410,113 research outputs found

    A Framework for Integrated Energy Systems, Infrastructure and Services Optimization with Visualization and Simulation Platform for Low-carbon Precincts

    Get PDF
    Abstract: The energy informatics can be enhanced to support decision-making, communication and benchmarking of the energy performance both in design and operational phases. To enable engineers, developers and policy-makers to better understand the implications of energy systems and services, computer-generated visualization is a powerful tool to inform a range of technological options and to analyze the effects of energy system strategies. Visualization increases the transparency of results and the understanding of interactions between users and energy systems. This paper presents a novel conceptual framework for integrating energy systems, infrastructure and services optimization with a visualization and simulation platform. It focuses on the development of a tool for low-carbon energy systems and high quality energy services at precinct scale. The paper describes the vision and architectural design for the integrated framework. It is expected to serve as a next generation approach to managing energy services, carbon emissions and efficient resource use in the built environment. This will help to deliver new environmentally sustainable infrastructure and achieve carbon neutrality in urban development. Citation: Phdungslip, A., Martinac, I & Ngo, T. (2014). A Framework for Integrated Energy Systems, Infrastructure and Services Optimization with Visualization and Simulation Platform for Low-carbon Precincts. In: Campbell P. and Perez P. (Eds), Proceedings of the International Symposium of Next Generation Infrastructure, 1-4 October 2013, SMART Infrastructure Facility, University of Wollongong, Australia

    GOES-R Algorithms: A Common Science and Engineering Design and Development Approach for Delivering Next Generation Environmental Data Products

    Get PDF
    GOES-R, the next generation of the National Oceanic and Atmospheric Administration’s (NOAA) Geostationary Operational Environmental Satellite (GOES) System, represents a new technological era in operational geostationary environmental satellite systems. GOES-R will provide advanced products that describe the state of the atmosphere, land, oceans, and solar/ space environments over the western hemisphere. The Harris GOES-R Ground Segment team will provide the software, based on government-supplied algorithms, and engineering infrastructures designed to produce and distribute these next-generation data products. The Harris GOES-R Team has adopted an integrated applied science and engineering approach that combines rigorous system engineering methods, with modern software design elements to facilitate the transition of algorithms for Level 1 and 2+ products to operational software. The Harris Team GOES-R GS algorithm framework, which includes a common data model interface, provides general design principles and standardized methods for developing general algorithm services, interfacing to external data, generating intermediate and L1b and L2 products and implementing common algorithm features such as metadata generation and error handling. This work presents the suite of GOES-R products, their properties and the process by which the related requirements are maintained during the complete design/development life-cycle. It also describes the algorithm architecture/engineering approach that will be used to deploy these algorithms, and provides a preliminary implementation road map for the development of the GOES-R GS software infrastructure, and a view into the integration of the framework and data model into the final design

    A multiprocessor based packet-switch: performance analysis of the communication infrastructure

    Get PDF
    The intra-chip communication infrastructures are receiving always more attention since they are becoming a crucial part in the development of current SoCs. Due to the high availability of pre-characterized hard-IP, the complexity of the design is moving toward global interconnections which are introducing always more constraints at each technology node. Power consumption, timing closure, bandwidth requirements, time to market, are some of the factors that are leading to the proposal of new solutions for next generation multi-million SoCs. The need of high programmable systems and the high gate-count availability is moving always more attention on multiprocessors systems (MP-SoC) and so an adequate solution must be found for the communication infrastructure. One of the most promising technologies is the Network-On-Chip (NoC) architecture, which seems to better fit with the new demanding complexity of such systems. Before starting to develop new solutions, it is crucial to fully understand if and when current bus architectures introduce strong limitations in the development of high speed systems. This article describes a case study of a multiprocessor based ethernet packet-switch application with a shared-bus communication infrastructure. This system aims to depict all the bottlenecks which a shared-bus introduces under heavy load. What emerges from this analysis is that, as expected, a shared-bus is not scalable and it strongly limits whole system performances. These results strengthen the hypothesis that new communication architectures (like the NoC) must be found

    Continuous Deployment of Trustworthy Smart IoT Systems.

