞
Γ ⇒ F(s) for all s

Γ ⇒ ∀x F(x)

(∃ L)∞
Γ, F(s) ⇒� for all s

Γ, ∃x F(x) ⇒�

(∃ R)
Γ ⇒ F(s)

Γ ⇒ ∃x F(x)

(∈L)∞
Γ, r ∈ t ∧ r = s ⇒� for all | r |< | t |

Γ, s ∈t ⇒�

(∈R)
Γ ⇒ r ∈ t ∧ r = s

Γ, s∈t
if | r |< | t |

(⊆L)∞
Γ, r ⊆ t ∧ r = s ⇒� for all | r | ≤ | t |

Γ, s ⊆t ⇒�

(⊆R)
Γ ⇒ r ⊆ t ∧ r = s

Γ ⇒ s ⊆ t
if | r | ≤ | s |

(Cut)
Γ, A ⇒� Γ ⇒ A

Γ ⇒�

(Σ̇P -Ref )
Γ ⇒ A

Γ ⇒ ∃z Az if A is a Σ̇P -formula,

as well as the rules (∧L), (∧R), (∨L), (∨R), (¬L), (¬R), (⊥), (→ L) and (→ R) from IRSΩ . Here, as
per usual, Az results from A by restricting all unbounded quantifiers to z.

Definition 3.4. The rank of a formula is defined in ([28], definition 3.3) as follows.

(i) rk(s ∈ t) := max{| s | + 1, | t | + 1}.
(ii) rk((∃x ∈ t)F(x)) := rk((∀x ∈ t)F(x)) := max{| t |, rk(F(V0)) + 2}.

(iii) rk((∃x ⊆ t)F(x)) := rk((∀x ⊆ t)F(x)) := max{| t | + 1, rk(F(V0)) + 2}.
(iv) rk(∃x F(x)) := rk(∀x F(x)) := max{Ω , rk(F(V0)) + 2}.
(v) rk(A ∧ B) := rk(A ∨ B) := rk(A → B) := max{rk(A), rk(B)} + 1.

(vi) rk(¬A) := rk(A) + 1.

Crucially, observe that a formula with only bounded quantifiers has a rank <Ω , whereas a formula with
an unbounded quantifier has a rank ≥Ω .

We take the notion of operator controlled derivability for IRSPΩ from Definition 3.6 [28]
(originally due to Buchholz [35]), where the relation H α

ρ Γ ⇒� is defined for an operator H,
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ordinals α, ρ and Γ ⇒�, an intuitionistic sequent of IRSPΩ formulae. We will just highlight the
conditions for two crucial inferences.

(Cut)
H α0

ρ Γ, B ⇒� H α0

ρ Γ ⇒ B

H α

ρ Γ ⇒�

α0 <α

rk(B)<ρ

and

(Σ̇P -Ref )
H α0

ρ Γ ⇒ A

H α

ρ Γ ⇒ ∃z Az

α0 + 1,Ω <α

A is a Σ̇P − formula

(iii) Embedding IKP(P ) into IRSPΩ
The first important result that links IKP(P) to IRSPΩ is that every deduction in IKP(P) can be
transformed into one in the infinitary system IRSPΩ .

Theorem 3.5 ([28, theorem 3.24]). If IKP(P) � Γ (ā) ⇒�(ā), where Γ (ā) ⇒�(ā) is an intuitionistic
sequent containing exactly the free variables ā = a1, . . . , an, then there exists an m<ω (which we may
calculate from the derivation) such that

H[s̄] Ω·ωm

Ω+m
Γ (s̄) ⇒�(s̄) ,

for any operator H and any IRSPΩ terms s̄ = s1, . . . , sn.

(iv) Cut elimination for IRSPΩ
The main advantage of IRSPΩ over IKP(P) is the former’s amenability to partial cut elimination
and the possibility to remove instances of (Σ̇P -Ref ), which embody collection, from certain
derivations via collapsing.

Theorem 3.6 (Partial cut elimination for IRSPΩ ). [[28], theorem 3.11] If H α

Ω+n+1
Γ ⇒� , then

H ωn(α)

Ω+1
Γ ⇒� , where ω0(β) := β and ωk+1(β) :=ωωk(β).

