
Effort Estimation for Object-oriented System

using

Artificial Intelligence Techniques

Mukesh Kumar

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

May 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ethesis@nitr

https://core.ac.uk/display/53189450?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Effort Estimation for Object-oriented System

using

Artificial Intellignce Techniques

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Mukesh Kumar
(Roll- 211CS3295)

Under the supervision of

Prof. S. K. Rath

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

May 2013

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Effort Estimation for

Object - oriented System using Artificial Intelligence Techniques by

Mukesh Kumar is a record of an original research work carried out by him

under my supervision and guidance in partial fulfillment of the requirements for

the award of the degree of Master of Technology with the specialization of Software

Engineering in the department of Computer Science and Engineering, National

Institute of Technology Rourkela. Neither this thesis nor any part of it has been

submitted for any degree or academic award elsewhere.

Place: NIT Rourkela (Prof. Santanu Ku. Rath)
Date: June 3, 2013 Professor, CSE Department

NIT Rourkela, Odisha

Acknowledgment

I am grateful to numerous local and global peers who have contributed towards

shaping this thesis. At the outset, I would like to express my sincere thanks to

Prof. Santanu Ku. Rath for his advice during my thesis work. As my supervisor,

he has constantly encouraged me to remain focused on achieving my goal. His

observations and comments helped me to establish the overall direction to the

research and to move forward with investigation in depth. He has helped me

greatly and been a source of knowledge.

I am very much indebted to Prof. Ashok Kumar Turuk, Head-CSE, for his

continuous encouragement and support. He is always ready to help with a smile.

I am also thankful to all the professors at the department for their support.

I would like to thank Mr. Shashank Mouli Satapathy for his encouragement

and support. His help can never be penned with words.

I would like to thank all my friends and lab-mates for their encouragement and

understanding. Their help can never be penned with words.

I must acknowledge the academic resources that I have got from NIT Rourkela.

I would like to thank administrative and technical staff members of the Department

who have been kind enough to advise and help in their respective roles.

Last, but not the least, I would like to dedicate this thesis to my family, for

their love, patience, and understanding.

Mukesh Kumar

Roll-211cs3295

Abstract

Software effort estimation is a vital task in software engineering. The impor-

tance of effort estimation becomes critical during early stage of the software life

cycle when the details of the software have not been revealed yet. The effort in-

volved in developing a software product plays an important role in determining

the success or failure. With the proliferation of software projects and the hetero-

geneity in their genre, there is a need for efficient effort estimation techniques to

enable the project managers to perform proper planning of the Software Life Cycle

activates. In the context of developing software using object-oriented methodolo-

gies, traditional methods and metrics were extended to help managers in effort

estimation activity.

There are basically some points approach, which are available for software ef-

fort estimation such as Function Point, Use Case Point, Class Point, Object Point,

etc. In this thesis, the main goal is to estimate the effort of various software

projects using Class Point Approach. The parameters are optimized using various

artificial intelligence (AI) techniques such as Multi-Layer Perceptron (MLP), K-

Nearest Neighbor Regression (KNN) and Radial Basis Function Network(RBFN),

fuzzy logic with various clustering algorithms such as the Fuzzy C-means (FCM)

algorithm, K-means clustering algorithm and Subtractive Clustering (SC) algo-

rithm, such as to achieve better accuracy. Furthermore, a comparative analysis of

software effort estimation using these various AI techniques has been provided. By

estimating the software projects accurately, we can have software with acceptable

quality within budget and on planned schedules.

Keywords: Software effort estimation, Class point approach, ANN, KNN, RBFN,

Fuzzy Logic.

Contents

Certificate ii

Acknowledgement iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Class Point Analysis . 2

1.2 Various Performance Measures . 6

1.2.1 Mean Square Error (MSE) 6

1.2.2 Magnitude of Relative Error (MRE) 6

1.2.3 Mean Magnitude of Relative Error (MMRE) 6

1.2.4 Root Mean Square Error (RMSE) 6

1.2.5 Normalized Root Mean Square(NRMS) 6

1.3 Dataset used for Effort Calculation 7

1.4 Problem Definition . 7

1.5 Literature Review . 8

1.6 Motivation . 9

1.7 Thesis Organization . 10

2 Adaptive Regression Techniques 12

2.1 Introduction . 12

2.1.1 Multi-Layer Perceptron (MLP) 12

2.1.2 K Nearest Neighbor Regression (KNN) 13

2.1.3 Radial Basis Function Network (RBFN) 13

v

2.2 Proposed Approach . 14

2.3 Implementation . 15

2.3.1 Model Design Using Multi-Layer Perceptron 15

2.3.2 Model Design Using K-Nearest Neighbor Regression 16

2.3.3 Model Design Using Radial Basis Function Network 17

2.3.4 Comparison . 18

2.4 Summary . 20

3 TSK-Fuzzy Logic System 21

3.1 Introduction . 21

3.1.1 Fuzzy Logic System . 21

3.2 Methodology Used . 22

3.2.1 Subtractive Clustering (SC) 23

3.2.2 Fuzzy C-Means Clustering (FCM) 24

3.2.3 K-Means Clustering . 25

3.3 Proposed Work . 26

3.3.1 TSK Based Fuzzy Model Using Subtractive Clustering Al-

gorithm . 28

3.3.2 TSK Based Fuzzy Model Design Using Fuzzy C-Means Al-

gorithm . 30

3.3.3 TSK Based Fuzzy Model Design Using K-Means Algorithm . 31

3.3.4 Comparison . 31

3.4 Summary . 33

4 Conclusion and Future Work 34

Bibliography 36

Dissemination of Work 41

List of Figures

1.1 Steps to Calculate Class Point . 3

2.1 Multi-Layer Perceptron based Effort Estimation Model 16

2.2 K-Nearest Neighbor Regression based Effort Estimation Model . . . 17

2.3 Radial Basis Function Network based Effort Estimation Model . . . 17

2.4 Comparison of Validation Error Obtained Using Six Adaptive Meth-

ods for Regression . 18

2.5 Comparison of Prediction Error Obtained Using various Adaptive

Methods for Regression . 19

2.6 Comparison of Average Error values obtained from training, and

test set using various Adaptive Methods for Regression 19

3.1 TSK Fuzzy Model . 23

3.2 Center Points Generated Using SC, FCM and K-Means 32

3.3 Comparison of RMSE values for SC, FCM and K-Means clustering 33

vii

List of Tables

1.1 Complexity Level Evaluation for CP1 4

1.2 Complexity Level Evaluation for CP2 4

1.3 Evaluation of TUCP for Each Class Type 5

1.4 Degree of Influences of Twenty Four General System Characteristics 5

1.5 Forty Project DataSet . 11

2.1 RMSE Value Obtained using Multi-Layer Perceptron Technique for

Different No. of Neurons . 16

2.2 NRMSE Value Obtained using K-Nearest Neighbor Regression for

Different No. Of Nearest Neighbours 17

2.3 NRMSE Value Obtained using Radial Basis Function Network Tech-

nique based on No. of Basis Functions 17

2.4 Comparison of NRMSE Values between MLP and RBFN 20

3.1 Type-1 TSK Fuzzy Model Developed Using Subtractive Clustering

Algorithm for CP2 . 29

3.2 RMSE Value using FIS (SC) for different Radius 29

3.3 Type-1 TSK Fuzzy Model Developed Using Fuzzy C-Means Clus-

tering Algorithm for CP2 . 30

3.4 Type-1 TSK Fuzzy Model Developed Using K-Means Clustering

Algorithm for CP2 . 32

3.5 Comparison of RMSE Value between SC, FCM and K-Means 33

4.1 Comparison of NRMSE and RMSE. 34

viii

Chapter 1

Introduction

Project Management is the process of planning and controlling the development as

a system within a specified time frame at a minimum cost with the right function-

ality. Much software fails due to faulty project management practices. Therefore,

it is important to learn different aspects of software project management. Key

features of Project Management-

• Project Scheduling

• Staffing

• Monitoring and control

• Project Estimation

• Risk Management

• Report Generation

Among all these Projects, Estimation is the most challenging task. Project es-

timation involves size estimation, effort estimation, cost estimation, estimation,

time estimation, staffing estimation. First, we determine the size of the product.

From size estimation, we determine the effort needed. From effort estimation, we

can determine product duration and cost.

