2,774 research outputs found

    Effort estimation for object-oriented system using artificial intelligence techniques

    Get PDF
    Software effort estimation is a vital task in software engineering. The importance of effort estimation becomes critical during early stage of the software life cycle when the details of the software have not been revealed yet. The effort involved in developing a software product plays an important role in determining the success or failure. With the proliferation of software projects and the heterogeneity in their genre, there is a need for efficient effort estimation techniques to enable the project managers to perform proper planning of the Software Life Cycle activates. In the context of developing software using object-oriented methodologies, traditional methods and metrics were extended to help managers in effort estimation activity. There are basically some points approach, which are available for software effort estimation such as Function Point, Use Case Point, Class Point, Object Point, etc. In this thesis, the main goal is to estimate the effort of various software projects using Class Point Approach. The parameters are optimized using various artificial intelligence (AI) techniques such as Multi-Layer Perceptron (MLP), K-Nearest Neighbor Regression (KNN) and Radial Basis Function Network(RBFN), fuzzy logic with various clustering algorithms such as the Fuzzy C-means (FCM) algorithm, K-means clustering algorithm and Subtractive Clustering (SC) algorithm, such as to achieve better accuracy. Furthermore, a comparative analysis of software effort estimation using these various AI techniques has been provided. By estimating the software projects accurately, we can have software with acceptable quality within budget and on planned schedules

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Machine Learning Techniques to Evaluate the Approximation of Utilization Power in Circuits

    Get PDF
    The need for products that are more streamlined, more useful, and have longer battery lives is rising in today's culture. More components are being integrated onto smaller, more complex chips in order to do this. The outcome is higher total power consumption as a result of increased power dissipation brought on by dynamic and static currents in integrated circuits (ICs). For effective power planning and the precise application of power pads and strips by floor plan engineers, estimating power dissipation at an early stage is essential. With more information about the design attributes, power estimation accuracy increases. For a variety of applications, including function approximation, regularization, noisy interpolation, classification, and density estimation, they offer a coherent framework. RBFNN training is also quicker than training multi-layer perceptron networks. RBFNN learning typically comprises of a linear supervised phase for computing weights, followed by an unsupervised phase for determining the centers and widths of the Gaussian basis functions. This study investigates several learning techniques for estimating the synaptic weights, widths, and centers of RBFNNs. In this study, RBF networks—a traditional family of supervised learning algorithms—are examined.  Using centers found using k-means clustering and the square norm of the network coefficients, respectively, two popular regularization techniques are examined. It is demonstrated that each of these RBF techniques are capable of being rewritten as data-dependent kernels. Due to their adaptability and quicker training time when compared to multi-layer perceptron networks, RBFNNs present a compelling option to conventional neural network models. Along with experimental data, the research offers a theoretical analysis of these techniques, indicating competitive performance and a few advantages over traditional kernel techniques in terms of adaptability (ability to take into account unlabeled data) and computing complexity. The research also discusses current achievements in using soft k-means features for image identification and other tasks

    A Survey on Data Mining Techniques Applied to Energy Time Series Forecasting

    Get PDF
    Data mining has become an essential tool during the last decade to analyze large sets of data. The variety of techniques it includes and the successful results obtained in many application fields, make this family of approaches powerful and widely used. In particular, this work explores the application of these techniques to time series forecasting. Although classical statistical-based methods provides reasonably good results, the result of the application of data mining outperforms those of classical ones. Hence, this work faces two main challenges: (i) to provide a compact mathematical formulation of the mainly used techniques; (ii) to review the latest works of time series forecasting and, as case study, those related to electricity price and demand markets.Ministerio de Economía y Competitividad TIN2014-55894-C2-RJunta de Andalucía P12- TIC-1728Universidad Pablo de Olavide APPB81309

    Radial Basis Function Neural Networks : A Review

    Get PDF
    Radial Basis Function neural networks (RBFNNs) represent an attractive alternative to other neural network models. One reason is that they form a unifying link between function approximation, regularization, noisy interpolation, classification and density estimation. It is also the case that training RBF neural networks is faster than training multi-layer perceptron networks. RBFNN learning is usually split into an unsupervised part, where center and widths of the Gaussian basis functions are set, and a linear supervised part for weight computation. This paper reviews various learning methods for determining centers, widths, and synaptic weights of RBFNN. In addition, we will point to some applications of RBFNN in various fields. In the end, we name software that can be used for implementing RBFNNs

    Applications of Nearest Neighbor Search Algorithm Toward Efficient Rubber-Based Solid Waste Management in Concrete

    Get PDF
    Indeed, natural processes of discarding rubber waste have many disadvantages for the environment. As a result, multiple researchers suggested addressing this problem by recycling rubber as an aggregate in concrete mixtures. Previously, numerous studies have been undertaken experimentally to investigate the properties of rubberized concrete. Furthermore, investigations were carried out to develop estimating techniques to precisely specify the generated concrete's characteristics, making its use in real-life applications easier. However, there is still a gap in the conducted studies on the performance of the k-nearest neighbor algorithm. Hence, this research explores the accuracy of using the k-nearest neighbor's algorithm in predicting the compressive and tensile strength and the modulus of elasticity of rubberized concrete. It will be done by developing an optimized machine learning model using the aforementioned method and then benchmarking its results to the outcomes of multiple linear regression and artificial neural networks. The study's findings have shown that the k-nearest neighbor's algorithm provides significantly higher accuracy than other methods. This kind of study needs to be discussed in the literature so that people can better deal with rubber waste in concrete. Doi: 10.28991/CEJ-2022-08-04-06 Full Text: PD

    A Hybrid Deep Learning Approach for Diagnosis of the Erythemato-Squamous Disease

    Full text link
    The diagnosis of the Erythemato-squamous disease (ESD) is accepted as a difficult problem in dermatology. ESD is a form of skin disease. It generally causes redness of the skin and also may cause loss of skin. They are generally due to genetic or environmental factors. ESD comprises six classes of skin conditions namely, pityriasis rubra pilaris, lichen planus, chronic dermatitis, psoriasis, seboreic dermatitis and pityriasis rosea. The automated diagnosis of ESD can help doctors and dermatologists in reducing the efforts from their end and in taking faster decisions for treatment. The literature is replete with works that used conventional machine learning methods for the diagnosis of ESD. However, there isn't much instances of application of Deep learning for the diagnosis of ESD. In this paper, we propose a novel hybrid deep learning approach i.e. Derm2Vec for the diagnosis of the ESD. Derm2Vec is a hybrid deep learning model that consists of both Autoencoders and Deep Neural Networks. We also apply a conventional Deep Neural Network (DNN) for the classification of ESD. We apply both Derm2Vec and DNN along with other traditional machine learning methods on a real world dermatology dataset. The Derm2Vec method is found to be the best performer (when taking the prediction accuracy into account) followed by DNN and Extreme Gradient Boosting.The mean CV score of Derm2Vec, DNN and Extreme Gradient Boosting are 96.92 percent, 96.65 percent and 95.80 percent respectively.Comment: Pre-review version of the paper accepted at the 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT
    corecore