Lemma 3.7 (Boundedness). [[28], lemma 3.12] If A is a Σ̇P -formula, B is a Π̇P -formula, α ≤ β <Ω
and β ∈H, then

(i) If H α

ρ Γ ⇒ A then H α

ρ Γ ⇒ AVβ .

(ii) If H α

ρ Γ, B ⇒� then H α

ρ Γ, BVβ ⇒� .

Boundedness is a crucial tool in the next result.

Theorem 3.8 (Collapsing for IRSPΩ ). [[28], theorem 3.13] Suppose that η ∈Hη, � is a set of at most
one Σ̇P -formula and Γ a set of Π̇P -formulae. Then

Hη
α

Ω+1
Γ ⇒� implies Hα̂

ψΩ (α̂)

ψΩ (α̂)
Γ ⇒�.

Here, β̂ = η + ωΩ+β and the operators Hξ are those defined in [28] definition 2.18.
In actuality, in light of 3.7, we have

Hη
α

Ω+1
Γ ⇒� implies Hα̂

ψΩ (α̂)

ψΩ (α̂)
Γ Vτ ⇒�Vτ ,

with τ :=ψΩ (α̂).

Observe that the collapsing theorem eliminates all inference rules (Σ̇P -Ref ) in the derivation.
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(b) Ordinal analysis of IKP(E )
In the same vein as for IKP(P), one can furnish an ordinal analysis for the Kripke–Platek system
IKP(E) based on exponentiation, though this is much more difficult than for IKP(P). It was
achieved in [28] via the infinitary proof system IRSE

Ω . Again, we will briefly introduce the main
features of IRSE

Ω and sketch the main results from [28] needed for this article.

(i) A sequent calculus formulation of IKP(E )
Definition 3.9. In the sequent calculus rendering of IKP(E), there are additional exponentiation

bounded quantifiers of the form

(∀x ∈ab)A(x) and (∃x ∈ab)A(x),

treated as quantifiers in their own right, not abbreviations. Quantifiers of the form ∀x, ∃x will be
called unbounded, whereas the quantifiers (∀x ∈ab), (∃x ∈ab), (∀x ∈ a), (∃x ∈ a) count as bounded
ones. A �E

0 -formula of IKP(E) is one that contains only bounded quantifiers.
As mentioned earlier, IKP(E) derives intuitionistic sequents, like in the following axiom for
Exponentiation: Γ ⇒ ∃z (∀x ∈ab)(x ∈ z).
To express the rules for the exponentiation bounded quantifiers, one uses a formula

‘fun(x, a, b)’, whose intuitive meaning is ‘x is a function from a to b’:

fun(x, a, b) := x ⊆ a × b ∧ (∀y ∈ a)(∃z ∈ b)((y, z) ∈ x)

∧ (∀y ∈ a)(∀z1 ∈ b)(∀z2 ∈ b)[((y, z1) ∈ x ∧ (y, z2) ∈ x) → z1 = z2].

The rules are as follows:

Γ, fun(c, a, b) ∧ F(c) ⇒�
(Eb∃L)

Γ, (∃x ∈ ab)F(x) ⇒�

Γ ⇒ fun(c, a, b) ∧ F(c)
(Eb∃R)

Γ ⇒ (∃x ∈ ab)F(x)

Γ, fun(c, a, b) → F(c) ⇒�
(Eb∀L)

Γ, (∀x ∈ ab)F(x) ⇒�

Γ ⇒ fun(c, a, b) → F(c)
(Eb∀R)

Γ ⇒ (∀x ∈ ab)F(x)

with the proviso that the variable c in (Eb∃L) and (Eb∀R) is an eigenvariable.

(ii) The infinitary system IRSEΩ
Next we need the infinitary system IRSE

Ω of [28, section 4.2], within which one can embed IKP(E)
and carry out an ordinal analysis.

Definition 3.10. Akin to the von Neumann hierarchy built by iterating the powerset operation,
one may define an exponentiation hierarchy through the ‘ordinals’ of BΩ (εΩ+1) ∩Ω := {α ∈
BΩ (εΩ+1) | α <Ω} as follows:

E0 := ∅ and E1 := {∅},
Eα+2 := {X|X is definable over 〈Eα+1, ∈〉 with parameters}

∪ {f | fun(f , a, b) for some a, b ∈ Eα},
Eλ :=

⋃
β<λ

Eβ for λ a limit,

and Eλ+1 := {X | X is definable over 〈Eα+1, ∈〉 with parameters} for λ a limit.