Software size estimation is important to determine the project effort. However,

according to the last research reported by the Brazilian Ministry of Science and

1

1.1 Class Point Analysis Introduction

Technology-MCT, in 2001, only 29% of the companies accomplished size estima-

tion and 45.7% accomplished software effort estimate. So that effort estimation

has motivated considerable research during recent years.

Effort Estimation: It is the process of predicting the effort required to develop

or maintain software product in person months. Many ways are available for

categorizing estimation approaches. Most efficient categories are as follows-

1. Expert estimation: The quantification step, on the basis of judgmental pro-

cess estimation is done.

2. Formal estimation: the quantification step is based on mechanical processes,

e.g., the use as a formula derived from historical data.

3. Combination-Based estimation: This estimation approach deals with a judg-

mental or mechanical combination of estimates from different sources.

Function Point Analysis (FPA), Use Case Point (UCP) Analysis and Class Point

Analysis (CPA) comes under the Formal estimation model; that is based on size-

based estimation approach. Here CPA has been used only because the class point

has been inferred from one of the most important Unified Modeling Language

(UML) diagrams, i.e. a class diagram. Hence one of the major advantages of

using a class point approach (CPA) over FPA is that the number of function

points is calculated at coding phase but class point is calculated from the design

phase of the software-development life cycle (SDLC). Hence estimation can be

done at an early stage of the SDLC.

1.1 Class Point Analysis

The class point approach was introduced by Gennaro Costagliola et al. in 1998 [1].

This was based on the function point analysis approach to represent the internal

attributes of a software system in terms of counting. The idea using the Class Point

Approach is the quantification of classes in a program similar to the FP measure,

where the basic unit is function. It has been derived from the observations that in

the procedural model, the basic programming units are functions or procedures;

2

1.1 Class Point Analysis Introduction

whereas, in case of an object-oriented model, the logical building blocks are classes.

The Class Point size estimation process is structured into three main phases,

corresponding to similar phases in the function point approach, i.e.,

• Information processing size estimation:

– Identification and classification of classes

– Evaluation of complexity level of each class

– Estimation of the Total Unadjusted Class Point

• Technical complexity factor estimation

• Final Class Point evaluation

During the first step, the design specifications are analyzed in order to identify

and classify the classes into four types of system components, namely Problem

Domain Type (PDT), Human Interaction Type (HIT), Data-Management Type

(DMT), and Task Management Type (TMT).

During the second step, each identified class is assigned a complexity level,

which is determined based on the local methods in the class and of the interaction

of the class with the rest of the system. In case of CP1, the complexity level of

each class is evaluated based on the Number of External Methods (NEM), and

the Number of Services Requested (NSR). Similarly in case of CP2, apart from

the above measures, the Number Of Attributes (NOA) measure is considered in

order to evaluate the complexity level of each class. The block diagram shown in

Figure-1.1 explains the steps to calculate the class point.

UML Diagram

Identify and
Classify Classes

Assign
Complexity Level

Calculate TUCP
and TCF

Final Class Point
Evaluation

Figure 1.1: Steps to Calculate Class Point

3

1.1 Class Point Analysis Introduction

For the calculation of CP1, the complexity level of the class is determined

based on the value of NEM and NSR according to Table-1.1. For example, if a

class is having NEM value 7 and NSR value 3, then the complexity level assigned

to the class is Average.

Table 1.1: Complexity Level Evaluation for CP1

0 - 4 NEM 5 - 8 NEM 9 - 12 NEM ≥ 13 NEM

0 - 1 NSR Low Low Average High

2 - 3 NSR Low Average High High

4 - 5 NSR Average High High Very High

> 5 NSR High High Very High Very High

For the calculation of CP2, the complexity level of the class is determined

based on the value of NEM, NOA and NSR according to Table- 1.2a, 1.2b and

1.2c. In all these tables, NEM and NOA range varies with respect to the fixed

NSR range.

Table 1.2: Complexity Level Evaluation for CP2

0 - 2 NSR 0 - 5 NOA 6 - 9 NOA 10 - 14 NOA ≥ 15 NOA

0 - 4 NEM Low Low Average High

5 - 8 NEM Low Average High High

9 - 12 NEM Average High High Very High

≥ 13 NEM High High Very High Very High

(a)

3 - 4 NSR 0 - 4 NOA 5 - 8 NOA 9 - 13 NOA ≥ 14 NOA

0 - 3 NEM Low Low Average High

4 - 7 NEM Low Average High High

8 - 11 NEM Average High High Very High

≥ 12 NEM High High Very High Very High

(b)

≥ 5 NSR 0 - 3 NOA 4 - 7 NOA 8 - 12 NOA ≥ 13 NOA

0 - 2 NEM Low Low Average High

3 - 6 NEM Low Average High High

7 - 10 NEM Average High High Very High

≥ 11 NEM High High Very High Very High

(c)

Once a complexity level of each class has been assigned, such information and

its type are used to assign a weight to the class given in Table- 1.3. Then, the

Total Unadjusted Class Point value (TUCP) is computed as a weighted sum of

the number of classes of different component types.

TUCP =
4∑

i=1

3∑
j=1

wij × xij (1.1)

4

1.1 Class Point Analysis Introduction

where xij is the number of classes of component type i (problem domain,

human interaction, etc.) with the complexity level j (low, average, or high), and

wij is the weighting value of type i and complexity leveled j.

Table 1.3: Evaluation of TUCP for Each Class Type

System Component Type Description
Complexity

Low Average High Very High

PDT Problem Domain Type 3 6 10 15

HIT Human Interaction Type 4 7 12 19

DMT Data Management Type 5 8 13 20

TMT Task Management Type 4 6 9 13

The Technical Complexity Factor (TCF) is determined by adjusting the TUCP

with a value obtained by 24 different target software system characteristics, each

on a scale of 0 to 5. The sum of the influence degrees of all the general system

characteristics forms the Total Degree of Influence (TDI) which is shown in Table-

1.4. This is used to determine the TCF according to the following formula:

TCF = 0.55 + (0.01 ∗ TDI) (1.2)

Table 1.4: Degree of Influences of Twenty Four General System Characteristics

ID System Characteristics DI ID System Characteristics DI

C1 Data Communication C13 Multiple sites

C2 Distributed Functions C14 Facilitation of change

C3 Performance C15 User Adaptivity

C4 Heavily used configuration C16 Rapid Prototyping

C5 Transaction rate C17 Multiuser Interactivity

C6 Online data entry C18 Multiple Interfaces

C7 End-user efficiency C19 Management Efficiency

C8 Online update C20 Developers’ Professional Competence

C9 Complex processing C21 Security

C10 Reusability C22 Reliability

C11 Installation ease C23 Maintainability

C12 Operational ease C24 Portability

TDI Total Degree of Influence (TDI)

Finally, the Class Point (CP) value is determined by multiplying the Total

Unadjusted Class Point (TUCP) value by TCF.

CP = TUCP ∗ TCF (1.3)

The final class point of various projects is used to calculate the required effort

to develop the project in a very scheduled time.

5

1.2 Various Performance Measures Introduction

1.2 Various Performance Measures

The accuracy of the model can be evaluated by using the following criteria:

1.2.1 Mean Square Error (MSE)

It can be calculated as:

MSE =

∑N
i=1 (yi − ȳ)2

N
(1.4)

1.2.2 Magnitude of Relative Error (MRE)

The Magnitude of Relative Error (MRE) is a very common criterion used to

evaluate software cost estimation models. The MRE for each observation i can be

obtained as:

MREi =
|ActualEfforti − PredictedEfforti|

ActualEfforti
(1.5)

1.2.3 Mean Magnitude of Relative Error (MMRE)

The Mean Magnitude of Relative Error (MMRE) can be achieved through

the summation of MRE over N observations.

MMRE =
N∑
1

MREi (1.6)

1.2.4 Root Mean Square Error (RMSE)

It is just the square root of the mean square error.

RMSE =

√∑N
i=1 (yi − ȳ)2

N
(1.7)

1.2.5 Normalized Root Mean Square(NRMS)

The Normalized Root Mean Square(NRMS) can be calculated by dividing

the RMSE value with standard deviation of the actual effort value for training

data set.

NRMS =
RMSE

std(Y)
(1.8)

6

1.3 Dataset used for Effort Calculation Introduction

where Y is the actual effort for training data set.