    Get PDF
    While the next generation of IoT systems need to perform distributed processing and coordinated behaviour across IoT, Edge and Cloud infrastructures, their development and operation are still challenging. A major challenge is the high heterogeneity of their infrastructure, which broadens the surface for security attacks and increases the complexity of maintaining and evolving such complex systems. In this paper, we present our approach for Generation and Deployment of Smart IoT Systems (GeneSIS) to tame this complexity. GeneSIS leverages model-driven engineering to support the DevSecOps of Smart IoT Systems (SIS). More precisely, GeneSIS includes: (i) a domain specific modelling language to specify the deployment of SIS over IoT, Edge and Cloud infrastructure with the necessary concepts for security and privacy; and (ii) a [email protected] engine to enact the orchestration, deployment, and adaptation of these SIS. The results from our smart building case study have shown that GeneSIS can support security by design from the development (via deployment) to the operation of IoT systems and back again in a DevSecOps loop. In other words, GeneSIS enables IoT systems to keep up security and adapt to evolving conditions and threats while maintaining their trustworthiness.The research leading to these results has received funding from the European Commission’s H2020 Programme under grant agreement numbers 780351 (ENACT)

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    A Delphi-Based Framework for systems architecting of in-orbit exploration infrastructure for human exploration beyond Low Earth Orbit

    Get PDF
    The current debate in the U.S. Human Spaceflight Program focuses on the development of the next generation of man-rated heavy lift launch vehicles. While launch vehicle systems are of critical importance for future exploration, a comprehensive analysis of the entire exploration infrastructure is required to avoid costly pitfalls at early stages of the design process. This paper addresses this need by presenting a Delphi-Based Systems Architecting Framework for integrated architectural analysis of future in-orbit infrastructure for human space exploration beyond Low Earth Orbit. The paper is structured in two parts. The first part consists of an expert elicitation study to identify objectives for the in-space transportation infrastructure. The study was conducted between November 2011 and January 2012 with 15 senior experts involved in human spaceflight in the United States and Europe. The elicitation study included the formation of three expert panels representing exploration, science, and policy stakeholders engaged in a 3-round Delphi study. The rationale behind the Delphi approach, as imported from social science research, is discussed. Finally, a novel version of the Delphi method is presented and applied to technical decision-making and systems architecting in the context of human space exploration. The second part of the paper describes a tradespace exploration study of in-orbit infrastructure coupled with a requirements definition exercise informed by expert elicitation. The uncertainties associated with technical requirements and stakeholder goals are explicitly considered in the analysis. The outcome of the expert elicitation process portrays an integrated view of perceived stakeholder needs within the human spaceflight community. Needs are subsequently converted into requirements and coupled to the system architectures of interest to analyze the correlation between exploration, science, and policy goals. Pareto analysis is used to identify architectures of interest for further consideration by decision-makers. The paper closes with a summary of insights and develops a strategy for evolutionary development of the exploration infrastructure of the incoming decades. The most important result produced by this analysis is the identification of a critical irreducible ambiguity undermining value delivery for the in-space transportation infrastructure of the next three decades: destination choice. Consensus on destination is far from being reached by the community at large, with particular reference to exploration and policy stakeholders. The realization of this ambiguity is a call for NASA to promote an open forum on this topic, and to develop a strong case for policy makers to incentivize investments in the human spaceflight industry in the next decades

    Infrastructure Education Using the Impacts of Extreme Storms as Case Studies

    Get PDF
    Our university will begin offering a freshman level course titled “Introduction to Infrastructure” in Spring 2015. A common complaint from students over the years has been that they do not have a good understanding of what civil and environmental engineering is, and what civil engineers do. One of the goals of this course is to provide students with an early exposure to the practice of civil engineering and its importance to society. Our hope is that this will provide freshman with a solid context within which to continue their studies and motivate them to continue in the program. To this end, the primary goal of the course is to introduce freshmen civil and environmental engineers to civil infrastructure. Additionally, given the current state of infrastructure in the United States, the development of this course is of particular importance to the education and development of future engineers Our course will be a 2-credit lecture course consisting of two 75-minute periods per week of about 40 students per section. It will include sections on structural systems, foundations,transportation systems, water and environmental systems, as well as a general overview of the state of infrastructure in the US, along with other topics discussed in this report. Throughout the course, we will emphasize how the quality of infrastructure directly affects the economy and security of the US, and that the next generation of civil and environmental engineers needs to be more skilled and more able to design and create sustainable infrastructure. A significant emphasis will be placed on the impacts of extreme storms on water infrastructure and the impacts of storm surge and flooding on other infrastructure. We believe the emphasis on the impacts of extreme events on civil infrastructure, and water’s impacts on civil infrastructure in general, will provide a strong point of interest with students. It is likely this interest will be even greater at our university because a majority of our students were either directly or indirectly affected by a recent extreme storm event. Additionally, as the impacts of climate change have become measurable and as climate change projections suggest increased frequency and intensity of extreme events, the need to account for climate change in design for infrastructure is becoming more clearly recognized. A fact that is vital to increase reliability and decrease the nation’s risk and vulnerability to the failure of infrastructure in the future. Finally, we are hoping that the emphasis on extreme storms will help us highlight the connection of all civil infrastructure by providing students with a unifying context

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems
    • 

    corecore