The sets Eα are transitive; see [28, lemma 4.2].

Note that the E-hierarchy can be defined in IKPR(E) up to any ordinal representation α <Ω for
which transfinite induction is provable as the case distinctions therein are decidable for ordinal
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representations. The idea behind IRSE

Ω is to serve as a proof system for reasoning about the E-
hierarchy.

Definition 3.11. The terms of IRSE

Ω are defined as follows:

1. Eα is an IRSE

Ω term for each α <Ω .
2. aαi is an IRSE

Ω term for each α <Ω and each i<ω, these terms will be known as IRSE

Ω ’s
free variables.

3. If F(a, b1, . . . , bn) is a�E
0 formula of IKP(E) containing exactly the free variables indicated,

and t, s1, . . . , sn are IRSE

Ω terms, then

[x ∈ t|F(x, s̄)]

is also a term of IRSE

Ω .

Note that while it was straightforward to assign the level α to a complex term [x ∈ Vα | F(x, s̄ )] of
IRSPΩ by viewing it as a denizen of the von Neumann hierarchy, it is not clear how to locate an
IRSE

Ω term within the E-hierarchy just by looking at the syntactic build-up of that term.
The formulae of IRSE

Ω are of the form F(s1, . . . , sn), where F(a1, . . . , an) is a formula of IKP(E)
with all free variables indicated and s1, . . . , sn are IRSE

Ω terms. The formula A(s1, . . . , sn) is said to
be �E

0 if A(a1, . . . , an) is a �E
0 formula of IKP(E).

An important class of formulae was isolated in [28, definition 4.3]. The Σ̇E formulae are the
smallest collection containing the �E

0 formulae such that A ∧ B, A ∨ B, (∀x ∈ t)A, (∃x ∈ t)A, (∃x ∈
ab)A, (∀x ∈ab)A, ∃xA, ¬C and C → A are in Σ̇E whenever A and B are in Σ̇E and C is in Π̇E . The Π̇E

formulae are the smallest collection containing the �E
0 formulae such that A ∧ B, A ∨ B, (∀x ∈ t)A,

(∃x ∈ t)A, (∃x ∈ab)A, (∀x ∈ab)A, ∀xA, ¬C and C → A are in Π̇E whenever A and B are in Π̇E and C
is in Σ̇E .

For the details of the notion of operator controlled in IRSE

Ω , we refer the reader to [28, section
4]. IKP(E) can be embedded in IRSE

Ω , and the counterparts to theorems 3.5, 3.6, 3.7 and 3.8 ensue.
We will just record the last one, which removes all inference rules (Σ̇E -Ref ) from the derivation.

Theorem 3.12 (Collapsing for IRSE

Ω ). Suppose that η ∈Hη, � is a set of at most one Σ̇E -formula
and Γ a set of Π̇E -formulae. Then

Hη
α

Ω+1
Γ ⇒� implies Hα̂

ψΩ (α̂)

ψΩ (α̂)
Γ Eτ ⇒�Eτ ,

where τ :=ψΩ (α̂), β̂ := η + ωΩ+β , and the operators Hξ are those defined in [28] definition 2.18.

Proof. See ([28, theorem 4.13]). �

(c) Background theory for ordinal analyses
For the proof strategy of this article, it is important to ponder what background theory suffices
for the task of carrying out the foregoing ordinal analyses. By the latter, we mean the embedding,
cut elimination and collapsing theorems, but not the soundness theorems 2.35, 3.25 and 4.25 of
[28]. If T is one of the theories IKP, IKP(P) or IKP(E) and T � C with C being a Σ , Σ̇E or Σ̇P

sentence, respectively, then one can explicitly determine a natural n such that the entire ordinal
analysis for this statement requires only ordinals from BΩ (ωn(Ω + 1)) (where ω0(Ω + 1) =Ω +
1 and ωk+1(Ω + 1) =ωωk(Ω+1)). Certainly, transfinite induction over the ordinal representations
of BΩ (ωn(Ω + 1)) will be required, but actually very little beyond that. Recall that IKPR arises
from IKP by substituting Σ replacement for strong collection. The claim is that IKPR is capacious
enough.