1.3 Dataset used for Effort Calculation

The dataset (Table-1.5) from forty Java systems is derived during two successive

semesters of graduate courses on Software Engineering. The use of such data in the

validation process has provided initial experimental evidence of the effectiveness

of the Class Point approach [1]. It is clear that the use of student’s projects may

threaten the external validity of the experiment and, hence, for the assessment of

the method; further analysis is needed by using data coming from the industrial

world. Nevertheless, we have worked to make the validation process as accurate

as possible.

1.4 Problem Definition

Traditional software estimation techniques like Constructive Cost Estimation Model

(COCOMO) and Function Point Analysis (FPA) have proven unsatisfactory for

measuring cost and effort of all types of software because the line of code(LOC)

and function point(FP) were both used for procedural oriented [2, 3]. The proce-

dural oriented design splits the data and procedure, whereas the object-oriented

programming combines them.

COCOMO model is used for early rough, estimates of project cost, perfor-

mance, and schedule; and gives the accuracy within 68%. Hence the objective is

to increase the estimation accuracy of software products.

Function Point and COCOMO will be used in coding phase while CPA is used

in design phase of SDLC. It provides more accurate results because classes are

the major component of OO paradigm; and using a CPA, estimation of software

projects can be done at the design phase.

7

1.5 Literature Review Introduction

1.5 Literature Review

Gennaro Costagliola, et al. have used two measures of size i.e. CP1 & CP2 and

three metrics i.e. NEM, NSR & NOA to find the complexity of a class [1]. From the

experiment over 40 project data set they have found that the aggregated MMRE of

CP1 is 0.19 and CP2 is 0.18. Wei Zhou and Qiang Liu have extended this approach

by adding another measure named as CP3 based on CPA and have taken 24 system

characteristics instead of 18 considered by Gennaro Costagliola, et al [4]. By using

this approach Wei Zhou and Qiang Liu found that the MMRE of CP1 and CP2 is

0.19 and 0.14 respectively. S. Kanmani, et al. have used the same CPA by using

neural network in mapping the CP1 and CP2 into the effort and found that the

aggregate MMRE is improved from 0.19 to 0.1849 for CP1 and from 0.18 to 0.1673

for CP2 [5]. SangEun Kim, et al. introduced some new definitions of class point

to increase understanding of a system’s architectural complexity [6]. They have

taken the help of a number of extra parameters apart from NEM, NSR and NOA

to calculate the total no of class points. Ziauddin et al. proposed an algorithm

to implement the COCOMO model using fuzzy logic technique for software effort

estimation [7]. S. Kanmani, et al. proposed another technique to use CPA with a

fuzzy system using subtractive clustering technique for calculating the effort and

have compared the result with that obtained using the concept of artificial neural

network [8]. They found that fuzzy system using subtractive clustering technique

yield better result than that of ANN. Veronica S. Moertini introduced five data

clustering algorithm and show the implementation of two algorithms out of five

using Matlab [9]. K. M. Bataineh, et al. compares the performance of Fuzzy

c-means algorithm with subtractive clustering algorithm [10].

Alaa Sheta use Takagi-Sugeno (TS) technique to develop fuzzy models for two

nonlinear processes [12]. They are the software effort estimation for a NASA

software projects and the prediction of the next week S & P 500 i.e. Standard

& Poor’s 500 for stock market. Arshdeep Kaur et al. outlines the basic differ-

ence between the Mamdani-type Fuzzy Inference System and Sugeno-type Fuzzy

Inference System for Air Conditioning System [13].

8

1.6 Motivation Introduction

Adriano L.I. Oliveira [14] provides a comparative study on support vector re-

gression (SVR), radial basis function neural networks (RBFNs) and linear regres-

sion for estimation of software project effort. The experiment is carried out using

NASA project datasets and the result shows that SVR performs better than RBFN

and linear regression. K. Vinay Kumar, et al. [15] have proposed the use of wavelet

neural network (WNN) to forecast the software development effort and compares

the result with other techniques such as multilayer perceptron (MLP), radial basis

function network (RBFN), multiple linear regression (MLR), dynamic evolving

neuro-fuzzy inference system (DENFIS) and support vector machine (SVM).

Iman Attarzadeh et al. [17] described an enhanced soft computing model for

the estimation of software cost and time estimation and compare the result with

algorithmic model. Vladimir Cherkassky et. al [18] use six representative methods

implemented on artificial data sets to provide some insights on applicability of

various methods. They conclude that no single method proved to be the best, since

a method’s performance depends significantly on the type of the target function

(being estimated), and on the properties of training data (i.e., the number of

samples, amount of noise, etc.).

Adrian G. Bors [19] introduced a few RBF training algorithms and showed how

RBF networks can be applied for real-life applications. Haralambos Sarimveis et

al. [20] proposed a new algorithm for training RBF neural networks based on the

subtractive clustering technique. Ali Idri et al. [21] provide a comparison between

a RBF neural network using C-means and a RBF neural network using APC-III, in

terms of estimate accuracy, for software effort estimation based on COCOMO’81

dataset. Chitra Panchapakesan et al. [22] have used another approach to test how

much one can reduce the error by changing the centers in an RBF network.

1.6 Motivation

A survey says, almost one-third projects exceed their budget and is delivered late

and two-thirds of all projects overrun their original estimates. It is impossible for

a manager or system analyst to accurately predict the cost and effort required to

9

1.7 Thesis Organization Introduction

develop a software. Without accurate cost estimation capability, project managers

can’t determine how much time and manpower the project should take and that

means the software portion of the project is out of control from its beginning.

To help the industry in developing quality products within the scheduled time,

accurate software effort estimation is necessary.

1.7 Thesis Organization

The rest of the thesis is organized as follows.

Novel artificial intelligence (AI) techniquesis given in Chapter-3, in that Fuzzy

logic system been discussed and implemented, then their results are compared to

estimate the effort of software product development using OO paradigm.

In Chapter-2 different types of adaptive regression techniques like MLP (2.1.1),

KNN (2.1.2) and RBFN (2.1.3) has been proposed and implemented; and their

accuracy is compared to estimate the effort of software product on the basis of

Class Point count.

10

1.7 Thesis Organization Introduction

Table 1.5: Forty Project DataSet

Sr. No. EFH CP1 CP2 NEM NSR NOA
1 286 103.18 110.55 142 97 170
2 396 278.72 242.54 409 295 292
3 471 473.90 446.60 821 567 929
4 1016 851.44 760.96 975 723 755
5 1261 1263.12 1242.60 997 764 1145
6 261 196.68 180.84 225 181 400
7 993 178.80 645.60 589 944 402
8 552 213.30 208.56 262 167 260
9 998 1095.00 905.00 697 929 385
10 180 116.62 95.06 71 218 77
11 482 267.80 251.55 368 504 559
12 1083 687.57 766.29 789 362 682
13 205 59.64 64.61 79 41 98
14 851 697.48 620.10 542 392 508
15 840 864.27 743.49 701 635 770
16 1414 1386.32 1345.40 885 701 1087
17 279 132.54 74.26 97 387 65
18 621 550.55 481.66 382 654 293
19 601 539.35 474.95 387 845 484
20 680 489.06 438.90 347 870 304
21 366 287.97 262.74 343 264 299
22 947 663.60 627.60 944 421 637
23 485 397.10 358.60 409 269 451
24 812 678.28 590.42 531 401 520
25 685 386.31 428.18 387 297 812
26 638 268.45 280.84 373 278 788
27 1803 2090.70 1719.25 724 1167 1633
28 369 114.40 104.50 192 126 177
29 439 162.87 156.64 169 128 181
30 491 258.72 246.96 323 195 285
31 484 289.68 241.40 363 398 444
32 481 480.25 413.10 431 362 389
33 861 778.75 738.70 692 653 858
34 417 263.72 234.08 345 245 389
35 268 217.36 195.36 218 187 448
36 470 295.26 263.07 250 512 332
37 436 117.48 126.38 135 121 193
38 428 146.97 148.35 227 147 212
39 436 169.74 200.10 213 183 318
40 356 112.53 110.67 154 83 147

11

Chapter 2

Adaptive Regression Techniques

2.1 Introduction

The effort involved in developing a software product plays an important role in

determining the success or failure. In the context of developing software using

object-oriented methodologies, traditional methods and metrics were extended to

help managers in effort estimation activity. Software project managers require a

reliable approach for effort estimation. It is especially important during the early

stage of the software-development life cycle. In this chapter, the main goal is

to estimate the cost of various software projects using class point approach and

optimize the parameters using various types of adaptive regression techniques such

as Multi-Layer Perceptron (ANN), K Nearest Neighbor Regression (KNN) and

Radial Basis Function Network(RBFN) to achieve better accuracy. Furthermore,

a comparative analysis of software effort estimation using these various adaptive

regression techniques has been provided. By estimating the software projects

accurately, we can have software with acceptable quality within budget and on

planned schedules.

