3,228 research outputs found

    Human-triggered earthquakes and their impacts on human security

    Get PDF
    A comprehensive understanding of earthquake risks in urbanized regions requires an accurate assessment of both urban vulnerabilities and earthquake hazards. Socioeconomic risks associated with human-triggered earthquakes are often misconstrued and receive little scientific, legal, and public attention. However, more than 200 damaging earthquakes, associated with industrialization and urbanization, were documented since the 20th century. This type of geohazard has impacts on human security on a regional and national level. For example, the 1989 Newcastle earthquake caused 13 deaths and US$3.5 billion damage (in 1989). The monetary loss was equivalent to 3.4 percent of Australia’s national income (GDI) or 80 percent of Australia’s GDI per capita growth of the same year. This article provides an overview of global statistics of human-triggered earthquakes. It describes how geomechanical pollution due to large-scale geoengineering activities can advance the clock of earthquakes or trigger new seismic events. Lastly, defense-oriented strategies and tactics are described, including risk mitigation measures such as urban planning adaptations and seismic hazard mapping

    WP2 final report

    Get PDF
    This document summarises the significant results in work package 2 of the DigiMon project. Detailed descriptions and results from each task can be found in the referenced deliverables and publications

    Using estimated risk to develop stimulation strategies for enhanced geothermal systems

    Get PDF
    Enhanced geothermal systems (EGS) are an attractive source of low-carbon electricity and heating. Consequently, a number of tests of this technology have been made during the past couple of decades, and various projects are being planned or under development. EGS work by the injection of fluid into deep boreholes to increase permeability and hence allow the circulation and heating of fluid through a geothermal reservoir. Permeability is irreversibly increased by the generation of microseismicity through the shearing of pre-existing fractures or fault segments. One aspect of this technology that can cause public concern and consequently could limit the widespread adoption of EGS within populated areas is the risk of generating earthquakes that are sufficiently large to be felt (or even to cause building damage). Therefore, there is a need to balance stimulation and exploitation of the geothermal reservoir through fluid injection against the pressing requirement to keep the earthquake risk below an acceptable level. Current strategies to balance these potentially conflicting requirements rely on a traffic light system based on the observed magnitudes of the triggered earthquakes and the measured peak ground velocities from these events. In this article we propose an alternative system that uses the actual risk of generating felt (or damaging) earthquake ground motions at a site of interest (e.g. a nearby town) to control the injection rate. This risk is computed by combining characteristics of the observed seismicity of the previous 6 h with a (potentially site-specific) ground motion prediction equation to obtain a real-time seismic hazard curve; this is then convolved with the derivative of a (potentially site-specific) fragility curve. Based on the relation between computed risk and pre-defined acceptable risk thresholds, the injection is increased if the risk is below the amber level, decreased if the risk is between the amber and red levels, or stopped completely if the risk is above the red level. Based on simulations using a recently developed model of induced seismicity in geothermal systems, which is checked here using observations from the Basel EGS, in this article it is shown that the proposed procedure could lead to both acceptable levels of risk and increased permeability

    Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for Enhanced Geothermal Systems

    Get PDF
    Geothermal energy is becoming an important clean energy source, however, the stimulation of a reservoir for an Enhanced Geothermal System (EGS) is associated with seismic risk due to induced seismicity. Seismicity occurring due to the water injection at depth have to be well recorded and monitored. To mitigate the seismic risk of a damaging event, an appropriate alarm system needs to be in place for each individual experiment. In recent experiments, the so-called traffic-light alarm system, based on public response, local magnitude and peak ground velocity, was used. We aim to improve the pre-defined alarm system by introducing a probability-based approach; we retrospectively model the ongoing seismicity in real time with multiple statistical forecast models and then translate the forecast to seismic hazard in terms of probabilities of exceeding a ground motion intensity level. One class of models accounts for the water injection rate, the main parameter that can be controlled by the operators during an experiment. By translating the models into time-varying probabilities of exceeding various intensity levels, we provide tools which are well understood by the decision makers and can be used to determine thresholds non-exceedance during a reservoir stimulation; this, however, remains an entrepreneurial or political decision of the responsible project coordinators. We introduce forecast models based on the data set of an EGS experiment in the city of Basel. Between 2006 December 2 and 8, approximately 11 500 m3 of water was injected into a 5-km-deep well at high pressures. A six-sensor borehole array, was installed by the company Geothermal Explorers Limited (GEL) at depths between 300 and 2700 m around the well to monitor the induced seismicity. The network recorded approximately 11 200 events during the injection phase, more than 3500 of which were located. With the traffic-light system, actions where implemented after an ML 2.7 event, the water injection was reduced and then stopped after another ML 2.5 event. A few hours later, an earthquake with ML 3.4, felt within the city, occurred, which led to bleed-off of the well. A risk study was later issued with the outcome that the experiment could not be resumed. We analyse the statistical features of the sequence and show that the sequence is well modelled with the Omori-Utsu law following the termination of water injection. Based on this model, the sequence will last 31+29/−14 years to reach the background level. We introduce statistical models based on Reasenberg and Jones and Epidemic Type Aftershock Sequence (ETAS) models, commonly used to model aftershock sequences. We compare and test different model setups to simulate the sequences, varying the number of fixed and free parameters. For one class of the ETAS models, we account for the flow rate at the injection borehole. We test the models against the observed data with standard likelihood tests and find the ETAS model accounting for the on flow rate to perform best. Such a model may in future serve as a valuable tool for designing probabilistic alarm systems for EGS experiment
    • 

    corecore