Theorem 3.13. The proof-theoretic ordinal of IKPR is the Bachmann–Howard ordinal. In particular, for
every n, IKPR proves transfinite induction on the ordinal presentations of BΩ (ωn(Ω + 1)) for arbitrary
formulae.
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Proof. This was shown in [36, theorem 4.13] to hold for the theory CZF0
R , i.e. CZF without subset

collection and replacement in lieu of strong collection. Scouring its proof, it turns out that CZF0
R

can be replaced by IKPR. Replacement is, for instance, used in the proof of [36, theorem 2.6] on
which [36, theorem 4.13] builds, but fortunately it is just an instance ofΣ replacement therein. �

An obstacle for formalizing ordinal analysis within IKPR, though, is posed by the need to
formalize the notion of operator controlled derivability H α

ρ Γ ⇒ A . This notion is an example of
a Σ-inductive definition (cf. [18, chapter V]). While it is no problem to formalize such definitions
in the presence of Σ-collection, it does not seem to be possible with just Σ replacement at one’s
disposal (see [36, section 2] for a discussion). To obviate this problem, the first observation is
that instead of arbitrary operators one just needs recursive operators taking finite sets of ordinal
representations as inputs and outputs. The main idea is then that we can do everything with
recursive proof trees controlled by a recursive operator instead of arbitrary operator controlled
derivations. A proof-tree controlled by a recursive operator H is a tree, with each node labelled by:
a sequent, a rule of inference or the designation ‘Axiom’, two sets of formulas specifying the set
of principal and minor formulas, respectively, of that inference, and two ordinals (length and cut–
rank) such that the sequent is obtained from those immediately above it through the application
of the specified rule of inference, additionally controlled by H. The well-foundedness of a proof-
tree is then witnessed by the (first) ordinal ’tags’ which are in reverse order of the tree order.
Furthermore, one needs to show that all the proof-theoretic operations such as embedding, cut
elimination and collapsing can be engineered via recursive functions acting on them. The upshot
is that there are well-known techniques for handling infinite derivations in intuitionistic systems
(even of arithmetic) via codes for recursive proof trees or even primitive recursive ones (see, for
instance [37–41]), and that this treatment is deployable in IKPR.

4. Partial conservativity over systems based on replacement
The ordinal analyses of IKP, IKP(E) and IKP(P) of [28] can be used to obtain conservativity results
over the counterparts with replacement in lieu of collection. We will use the acronyms IKPR,
IKPR(P) and IKPR(E) for the theories with Σ replacement, ΣE replacement and ΣP replacement
instead of Σ collection, ΣE collection and ΣP collection, respectively.

Theorem 4.1.

(i) IKP + Σ̇-reflection is conservative over IKPR for Σ̇-sentences.
(ii) IKP(E) + Σ̇E -reflection is conservative over IKPR(E) for Σ̇E -sentences.

(iii) IKP(P) + Σ̇P -reflection is conservative over IKPR(P) for Σ̇P -sentences.

Proof. Let us start with (iii). So suppose that IKP(P) + Σ̇P -reflection proves a Σ̇P -sentence A.
The length of this finite deduction determines a number n such that the entire ordinal analysis for
this deduction, comprising the embedding theorems 3.5, theorem 3.6 and the collapsing theorem
3.8, solely uses ordinals from the set BΩ (ωn(Ω + 1)), where ω0(Ω + 1) =Ω + 1 and ωk+1(Ω + 1) =
ωωk(Ω+1). Moreover, it follows from theorem 3.13 that transfinite induction along the ordinals of
BΩ (ωn(Ω + 1)) is provable in IKPR for arbitrary formulae. As argued in §3c, we can determine a
recursive operator H, a recursive proof-tree and ordinals α, ρ <Ω with α, ρ ∈ BΩ (ωn(Ω + 1)) such
that H α

ρ Γ ⇒ A , and, moreover, we gain this insight in IKPR.
Switching to IKPR(P), we aim to conclude that A is also true. Temporarily, let VARP be the set

of variables with labels in BΩ (ωn(Ω + 1)). Moreover, we only consider IRSPΩ -terms created from
ordinals in BΩ (ωn(Ω + 1)). Let Vα be obtained by iterating the powerset operation α-times for
α ∈ BΩ (ωn(Ω + 1)) ∩Ω , i.e. for ξ , λ< α, let

V0 := ∅, Vξ+1 := {X|X ⊆ Vξ }, Vλ :=
⋃
β<λ

Vβ for λ a limit.
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This hierarchy is definable in IKPR(P) using ΣP replacement and powerset since one has
transfinite induction over BΩ (ωn(Ω + 1)) ∩Ω (for any formula) and the case distinctions (as to
zero, successor and limit ordinal (representation)) are decidable.