2.1.1 Multi-Layer Perceptron (MLP)

MLP is a feed-forward neural network with one or more layers between input and

output layer. Feed-forward means that data flows in one direction from input

to output layer (forward). The back propagation learning (BPA) algorithm is

basically used to train this type of model. MLPs are widely used for pattern

12

2.1 Introduction Adaptive Regression Techniques

classification, recognition, prediction and approximation. Multi Layer Perceptron

can solve problems, which are not linearly separable.

2.1.2 K Nearest Neighbor Regression (KNN)

K Nearest Neighbor Regression (KNN) is presented by LUC P. DEVROYE [35] in

the year 1978. In pattern recognition, the KNN is a method for classifying objects

based on closest training examples in the feature space. It is non-parametric

and lazy algorithm. In this case, an object is classified by a majority vote of

its neighbors, with the object being assigned for the class most common for its k

nearest neighbors (k is a positive integer, typically small). If k = 1, then the object

is simply assigned for the class of its nearest neighbor. Similarly, for regression,

the same method can be used by simply assigning the property value for the object

to be the average over the values of its k nearest neighbors.

2.1.3 Radial Basis Function Network (RBFN)

Radial basis function emerged as a variation of multi layer perceptron technique

[19]. The theory of function approximation helps in deriving the idea of RBFN.

The architecture of the RBFN is quite simple. An input layer which consists of

a source’s nodes; a hidden layer in which each neuron computes its output using

a radial basis function, which is in general a Gaussian function, and an output

layer which builds a linear weighted sum of hidden neuron outputs and supplies

the response from the network (effort). An RBFN has only one output neuron.

F (x) =
L∑

j=1

wjφj(‖x− cj‖) (2.1)

where L is the number of hidden neurons, xεRp is the input, wj are the output

layer weights of the RBFN and φ(x) is Gaussian radial basis function given by:

φj(‖x− cj‖) = exp(−‖x− cj‖
2

(σj)2
) (2.2)

where ‖.‖ denotes the Euclidean distance, cjεR
p is the centre of the jth hidden

neuron and σ2
j is the width of the jth hidden neuron.

13

2.2 Proposed Approach Adaptive Regression Techniques

2.2 Proposed Approach

The proposed work is based on data derived from forty student projects [1] devel-

oped using Java’s language and intends to evaluate software-development effort.

The use of such data on the validation process has provided initial experimental

evidence on the effectiveness of the CPA. These data are used in the implemen-

tation of various adaptive methods for regression such as MLP, KNN and RBFN

system model. The calculated result is then compared to measure the accuracy

of the models. To calculate the effort of a given software project, basically the

following steps have been used.

Steps in Effort Estimation

1. Data Collection: The data has been collected from previously developed

projects.

2. Calculate Class Point: The class point will be calculated as per the steps

described in the Figure-1.1.

3. Select Data: The generated CP2 value in Step-2 has been used as input

arguments.

4. Normalize Dataset: Input values were normalized over the range [0,1]. Let

X be the dataset and x is an element of the dataset, then the normalization

of the x can be calculated as :

Normalized(x) =
x−min(X)

max(X)−min(X)
(2.3)

where

min(X) = the minimum value of the dataset X.

max(X) = the maximum value of the dataset X.

if max(X) is equal to min(X), then Normalized(x) is set to 0.5.

5. Division of data set: Divide the number of data into three parts, i.e.

learning set, validation set and test set.

14

2.3 Implementation Adaptive Regression Techniques

6. Perform Model Selection: In this step, a 5-fold cross validation is im-

plemented for model selection. The model which provides the least NRMSE

value than the other generated models based on the minimum validation and

prediction error criterion has been selected to perform other operations.

7. Select Best Model: By taking the average of all the 5-fold’s corresponding

validation and prediction error (NRMSE) value, the best model has been

selected. Finally, the model has been plotted using training sample and

testing sample.

Once the model is ready, the parameter of any new project can be given, and

it will generate the estimated effort as output for that project.

2.3 Implementation

2.3.1 Model Design Using Multi-Layer Perceptron

This technique uses one parameter. This parameter sets the number of hidden

neurons to be used in a three-layer neural network. The number of neurons used

is directly proportional to the training time. The values are typically ranges

between 2 to 40, but it can be increase up to 1000. While implementing the

normalized data set using Multi-Layer Perceptron technique for a different number

of hidden neurons, the following results have been obtained. The Table-2.3.1

provides minimum NRMSE value obtained from Training set and Test set using

the Multi-layer Perceptron technique for each fold for a specific number of hidden

neurons. Hence the average over the NRMSE values for training set and test set is

treated as the final result. The proposed model generated using the Multi-Layer

Perceptron technique is plotted based upon the training and testing sample as

shown in Figure-2.1. From Figure-2.1, it has been observed that the predicted

value is highly correlated with actual data.

15

2.3 Implementation Adaptive Regression Techniques

Fold

No. of

Hid-

den

Neu-

rons

Training

Set Vali-

dation

Error

(NRMSE)

Test Set

Predic-

tion Error

(NRMSE)

1 15 0.356861543 0.2668688

2 40 0.389938789 0.2869995

3 25 0.283935873 0.5995649

4 5 0.335886118 0.2274501

5 20 0.292505942 0.3704862

Average 0.3555415 0.39669798

Table 2.1: RMSE Value Obtained
using Multi-Layer Perceptron Tech-
nique for Different No. of Neurons

Figure 2.1: Multi-Layer Perceptron
based Effort Estimation Model

2.3.2 Model Design Using K-Nearest Neighbor Regression

This technique uses one parameter called K which specifies the numbers of near-

est neighbors that are averaged to form an estimate. The value for K must be

greater than 0 but less than the number of samples in training file. The maximum

value of K could be 100 . While implementing the normalized data set using K-

Nearest Neighbor Regression technique for different numbers of nearest neighbors,

the following results have been obtained. The Table-2.2 provides various esti-

mation parameters value such as NRMS, RMSE and MMER obtained using the

K-Nearest Neighbor Regression technique for different no. of nearest neighbors.

From the above table, clearly the model with two no. Of nearest neighbors pro-

vides minimum value of NRMS and RMSE. The proposed model generated using

the K-Nearest Neighbor Regression technique is plotted based upon the training

and testing sample as shown in Figure-2.2. From Figure-2.2, it has been observed

that the predicted value is less correlated with actual data.

16

2.3 Implementation Adaptive Regression Techniques

Fold

No. of

Nearest

Neigh-

bours

Training

Set Vali-

dation

Error

(NRMSE)

Test Set

Predic-

tion Error

(NRMSE)

1 3 0.4432182 0.2873718

2 2 0.4718944 0.4584063

3 4 0.3676056 0.6824517

4 4 0.4013564 0.2452088

5 2 0.4112930 0.4029506

Average 0.41907352 0.41527784

Table 2.2: NRMSE Value Obtained
using K-Nearest Neighbor Regres-
sion for Different No. Of Nearest
Neighbours

Figure 2.2: K-Nearest Neighbor
Regression based Effort Estimation
Model

2.3.3 Model Design Using Radial Basis Function Network

This technique uses one parameter, i.e., the number of basis functions. This pa-

rameter should be greater than 1. For multivariate input, this parameter should

be a squared number (i.e., 4, 9, 25, 36, etc.). Moreover, this parameter should not

be greater than the number of samples in the training data. While implementing

the normalized data set using Radial Basis Function Network technique for a dif-

ferent number of basis functions, the following results have been obtained.

Fold

No. of

Basis

Func-

tions

Training

Set Vali-

dation

Error

(NRMSE)

Test Set

Predic-

tion Error

(NRMSE)

1 2 0.4537595 0.2643657

2 2 0.3966360 0.3356930

3 2 0.3568095 0.5830884

4 2 0.3814956 0.2588177

5 2 0.3391349 0.3309974

Average 0.3855671 0.35459244

Table 2.3: NRMSE Value Obtained
using Radial Basis Function Network
Technique based on No. of Basis
Functions

Figure 2.3: Radial Basis Function
Network based Effort Estimation
Model

17

2.3 Implementation Adaptive Regression Techniques

The Table-2.3 provides minimum NRMSE value obtained from Training set,

and Test set using the RBFN technique for each fold for a specific number of

basis functions. Hence the result will be the average over the NRMSE values

obtained from training set and test set. The proposed model generated using the

RBFN technique is plotted based upon the training and testing sample as shown

in Figure-2.3. From Figure-2.3, it has been observed that the predicted value is

highly correlated with actual data, but fewer correlations than that of obtained

using RBF technique.

