9 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationAsynchronous circuits exhibit impressive power and performance benefits over its synchronous counterpart. Asynchronous system design, however, is not widely adopted due to the fact that it lacks an equivalent support of CAD tools and requires deep expertise in asynchronous circuit design. A relative timing (RT) based asynchronous asynchronous commercial CAD tools was recently proposed. This design flow enables engineers who are proficient in using synchronous design and CAD flow to more easily switch to asynchronous design without asynchronous experience while retaining the asynchronous benefits of power and performance. Relative timing constraints are the key step to this design flow, and were generated manually by the designer based on his/her intuition and understanding of the circuit logic and structure. This process was quite time-consuming and error-prone. This dissertation presents an algorithm that automatically generates a set of relative timing constraints to guarantee the correctness of a circuit with the aid of a formal verification engine - Analyze. The algorithms have been implemented in a tool called ARTIST (Automatic Relative Timing Identifier based on Signal Traces). Automatic generation of relative timing constraints relies on manipulation, such as searching and backtracking, of a trace status tableau that is built based on the counter example signal trace returned from the formal verification engine. The underlying mechanism of relative timing is to force signal ordering on the labeled transition graph of the system to restrict its reachability to failure states such that the circuit implementation conforms to the specification. Examples from a simple C-Element to complex six-four GasP circuits are demonstrated to show how this technique is applied to real problems. The set of relative timing constraints generated by ARTIST is compared against the set of hand generated constraints in terms of efficiency and quality. Over 100 four-phase handshake controller protocols have been verified through ARTIST and Analyze. ARTSIT vastly reduces the design time as compared to hand generation which may take days or even months to achieve a solution set of RT constraints. The quality of ARTIST generated constraints is also shown to be as good as hand generation

    Subject index volumes 1–92

    Get PDF

    Subject Index Volumes 1–200

    Get PDF

    Acta Cybernetica : Volume 19. Number 1.

    Get PDF

    Qualitatively modelling genetic regulatory networks : Petri net techniques and tools

    Get PDF
    The development of post-genomic technologies has led to a paradigm shift in the way we study genetic regulatory networks (GRNs) - the underlying systems which mediate cell function. To complement this, the focus is on devising scalable, unambiguous and automated formal techniques for holistically modelling and analysing these complex systems. Quantitative approaches offer one possible solution, but do not appear to be commensurate with currently available data. This motivates qualitative approaches such as Boolean networks (BNs) , which abstractly model the system without requiring such a high level of data completeness. Qualitative approaches enable fundamental dynamical properties to be studied, and are well-suited to initial investigations. However, strengthened formal techniques and tool support are required if they are to meet the demands of the biological community. This thesis aims to investigate, develop and evaluate the application of Petri nets (PNs) for qualitatively modelling and analysing GRNs. PNs are well-established in the field of computer science, and enjoy a number of attractive benefits, such a wide range of techniques and tools, which make them ideal for studying biological systems. We take an existing qualitative PN approach for modelling GRNs based on BNs, and extend it to more general models based on multi-valued networks (MVNs). Importantly, we develop tool support to automate model construction. We illustrate our approach with two detailed case studies on Boolean models for carbon stress in Escherichia coli and sporulation in Bacillus subtilis, and then consider a multi-valued model of the former. These case studies explore the analysis power of PN s by exploiting a range of techniques and tools. A number of behavioural differences are identified between the two E. coli models which lead us to question their formal relationship. We investigate this by proposing a framework for reasoning about the behaviour of MVNs at different levels of abstraction. We develop tool support for practical models, and show a number of important results which motivate the need for multi-valued modelling. Asynchronous BN s can be seen to be more biologically realistic than their synchronous counterparts. However, they have the drawback of capturing behaviour which is unrealisable in practice. We propose a novel approach for refining such behaviour using signal transition graphs, a PN formalism from asynchronous circuit design. We automate our approach, and demonstrate it using a BN of the lysis-lysogeny switch in phage A. Our results show that a more realistic asynchronous model can be derived which preserves the stochastic switch.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Solving Multi-objective Integer Programs using Convex Preference Cones

    Get PDF
    Esta encuesta tiene dos objetivos: en primer lugar, identificar a los individuos que fueron víctimas de algún tipo de delito y la manera en que ocurrió el mismo. En segundo lugar, medir la eficacia de las distintas autoridades competentes una vez que los individuos denunciaron el delito que sufrieron. Adicionalmente la ENVEI busca indagar las percepciones que los ciudadanos tienen sobre las instituciones de justicia y el estado de derecho en Méxic
    corecore