We then only consider variable assignments v : VARP −→ VψΩ (ωn(Ω+1)), of course satisfying
v(aαi ) ∈ Vα+1 for each i. The assignment v canonically propagates to all terms via

v(Vα) = Vα

and

v({x ∈ Vα |F(x, s1, . . . , sn)}) = {x ∈ Vα |F(x, v(s1), . . . , v(sn))}.

Moreover, it can be seen that v(s) ∈ V| s |+1, and thus, v(s) ∈ VψΩ ((ωn(Ω+1)).
We then obtain the following soundness result for IRSPΩ as in [28, theorem 3.25]: Suppose

Γ [s1, . . . , sn] is a finite set of Π̇P formulae with max{rk(A)|A ∈ Γ } ≤Ω and �[s1, . . . , sn] a set
containing at most one Σ̇P formula such that

H α

ρ Γ [s̄] ⇒�[s̄] for some operator H and some α, ρ ∈ BΩ (ωn(Ω + 1)) ∩Ω .

Then, for any assignment v going to VψΩ (ωn(Ω+1)),

VψΩ ((ωn(Ω+1)) |
∧
Γ [v(s1), . . . , v(sn)] →

∨
�[v(s1), . . . , v(sn)].

Here,
∧
Γ and

∨
� stand for the conjunction of formulae in Γ and the disjunction of formulae in

�, respectively (by convention
∧∅ = � and

∨ ∅ = ⊥). For a more detailed proof, see [28, 3.25].
By soundness, we therefore have VψΩ ((ωn(Ω+1)) | A for the assignment vs, which interprets any

variable by ∅. As a result, A is provable in IKPR(P).
We now turn to the proof of (ii), which is to a large extent similar to that of (iii). Of course, it is

based on the much more complicated ordinal analysis of IKP(E) from [28] section 4. Analogously
to IRSPΩ , one proves a soundness theorem for certain IRSE

Ω derivable sequents. Again we consider
only variable assignments

v : VARE −→ EψΩ (ωn(Ω+1)),

such that v(aαi ) ∈ Eα+1 for all i<ω and ordinals α. Here, Eβ refers to the E-hierarchy of definition
3.10. Again, such an assignment propagates to all IRSE

Ω terms by letting

v(Eα) = Eα

and

v([x ∈ t|F(x, s1, . . . , sn)]) = {x ∈ v(t)|F(x, v(s1), . . . , v(sn))}.

As mentioned earlier, the crucial difference between here and the case of IRSPΩ is that for a given
term t, it is no longer possible to describe the location of v(t) within the E-hierarchy solely by
inspecting its syntactic structure, albeit it is possible to place an upper bound on that location
using the following function:

m(Eα) := α

m(aαi ) := α

and m([x ∈ t|F(x, s1, . . . , sn)]) := max(m(t), m(s1), . . . , m(sn)) + 1.

We then have that v(s) ∈ Em(s)+1 for any s, though in general m(s) only determines an upper bound
on a term’s position in the E-hierarchy. According to [28, theorem 4.25], one obtains the following
soundness result for IRSE

Ω . Let Γ [s1, . . . , sn] be a finite set of Π̇E formulae with max{rk(A)|A ∈
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Γ } ≤Ω and �[s1, . . . , sn] be a set containing at most one Σ̇E formula such that

H α

ρ Γ [s̄] ⇒�[s̄] for some operator H and some α, ρ ∈ BΩ (ωn(Ω + 1)) ∩Ω .

Then, given any assignment v going into EψΩ (ωn(Ω+1)),

EψΩ (ωn(Ω+1)) |
∧
Γ [v(s1), . . . , v(sn)] →

∨
�[v(s1), . . . , v(sn)].