2.3.4 Comparison

Based on results obtained, the estimated effort value using the adaptive methods

for regression are compared. The results show that effort estimation using RBFN

gives better values of NRMSE than those obtained using other methods.

Figure 2.4: Comparison of Validation Error Obtained Using Six Adaptive Methods
for Regression

The Figure-2.4 shows the comparison between validation error obtained using

various adaptive regression methods.

The comparison between prediction error obtained using various adaptive re-

gression methods is shown in the Figure-2.5.

The Figure-2.6 shows the comparison of average error values obtained from

training set (validation error), and test set (prediction error) for various adaptive

18

2.3 Implementation Adaptive Regression Techniques

Figure 2.5: Comparison of Prediction Error Obtained Using various Adaptive
Methods for Regression

Figure 2.6: Comparison of Average Error values obtained from training, and test
set using various Adaptive Methods for Regression

methods for regression techniques.

When using the NRMSE in evaluation, good results are implied by lower values

of NRMSE. The Table-2.4 displays the final comparison of NRMSE value for

various adaptive regression methods. From the table, it is clear that the effort

estimation using rsdial basis function (RBFN) method gives least NRMSE value

for validation error and prediction error than other methods.

19

2.4 Summary Adaptive Regression Techniques

Table 2.4: Comparison of NRMSE Values between MLP and RBFN

AI Techniques

Average
Validation

Error
(NRMSE)

Average
Prediction

Error
(NRMSE)

1 Multi-Layer
Perceptron

0.3555415 0.39669798

2 K Nearest Neighbor
Regression

0.41907352 0.41527784

3 Radial Basis
Function Network

0.3855671 0.35459244

2.4 Summary

In this chapter, various adaptive regression techniques have been proposed and im-

plemented to estimate the effort of software product using optimized class point.

Then the calculated class point values are being normalized and used to optimize

the effort estimation result. The optimization is achieved by implementing differ-

ent types of adaptive methods of regression techniques such as ANN, KNN and

RBFN using normalized class point value. Finally, the generated minimum results

of different have been compared for estimating the performance of different mod-

els. The result shows that RBFN based effort estimation model gives less value of

NRMSE.

20

Chapter 3

TSK-Fuzzy Logic System

3.1 Introduction

The success of software development depends very much on proper estimation of

effort required to develop the software. There are basically some points approach,

which are available for software effort estimation such as Function Point, Use Case

Point, Class Point, Object Point, etc. In this chapter, to estimate the effort of var-

ious software projects using Class Point Approach. The parameters are optimized

using various AI techniques such as fuzzy logic to achieve better accuracy.

3.1.1 Fuzzy Logic System

Fuzzy sets were introduced by L. A. Zadeh (1965) [23]. This technique is used

to represent and manipulate non-precise data, but rather fuzzy. This technique

provides an inference morphology that enables approximate human reasoning ca-

pabilities to be applied to knowledge-based systems. Fuzzy system consists of three

main components: fuzzification process, inference from fuzzy rules and defuzzifi-

cation process. Among various fuzzy models, the model introduced by Takagi,

Sugeno and Kang (TSK fuzzy system) [10, 24] is more suitable for sample-data

based fuzzy modeling, because it needs fewer rules. Each rule’s consequence with

linear function can describe the input-output mapping in a large range, and the

fuzzy implication used in the model is also simple. Since the TSK-Fuzzy system is

used to predict the complexity problems [25], fuzzy system needs the antecedent

and consequence to express the logical connection between the input and output

21

3.2 Methodology Used TSK-Fuzzy Logic System

which is used as a basis to produce the desired output.The TSK fuzzy system

has a high-output sensitivity to input data, because the fuzzy consequence is a

variables-function system at the antecedent. TSK model is then structured as a

set of IF-THEN rules of the following rules.

If x is A and y is B then z = f(x,y), where A and B are fuzzy sets in the

antecedent and z=f(x,y) is a crisp function in the consequence. Usually f(x,y) is

a polynomial in the input variables x and y, but it can be any function describe

the output from the model within the fuzzy region specified by the antecedence

of the rule. A generalized type-1 TSK model can be described by fuzzy IF-THEN

rules, which represent input-output relations within a system. For a multi-input

single-output first order type-1 TSK model; its kth rule can be expressed as :

IF x1 is Q1k and x2 is Q2k and and xn is Qnk,

THEN

Z = P k
0 + P k

1 x1 + P k
2 x2 ++ P k

nxn (3.1)

The degree the input matches ith rule is typically computed using the minimum

operator:

Wi = min(µAj
(x), µBk

(y)) (3.2)

In this case, each rule is crisp output and the weighted average of crisp output is

the overall output.

Z =

∑
iWiZi∑
iWi

(3.3)

The basic calculation procedure of TSK fuzzy model is shown below:

To interpret the rule of TSK fuzzy model choice of the center and standard

deviation is required. Hence Fuzzy models can be built using different clustering

algorithms as follows.

3.2 Methodology Used

To implement the Fuzzy system and to find the number of rules different types of

the clustering algorithm are used that has been described in the following section.

22

3.2 Methodology Used TSK-Fuzzy Logic System

Figure 3.1: TSK Fuzzy Model

3.2.1 Subtractive Clustering (SC)

The subtractive clustering technique is proposed by Stephen L. Chiu [30] in 1994.

Clustering has been often exercised as a preprocessing input phase used for the

design of the RBF neural networks. To use subtractive clustering, four parameters

should be pre-initialized [29] These parameters are Hypersphere cluster radius in

data space, Squash Factor (η), Reject Ratio (ε̄), Accept Ratio (ε). Hypersphere

cluster radius in data space defines neighborhood data points outside this radius

has little influence upon the potential. Squash Factor (η) defines the neighborhood

which will have the measurable reductions in potential, and it can be calculated

as:

η =
rb
ra

(3.4)

Reject Ratio specifies a threshold for the potential above which the data point

is definitely accepted as a cluster center. Accept Ratio specifies a threshold below

which the data point is definitely rejected. Consider a collection of q data points

x1, x2,...., xq where xi is a vector to the feature space. Without the loss of

generality, we assume that the feature space is normalized so that all data are

bound by unit hypercube. The potential of each data point defines a measure of

the data point to serve as a cluster center. The potential at each data point can

23

3.2 Methodology Used TSK-Fuzzy Logic System

be calculated by using the following equation.

Pi =

j=1∑
q

exp(−‖xi − xj‖
2

(ra
2

)2
) (3.5)

where ‖.‖ denotes the Euclidean distance, and ra is a positive constant called

cluster radius. Then the highest potential data point is selected as the first cluster

center. Let x∗1 be the center of the first cluster and p∗1 its potential value. The

potential of each data points xi∗ is revised as follows:

pi = pi − p∗1 exp(−‖xi − x
∗
1‖

2

(rb
2

)2
) (3.6)

where η is a positive constant greater than 1 and is called the squash factor.

When the revision of the potentials of all data points is done by using Equation-

3.6, the data point with the highest remaining potential is selected as the second

cluster center. In general, after the Lth cluster center has been obtained, the

potential at each data point is revised as follows:

pi = pi − p∗L exp(−‖xi − x
∗
L‖

2

(rb
2

)2
) (3.7)

where x∗L is the center of the Lth cluster and p∗L is its potential value.

3.2.2 Fuzzy C-Means Clustering (FCM)

Fuzzy C-Means clustering (FCM), also known as ISODATA, is a data clustering

algorithm in which each data point belongs to a cluster, to a degree, specified by a

membership grade. It is first developed by Dunn [31] and improved by Bezdek [32].