Finally, for (i), we use the constructible hierarchy defined by transfinite recursion along the
ordinals of BΩ (ωn(Ω + 1)) ∩Ω .

L0 := ∅
Lξ+1 := {X|X is definable over 〈Lξ , ∈〉 with parameters}

and Lλ :=
⋃
β<λ

Lβ for λ a limit.

This hierarchy is definable in IKPR using justΣP replacement rather thanΣ collection (for details,
see [42]).

Noting that they do not contain free variables, terms t of IRSΩ (see [28, subsection 2.3]), are
assigned to sets v(t) in the obvious way, namely,

v(Lα) = Lα

and

v([x ∈ t|F(x, s1, . . . , sn)Lα ]) = {x ∈ v(t)|F(x, v(s1), . . . , v(sn))Lα }.

As a result, one gets a soundness theorem for IRSΩ in the same way as for IRSPΩ , yielding (i). �

5. Existence property for theories with replacement
Let CZF−

R , CZFE ,R and CZFP ,R be the counterparts theories obtained from of CZF−, CZFE and
CZFP , respectively, by having the replacement scheme instead of the strong collection scheme.

From theorems 4.1 and 2.12, it follows that CZF−, CZFP and CZFE have the EP if
CZF−

R , CZFP ,R and CZFE ,R, respectively, have this property. Techniques to establish the EP for
intuitionistic set theories based on replacement rather than collection are available. Friedman [2]
introduced a modification of Kleene’s slashing technology and used it to prove the EP for various
systems of type theory and higher-order arithmetic. These results were extended to versions of
intuitionistic Zermelo–Fraenkel set theory with replacement by Friedman and Myhill in [3] and
to constructive set theories by Myhill [4].

The technology can also be deployed in cases such as the theories CZFP ,R and CZFE ,R. Owing
to it being well-documented in the research literature (especially [3,4], and also in book form in
[1], IX) and due to page restrictions, I shall just sketch the main steps.6

Definition 5.1. Let L be a first-order language comprising the language of set theory, SL its set
of sentences, AL its atomic sentences and TL its set of closed terms. For T a set of L-sentences, let
Thm(T) be {A ∈ SL | T � A}. Let M ⊆ AL be a non-empty set of atoms and P ⊆ SL such that Thm(T) ⊆ P
and P is closed under modus ponens, i.e. A ∈ P and A → D ∈ P yields D ∈ P.

6In 2012, I attended a talk by Ali Lloyd who was a PhD student of Peter Aczel back then. It was about ascertaining the EP for
CZFE ,R, with a discussion of the metatheory required for such a proof. The approach was also based on Friedman realizability
as in this section. Moreover, he mentioned in the talk that Peter Aczel had shown the EP for CZFE ,R with a proof being
formalizable in IZFR. Alas, I was unsuccessful finding any traces of this on the worldwide net.
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Friedman realizability, R(T, M, P), is the unique set F ⊆ SL such that the following conditions
are met.

G ∈ F ⇔ G ∈ M, for G ∈ AL,

⊥/∈ F

A ∧ D ∈ F ⇔ A ∈ F and D ∈ F,

A ∨ D ∈ F ⇔ A ∈ P ∩ F or D ∈ P ∩ F,

A → D ∈ F ⇔ A ∈ P ∩ F implies D ∈ F,

∀x B(x) ∈ F ⇔ B(t) ∈ F for all t ∈ TL,

and ∃x B(x) ∈ F ⇔ B(t) ∈ P ∩ F for some t ∈ TL.

We say that T realizes A relative to M and P if A ∈R(T, M, P).

The fundamental property of R is given by the following.

Theorem 5.2 (Friedman). T ⊆R(T, M, P) implies that Thm(T) ⊆R(T, M, P).

Proof. [2], theorem 2.1. �

Let us give an outline as to how it can be shown that IKPR, IKPR(P), IKPR(E), CZF−
R , CZFP ,R

and CZFE ,R (and similar theories) possess the EP. Let T be any of these theories. T will just serve
the purpose of a generic example to which this technology applies. Suppose T � ∃u A(u), where
the formula has no free variables. In a first step, one builds a conservative extension T+ of T such
that we have T+ � A(t) for some term t of the enriched language. Translating back to the original
language will give us the result. In the light of theorem 5.2, we only need to produce such a term
t for each set existence axiom of T. As it suffices to show that there is a formula G(x) such that

T � ∃u [A(u) ∧ ∀x (x ∈ u ↔ G(x))],

the idea is to introduce comprehension terms.

Definition 5.3. For each formula G(x) with at most x free such that T � ∃y ∀x (x ∈ y ↔ G(x)), we
introduce a comprehension term [x | G(x)]. Two comprehension terms s, t are viewed as equivalent
if their defining formulae are provably equivalent in T, and we write s ∼ t to convey this. We
extend the language of set theory by a new constant ct for each comprehension term t ≡ [x | G(x)],
and then write Gt(x) for G(x). Let L′ be this new language and T′ be the theory in this new
language consisting of the axioms of T along with

∀x (x ∈ ct ↔ Gt(x)),

for each comprehension term t.

Proposition 5.4. T′ is a conservative extension of T.

Proof. This is achieved by simply replacing every atomic t ∈ t′, with t, t′ comprehension terms,
by

∃u∃v [∀x (x ∈ u ↔ Gt′ (x)) ∧ ∀x (x ∈ v↔ Gt(x)) ∧ v ∈ u].

�

To arrive at the theory T+, we need an even larger class of set-indexed constants, C+.

Definition 5.5. C+ is defined via the following inductive definition:7

If c is a constant of L′ and X ⊆ {cY ∈ C+ | T′ � c ∈ b}, then bX ∈ C+.
For d ≡ bX ∈ C+, we write d− for b, and d+ for X.

7Notably, this kind of definition can be formalized in CZF− as a class inductive definition.



18

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220019

...............................................................

Let L+ be the extension of L′ via the new set-indexed constants. Let T+ be the theory in the
language L′ with the axioms of CZF′

P ,R augmented by the axioms

∀x [x ∈ d ↔ At(x)],

where d− ≡ ct for a comprehension term t.

Proposition 5.6. T+ is a conservative extension of T.

Proof. The proof idea is for a formula A of L+ to replace each occurrence of d ∈ C+ by d−. �

Finally, we are in a position to make use of theorem 5.2. In the latter let T be T and P be Thm(T+)
and M be the set of atomic sentences e ∈ d, where e belongs to d+. The pivotal move is to show
that for each set existence axiom

∃y∀x [x ∈ y ↔ A(x)],

of T+, there is a set X so that
e ∈ X ⇔ A(e) ∈ P ∩ F,

where F =R(T, M, P). As a result, for b ∼ [x | A(x)], we will have ∃y∀x [x ∈ y ↔ A(x)] ∈ P ∩ F, and
hence, by theorem 5.2, Thm(T′) ⊆ F.

Accordingly, if T � ∃u H(u), then ∃u H(u) ∈ F, so that there is a s ∈ C+ with T+ � H(d).
Consequently, T′ � H(d−). As d− is of the form ct for a comprehension term t, we arrive at

T � ∃u [H(u) ∧ ∀x(x ∈ u ↔ At(x))].

Theorem 5.7. IKPR, IKPR(E), IKPR(P), CZF−
R , CZFE ,R and CZFP ,R have the EP.

The aforementioned proof works for a wide variety of theories whose set-existence axioms are
explicit, i.e. if they define the denizens of the set being asserted to exist in the form

∀u [D(u ) → ∃y∀x (x ∈ y ↔ G(x, u ))].

In [3, section 6], it is shown in detail that axioms of the aforementioned form are always realizable.

6. Conclusion
Preparations are finished now, and we can show that various theories with collection axioms have
the EP.

Theorem 6.1. IKP, IKP(E), IKP(P), CZF−, CZFE and CZFP have the EP.

Proof. As an example we show this for CZFE . By theorem 2.12 (ii), it suffices to show that IKP(E)
has the EP for ΣE formulae. So assume IKP(E) � ∃xB(x) for a closed ΣE formula. Theorem 4.1(ii)
yields that IKPR(E) � ∃xB(x), and hence, invoking theorem 5.7, there is a formula C(x) (with at
most x free) such that IKPR(E) � ∃!x [C(x) ∧ B(x)]. In consequence, IKP(E) � ∃!x [C(x) ∧ B(x)].

The proofs for the other theories follow the same pattern. �
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