FCM employs fuzzy partitioning such that a given data point can belong to several

groups in the degree of belongings specified by membership grades between 0 and

1. However, FCM still uses a cost function which is to be minimized while trying to

partition the data set. The membership matrix U elements value ranges between

0 and 1. However, the summation of degrees of belongings of a data point to all

clusters is always equal to unity:

c∑
i=1

uij = 1, ∀j = 1,, n (3.8)

24

3.2 Methodology Used TSK-Fuzzy Logic System

The cost function for FCM can be defined as:

J(U, c1,, cc) =
c∑

i=1

Ji =
c∑

i=1

n∑
j=1

umijd
2
ij (3.9)

where uij is between 0 and 1; ci is the cluster center of a fuzzy group i ; dij =

‖ci − xj‖ is the Euclidean distance between the ith cluster center and j th data

point; m ε [1,∞) is a weighting exponent. The conditions for equation 3.9 to

reach its minimum value are:

ci =

∑n
j=1 u

m
ijxj∑n

j=1 u
m
ij

(3.10)

uij =
1∑c

k=1(
dij
dkj

)
2

m−1

(3.11)

The algorithm works iteratively through the preceding two conditions until

there is no more improvement noticed. The performance of FCM depends on the

initial membership matrix values; thereby it is advisable to run the algorithm for

several times, each starting with different values of membership grades of data

points.

3.2.3 K-Means Clustering

The K-means clustering (Hard C-means clustering), is a crisp clustering algorithm

based on finding data clusters in a data set such that a cost function of dissimilarity

measure is minimized. This algorithm partitions a collection of n vectors xj , j

= 1,...., n, is to be partitioned into c groups Gi, i = 1. c . Euclidean distance

is chosen as a dissimilarity measure between a vector xk in the group j and the

corresponding cluster center ci , can be defined by:

J =
c∑

i=1

Ji =
c∑

i=1

(
∑

k,xkεGi

‖xk − ci‖2) (3.12)

where Ji =
∑

k,xkεGi
‖xk − ci‖2 is the cost function within the group i. Thus, the

value of Ji depends on the geometrical properties of Gi and the location of ci.

The partitioned groups are defined by a c × n binary membership matrix U,

where the element uij is 1 if the j th data point xj belongs to a group i, and 0

25

3.3 Proposed Work TSK-Fuzzy Logic System

otherwise. Once the cluster centers ci] are fixed, the minimizing uij for Equation

3.12 can be derived as follows:

uij =

1 if x = ‖xj − ci‖2 ≤ ‖xj − ck‖2 ,

for each k 6= i

0 Otherwise

(3.13)

where xj belongs to a group i if ci is the closest center among all centers.

Since a data point can only be in a group, the membership matrix, U have the

properties as follows:
c∑

i=1

uij = 1, ∀j = 1,, n (3.14)

and
c∑

i=1

n∑
j=1

uij = n (3.15)

If uij is fixed, then the optimal center ci that minimize equation 3.12 is the

mean of all vectors in the group i :

ci =
1

| Gi |
∑

k,xkεGi

xk (3.16)

where | Gi | is the size of Gi or | Gi |=
∑n

j=1 uij

The K-means algorithm is inherently iterative, and no guarantee can be made

that it will converge to an optimum solution. The performance of the K-means

algorithm depends on the initial positions of the cluster centers, thus it is advisable

to run the algorithm several times, each with a different set of initial cluster centers.

3.3 Proposed Work

The proposed work is based on data derived from 40 student projects [1] and intend

to evaluate a software-development efforts. These data are used in the implemen-

tation of a TSK based fuzzy system model using different clustering algorithm

like subtractive clustering (SC), fuzzy C-means (FCM) clustering and k-means

clustering algorithm. The calculated result generated using various methodologies

are then compared. To calculate the effort of a given software project, basically

26

3.3 Proposed Work TSK-Fuzzy Logic System

the following steps have been used.

Steps in Effort Estimation

1. Calculate Class Point: The class point (CP2) will be calculated as per

the steps described in the Figure-1.1. Then the generated CP2 value has

been used as input arguments.

2. Normalize Dataset : After calculating the final class point values, the data

sets are then being normalized over the range [0,1]. Let X be the dataset

and x is an element of the dataset, then the normalization of the x can be

calculated as :

Normalized(x) =
x−min(X)

max(X)−min(X)
(3.17)

where

min(X) = the minimum value of the dataset X.

max(X) = the maximum value of the dataset X.

if max(X) is equal to min(X), then Normalized(x) is set to 0.5.

3. Division of dataset: The normalized data set is divided into different

subsets using double sampling procedure. In the first step the normalized

dataset is divided into training set and test set. The training set is used for

learning (model estimation), whereas the test set is used only for estimating

the prediction risk of the final model. The second step deals with selecting

the model with optimal complexity. In this step, the training set is divided

into learning set and validation set. The learning set is used for model

parameters estimation, and the validation set is used for an optimal model

complexity selection (usually via cross-validation).

4. Perform Model Selection: In this step, a 5-fold cross validation is used

for model selection. The model which provides the least RMSE value than

the other generated models based on the minimum validation and prediction

error criteria has been selected to perform other operations.

27

3.3 Proposed Work TSK-Fuzzy Logic System

5. Select Best Model: By taking the average of all the 5-fold’s correspond-

ing validation and prediction error (RMSE) value, the best model has been

selected.

3.3.1 TSK Based Fuzzy Model Using Subtractive Cluster-
ing Algorithm

For the identification of each class, each cluster center found using the fuzzy model

can be translated into a fuzzy rule. The process of selecting new cluster centers

and revising potential is carried out iteratively until stopping criteria satisfied.

The following criterion is used for the process of acquiring new cluster center and

revising potential repeats:

Criterion: Cluster Center Finding .

Begin

if p∗L > εp∗1 then

Accept x∗L as a cluster center and continue.

else if p∗L < ε̄p∗1 then

Reject x∗L and end the clustering process.

else

dmin = shortest of the distance between x∗L and all previously found cluster

centers.

if dmin

ra
+

p∗L
p∗1
≥ 1 then

Accept x∗L as a cluster center and continue.

else

Reject x∗L and set the potential at x∗L to 0. Select the data point with the

next highest potential as the new x∗L and reset.

end if

end if

28

3.3 Proposed Work TSK-Fuzzy Logic System

Results and Discussion

The following Table-3.1 shows the values of the constants p0 and p1 for each

generated fuzzy rule in TSK based fuzzy model using the subtractive clustering

algorithm for CP2 in one fold.

Table 3.1: Type-1 TSK Fuzzy Model Developed Using Subtractive Clustering
Algorithm for CP2

Fuzzy Rules if x, then z = p1 × x+ p0

Rule - 1 if x = exp(−1
2
(x−0.1024

0.3780
)2), then z = 0.0075× x+ 0.1460

Rule - 2 if x = exp(−1
2
(x−0.3357

0.3780
)2), then z = 0.00765× x+ 0.4109

Rule - 3 if x = exp(−1
2
(x−0
0.3780

)2), then z = 0.00765× x+ 0.0154

Rule - 4 if x = exp(−1
2
(x−0.2140

0.3780
)2), then z = 0.1038× x+ 0.2554

Rule - 5 if x = exp(−1
2
(x−0.7243

0.3780
)2), then z = 0.3178× x+ 0.5909

Rule - 6 if x = exp(−1
2
(x−0.5079

0.3780
)2), then z = 0.4048× x+ 0.3426

Rule - 7 if x = exp(−1
2
(x−1.0000

0.3780
)2), then z = 0.7024× x+ 0.5952

By using Gaussian membership function, the type-1 TSK model developed

using Subtractive Clustering Algorithm can be identified as TABLE 3.1. The

Table 3.2: RMSE Value using FIS (SC) for different Radius

Fold Diff. radius Training Set Validation Error (RMSE) Test Set Prediction Error (RMSE)

1 0.4 0.0621 0.0762

2 0.3 0.0536 0.0959

3 0.5 0.0589 0.0909

4 0.4 0.0655 0.0589

5 0.4 0.0546 0.0884

Average 0.0590 0.0823

Table-3.2 shows the validation and prediction error in each fold and their average

value has been given.

29

3.3 Proposed Work TSK-Fuzzy Logic System

3.3.2 TSK Based Fuzzy Model Design Using Fuzzy C-
Means Algorithm

In a batch mode operation, FCM determines the cluster centers ci and the mem-

bership matrix U using the following steps:

1. The membership matrix U has been initialized with random values ranges

between 0 and 1 such that the constraints in Equation 3.8 are satisfied.

2. Calculate c fuzzy cluster centers ci, i = 1,, c using Equation-refeq:fcmmincond1.

3. Compute the cost function according to Equation 3.9. The computation

process will be stopped if either cost function is below a certain tolerance

value or its improvement over previous iteration is below a certain threshold.

4. Compute a new U using Equation 3.11. Go to step 2.

Results and Discussion

The values of the constants p0 and p1 for each generated fuzzy rule in TSK based

fuzzy model using fuzzy C-means clustering algorithm for CP2 is shown using the

following table.

Table 3.3: Type-1 TSK Fuzzy Model Developed Using Fuzzy C-Means Clustering
Algorithm for CP2

Fuzzy Rules if x, then z = p1 × x+ p0

Rule - 1 if x = exp(−1
2
(x−0.0300

0.3664
)2), then z = 0.0010× x+ 0.0659

Rule - 2 if x = exp(−1
2
(x−0.2291

0.3664
)2), then z = 0.0346× x+ 0.2932

Rule - 3 if x = exp(−1
2
(x−0.7429

0.3664
)2), then z = 0.2878× x+ 0.6817

Rule - 4 if x = exp(−1
2
(x−0.0990

0.3664
)2), then z = 0.2949× x+ 0.1421

Rule - 5 if x = exp(−1
2
(x−0.9993

0.3664
)2), then z = 0.6470× x+ 0.7047

Rule - 6 if x = exp(−1
2
(x−0.3880

0.3664
)2), then z = 0.6890× x+ 0.2167

Rule - 7 if x = exp(−1
2
(x−0.2064

0.3664
)2), then z = 0.6940× x+ 0.0482

30

3.3 Proposed Work TSK-Fuzzy Logic System

By using Gaussian membership function, the type-1 TSK model developed

using Fuzzy C-Means (FCM) Clustering Algorithm can be identified as TABLE-

3.3.

3.3.3 TSK Based Fuzzy Model Design Using K-Means Al-
gorithm

An algorithm is presented with a data set xi, i = 1, ..., n; it then determines the

cluster centers ci and the membership matrix U iteratively using the following

steps:

1. The cluster center ci, i = 1,, c is initialized by randomly selecting c points

from among all of the data points.

2. The membership matrix U has been determined by Equation- 3.13.

3. Compute the cost function according to Equation- 3.12. The computation

will be stopped if either cost function is below a certain tolerance value or

its improvement over previous iteration is below a certain threshold.

4. Update the cluster centers according to Equation- 3.16. Go to step 2.

Results and Discussion

The values of the constants p0 and p1 for each generated fuzzy rule in TSK based

fuzzy model using k-means clustering algorithm for CP2 is shown in the following

table.

By using Gaussian membership function, the type-1 TSK model developed

using K-Means Clustering Algorithm can be identified as TABLE-3.4.

3.3.4 Comparison

On the basis of results obtained, the effort obtained using Subtractive Cluster-

ing (SC), Fuzzy C-Means clustering(FCM) and K-Means clustering are compared.

The results show that effort estimation using fuzzy system with Fuzzy C-Means

clustering(FCM) gives better values of RMSE-1.7 than those fuzzy systems imple-

mented using Subtractive Clustering and K-Means clustering.

31

3.3 Proposed Work TSK-Fuzzy Logic System

Table 3.4: Type-1 TSK Fuzzy Model Developed Using K-Means Clustering Algo-
rithm for CP2

Fuzzy Rules if x, then z = p1 × x+ p0

Rule - 1 if x = exp(−1
2
(x−0.2182

0.3020
)2), then z = 0.0159× x+ 0.1460

Rule - 2 if x = exp(−1
2
(x−0.0462

0.3020
)2), then z = 0.0255× x+ 0.4127

Rule - 3 if x = exp(−1
2
(x−0.1099

0.3020
)2), then z = 0.0262× x+ 0.0126

Rule - 4 if x = exp(−1
2
(x−0.0338

0.3020
)2), then z = 0.0307× x+ 0.2708

Rule - 5 if x = exp(−1
2
(x−0.8328

0.3020
)2), then z = 0.2974× x+ 0.6404

Rule - 6 if x = exp(−1
2
(x−0.1113

0.3020
)2), then z = 0.3236× x+ 0.4709

Rule - 7 if x = exp(−1
2
(x−0.3906

0.3020
)2), then z = 0.4942× x+ 0.8736

Figure 3.2: Center Points Generated Using SC, FCM and K-Means

The Figure-3.2 shows the center points generated for a TSK based fuzzy model

using subtractive clustering algorithm fuzzy c-means clustering algorithm and k-

means clustering algorithm.

Figure-3.3 shows the comparison of the average RMSE (Equation− 1.7) value

of fuzzy systems using subtractive clustering, fuzzy c-means clustering and k-

means clustering along with the Neuro-fuzzy inference system. When using the

RMSE in evaluation, good results are implied by lower values of RMSE. The

Table-3.5 displays the comparison of RMSE value for different fuzzy logic system.

32

3.4 Summary TSK-Fuzzy Logic System

Figure 3.3: Comparison of RMSE values for SC, FCM and K-Means clustering

Table 3.5: Comparison of RMSE Value between SC, FCM and K-Means

Subtractive Clustering Fuzzy C-Means K-Means

RMSE 0.0823 0.0785 0.0925

3.4 Summary

In this chapter, to estimate the effort of an object-oriented system, models using

the fuzzy logic system has been proposed; and their results have been compared.

The output shows that fuzzy system using FCM gives better results than Fuzzy

logic based on various clustering algorithms such as subtractive clustering, and

K-Means clustering.

33

Chapter 4

Conclusion and Future Work

Sr.No. Different AI Techniques

Average
Prediction

Error
(NRMSE)

Average
Prediction

Error
(RMSE)

1 Multi-Layer Perceptron 0.3967 0.0856

2 K Nearest Neighbor Regression 0.4153 0.0896

3 Radial Basis Function Network 0.3546 0.0765

4 Fuzzy Logic (Subtractive Clustering) 0.3748 0.0823

5 Fuzzy Logic (Fuzzy C-Means) 0.3574 0.0785

6 Fuzzy Logic (K-Means) 0.4212 0.0925

Table 4.1: Comparison of NRMSE and RMSE.

Several approaches have already been defined in literature for software effort

estimation. However, the CPA is one of the different cost estimation models that

has been widely used because it is simple, fast, accurate to a certain degree. Fuzzy-

logic technique is further used to find out the complexity level of the class and to

calculate optimized class point. Then the calculated class point values are being

normalized and used to optimize the effort estimation result. The optimization is

achieved by implementing different artificial (AI) techniques such as ANN, KNN,

RBFN, and fuzzy logic system with different clustering algorithm using normalized

class point value. Finally, the generated minimum results of different have been

compared for estimating the performance of different models. The result shows

that RBFN based effort estimation model gives less value of NRMSE. Hence it

can be concluded that the effort estimation using the RBFN model will provide

more accurate results than other AI techniques. The results are summarized in

34

Conclusion and Future Work

Table-4.1. The computations for above procedure have been implemented using

MATLAB. This approach can also be extended by using other AI techniques such

as genetic algorithm (GA), particle swarm optimization (PSO), Random Forest

and Gradient Boosted Trees.

35

Bibliography

[1] G. Costagliola, F. Ferrucci, G. Tortora, and G. Vitiello, “Class point: an

approach for the size estimation of object-oriented systems,” Software Engi-

neering, IEEE Transactions on, vol. 31, no. 1, pp. 52–74, 2005.

[2] J. Matson, B. Barrett, and J. Mellichamp, “Software development cost esti-

mation using function points,” Software Engineering, IEEE Transactions on,

vol. 20, no. 4, pp. 275–287, 1994.

[3] F. Heemstra and R. Kusters, “Function point analysis: Evaluation of a

software cost estimation model,” European Journal of Information Systems,

vol. 1, no. 4, pp. 229–237, 1991.

[4] W. Zhou and Q. Liu, “Extended class point approach of size estimation for

oo product,” in Computer Engineering and Technology (ICCET), 2010 2nd

International Conference on, vol. 4, pp. 117–122, IEEE, 2010.

[5] S. Kanmani, J. Kathiravan, S. S. Kumar, and M. Shanmugam, “Neural net-

work based effort estimation using class points for oo systems,” in Proceedings

of the International Conference on Computing: Theory and Applications, IC-

CTA ’07, (Washington, DC, USA), pp. 261–266, IEEE Computer Society,

2007.

[6] S. Kim, W. Lively, and D. Simmons, “An effort estimation by uml points in

early stage of software development,” Proceedings of the International Con-

ference on Software Engineering Research and Practice, pp. 415–421, 2006.

36

Bibliography

[7] Z. Zia, S. Tipu, K. Khan, and S. Zia, “Software cost estimation using soft

computing techniques,” Advances in Information Technology and Manage-

ment, vol. 2, no. 1, pp. 233–238, 2012.

[8] S. Kanmani, J. Kathiravan, S. S. Kumar, and M. Shanmugam, “Class point

based effort estimation of oo systems using fuzzy subtractive clustering and

artificial neural networks,” in Proceedings of the 1st India software engineering

conference, ISEC ’08, (New York, NY, USA), pp. 141–142, ACM, 2008.

[9] V. S Moertini, “Introduction to five data clustering algorithms,” INTEGRAL

Majalah Ilmiah Matematika dan Ilmu Pengetahuan Alam, vol. 7, no. 2, 2008.

[10] K. Bataineh, M. Naji, and M. Saqer, “A comparison study between various

fuzzy clustering algorithms,” EDITORIAL BOARD, vol. 5, no. 4, p. 335,

2011.

[11] K. Hammouda and F. Karray, “A comparative study of data clustering

techniques,” Tools of intelligent systems design. In Course Project, SYDE,

vol. 625, 2000.

[12] A. Sheta, “Software effort estimation and stock market prediction using

takagi-sugeno fuzzy models,” in Fuzzy Systems, 2006 IEEE International

Conference on, pp. 171–178, IEEE, 2006.

[13] A. Kaur and A. Kaur, “Comparison of mamdani-type and sugeno-type fuzzy

inference systems for air conditioning system,” International Journal of Soft

Computing and Engineering (IJSCE), ISSN, pp. 2231–2307, 2012.

[14] A. L. Oliveira, “Estimation of software project effort with support vector

regression,” Neurocomputing, vol. 69, no. 13, pp. 1749–1753, 2006.

[15] K. Vinay Kumar, V. Ravi, M. Carr, and N. Raj Kiran, “Software develop-

ment cost estimation using wavelet neural networks,” Journal of Systems and

Software, vol. 81, no. 11, pp. 1853–1867, 2008.

37

Bibliography

[16] P. L. Braga, A. L. Oliveira, and S. R. Meira, “A ga-based feature selection

and parameters optimization for support vector regression applied to software

effort estimation,” in Proceedings of the 2008 ACM symposium on Applied

computing, pp. 1788–1792, ACM, 2008.

[17] I. Attarzadeh and S. Ow, “Soft computing approach for software cost estima-

tion,” Int. J. of Software Engineering, IJSE, vol. 3, no. 1, pp. 1–10, 2010.

[18] V. Cherkassky, D. Gehring, and F. Mulier, “Comparison of adaptive methods

for function estimation from samples,” Neural Networks, IEEE Transactions

on, vol. 7, no. 4, pp. 969–984, 1996.

[19] A. Bors, “Introduction of the radial basis function (rbf) networks,” in Online

symposium for electronics engineers, vol. 1, pp. 1–7, 2001.

[20] H. Sarimveis, A. Alexandridis, and G. Bafas, “A fast training algorithm for rbf

networks based on subtractive clustering,” Neurocomputing, vol. 51, pp. 501–

505, 2003.

[21] A. Idri, A. Abran, and S. Mbarki, “An experiment on the design of radial basis

function neural networks for software cost estimation,” in Information and

Communication Technologies, 2006. ICTTA’06. 2nd, vol. 1, pp. 1612–1617,

IEEE, 2006.

[22] C. Panchapakesan, M. Palaniswami, D. Ralph, and C. Manzie, “Effects of

moving the center’s in an rbf network,” Neural Networks, IEEE Transactions

on, vol. 13, no. 6, pp. 1299–1307, 2002.

[23] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative

modeling,” IEEE Transactions on fuzzy systems, vol. 1, no. 1, pp. 7–31, 1993.

[24] S. N. Sivanandam, S. Sumathi, and S. N. Deepa, Introduction to Fuzzy Logic

using MATLAB. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006.

38

Bibliography

[25] R. John, “Type 2 fuzzy sets: an appraisal of theory and applications,” In-

ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,

vol. 6, no. 06, pp. 563–576, 1998.

[26] P. Sandhu, P. Bassi, and A. Brar, “Software effort estimation using soft com-

puting techniques,” World Academy of Science, Engineering and Technology,

vol. 46, p. 2008, 2008.

[27] H. Leung and Z. Fan, “Software cost estimation,” Handbook of Software En-

gineering, Hong Kong Polytechnic University, 2002.

[28] R. Fuller, “Neural fuzzy systems,” in IN ADVANCES IN SOFT COMPUT-

ING SERIES. BERLIN/HEILDELBERG: SPRINGER-VERLAG, 2000,

ISBN, pp. 3–7908, Springer, 1995.

[29] Q. Ren, L. Baron, and M. Balazinski, “Type-2 takagi-sugeno-kang fuzzy logic

modeling using subtractive clustering,” in Fuzzy Information Processing So-

ciety, 2006. NAFIPS 2006. Annual meeting of the North American, pp. 120–

125, IEEE, 2006.

[30] S. Chiu, “Fuzzy model identification based on cluster estimation,” Journal of

intelligent and Fuzzy systems, vol. 2, no. 3, pp. 267–278, 1994.

[31] J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters,” 1973.

[32] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms.

Kluwer Academic Publishers, 1981.

[33] H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support

vector regression machines,” Advances in neural information processing sys-

tems, pp. 155–161, 1997.

[34] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”

Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

39

Bibliography

[35] L. Devroye, “The uniform convergence of nearest neighbor regression function

estimators and their application in optimization,” Information Theory, IEEE

Transactions on, vol. 24, no. 2, pp. 142–151, 1978.

40

Dissemination of Work

Accepted

1. Mukesh Kumar, Shashank Mouli Satapathy, Santanu Kumar Rath. Class

Point Approach for Software Effort Estimation using Various Fuzzy Cluster-

ing Algorithms: A Comparative Study. International conference on Fuzzy

Systems, Hyderabad, India, 2013.

2. Sugandha Saha, Mukesh Kumar, Santanu Kumar Rath. Comparison of

different Neural Network Models for Stock Market Prediction. 25th Inter-

national Conference on Software Engineering and Knowledge Engineering,

Boston USA, 2013.

Communicated

1. Shashank Mouli Satapathy, Mukesh Kumar, Santanu Kumar Rath. Opti-

mized Class Point Approach for Software Effort Estimation Using Adaptive

Neuro-Fuzzy Inference System Model. International Journal of Computer

Applications in Technology (IJCAT), Special Issue on: “Current Trends and

Improvements in Software Engineering Practices”. Inderscience Publishers,

2013.

2. Shashank Mouli Satapathy, Mukesh Kumar, Santanu Kumar Rath. Fuzzy-

Class Point Approach for Software Effort Estimation Using Various Adaptive

Regression Methods. CSI Transactions on ICT, Springer, 2013.

3. Mukesh Kumar, Shashank Mouli Satapathy, Santanu Kumar Rath. Class

Point Approach for Software Effort Estimation using Soft Computing Tech-

41

niques. International Conference on Advances in Computing, Communica-

tions and Informatics Mysore, India, 2013.

	Certificate
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Introduction
	Class Point Analysis
	Various Performance Measures
	Mean Square Error (MSE)
	Magnitude of Relative Error (MRE)
	Mean Magnitude of Relative Error (MMRE)
	Root Mean Square Error (RMSE)
	Normalized Root Mean Square(NRMS)

	Dataset used for Effort Calculation
	Problem Definition
	Literature Review
	Motivation
	Thesis Organization

	Adaptive Regression Techniques
	Introduction
	Multi-Layer Perceptron (MLP)
	K Nearest Neighbor Regression (KNN)
	Radial Basis Function Network (RBFN)

	Proposed Approach
	Implementation
	Model Design Using Multi-Layer Perceptron
	Model Design Using K-Nearest Neighbor Regression
	Model Design Using Radial Basis Function Network
	Comparison

	Summary

	TSK-Fuzzy Logic System
	Introduction
	Fuzzy Logic System

	Methodology Used
	Subtractive Clustering (SC)
	Fuzzy C-Means Clustering (FCM)
	K-Means Clustering

	Proposed Work
	TSK Based Fuzzy Model Using Subtractive Clustering Algorithm
	TSK Based Fuzzy Model Design Using Fuzzy C-Means Algorithm
	TSK Based Fuzzy Model Design Using K-Means Algorithm
	Comparison

	Summary

	Conclusion and Future Work
	Bibliography
	Dissemination of Work

